kbuild: Add copyright to modpost.c
[linux-2.6.22.y-op.git] / mm / rmap.c
blobdf2c41c2a9a2c1ac4d46b67c424a0001122a57ea
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29 * taken together; in truncation, i_mutex is taken outermost.
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock or pte_lock
36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
57 #include <asm/tlbflush.h>
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
61 kmem_cache_t *anon_vma_cachep;
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
65 #ifdef RMAP_DEBUG
66 struct anon_vma *anon_vma = find_vma->anon_vma;
67 struct vm_area_struct *vma;
68 unsigned int mapcount = 0;
69 int found = 0;
71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 mapcount++;
73 BUG_ON(mapcount > 100000);
74 if (vma == find_vma)
75 found = 1;
77 BUG_ON(!found);
78 #endif
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
84 struct anon_vma *anon_vma = vma->anon_vma;
86 might_sleep();
87 if (unlikely(!anon_vma)) {
88 struct mm_struct *mm = vma->vm_mm;
89 struct anon_vma *allocated, *locked;
91 anon_vma = find_mergeable_anon_vma(vma);
92 if (anon_vma) {
93 allocated = NULL;
94 locked = anon_vma;
95 spin_lock(&locked->lock);
96 } else {
97 anon_vma = anon_vma_alloc();
98 if (unlikely(!anon_vma))
99 return -ENOMEM;
100 allocated = anon_vma;
101 locked = NULL;
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm->page_table_lock);
106 if (likely(!vma->anon_vma)) {
107 vma->anon_vma = anon_vma;
108 list_add(&vma->anon_vma_node, &anon_vma->head);
109 allocated = NULL;
111 spin_unlock(&mm->page_table_lock);
113 if (locked)
114 spin_unlock(&locked->lock);
115 if (unlikely(allocated))
116 anon_vma_free(allocated);
118 return 0;
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
123 BUG_ON(vma->anon_vma != next->anon_vma);
124 list_del(&next->anon_vma_node);
127 void __anon_vma_link(struct vm_area_struct *vma)
129 struct anon_vma *anon_vma = vma->anon_vma;
131 if (anon_vma) {
132 list_add(&vma->anon_vma_node, &anon_vma->head);
133 validate_anon_vma(vma);
137 void anon_vma_link(struct vm_area_struct *vma)
139 struct anon_vma *anon_vma = vma->anon_vma;
141 if (anon_vma) {
142 spin_lock(&anon_vma->lock);
143 list_add(&vma->anon_vma_node, &anon_vma->head);
144 validate_anon_vma(vma);
145 spin_unlock(&anon_vma->lock);
149 void anon_vma_unlink(struct vm_area_struct *vma)
151 struct anon_vma *anon_vma = vma->anon_vma;
152 int empty;
154 if (!anon_vma)
155 return;
157 spin_lock(&anon_vma->lock);
158 validate_anon_vma(vma);
159 list_del(&vma->anon_vma_node);
161 /* We must garbage collect the anon_vma if it's empty */
162 empty = list_empty(&anon_vma->head);
163 spin_unlock(&anon_vma->lock);
165 if (empty)
166 anon_vma_free(anon_vma);
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 SLAB_CTOR_CONSTRUCTOR) {
173 struct anon_vma *anon_vma = data;
175 spin_lock_init(&anon_vma->lock);
176 INIT_LIST_HEAD(&anon_vma->head);
180 void __init anon_vma_init(void)
182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
187 * Getting a lock on a stable anon_vma from a page off the LRU is
188 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
192 struct anon_vma *anon_vma = NULL;
193 unsigned long anon_mapping;
195 rcu_read_lock();
196 anon_mapping = (unsigned long) page->mapping;
197 if (!(anon_mapping & PAGE_MAPPING_ANON))
198 goto out;
199 if (!page_mapped(page))
200 goto out;
202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 spin_lock(&anon_vma->lock);
204 out:
205 rcu_read_unlock();
206 return anon_vma;
209 #ifdef CONFIG_MIGRATION
211 * Remove an anonymous page from swap replacing the swap pte's
212 * through real pte's pointing to valid pages and then releasing
213 * the page from the swap cache.
215 * Must hold page lock on page.
217 void remove_from_swap(struct page *page)
219 struct anon_vma *anon_vma;
220 struct vm_area_struct *vma;
222 if (!PageAnon(page) || !PageSwapCache(page))
223 return;
225 anon_vma = page_lock_anon_vma(page);
226 if (!anon_vma)
227 return;
229 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
230 remove_vma_swap(vma, page);
232 spin_unlock(&anon_vma->lock);
234 delete_from_swap_cache(page);
236 EXPORT_SYMBOL(remove_from_swap);
237 #endif
240 * At what user virtual address is page expected in vma?
242 static inline unsigned long
243 vma_address(struct page *page, struct vm_area_struct *vma)
245 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
246 unsigned long address;
248 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
249 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
250 /* page should be within any vma from prio_tree_next */
251 BUG_ON(!PageAnon(page));
252 return -EFAULT;
254 return address;
258 * At what user virtual address is page expected in vma? checking that the
259 * page matches the vma: currently only used on anon pages, by unuse_vma;
261 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
263 if (PageAnon(page)) {
264 if ((void *)vma->anon_vma !=
265 (void *)page->mapping - PAGE_MAPPING_ANON)
266 return -EFAULT;
267 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
268 if (!vma->vm_file ||
269 vma->vm_file->f_mapping != page->mapping)
270 return -EFAULT;
271 } else
272 return -EFAULT;
273 return vma_address(page, vma);
277 * Check that @page is mapped at @address into @mm.
279 * On success returns with pte mapped and locked.
281 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
282 unsigned long address, spinlock_t **ptlp)
284 pgd_t *pgd;
285 pud_t *pud;
286 pmd_t *pmd;
287 pte_t *pte;
288 spinlock_t *ptl;
290 pgd = pgd_offset(mm, address);
291 if (!pgd_present(*pgd))
292 return NULL;
294 pud = pud_offset(pgd, address);
295 if (!pud_present(*pud))
296 return NULL;
298 pmd = pmd_offset(pud, address);
299 if (!pmd_present(*pmd))
300 return NULL;
302 pte = pte_offset_map(pmd, address);
303 /* Make a quick check before getting the lock */
304 if (!pte_present(*pte)) {
305 pte_unmap(pte);
306 return NULL;
309 ptl = pte_lockptr(mm, pmd);
310 spin_lock(ptl);
311 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
312 *ptlp = ptl;
313 return pte;
315 pte_unmap_unlock(pte, ptl);
316 return NULL;
320 * Subfunctions of page_referenced: page_referenced_one called
321 * repeatedly from either page_referenced_anon or page_referenced_file.
323 static int page_referenced_one(struct page *page,
324 struct vm_area_struct *vma, unsigned int *mapcount)
326 struct mm_struct *mm = vma->vm_mm;
327 unsigned long address;
328 pte_t *pte;
329 spinlock_t *ptl;
330 int referenced = 0;
332 address = vma_address(page, vma);
333 if (address == -EFAULT)
334 goto out;
336 pte = page_check_address(page, mm, address, &ptl);
337 if (!pte)
338 goto out;
340 if (ptep_clear_flush_young(vma, address, pte))
341 referenced++;
343 /* Pretend the page is referenced if the task has the
344 swap token and is in the middle of a page fault. */
345 if (mm != current->mm && has_swap_token(mm) &&
346 rwsem_is_locked(&mm->mmap_sem))
347 referenced++;
349 (*mapcount)--;
350 pte_unmap_unlock(pte, ptl);
351 out:
352 return referenced;
355 static int page_referenced_anon(struct page *page)
357 unsigned int mapcount;
358 struct anon_vma *anon_vma;
359 struct vm_area_struct *vma;
360 int referenced = 0;
362 anon_vma = page_lock_anon_vma(page);
363 if (!anon_vma)
364 return referenced;
366 mapcount = page_mapcount(page);
367 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
368 referenced += page_referenced_one(page, vma, &mapcount);
369 if (!mapcount)
370 break;
372 spin_unlock(&anon_vma->lock);
373 return referenced;
377 * page_referenced_file - referenced check for object-based rmap
378 * @page: the page we're checking references on.
380 * For an object-based mapped page, find all the places it is mapped and
381 * check/clear the referenced flag. This is done by following the page->mapping
382 * pointer, then walking the chain of vmas it holds. It returns the number
383 * of references it found.
385 * This function is only called from page_referenced for object-based pages.
387 static int page_referenced_file(struct page *page)
389 unsigned int mapcount;
390 struct address_space *mapping = page->mapping;
391 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
392 struct vm_area_struct *vma;
393 struct prio_tree_iter iter;
394 int referenced = 0;
397 * The caller's checks on page->mapping and !PageAnon have made
398 * sure that this is a file page: the check for page->mapping
399 * excludes the case just before it gets set on an anon page.
401 BUG_ON(PageAnon(page));
404 * The page lock not only makes sure that page->mapping cannot
405 * suddenly be NULLified by truncation, it makes sure that the
406 * structure at mapping cannot be freed and reused yet,
407 * so we can safely take mapping->i_mmap_lock.
409 BUG_ON(!PageLocked(page));
411 spin_lock(&mapping->i_mmap_lock);
414 * i_mmap_lock does not stabilize mapcount at all, but mapcount
415 * is more likely to be accurate if we note it after spinning.
417 mapcount = page_mapcount(page);
419 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
420 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
421 == (VM_LOCKED|VM_MAYSHARE)) {
422 referenced++;
423 break;
425 referenced += page_referenced_one(page, vma, &mapcount);
426 if (!mapcount)
427 break;
430 spin_unlock(&mapping->i_mmap_lock);
431 return referenced;
435 * page_referenced - test if the page was referenced
436 * @page: the page to test
437 * @is_locked: caller holds lock on the page
439 * Quick test_and_clear_referenced for all mappings to a page,
440 * returns the number of ptes which referenced the page.
442 int page_referenced(struct page *page, int is_locked)
444 int referenced = 0;
446 if (page_test_and_clear_young(page))
447 referenced++;
449 if (TestClearPageReferenced(page))
450 referenced++;
452 if (page_mapped(page) && page->mapping) {
453 if (PageAnon(page))
454 referenced += page_referenced_anon(page);
455 else if (is_locked)
456 referenced += page_referenced_file(page);
457 else if (TestSetPageLocked(page))
458 referenced++;
459 else {
460 if (page->mapping)
461 referenced += page_referenced_file(page);
462 unlock_page(page);
465 return referenced;
469 * page_set_anon_rmap - setup new anonymous rmap
470 * @page: the page to add the mapping to
471 * @vma: the vm area in which the mapping is added
472 * @address: the user virtual address mapped
474 static void __page_set_anon_rmap(struct page *page,
475 struct vm_area_struct *vma, unsigned long address)
477 struct anon_vma *anon_vma = vma->anon_vma;
479 BUG_ON(!anon_vma);
480 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
481 page->mapping = (struct address_space *) anon_vma;
483 page->index = linear_page_index(vma, address);
486 * nr_mapped state can be updated without turning off
487 * interrupts because it is not modified via interrupt.
489 __inc_page_state(nr_mapped);
493 * page_add_anon_rmap - add pte mapping to an anonymous page
494 * @page: the page to add the mapping to
495 * @vma: the vm area in which the mapping is added
496 * @address: the user virtual address mapped
498 * The caller needs to hold the pte lock.
500 void page_add_anon_rmap(struct page *page,
501 struct vm_area_struct *vma, unsigned long address)
503 if (atomic_inc_and_test(&page->_mapcount))
504 __page_set_anon_rmap(page, vma, address);
505 /* else checking page index and mapping is racy */
509 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
514 * Same as page_add_anon_rmap but must only be called on *new* pages.
515 * This means the inc-and-test can be bypassed.
517 void page_add_new_anon_rmap(struct page *page,
518 struct vm_area_struct *vma, unsigned long address)
520 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
521 __page_set_anon_rmap(page, vma, address);
525 * page_add_file_rmap - add pte mapping to a file page
526 * @page: the page to add the mapping to
528 * The caller needs to hold the pte lock.
530 void page_add_file_rmap(struct page *page)
532 BUG_ON(PageAnon(page));
533 BUG_ON(!pfn_valid(page_to_pfn(page)));
535 if (atomic_inc_and_test(&page->_mapcount))
536 __inc_page_state(nr_mapped);
540 * page_remove_rmap - take down pte mapping from a page
541 * @page: page to remove mapping from
543 * The caller needs to hold the pte lock.
545 void page_remove_rmap(struct page *page)
547 if (atomic_add_negative(-1, &page->_mapcount)) {
548 if (page_mapcount(page) < 0) {
549 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
550 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
551 printk (KERN_EMERG " page->count = %x\n", page_count(page));
552 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
555 BUG_ON(page_mapcount(page) < 0);
557 * It would be tidy to reset the PageAnon mapping here,
558 * but that might overwrite a racing page_add_anon_rmap
559 * which increments mapcount after us but sets mapping
560 * before us: so leave the reset to free_hot_cold_page,
561 * and remember that it's only reliable while mapped.
562 * Leaving it set also helps swapoff to reinstate ptes
563 * faster for those pages still in swapcache.
565 if (page_test_and_clear_dirty(page))
566 set_page_dirty(page);
567 __dec_page_state(nr_mapped);
572 * Subfunctions of try_to_unmap: try_to_unmap_one called
573 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
575 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
576 int ignore_refs)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long address;
580 pte_t *pte;
581 pte_t pteval;
582 spinlock_t *ptl;
583 int ret = SWAP_AGAIN;
585 address = vma_address(page, vma);
586 if (address == -EFAULT)
587 goto out;
589 pte = page_check_address(page, mm, address, &ptl);
590 if (!pte)
591 goto out;
594 * If the page is mlock()d, we cannot swap it out.
595 * If it's recently referenced (perhaps page_referenced
596 * skipped over this mm) then we should reactivate it.
598 if ((vma->vm_flags & VM_LOCKED) ||
599 (ptep_clear_flush_young(vma, address, pte)
600 && !ignore_refs)) {
601 ret = SWAP_FAIL;
602 goto out_unmap;
605 /* Nuke the page table entry. */
606 flush_cache_page(vma, address, page_to_pfn(page));
607 pteval = ptep_clear_flush(vma, address, pte);
609 /* Move the dirty bit to the physical page now the pte is gone. */
610 if (pte_dirty(pteval))
611 set_page_dirty(page);
613 /* Update high watermark before we lower rss */
614 update_hiwater_rss(mm);
616 if (PageAnon(page)) {
617 swp_entry_t entry = { .val = page_private(page) };
619 * Store the swap location in the pte.
620 * See handle_pte_fault() ...
622 BUG_ON(!PageSwapCache(page));
623 swap_duplicate(entry);
624 if (list_empty(&mm->mmlist)) {
625 spin_lock(&mmlist_lock);
626 if (list_empty(&mm->mmlist))
627 list_add(&mm->mmlist, &init_mm.mmlist);
628 spin_unlock(&mmlist_lock);
630 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
631 BUG_ON(pte_file(*pte));
632 dec_mm_counter(mm, anon_rss);
633 } else
634 dec_mm_counter(mm, file_rss);
636 page_remove_rmap(page);
637 page_cache_release(page);
639 out_unmap:
640 pte_unmap_unlock(pte, ptl);
641 out:
642 return ret;
646 * objrmap doesn't work for nonlinear VMAs because the assumption that
647 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
648 * Consequently, given a particular page and its ->index, we cannot locate the
649 * ptes which are mapping that page without an exhaustive linear search.
651 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
652 * maps the file to which the target page belongs. The ->vm_private_data field
653 * holds the current cursor into that scan. Successive searches will circulate
654 * around the vma's virtual address space.
656 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
657 * more scanning pressure is placed against them as well. Eventually pages
658 * will become fully unmapped and are eligible for eviction.
660 * For very sparsely populated VMAs this is a little inefficient - chances are
661 * there there won't be many ptes located within the scan cluster. In this case
662 * maybe we could scan further - to the end of the pte page, perhaps.
664 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
665 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
667 static void try_to_unmap_cluster(unsigned long cursor,
668 unsigned int *mapcount, struct vm_area_struct *vma)
670 struct mm_struct *mm = vma->vm_mm;
671 pgd_t *pgd;
672 pud_t *pud;
673 pmd_t *pmd;
674 pte_t *pte;
675 pte_t pteval;
676 spinlock_t *ptl;
677 struct page *page;
678 unsigned long address;
679 unsigned long end;
681 address = (vma->vm_start + cursor) & CLUSTER_MASK;
682 end = address + CLUSTER_SIZE;
683 if (address < vma->vm_start)
684 address = vma->vm_start;
685 if (end > vma->vm_end)
686 end = vma->vm_end;
688 pgd = pgd_offset(mm, address);
689 if (!pgd_present(*pgd))
690 return;
692 pud = pud_offset(pgd, address);
693 if (!pud_present(*pud))
694 return;
696 pmd = pmd_offset(pud, address);
697 if (!pmd_present(*pmd))
698 return;
700 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
702 /* Update high watermark before we lower rss */
703 update_hiwater_rss(mm);
705 for (; address < end; pte++, address += PAGE_SIZE) {
706 if (!pte_present(*pte))
707 continue;
708 page = vm_normal_page(vma, address, *pte);
709 BUG_ON(!page || PageAnon(page));
711 if (ptep_clear_flush_young(vma, address, pte))
712 continue;
714 /* Nuke the page table entry. */
715 flush_cache_page(vma, address, pte_pfn(*pte));
716 pteval = ptep_clear_flush(vma, address, pte);
718 /* If nonlinear, store the file page offset in the pte. */
719 if (page->index != linear_page_index(vma, address))
720 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
722 /* Move the dirty bit to the physical page now the pte is gone. */
723 if (pte_dirty(pteval))
724 set_page_dirty(page);
726 page_remove_rmap(page);
727 page_cache_release(page);
728 dec_mm_counter(mm, file_rss);
729 (*mapcount)--;
731 pte_unmap_unlock(pte - 1, ptl);
734 static int try_to_unmap_anon(struct page *page, int ignore_refs)
736 struct anon_vma *anon_vma;
737 struct vm_area_struct *vma;
738 int ret = SWAP_AGAIN;
740 anon_vma = page_lock_anon_vma(page);
741 if (!anon_vma)
742 return ret;
744 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
745 ret = try_to_unmap_one(page, vma, ignore_refs);
746 if (ret == SWAP_FAIL || !page_mapped(page))
747 break;
749 spin_unlock(&anon_vma->lock);
750 return ret;
754 * try_to_unmap_file - unmap file page using the object-based rmap method
755 * @page: the page to unmap
757 * Find all the mappings of a page using the mapping pointer and the vma chains
758 * contained in the address_space struct it points to.
760 * This function is only called from try_to_unmap for object-based pages.
762 static int try_to_unmap_file(struct page *page, int ignore_refs)
764 struct address_space *mapping = page->mapping;
765 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
766 struct vm_area_struct *vma;
767 struct prio_tree_iter iter;
768 int ret = SWAP_AGAIN;
769 unsigned long cursor;
770 unsigned long max_nl_cursor = 0;
771 unsigned long max_nl_size = 0;
772 unsigned int mapcount;
774 spin_lock(&mapping->i_mmap_lock);
775 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
776 ret = try_to_unmap_one(page, vma, ignore_refs);
777 if (ret == SWAP_FAIL || !page_mapped(page))
778 goto out;
781 if (list_empty(&mapping->i_mmap_nonlinear))
782 goto out;
784 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
785 shared.vm_set.list) {
786 if (vma->vm_flags & VM_LOCKED)
787 continue;
788 cursor = (unsigned long) vma->vm_private_data;
789 if (cursor > max_nl_cursor)
790 max_nl_cursor = cursor;
791 cursor = vma->vm_end - vma->vm_start;
792 if (cursor > max_nl_size)
793 max_nl_size = cursor;
796 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
797 ret = SWAP_FAIL;
798 goto out;
802 * We don't try to search for this page in the nonlinear vmas,
803 * and page_referenced wouldn't have found it anyway. Instead
804 * just walk the nonlinear vmas trying to age and unmap some.
805 * The mapcount of the page we came in with is irrelevant,
806 * but even so use it as a guide to how hard we should try?
808 mapcount = page_mapcount(page);
809 if (!mapcount)
810 goto out;
811 cond_resched_lock(&mapping->i_mmap_lock);
813 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
814 if (max_nl_cursor == 0)
815 max_nl_cursor = CLUSTER_SIZE;
817 do {
818 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
819 shared.vm_set.list) {
820 if (vma->vm_flags & VM_LOCKED)
821 continue;
822 cursor = (unsigned long) vma->vm_private_data;
823 while ( cursor < max_nl_cursor &&
824 cursor < vma->vm_end - vma->vm_start) {
825 try_to_unmap_cluster(cursor, &mapcount, vma);
826 cursor += CLUSTER_SIZE;
827 vma->vm_private_data = (void *) cursor;
828 if ((int)mapcount <= 0)
829 goto out;
831 vma->vm_private_data = (void *) max_nl_cursor;
833 cond_resched_lock(&mapping->i_mmap_lock);
834 max_nl_cursor += CLUSTER_SIZE;
835 } while (max_nl_cursor <= max_nl_size);
838 * Don't loop forever (perhaps all the remaining pages are
839 * in locked vmas). Reset cursor on all unreserved nonlinear
840 * vmas, now forgetting on which ones it had fallen behind.
842 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
843 vma->vm_private_data = NULL;
844 out:
845 spin_unlock(&mapping->i_mmap_lock);
846 return ret;
850 * try_to_unmap - try to remove all page table mappings to a page
851 * @page: the page to get unmapped
853 * Tries to remove all the page table entries which are mapping this
854 * page, used in the pageout path. Caller must hold the page lock.
855 * Return values are:
857 * SWAP_SUCCESS - we succeeded in removing all mappings
858 * SWAP_AGAIN - we missed a mapping, try again later
859 * SWAP_FAIL - the page is unswappable
861 int try_to_unmap(struct page *page, int ignore_refs)
863 int ret;
865 BUG_ON(!PageLocked(page));
867 if (PageAnon(page))
868 ret = try_to_unmap_anon(page, ignore_refs);
869 else
870 ret = try_to_unmap_file(page, ignore_refs);
872 if (!page_mapped(page))
873 ret = SWAP_SUCCESS;
874 return ret;