[PARISC] Fix copy_user_page_asm to NOT access past end of page
[linux-2.6.22.y-op.git] / kernel / posix-cpu-timers.c
blob7a51a5597c33e04ad5f3f86d121779189ca326b3
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <asm/uaccess.h>
8 #include <linux/errno.h>
10 static int check_clock(clockid_t which_clock)
12 int error = 0;
13 struct task_struct *p;
14 const pid_t pid = CPUCLOCK_PID(which_clock);
16 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
17 return -EINVAL;
19 if (pid == 0)
20 return 0;
22 read_lock(&tasklist_lock);
23 p = find_task_by_pid(pid);
24 if (!p || (CPUCLOCK_PERTHREAD(which_clock) ?
25 p->tgid != current->tgid : p->tgid != pid)) {
26 error = -EINVAL;
28 read_unlock(&tasklist_lock);
30 return error;
33 static inline union cpu_time_count
34 timespec_to_sample(clockid_t which_clock, const struct timespec *tp)
36 union cpu_time_count ret;
37 ret.sched = 0; /* high half always zero when .cpu used */
38 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
39 ret.sched = tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
40 } else {
41 ret.cpu = timespec_to_cputime(tp);
43 return ret;
46 static void sample_to_timespec(clockid_t which_clock,
47 union cpu_time_count cpu,
48 struct timespec *tp)
50 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
51 tp->tv_sec = div_long_long_rem(cpu.sched,
52 NSEC_PER_SEC, &tp->tv_nsec);
53 } else {
54 cputime_to_timespec(cpu.cpu, tp);
58 static inline int cpu_time_before(clockid_t which_clock,
59 union cpu_time_count now,
60 union cpu_time_count then)
62 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
63 return now.sched < then.sched;
64 } else {
65 return cputime_lt(now.cpu, then.cpu);
68 static inline void cpu_time_add(clockid_t which_clock,
69 union cpu_time_count *acc,
70 union cpu_time_count val)
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
73 acc->sched += val.sched;
74 } else {
75 acc->cpu = cputime_add(acc->cpu, val.cpu);
78 static inline union cpu_time_count cpu_time_sub(clockid_t which_clock,
79 union cpu_time_count a,
80 union cpu_time_count b)
82 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
83 a.sched -= b.sched;
84 } else {
85 a.cpu = cputime_sub(a.cpu, b.cpu);
87 return a;
91 * Update expiry time from increment, and increase overrun count,
92 * given the current clock sample.
94 static inline void bump_cpu_timer(struct k_itimer *timer,
95 union cpu_time_count now)
97 int i;
99 if (timer->it.cpu.incr.sched == 0)
100 return;
102 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
103 unsigned long long delta, incr;
105 if (now.sched < timer->it.cpu.expires.sched)
106 return;
107 incr = timer->it.cpu.incr.sched;
108 delta = now.sched + incr - timer->it.cpu.expires.sched;
109 /* Don't use (incr*2 < delta), incr*2 might overflow. */
110 for (i = 0; incr < delta - incr; i++)
111 incr = incr << 1;
112 for (; i >= 0; incr >>= 1, i--) {
113 if (delta <= incr)
114 continue;
115 timer->it.cpu.expires.sched += incr;
116 timer->it_overrun += 1 << i;
117 delta -= incr;
119 } else {
120 cputime_t delta, incr;
122 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
123 return;
124 incr = timer->it.cpu.incr.cpu;
125 delta = cputime_sub(cputime_add(now.cpu, incr),
126 timer->it.cpu.expires.cpu);
127 /* Don't use (incr*2 < delta), incr*2 might overflow. */
128 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
129 incr = cputime_add(incr, incr);
130 for (; i >= 0; incr = cputime_halve(incr), i--) {
131 if (cputime_le(delta, incr))
132 continue;
133 timer->it.cpu.expires.cpu =
134 cputime_add(timer->it.cpu.expires.cpu, incr);
135 timer->it_overrun += 1 << i;
136 delta = cputime_sub(delta, incr);
141 static inline cputime_t prof_ticks(struct task_struct *p)
143 return cputime_add(p->utime, p->stime);
145 static inline cputime_t virt_ticks(struct task_struct *p)
147 return p->utime;
149 static inline unsigned long long sched_ns(struct task_struct *p)
151 return (p == current) ? current_sched_time(p) : p->sched_time;
154 int posix_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
156 int error = check_clock(which_clock);
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
166 tp->tv_nsec = 1;
169 return error;
172 int posix_cpu_clock_set(clockid_t which_clock, const struct timespec *tp)
175 * You can never reset a CPU clock, but we check for other errors
176 * in the call before failing with EPERM.
178 int error = check_clock(which_clock);
179 if (error == 0) {
180 error = -EPERM;
182 return error;
187 * Sample a per-thread clock for the given task.
189 static int cpu_clock_sample(clockid_t which_clock, struct task_struct *p,
190 union cpu_time_count *cpu)
192 switch (CPUCLOCK_WHICH(which_clock)) {
193 default:
194 return -EINVAL;
195 case CPUCLOCK_PROF:
196 cpu->cpu = prof_ticks(p);
197 break;
198 case CPUCLOCK_VIRT:
199 cpu->cpu = virt_ticks(p);
200 break;
201 case CPUCLOCK_SCHED:
202 cpu->sched = sched_ns(p);
203 break;
205 return 0;
209 * Sample a process (thread group) clock for the given group_leader task.
210 * Must be called with tasklist_lock held for reading.
211 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
213 static int cpu_clock_sample_group_locked(unsigned int clock_idx,
214 struct task_struct *p,
215 union cpu_time_count *cpu)
217 struct task_struct *t = p;
218 switch (clock_idx) {
219 default:
220 return -EINVAL;
221 case CPUCLOCK_PROF:
222 cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
223 do {
224 cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
225 t = next_thread(t);
226 } while (t != p);
227 break;
228 case CPUCLOCK_VIRT:
229 cpu->cpu = p->signal->utime;
230 do {
231 cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
232 t = next_thread(t);
233 } while (t != p);
234 break;
235 case CPUCLOCK_SCHED:
236 cpu->sched = p->signal->sched_time;
237 /* Add in each other live thread. */
238 while ((t = next_thread(t)) != p) {
239 cpu->sched += t->sched_time;
241 if (p->tgid == current->tgid) {
243 * We're sampling ourselves, so include the
244 * cycles not yet banked. We still omit
245 * other threads running on other CPUs,
246 * so the total can always be behind as
247 * much as max(nthreads-1,ncpus) * (NSEC_PER_SEC/HZ).
249 cpu->sched += current_sched_time(current);
250 } else {
251 cpu->sched += p->sched_time;
253 break;
255 return 0;
259 * Sample a process (thread group) clock for the given group_leader task.
260 * Must be called with tasklist_lock held for reading.
262 static int cpu_clock_sample_group(clockid_t which_clock,
263 struct task_struct *p,
264 union cpu_time_count *cpu)
266 int ret;
267 unsigned long flags;
268 spin_lock_irqsave(&p->sighand->siglock, flags);
269 ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
270 cpu);
271 spin_unlock_irqrestore(&p->sighand->siglock, flags);
272 return ret;
276 int posix_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
278 const pid_t pid = CPUCLOCK_PID(which_clock);
279 int error = -EINVAL;
280 union cpu_time_count rtn;
282 if (pid == 0) {
284 * Special case constant value for our own clocks.
285 * We don't have to do any lookup to find ourselves.
287 if (CPUCLOCK_PERTHREAD(which_clock)) {
289 * Sampling just ourselves we can do with no locking.
291 error = cpu_clock_sample(which_clock,
292 current, &rtn);
293 } else {
294 read_lock(&tasklist_lock);
295 error = cpu_clock_sample_group(which_clock,
296 current, &rtn);
297 read_unlock(&tasklist_lock);
299 } else {
301 * Find the given PID, and validate that the caller
302 * should be able to see it.
304 struct task_struct *p;
305 read_lock(&tasklist_lock);
306 p = find_task_by_pid(pid);
307 if (p) {
308 if (CPUCLOCK_PERTHREAD(which_clock)) {
309 if (p->tgid == current->tgid) {
310 error = cpu_clock_sample(which_clock,
311 p, &rtn);
313 } else if (p->tgid == pid && p->signal) {
314 error = cpu_clock_sample_group(which_clock,
315 p, &rtn);
318 read_unlock(&tasklist_lock);
321 if (error)
322 return error;
323 sample_to_timespec(which_clock, rtn, tp);
324 return 0;
329 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
330 * This is called from sys_timer_create with the new timer already locked.
332 int posix_cpu_timer_create(struct k_itimer *new_timer)
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342 new_timer->it.cpu.incr.sched = 0;
343 new_timer->it.cpu.expires.sched = 0;
345 read_lock(&tasklist_lock);
346 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
347 if (pid == 0) {
348 p = current;
349 } else {
350 p = find_task_by_pid(pid);
351 if (p && p->tgid != current->tgid)
352 p = NULL;
354 } else {
355 if (pid == 0) {
356 p = current->group_leader;
357 } else {
358 p = find_task_by_pid(pid);
359 if (p && p->tgid != pid)
360 p = NULL;
363 new_timer->it.cpu.task = p;
364 if (p) {
365 get_task_struct(p);
366 } else {
367 ret = -EINVAL;
369 read_unlock(&tasklist_lock);
371 return ret;
375 * Clean up a CPU-clock timer that is about to be destroyed.
376 * This is called from timer deletion with the timer already locked.
377 * If we return TIMER_RETRY, it's necessary to release the timer's lock
378 * and try again. (This happens when the timer is in the middle of firing.)
380 int posix_cpu_timer_del(struct k_itimer *timer)
382 struct task_struct *p = timer->it.cpu.task;
384 if (timer->it.cpu.firing)
385 return TIMER_RETRY;
387 if (unlikely(p == NULL))
388 return 0;
390 if (!list_empty(&timer->it.cpu.entry)) {
391 read_lock(&tasklist_lock);
392 if (unlikely(p->signal == NULL)) {
394 * We raced with the reaping of the task.
395 * The deletion should have cleared us off the list.
397 BUG_ON(!list_empty(&timer->it.cpu.entry));
398 } else {
400 * Take us off the task's timer list.
402 spin_lock(&p->sighand->siglock);
403 list_del(&timer->it.cpu.entry);
404 spin_unlock(&p->sighand->siglock);
406 read_unlock(&tasklist_lock);
408 put_task_struct(p);
410 return 0;
414 * Clean out CPU timers still ticking when a thread exited. The task
415 * pointer is cleared, and the expiry time is replaced with the residual
416 * time for later timer_gettime calls to return.
417 * This must be called with the siglock held.
419 static void cleanup_timers(struct list_head *head,
420 cputime_t utime, cputime_t stime,
421 unsigned long long sched_time)
423 struct cpu_timer_list *timer, *next;
424 cputime_t ptime = cputime_add(utime, stime);
426 list_for_each_entry_safe(timer, next, head, entry) {
427 put_task_struct(timer->task);
428 timer->task = NULL;
429 list_del_init(&timer->entry);
430 if (cputime_lt(timer->expires.cpu, ptime)) {
431 timer->expires.cpu = cputime_zero;
432 } else {
433 timer->expires.cpu = cputime_sub(timer->expires.cpu,
434 ptime);
438 ++head;
439 list_for_each_entry_safe(timer, next, head, entry) {
440 put_task_struct(timer->task);
441 timer->task = NULL;
442 list_del_init(&timer->entry);
443 if (cputime_lt(timer->expires.cpu, utime)) {
444 timer->expires.cpu = cputime_zero;
445 } else {
446 timer->expires.cpu = cputime_sub(timer->expires.cpu,
447 utime);
451 ++head;
452 list_for_each_entry_safe(timer, next, head, entry) {
453 put_task_struct(timer->task);
454 timer->task = NULL;
455 list_del_init(&timer->entry);
456 if (timer->expires.sched < sched_time) {
457 timer->expires.sched = 0;
458 } else {
459 timer->expires.sched -= sched_time;
465 * These are both called with the siglock held, when the current thread
466 * is being reaped. When the final (leader) thread in the group is reaped,
467 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
469 void posix_cpu_timers_exit(struct task_struct *tsk)
471 cleanup_timers(tsk->cpu_timers,
472 tsk->utime, tsk->stime, tsk->sched_time);
475 void posix_cpu_timers_exit_group(struct task_struct *tsk)
477 cleanup_timers(tsk->signal->cpu_timers,
478 cputime_add(tsk->utime, tsk->signal->utime),
479 cputime_add(tsk->stime, tsk->signal->stime),
480 tsk->sched_time + tsk->signal->sched_time);
485 * Set the expiry times of all the threads in the process so one of them
486 * will go off before the process cumulative expiry total is reached.
488 static void process_timer_rebalance(struct task_struct *p,
489 unsigned int clock_idx,
490 union cpu_time_count expires,
491 union cpu_time_count val)
493 cputime_t ticks, left;
494 unsigned long long ns, nsleft;
495 struct task_struct *t = p;
496 unsigned int nthreads = atomic_read(&p->signal->live);
498 switch (clock_idx) {
499 default:
500 BUG();
501 break;
502 case CPUCLOCK_PROF:
503 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
504 nthreads);
505 do {
506 if (!unlikely(t->exit_state)) {
507 ticks = cputime_add(prof_ticks(t), left);
508 if (cputime_eq(t->it_prof_expires,
509 cputime_zero) ||
510 cputime_gt(t->it_prof_expires, ticks)) {
511 t->it_prof_expires = ticks;
514 t = next_thread(t);
515 } while (t != p);
516 break;
517 case CPUCLOCK_VIRT:
518 left = cputime_div(cputime_sub(expires.cpu, val.cpu),
519 nthreads);
520 do {
521 if (!unlikely(t->exit_state)) {
522 ticks = cputime_add(virt_ticks(t), left);
523 if (cputime_eq(t->it_virt_expires,
524 cputime_zero) ||
525 cputime_gt(t->it_virt_expires, ticks)) {
526 t->it_virt_expires = ticks;
529 t = next_thread(t);
530 } while (t != p);
531 break;
532 case CPUCLOCK_SCHED:
533 nsleft = expires.sched - val.sched;
534 do_div(nsleft, nthreads);
535 do {
536 if (!unlikely(t->exit_state)) {
537 ns = t->sched_time + nsleft;
538 if (t->it_sched_expires == 0 ||
539 t->it_sched_expires > ns) {
540 t->it_sched_expires = ns;
543 t = next_thread(t);
544 } while (t != p);
545 break;
549 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
552 * That's all for this thread or process.
553 * We leave our residual in expires to be reported.
555 put_task_struct(timer->it.cpu.task);
556 timer->it.cpu.task = NULL;
557 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
558 timer->it.cpu.expires,
559 now);
563 * Insert the timer on the appropriate list before any timers that
564 * expire later. This must be called with the tasklist_lock held
565 * for reading, and interrupts disabled.
567 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
569 struct task_struct *p = timer->it.cpu.task;
570 struct list_head *head, *listpos;
571 struct cpu_timer_list *const nt = &timer->it.cpu;
572 struct cpu_timer_list *next;
573 unsigned long i;
575 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
576 p->cpu_timers : p->signal->cpu_timers);
577 head += CPUCLOCK_WHICH(timer->it_clock);
579 BUG_ON(!irqs_disabled());
580 spin_lock(&p->sighand->siglock);
582 listpos = head;
583 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
584 list_for_each_entry(next, head, entry) {
585 if (next->expires.sched > nt->expires.sched) {
586 listpos = &next->entry;
587 break;
590 } else {
591 list_for_each_entry(next, head, entry) {
592 if (cputime_gt(next->expires.cpu, nt->expires.cpu)) {
593 listpos = &next->entry;
594 break;
598 list_add(&nt->entry, listpos);
600 if (listpos == head) {
602 * We are the new earliest-expiring timer.
603 * If we are a thread timer, there can always
604 * be a process timer telling us to stop earlier.
607 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
608 switch (CPUCLOCK_WHICH(timer->it_clock)) {
609 default:
610 BUG();
611 case CPUCLOCK_PROF:
612 if (cputime_eq(p->it_prof_expires,
613 cputime_zero) ||
614 cputime_gt(p->it_prof_expires,
615 nt->expires.cpu))
616 p->it_prof_expires = nt->expires.cpu;
617 break;
618 case CPUCLOCK_VIRT:
619 if (cputime_eq(p->it_virt_expires,
620 cputime_zero) ||
621 cputime_gt(p->it_virt_expires,
622 nt->expires.cpu))
623 p->it_virt_expires = nt->expires.cpu;
624 break;
625 case CPUCLOCK_SCHED:
626 if (p->it_sched_expires == 0 ||
627 p->it_sched_expires > nt->expires.sched)
628 p->it_sched_expires = nt->expires.sched;
629 break;
631 } else {
633 * For a process timer, we must balance
634 * all the live threads' expirations.
636 switch (CPUCLOCK_WHICH(timer->it_clock)) {
637 default:
638 BUG();
639 case CPUCLOCK_VIRT:
640 if (!cputime_eq(p->signal->it_virt_expires,
641 cputime_zero) &&
642 cputime_lt(p->signal->it_virt_expires,
643 timer->it.cpu.expires.cpu))
644 break;
645 goto rebalance;
646 case CPUCLOCK_PROF:
647 if (!cputime_eq(p->signal->it_prof_expires,
648 cputime_zero) &&
649 cputime_lt(p->signal->it_prof_expires,
650 timer->it.cpu.expires.cpu))
651 break;
652 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
653 if (i != RLIM_INFINITY &&
654 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
655 break;
656 goto rebalance;
657 case CPUCLOCK_SCHED:
658 rebalance:
659 process_timer_rebalance(
660 timer->it.cpu.task,
661 CPUCLOCK_WHICH(timer->it_clock),
662 timer->it.cpu.expires, now);
663 break;
668 spin_unlock(&p->sighand->siglock);
672 * The timer is locked, fire it and arrange for its reload.
674 static void cpu_timer_fire(struct k_itimer *timer)
676 if (unlikely(timer->sigq == NULL)) {
678 * This a special case for clock_nanosleep,
679 * not a normal timer from sys_timer_create.
681 wake_up_process(timer->it_process);
682 timer->it.cpu.expires.sched = 0;
683 } else if (timer->it.cpu.incr.sched == 0) {
685 * One-shot timer. Clear it as soon as it's fired.
687 posix_timer_event(timer, 0);
688 timer->it.cpu.expires.sched = 0;
689 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
691 * The signal did not get queued because the signal
692 * was ignored, so we won't get any callback to
693 * reload the timer. But we need to keep it
694 * ticking in case the signal is deliverable next time.
696 posix_cpu_timer_schedule(timer);
701 * Guts of sys_timer_settime for CPU timers.
702 * This is called with the timer locked and interrupts disabled.
703 * If we return TIMER_RETRY, it's necessary to release the timer's lock
704 * and try again. (This happens when the timer is in the middle of firing.)
706 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
707 struct itimerspec *new, struct itimerspec *old)
709 struct task_struct *p = timer->it.cpu.task;
710 union cpu_time_count old_expires, new_expires, val;
711 int ret;
713 if (unlikely(p == NULL)) {
715 * Timer refers to a dead task's clock.
717 return -ESRCH;
720 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
722 read_lock(&tasklist_lock);
724 * We need the tasklist_lock to protect against reaping that
725 * clears p->signal. If p has just been reaped, we can no
726 * longer get any information about it at all.
728 if (unlikely(p->signal == NULL)) {
729 read_unlock(&tasklist_lock);
730 put_task_struct(p);
731 timer->it.cpu.task = NULL;
732 return -ESRCH;
736 * Disarm any old timer after extracting its expiry time.
738 BUG_ON(!irqs_disabled());
739 spin_lock(&p->sighand->siglock);
740 old_expires = timer->it.cpu.expires;
741 list_del_init(&timer->it.cpu.entry);
742 spin_unlock(&p->sighand->siglock);
745 * We need to sample the current value to convert the new
746 * value from to relative and absolute, and to convert the
747 * old value from absolute to relative. To set a process
748 * timer, we need a sample to balance the thread expiry
749 * times (in arm_timer). With an absolute time, we must
750 * check if it's already passed. In short, we need a sample.
752 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
753 cpu_clock_sample(timer->it_clock, p, &val);
754 } else {
755 cpu_clock_sample_group(timer->it_clock, p, &val);
758 if (old) {
759 if (old_expires.sched == 0) {
760 old->it_value.tv_sec = 0;
761 old->it_value.tv_nsec = 0;
762 } else {
764 * Update the timer in case it has
765 * overrun already. If it has,
766 * we'll report it as having overrun
767 * and with the next reloaded timer
768 * already ticking, though we are
769 * swallowing that pending
770 * notification here to install the
771 * new setting.
773 bump_cpu_timer(timer, val);
774 if (cpu_time_before(timer->it_clock, val,
775 timer->it.cpu.expires)) {
776 old_expires = cpu_time_sub(
777 timer->it_clock,
778 timer->it.cpu.expires, val);
779 sample_to_timespec(timer->it_clock,
780 old_expires,
781 &old->it_value);
782 } else {
783 old->it_value.tv_nsec = 1;
784 old->it_value.tv_sec = 0;
789 if (unlikely(timer->it.cpu.firing)) {
791 * We are colliding with the timer actually firing.
792 * Punt after filling in the timer's old value, and
793 * disable this firing since we are already reporting
794 * it as an overrun (thanks to bump_cpu_timer above).
796 read_unlock(&tasklist_lock);
797 timer->it.cpu.firing = -1;
798 ret = TIMER_RETRY;
799 goto out;
802 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
803 cpu_time_add(timer->it_clock, &new_expires, val);
807 * Install the new expiry time (or zero).
808 * For a timer with no notification action, we don't actually
809 * arm the timer (we'll just fake it for timer_gettime).
811 timer->it.cpu.expires = new_expires;
812 if (new_expires.sched != 0 &&
813 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
814 cpu_time_before(timer->it_clock, val, new_expires)) {
815 arm_timer(timer, val);
818 read_unlock(&tasklist_lock);
821 * Install the new reload setting, and
822 * set up the signal and overrun bookkeeping.
824 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
825 &new->it_interval);
828 * This acts as a modification timestamp for the timer,
829 * so any automatic reload attempt will punt on seeing
830 * that we have reset the timer manually.
832 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
833 ~REQUEUE_PENDING;
834 timer->it_overrun_last = 0;
835 timer->it_overrun = -1;
837 if (new_expires.sched != 0 &&
838 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
839 !cpu_time_before(timer->it_clock, val, new_expires)) {
841 * The designated time already passed, so we notify
842 * immediately, even if the thread never runs to
843 * accumulate more time on this clock.
845 cpu_timer_fire(timer);
848 ret = 0;
849 out:
850 if (old) {
851 sample_to_timespec(timer->it_clock,
852 timer->it.cpu.incr, &old->it_interval);
854 return ret;
857 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
859 union cpu_time_count now;
860 struct task_struct *p = timer->it.cpu.task;
861 int clear_dead;
864 * Easy part: convert the reload time.
866 sample_to_timespec(timer->it_clock,
867 timer->it.cpu.incr, &itp->it_interval);
869 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
870 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
871 return;
874 if (unlikely(p == NULL)) {
876 * This task already died and the timer will never fire.
877 * In this case, expires is actually the dead value.
879 dead:
880 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
881 &itp->it_value);
882 return;
886 * Sample the clock to take the difference with the expiry time.
888 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
889 cpu_clock_sample(timer->it_clock, p, &now);
890 clear_dead = p->exit_state;
891 } else {
892 read_lock(&tasklist_lock);
893 if (unlikely(p->signal == NULL)) {
895 * The process has been reaped.
896 * We can't even collect a sample any more.
897 * Call the timer disarmed, nothing else to do.
899 put_task_struct(p);
900 timer->it.cpu.task = NULL;
901 timer->it.cpu.expires.sched = 0;
902 read_unlock(&tasklist_lock);
903 goto dead;
904 } else {
905 cpu_clock_sample_group(timer->it_clock, p, &now);
906 clear_dead = (unlikely(p->exit_state) &&
907 thread_group_empty(p));
909 read_unlock(&tasklist_lock);
912 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
913 if (timer->it.cpu.incr.sched == 0 &&
914 cpu_time_before(timer->it_clock,
915 timer->it.cpu.expires, now)) {
917 * Do-nothing timer expired and has no reload,
918 * so it's as if it was never set.
920 timer->it.cpu.expires.sched = 0;
921 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
922 return;
925 * Account for any expirations and reloads that should
926 * have happened.
928 bump_cpu_timer(timer, now);
931 if (unlikely(clear_dead)) {
933 * We've noticed that the thread is dead, but
934 * not yet reaped. Take this opportunity to
935 * drop our task ref.
937 clear_dead_task(timer, now);
938 goto dead;
941 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
942 sample_to_timespec(timer->it_clock,
943 cpu_time_sub(timer->it_clock,
944 timer->it.cpu.expires, now),
945 &itp->it_value);
946 } else {
948 * The timer should have expired already, but the firing
949 * hasn't taken place yet. Say it's just about to expire.
951 itp->it_value.tv_nsec = 1;
952 itp->it_value.tv_sec = 0;
957 * Check for any per-thread CPU timers that have fired and move them off
958 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
959 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
961 static void check_thread_timers(struct task_struct *tsk,
962 struct list_head *firing)
964 struct list_head *timers = tsk->cpu_timers;
966 tsk->it_prof_expires = cputime_zero;
967 while (!list_empty(timers)) {
968 struct cpu_timer_list *t = list_entry(timers->next,
969 struct cpu_timer_list,
970 entry);
971 if (cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
972 tsk->it_prof_expires = t->expires.cpu;
973 break;
975 t->firing = 1;
976 list_move_tail(&t->entry, firing);
979 ++timers;
980 tsk->it_virt_expires = cputime_zero;
981 while (!list_empty(timers)) {
982 struct cpu_timer_list *t = list_entry(timers->next,
983 struct cpu_timer_list,
984 entry);
985 if (cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
986 tsk->it_virt_expires = t->expires.cpu;
987 break;
989 t->firing = 1;
990 list_move_tail(&t->entry, firing);
993 ++timers;
994 tsk->it_sched_expires = 0;
995 while (!list_empty(timers)) {
996 struct cpu_timer_list *t = list_entry(timers->next,
997 struct cpu_timer_list,
998 entry);
999 if (tsk->sched_time < t->expires.sched) {
1000 tsk->it_sched_expires = t->expires.sched;
1001 break;
1003 t->firing = 1;
1004 list_move_tail(&t->entry, firing);
1009 * Check for any per-thread CPU timers that have fired and move them
1010 * off the tsk->*_timers list onto the firing list. Per-thread timers
1011 * have already been taken off.
1013 static void check_process_timers(struct task_struct *tsk,
1014 struct list_head *firing)
1016 struct signal_struct *const sig = tsk->signal;
1017 cputime_t utime, stime, ptime, virt_expires, prof_expires;
1018 unsigned long long sched_time, sched_expires;
1019 struct task_struct *t;
1020 struct list_head *timers = sig->cpu_timers;
1023 * Don't sample the current process CPU clocks if there are no timers.
1025 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1026 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1027 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1028 list_empty(&timers[CPUCLOCK_VIRT]) &&
1029 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1030 list_empty(&timers[CPUCLOCK_SCHED]))
1031 return;
1034 * Collect the current process totals.
1036 utime = sig->utime;
1037 stime = sig->stime;
1038 sched_time = sig->sched_time;
1039 t = tsk;
1040 do {
1041 utime = cputime_add(utime, t->utime);
1042 stime = cputime_add(stime, t->stime);
1043 sched_time += t->sched_time;
1044 t = next_thread(t);
1045 } while (t != tsk);
1046 ptime = cputime_add(utime, stime);
1048 prof_expires = cputime_zero;
1049 while (!list_empty(timers)) {
1050 struct cpu_timer_list *t = list_entry(timers->next,
1051 struct cpu_timer_list,
1052 entry);
1053 if (cputime_lt(ptime, t->expires.cpu)) {
1054 prof_expires = t->expires.cpu;
1055 break;
1057 t->firing = 1;
1058 list_move_tail(&t->entry, firing);
1061 ++timers;
1062 virt_expires = cputime_zero;
1063 while (!list_empty(timers)) {
1064 struct cpu_timer_list *t = list_entry(timers->next,
1065 struct cpu_timer_list,
1066 entry);
1067 if (cputime_lt(utime, t->expires.cpu)) {
1068 virt_expires = t->expires.cpu;
1069 break;
1071 t->firing = 1;
1072 list_move_tail(&t->entry, firing);
1075 ++timers;
1076 sched_expires = 0;
1077 while (!list_empty(timers)) {
1078 struct cpu_timer_list *t = list_entry(timers->next,
1079 struct cpu_timer_list,
1080 entry);
1081 if (sched_time < t->expires.sched) {
1082 sched_expires = t->expires.sched;
1083 break;
1085 t->firing = 1;
1086 list_move_tail(&t->entry, firing);
1090 * Check for the special case process timers.
1092 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1093 if (cputime_ge(ptime, sig->it_prof_expires)) {
1094 /* ITIMER_PROF fires and reloads. */
1095 sig->it_prof_expires = sig->it_prof_incr;
1096 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1097 sig->it_prof_expires = cputime_add(
1098 sig->it_prof_expires, ptime);
1100 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1102 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1103 (cputime_eq(prof_expires, cputime_zero) ||
1104 cputime_lt(sig->it_prof_expires, prof_expires))) {
1105 prof_expires = sig->it_prof_expires;
1108 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1109 if (cputime_ge(utime, sig->it_virt_expires)) {
1110 /* ITIMER_VIRTUAL fires and reloads. */
1111 sig->it_virt_expires = sig->it_virt_incr;
1112 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1113 sig->it_virt_expires = cputime_add(
1114 sig->it_virt_expires, utime);
1116 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1118 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1119 (cputime_eq(virt_expires, cputime_zero) ||
1120 cputime_lt(sig->it_virt_expires, virt_expires))) {
1121 virt_expires = sig->it_virt_expires;
1124 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1125 unsigned long psecs = cputime_to_secs(ptime);
1126 cputime_t x;
1127 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1129 * At the hard limit, we just die.
1130 * No need to calculate anything else now.
1132 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1133 return;
1135 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1137 * At the soft limit, send a SIGXCPU every second.
1139 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1140 if (sig->rlim[RLIMIT_CPU].rlim_cur
1141 < sig->rlim[RLIMIT_CPU].rlim_max) {
1142 sig->rlim[RLIMIT_CPU].rlim_cur++;
1145 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1146 if (cputime_eq(prof_expires, cputime_zero) ||
1147 cputime_lt(x, prof_expires)) {
1148 prof_expires = x;
1152 if (!cputime_eq(prof_expires, cputime_zero) ||
1153 !cputime_eq(virt_expires, cputime_zero) ||
1154 sched_expires != 0) {
1156 * Rebalance the threads' expiry times for the remaining
1157 * process CPU timers.
1160 cputime_t prof_left, virt_left, ticks;
1161 unsigned long long sched_left, sched;
1162 const unsigned int nthreads = atomic_read(&sig->live);
1164 prof_left = cputime_sub(prof_expires, utime);
1165 prof_left = cputime_sub(prof_left, stime);
1166 prof_left = cputime_div(prof_left, nthreads);
1167 virt_left = cputime_sub(virt_expires, utime);
1168 virt_left = cputime_div(virt_left, nthreads);
1169 if (sched_expires) {
1170 sched_left = sched_expires - sched_time;
1171 do_div(sched_left, nthreads);
1172 } else {
1173 sched_left = 0;
1175 t = tsk;
1176 do {
1177 ticks = cputime_add(cputime_add(t->utime, t->stime),
1178 prof_left);
1179 if (!cputime_eq(prof_expires, cputime_zero) &&
1180 (cputime_eq(t->it_prof_expires, cputime_zero) ||
1181 cputime_gt(t->it_prof_expires, ticks))) {
1182 t->it_prof_expires = ticks;
1185 ticks = cputime_add(t->utime, virt_left);
1186 if (!cputime_eq(virt_expires, cputime_zero) &&
1187 (cputime_eq(t->it_virt_expires, cputime_zero) ||
1188 cputime_gt(t->it_virt_expires, ticks))) {
1189 t->it_virt_expires = ticks;
1192 sched = t->sched_time + sched_left;
1193 if (sched_expires && (t->it_sched_expires == 0 ||
1194 t->it_sched_expires > sched)) {
1195 t->it_sched_expires = sched;
1198 do {
1199 t = next_thread(t);
1200 } while (unlikely(t->exit_state));
1201 } while (t != tsk);
1206 * This is called from the signal code (via do_schedule_next_timer)
1207 * when the last timer signal was delivered and we have to reload the timer.
1209 void posix_cpu_timer_schedule(struct k_itimer *timer)
1211 struct task_struct *p = timer->it.cpu.task;
1212 union cpu_time_count now;
1214 if (unlikely(p == NULL))
1216 * The task was cleaned up already, no future firings.
1218 return;
1221 * Fetch the current sample and update the timer's expiry time.
1223 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1224 cpu_clock_sample(timer->it_clock, p, &now);
1225 bump_cpu_timer(timer, now);
1226 if (unlikely(p->exit_state)) {
1227 clear_dead_task(timer, now);
1228 return;
1230 read_lock(&tasklist_lock); /* arm_timer needs it. */
1231 } else {
1232 read_lock(&tasklist_lock);
1233 if (unlikely(p->signal == NULL)) {
1235 * The process has been reaped.
1236 * We can't even collect a sample any more.
1238 put_task_struct(p);
1239 timer->it.cpu.task = p = NULL;
1240 timer->it.cpu.expires.sched = 0;
1241 read_unlock(&tasklist_lock);
1242 return;
1243 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1245 * We've noticed that the thread is dead, but
1246 * not yet reaped. Take this opportunity to
1247 * drop our task ref.
1249 clear_dead_task(timer, now);
1250 read_unlock(&tasklist_lock);
1251 return;
1253 cpu_clock_sample_group(timer->it_clock, p, &now);
1254 bump_cpu_timer(timer, now);
1255 /* Leave the tasklist_lock locked for the call below. */
1259 * Now re-arm for the new expiry time.
1261 arm_timer(timer, now);
1263 read_unlock(&tasklist_lock);
1267 * This is called from the timer interrupt handler. The irq handler has
1268 * already updated our counts. We need to check if any timers fire now.
1269 * Interrupts are disabled.
1271 void run_posix_cpu_timers(struct task_struct *tsk)
1273 LIST_HEAD(firing);
1274 struct k_itimer *timer, *next;
1276 BUG_ON(!irqs_disabled());
1278 #define UNEXPIRED(clock) \
1279 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1280 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1282 if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1283 (tsk->it_sched_expires == 0 ||
1284 tsk->sched_time < tsk->it_sched_expires))
1285 return;
1287 #undef UNEXPIRED
1289 BUG_ON(tsk->exit_state);
1292 * Double-check with locks held.
1294 read_lock(&tasklist_lock);
1295 spin_lock(&tsk->sighand->siglock);
1298 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1299 * all the timers that are firing, and put them on the firing list.
1301 check_thread_timers(tsk, &firing);
1302 check_process_timers(tsk, &firing);
1305 * We must release these locks before taking any timer's lock.
1306 * There is a potential race with timer deletion here, as the
1307 * siglock now protects our private firing list. We have set
1308 * the firing flag in each timer, so that a deletion attempt
1309 * that gets the timer lock before we do will give it up and
1310 * spin until we've taken care of that timer below.
1312 spin_unlock(&tsk->sighand->siglock);
1313 read_unlock(&tasklist_lock);
1316 * Now that all the timers on our list have the firing flag,
1317 * noone will touch their list entries but us. We'll take
1318 * each timer's lock before clearing its firing flag, so no
1319 * timer call will interfere.
1321 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1322 int firing;
1323 spin_lock(&timer->it_lock);
1324 list_del_init(&timer->it.cpu.entry);
1325 firing = timer->it.cpu.firing;
1326 timer->it.cpu.firing = 0;
1328 * The firing flag is -1 if we collided with a reset
1329 * of the timer, which already reported this
1330 * almost-firing as an overrun. So don't generate an event.
1332 if (likely(firing >= 0)) {
1333 cpu_timer_fire(timer);
1335 spin_unlock(&timer->it_lock);
1340 * Set one of the process-wide special case CPU timers.
1341 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1342 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1343 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1344 * it to be absolute, *oldval is absolute and we update it to be relative.
1346 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1347 cputime_t *newval, cputime_t *oldval)
1349 union cpu_time_count now;
1350 struct list_head *head;
1352 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1353 cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1355 if (oldval) {
1356 if (!cputime_eq(*oldval, cputime_zero)) {
1357 if (cputime_le(*oldval, now.cpu)) {
1358 /* Just about to fire. */
1359 *oldval = jiffies_to_cputime(1);
1360 } else {
1361 *oldval = cputime_sub(*oldval, now.cpu);
1365 if (cputime_eq(*newval, cputime_zero))
1366 return;
1367 *newval = cputime_add(*newval, now.cpu);
1370 * If the RLIMIT_CPU timer will expire before the
1371 * ITIMER_PROF timer, we have nothing else to do.
1373 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1374 < cputime_to_secs(*newval))
1375 return;
1379 * Check whether there are any process timers already set to fire
1380 * before this one. If so, we don't have anything more to do.
1382 head = &tsk->signal->cpu_timers[clock_idx];
1383 if (list_empty(head) ||
1384 cputime_ge(list_entry(head->next,
1385 struct cpu_timer_list, entry)->expires.cpu,
1386 *newval)) {
1388 * Rejigger each thread's expiry time so that one will
1389 * notice before we hit the process-cumulative expiry time.
1391 union cpu_time_count expires = { .sched = 0 };
1392 expires.cpu = *newval;
1393 process_timer_rebalance(tsk, clock_idx, expires, now);
1397 static long posix_cpu_clock_nanosleep_restart(struct restart_block *);
1399 int posix_cpu_nsleep(clockid_t which_clock, int flags,
1400 struct timespec *rqtp)
1402 struct restart_block *restart_block =
1403 &current_thread_info()->restart_block;
1404 struct k_itimer timer;
1405 int error;
1408 * Diagnose required errors first.
1410 if (CPUCLOCK_PERTHREAD(which_clock) &&
1411 (CPUCLOCK_PID(which_clock) == 0 ||
1412 CPUCLOCK_PID(which_clock) == current->pid))
1413 return -EINVAL;
1416 * Set up a temporary timer and then wait for it to go off.
1418 memset(&timer, 0, sizeof timer);
1419 spin_lock_init(&timer.it_lock);
1420 timer.it_clock = which_clock;
1421 timer.it_overrun = -1;
1422 error = posix_cpu_timer_create(&timer);
1423 timer.it_process = current;
1424 if (!error) {
1425 struct timespec __user *rmtp;
1426 static struct itimerspec zero_it;
1427 struct itimerspec it = { .it_value = *rqtp,
1428 .it_interval = {} };
1430 spin_lock_irq(&timer.it_lock);
1431 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1432 if (error) {
1433 spin_unlock_irq(&timer.it_lock);
1434 return error;
1437 while (!signal_pending(current)) {
1438 if (timer.it.cpu.expires.sched == 0) {
1440 * Our timer fired and was reset.
1442 spin_unlock_irq(&timer.it_lock);
1443 return 0;
1447 * Block until cpu_timer_fire (or a signal) wakes us.
1449 __set_current_state(TASK_INTERRUPTIBLE);
1450 spin_unlock_irq(&timer.it_lock);
1451 schedule();
1452 spin_lock_irq(&timer.it_lock);
1456 * We were interrupted by a signal.
1458 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1459 posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1460 spin_unlock_irq(&timer.it_lock);
1462 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1464 * It actually did fire already.
1466 return 0;
1470 * Report back to the user the time still remaining.
1472 rmtp = (struct timespec __user *) restart_block->arg1;
1473 if (rmtp != NULL && !(flags & TIMER_ABSTIME) &&
1474 copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1475 return -EFAULT;
1477 restart_block->fn = posix_cpu_clock_nanosleep_restart;
1478 /* Caller already set restart_block->arg1 */
1479 restart_block->arg0 = which_clock;
1480 restart_block->arg2 = rqtp->tv_sec;
1481 restart_block->arg3 = rqtp->tv_nsec;
1483 error = -ERESTART_RESTARTBLOCK;
1486 return error;
1489 static long
1490 posix_cpu_clock_nanosleep_restart(struct restart_block *restart_block)
1492 clockid_t which_clock = restart_block->arg0;
1493 struct timespec t = { .tv_sec = restart_block->arg2,
1494 .tv_nsec = restart_block->arg3 };
1495 restart_block->fn = do_no_restart_syscall;
1496 return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t);
1500 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1501 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1503 static int process_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1505 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1507 static int process_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1509 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1511 static int process_cpu_timer_create(struct k_itimer *timer)
1513 timer->it_clock = PROCESS_CLOCK;
1514 return posix_cpu_timer_create(timer);
1516 static int process_cpu_nsleep(clockid_t which_clock, int flags,
1517 struct timespec *rqtp)
1519 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1521 static int thread_cpu_clock_getres(clockid_t which_clock, struct timespec *tp)
1523 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1525 static int thread_cpu_clock_get(clockid_t which_clock, struct timespec *tp)
1527 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1529 static int thread_cpu_timer_create(struct k_itimer *timer)
1531 timer->it_clock = THREAD_CLOCK;
1532 return posix_cpu_timer_create(timer);
1534 static int thread_cpu_nsleep(clockid_t which_clock, int flags,
1535 struct timespec *rqtp)
1537 return -EINVAL;
1540 static __init int init_posix_cpu_timers(void)
1542 struct k_clock process = {
1543 .clock_getres = process_cpu_clock_getres,
1544 .clock_get = process_cpu_clock_get,
1545 .clock_set = do_posix_clock_nosettime,
1546 .timer_create = process_cpu_timer_create,
1547 .nsleep = process_cpu_nsleep,
1549 struct k_clock thread = {
1550 .clock_getres = thread_cpu_clock_getres,
1551 .clock_get = thread_cpu_clock_get,
1552 .clock_set = do_posix_clock_nosettime,
1553 .timer_create = thread_cpu_timer_create,
1554 .nsleep = thread_cpu_nsleep,
1557 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1558 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1560 return 0;
1562 __initcall(init_posix_cpu_timers);