[PATCH] pcmcia: ds.c cleanup
[linux-2.6.22.y-op.git] / net / core / neighbour.c
blob851eb927ed971da078035beca4caa77c1a406c78
1 /*
2 * Generic address resolution entity
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/config.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/sched.h>
24 #include <linux/netdevice.h>
25 #include <linux/proc_fs.h>
26 #ifdef CONFIG_SYSCTL
27 #include <linux/sysctl.h>
28 #endif
29 #include <linux/times.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/random.h>
35 #include <linux/string.h>
37 #define NEIGH_DEBUG 1
39 #define NEIGH_PRINTK(x...) printk(x)
40 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
41 #define NEIGH_PRINTK0 NEIGH_PRINTK
42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
45 #if NEIGH_DEBUG >= 1
46 #undef NEIGH_PRINTK1
47 #define NEIGH_PRINTK1 NEIGH_PRINTK
48 #endif
49 #if NEIGH_DEBUG >= 2
50 #undef NEIGH_PRINTK2
51 #define NEIGH_PRINTK2 NEIGH_PRINTK
52 #endif
54 #define PNEIGH_HASHMASK 0xF
56 static void neigh_timer_handler(unsigned long arg);
57 #ifdef CONFIG_ARPD
58 static void neigh_app_notify(struct neighbour *n);
59 #endif
60 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
61 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
63 static struct neigh_table *neigh_tables;
64 static struct file_operations neigh_stat_seq_fops;
67 Neighbour hash table buckets are protected with rwlock tbl->lock.
69 - All the scans/updates to hash buckets MUST be made under this lock.
70 - NOTHING clever should be made under this lock: no callbacks
71 to protocol backends, no attempts to send something to network.
72 It will result in deadlocks, if backend/driver wants to use neighbour
73 cache.
74 - If the entry requires some non-trivial actions, increase
75 its reference count and release table lock.
77 Neighbour entries are protected:
78 - with reference count.
79 - with rwlock neigh->lock
81 Reference count prevents destruction.
83 neigh->lock mainly serializes ll address data and its validity state.
84 However, the same lock is used to protect another entry fields:
85 - timer
86 - resolution queue
88 Again, nothing clever shall be made under neigh->lock,
89 the most complicated procedure, which we allow is dev->hard_header.
90 It is supposed, that dev->hard_header is simplistic and does
91 not make callbacks to neighbour tables.
93 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
94 list of neighbour tables. This list is used only in process context,
97 static DEFINE_RWLOCK(neigh_tbl_lock);
99 static int neigh_blackhole(struct sk_buff *skb)
101 kfree_skb(skb);
102 return -ENETDOWN;
106 * It is random distribution in the interval (1/2)*base...(3/2)*base.
107 * It corresponds to default IPv6 settings and is not overridable,
108 * because it is really reasonable choice.
111 unsigned long neigh_rand_reach_time(unsigned long base)
113 return (base ? (net_random() % base) + (base >> 1) : 0);
117 static int neigh_forced_gc(struct neigh_table *tbl)
119 int shrunk = 0;
120 int i;
122 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
124 write_lock_bh(&tbl->lock);
125 for (i = 0; i <= tbl->hash_mask; i++) {
126 struct neighbour *n, **np;
128 np = &tbl->hash_buckets[i];
129 while ((n = *np) != NULL) {
130 /* Neighbour record may be discarded if:
131 * - nobody refers to it.
132 * - it is not permanent
134 write_lock(&n->lock);
135 if (atomic_read(&n->refcnt) == 1 &&
136 !(n->nud_state & NUD_PERMANENT)) {
137 *np = n->next;
138 n->dead = 1;
139 shrunk = 1;
140 write_unlock(&n->lock);
141 neigh_release(n);
142 continue;
144 write_unlock(&n->lock);
145 np = &n->next;
149 tbl->last_flush = jiffies;
151 write_unlock_bh(&tbl->lock);
153 return shrunk;
156 static int neigh_del_timer(struct neighbour *n)
158 if ((n->nud_state & NUD_IN_TIMER) &&
159 del_timer(&n->timer)) {
160 neigh_release(n);
161 return 1;
163 return 0;
166 static void pneigh_queue_purge(struct sk_buff_head *list)
168 struct sk_buff *skb;
170 while ((skb = skb_dequeue(list)) != NULL) {
171 dev_put(skb->dev);
172 kfree_skb(skb);
176 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
178 int i;
180 write_lock_bh(&tbl->lock);
182 for (i=0; i <= tbl->hash_mask; i++) {
183 struct neighbour *n, **np;
185 np = &tbl->hash_buckets[i];
186 while ((n = *np) != NULL) {
187 if (dev && n->dev != dev) {
188 np = &n->next;
189 continue;
191 *np = n->next;
192 write_lock_bh(&n->lock);
193 n->dead = 1;
194 neigh_del_timer(n);
195 write_unlock_bh(&n->lock);
196 neigh_release(n);
200 write_unlock_bh(&tbl->lock);
203 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
205 int i;
207 write_lock_bh(&tbl->lock);
209 for (i = 0; i <= tbl->hash_mask; i++) {
210 struct neighbour *n, **np = &tbl->hash_buckets[i];
212 while ((n = *np) != NULL) {
213 if (dev && n->dev != dev) {
214 np = &n->next;
215 continue;
217 *np = n->next;
218 write_lock(&n->lock);
219 neigh_del_timer(n);
220 n->dead = 1;
222 if (atomic_read(&n->refcnt) != 1) {
223 /* The most unpleasant situation.
224 We must destroy neighbour entry,
225 but someone still uses it.
227 The destroy will be delayed until
228 the last user releases us, but
229 we must kill timers etc. and move
230 it to safe state.
232 skb_queue_purge(&n->arp_queue);
233 n->output = neigh_blackhole;
234 if (n->nud_state & NUD_VALID)
235 n->nud_state = NUD_NOARP;
236 else
237 n->nud_state = NUD_NONE;
238 NEIGH_PRINTK2("neigh %p is stray.\n", n);
240 write_unlock(&n->lock);
241 neigh_release(n);
245 pneigh_ifdown(tbl, dev);
246 write_unlock_bh(&tbl->lock);
248 del_timer_sync(&tbl->proxy_timer);
249 pneigh_queue_purge(&tbl->proxy_queue);
250 return 0;
253 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
255 struct neighbour *n = NULL;
256 unsigned long now = jiffies;
257 int entries;
259 entries = atomic_inc_return(&tbl->entries) - 1;
260 if (entries >= tbl->gc_thresh3 ||
261 (entries >= tbl->gc_thresh2 &&
262 time_after(now, tbl->last_flush + 5 * HZ))) {
263 if (!neigh_forced_gc(tbl) &&
264 entries >= tbl->gc_thresh3)
265 goto out_entries;
268 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
269 if (!n)
270 goto out_entries;
272 memset(n, 0, tbl->entry_size);
274 skb_queue_head_init(&n->arp_queue);
275 rwlock_init(&n->lock);
276 n->updated = n->used = now;
277 n->nud_state = NUD_NONE;
278 n->output = neigh_blackhole;
279 n->parms = neigh_parms_clone(&tbl->parms);
280 init_timer(&n->timer);
281 n->timer.function = neigh_timer_handler;
282 n->timer.data = (unsigned long)n;
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
301 if (size <= PAGE_SIZE) {
302 ret = kmalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC, get_order(size));
307 if (ret)
308 memset(ret, 0, size);
310 return ret;
313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
315 unsigned long size = entries * sizeof(struct neighbour *);
317 if (size <= PAGE_SIZE)
318 kfree(hash);
319 else
320 free_pages((unsigned long)hash, get_order(size));
323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
325 struct neighbour **new_hash, **old_hash;
326 unsigned int i, new_hash_mask, old_entries;
328 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
330 BUG_ON(new_entries & (new_entries - 1));
331 new_hash = neigh_hash_alloc(new_entries);
332 if (!new_hash)
333 return;
335 old_entries = tbl->hash_mask + 1;
336 new_hash_mask = new_entries - 1;
337 old_hash = tbl->hash_buckets;
339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
340 for (i = 0; i < old_entries; i++) {
341 struct neighbour *n, *next;
343 for (n = old_hash[i]; n; n = next) {
344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
346 hash_val &= new_hash_mask;
347 next = n->next;
349 n->next = new_hash[hash_val];
350 new_hash[hash_val] = n;
353 tbl->hash_buckets = new_hash;
354 tbl->hash_mask = new_hash_mask;
356 neigh_hash_free(old_hash, old_entries);
359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
360 struct net_device *dev)
362 struct neighbour *n;
363 int key_len = tbl->key_len;
364 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
366 NEIGH_CACHE_STAT_INC(tbl, lookups);
368 read_lock_bh(&tbl->lock);
369 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
370 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
371 neigh_hold(n);
372 NEIGH_CACHE_STAT_INC(tbl, hits);
373 break;
376 read_unlock_bh(&tbl->lock);
377 return n;
380 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
382 struct neighbour *n;
383 int key_len = tbl->key_len;
384 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
386 NEIGH_CACHE_STAT_INC(tbl, lookups);
388 read_lock_bh(&tbl->lock);
389 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
390 if (!memcmp(n->primary_key, pkey, key_len)) {
391 neigh_hold(n);
392 NEIGH_CACHE_STAT_INC(tbl, hits);
393 break;
396 read_unlock_bh(&tbl->lock);
397 return n;
400 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
401 struct net_device *dev)
403 u32 hash_val;
404 int key_len = tbl->key_len;
405 int error;
406 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
408 if (!n) {
409 rc = ERR_PTR(-ENOBUFS);
410 goto out;
413 memcpy(n->primary_key, pkey, key_len);
414 n->dev = dev;
415 dev_hold(dev);
417 /* Protocol specific setup. */
418 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
419 rc = ERR_PTR(error);
420 goto out_neigh_release;
423 /* Device specific setup. */
424 if (n->parms->neigh_setup &&
425 (error = n->parms->neigh_setup(n)) < 0) {
426 rc = ERR_PTR(error);
427 goto out_neigh_release;
430 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
432 write_lock_bh(&tbl->lock);
434 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
435 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
437 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
439 if (n->parms->dead) {
440 rc = ERR_PTR(-EINVAL);
441 goto out_tbl_unlock;
444 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
445 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
446 neigh_hold(n1);
447 rc = n1;
448 goto out_tbl_unlock;
452 n->next = tbl->hash_buckets[hash_val];
453 tbl->hash_buckets[hash_val] = n;
454 n->dead = 0;
455 neigh_hold(n);
456 write_unlock_bh(&tbl->lock);
457 NEIGH_PRINTK2("neigh %p is created.\n", n);
458 rc = n;
459 out:
460 return rc;
461 out_tbl_unlock:
462 write_unlock_bh(&tbl->lock);
463 out_neigh_release:
464 neigh_release(n);
465 goto out;
468 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
469 struct net_device *dev, int creat)
471 struct pneigh_entry *n;
472 int key_len = tbl->key_len;
473 u32 hash_val = *(u32 *)(pkey + key_len - 4);
475 hash_val ^= (hash_val >> 16);
476 hash_val ^= hash_val >> 8;
477 hash_val ^= hash_val >> 4;
478 hash_val &= PNEIGH_HASHMASK;
480 read_lock_bh(&tbl->lock);
482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
483 if (!memcmp(n->key, pkey, key_len) &&
484 (n->dev == dev || !n->dev)) {
485 read_unlock_bh(&tbl->lock);
486 goto out;
489 read_unlock_bh(&tbl->lock);
490 n = NULL;
491 if (!creat)
492 goto out;
494 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
495 if (!n)
496 goto out;
498 memcpy(n->key, pkey, key_len);
499 n->dev = dev;
500 if (dev)
501 dev_hold(dev);
503 if (tbl->pconstructor && tbl->pconstructor(n)) {
504 if (dev)
505 dev_put(dev);
506 kfree(n);
507 n = NULL;
508 goto out;
511 write_lock_bh(&tbl->lock);
512 n->next = tbl->phash_buckets[hash_val];
513 tbl->phash_buckets[hash_val] = n;
514 write_unlock_bh(&tbl->lock);
515 out:
516 return n;
520 int pneigh_delete(struct neigh_table *tbl, const void *pkey,
521 struct net_device *dev)
523 struct pneigh_entry *n, **np;
524 int key_len = tbl->key_len;
525 u32 hash_val = *(u32 *)(pkey + key_len - 4);
527 hash_val ^= (hash_val >> 16);
528 hash_val ^= hash_val >> 8;
529 hash_val ^= hash_val >> 4;
530 hash_val &= PNEIGH_HASHMASK;
532 write_lock_bh(&tbl->lock);
533 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
534 np = &n->next) {
535 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
536 *np = n->next;
537 write_unlock_bh(&tbl->lock);
538 if (tbl->pdestructor)
539 tbl->pdestructor(n);
540 if (n->dev)
541 dev_put(n->dev);
542 kfree(n);
543 return 0;
546 write_unlock_bh(&tbl->lock);
547 return -ENOENT;
550 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
552 struct pneigh_entry *n, **np;
553 u32 h;
555 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
556 np = &tbl->phash_buckets[h];
557 while ((n = *np) != NULL) {
558 if (!dev || n->dev == dev) {
559 *np = n->next;
560 if (tbl->pdestructor)
561 tbl->pdestructor(n);
562 if (n->dev)
563 dev_put(n->dev);
564 kfree(n);
565 continue;
567 np = &n->next;
570 return -ENOENT;
575 * neighbour must already be out of the table;
578 void neigh_destroy(struct neighbour *neigh)
580 struct hh_cache *hh;
582 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
584 if (!neigh->dead) {
585 printk(KERN_WARNING
586 "Destroying alive neighbour %p\n", neigh);
587 dump_stack();
588 return;
591 if (neigh_del_timer(neigh))
592 printk(KERN_WARNING "Impossible event.\n");
594 while ((hh = neigh->hh) != NULL) {
595 neigh->hh = hh->hh_next;
596 hh->hh_next = NULL;
597 write_lock_bh(&hh->hh_lock);
598 hh->hh_output = neigh_blackhole;
599 write_unlock_bh(&hh->hh_lock);
600 if (atomic_dec_and_test(&hh->hh_refcnt))
601 kfree(hh);
604 if (neigh->ops && neigh->ops->destructor)
605 (neigh->ops->destructor)(neigh);
607 skb_queue_purge(&neigh->arp_queue);
609 dev_put(neigh->dev);
610 neigh_parms_put(neigh->parms);
612 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
614 atomic_dec(&neigh->tbl->entries);
615 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
618 /* Neighbour state is suspicious;
619 disable fast path.
621 Called with write_locked neigh.
623 static void neigh_suspect(struct neighbour *neigh)
625 struct hh_cache *hh;
627 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
629 neigh->output = neigh->ops->output;
631 for (hh = neigh->hh; hh; hh = hh->hh_next)
632 hh->hh_output = neigh->ops->output;
635 /* Neighbour state is OK;
636 enable fast path.
638 Called with write_locked neigh.
640 static void neigh_connect(struct neighbour *neigh)
642 struct hh_cache *hh;
644 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
646 neigh->output = neigh->ops->connected_output;
648 for (hh = neigh->hh; hh; hh = hh->hh_next)
649 hh->hh_output = neigh->ops->hh_output;
652 static void neigh_periodic_timer(unsigned long arg)
654 struct neigh_table *tbl = (struct neigh_table *)arg;
655 struct neighbour *n, **np;
656 unsigned long expire, now = jiffies;
658 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
660 write_lock(&tbl->lock);
663 * periodically recompute ReachableTime from random function
666 if (time_after(now, tbl->last_rand + 300 * HZ)) {
667 struct neigh_parms *p;
668 tbl->last_rand = now;
669 for (p = &tbl->parms; p; p = p->next)
670 p->reachable_time =
671 neigh_rand_reach_time(p->base_reachable_time);
674 np = &tbl->hash_buckets[tbl->hash_chain_gc];
675 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
677 while ((n = *np) != NULL) {
678 unsigned int state;
680 write_lock(&n->lock);
682 state = n->nud_state;
683 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
684 write_unlock(&n->lock);
685 goto next_elt;
688 if (time_before(n->used, n->confirmed))
689 n->used = n->confirmed;
691 if (atomic_read(&n->refcnt) == 1 &&
692 (state == NUD_FAILED ||
693 time_after(now, n->used + n->parms->gc_staletime))) {
694 *np = n->next;
695 n->dead = 1;
696 write_unlock(&n->lock);
697 neigh_release(n);
698 continue;
700 write_unlock(&n->lock);
702 next_elt:
703 np = &n->next;
706 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
707 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
708 * base_reachable_time.
710 expire = tbl->parms.base_reachable_time >> 1;
711 expire /= (tbl->hash_mask + 1);
712 if (!expire)
713 expire = 1;
715 mod_timer(&tbl->gc_timer, now + expire);
717 write_unlock(&tbl->lock);
720 static __inline__ int neigh_max_probes(struct neighbour *n)
722 struct neigh_parms *p = n->parms;
723 return (n->nud_state & NUD_PROBE ?
724 p->ucast_probes :
725 p->ucast_probes + p->app_probes + p->mcast_probes);
729 /* Called when a timer expires for a neighbour entry. */
731 static void neigh_timer_handler(unsigned long arg)
733 unsigned long now, next;
734 struct neighbour *neigh = (struct neighbour *)arg;
735 unsigned state;
736 int notify = 0;
738 write_lock(&neigh->lock);
740 state = neigh->nud_state;
741 now = jiffies;
742 next = now + HZ;
744 if (!(state & NUD_IN_TIMER)) {
745 #ifndef CONFIG_SMP
746 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
747 #endif
748 goto out;
751 if (state & NUD_REACHABLE) {
752 if (time_before_eq(now,
753 neigh->confirmed + neigh->parms->reachable_time)) {
754 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
755 next = neigh->confirmed + neigh->parms->reachable_time;
756 } else if (time_before_eq(now,
757 neigh->used + neigh->parms->delay_probe_time)) {
758 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
759 neigh->nud_state = NUD_DELAY;
760 neigh_suspect(neigh);
761 next = now + neigh->parms->delay_probe_time;
762 } else {
763 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
764 neigh->nud_state = NUD_STALE;
765 neigh_suspect(neigh);
767 } else if (state & NUD_DELAY) {
768 if (time_before_eq(now,
769 neigh->confirmed + neigh->parms->delay_probe_time)) {
770 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
771 neigh->nud_state = NUD_REACHABLE;
772 neigh_connect(neigh);
773 next = neigh->confirmed + neigh->parms->reachable_time;
774 } else {
775 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
776 neigh->nud_state = NUD_PROBE;
777 atomic_set(&neigh->probes, 0);
778 next = now + neigh->parms->retrans_time;
780 } else {
781 /* NUD_PROBE|NUD_INCOMPLETE */
782 next = now + neigh->parms->retrans_time;
785 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
786 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
787 struct sk_buff *skb;
789 neigh->nud_state = NUD_FAILED;
790 notify = 1;
791 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
792 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
794 /* It is very thin place. report_unreachable is very complicated
795 routine. Particularly, it can hit the same neighbour entry!
797 So that, we try to be accurate and avoid dead loop. --ANK
799 while (neigh->nud_state == NUD_FAILED &&
800 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
801 write_unlock(&neigh->lock);
802 neigh->ops->error_report(neigh, skb);
803 write_lock(&neigh->lock);
805 skb_queue_purge(&neigh->arp_queue);
808 if (neigh->nud_state & NUD_IN_TIMER) {
809 neigh_hold(neigh);
810 if (time_before(next, jiffies + HZ/2))
811 next = jiffies + HZ/2;
812 neigh->timer.expires = next;
813 add_timer(&neigh->timer);
815 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
816 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
817 /* keep skb alive even if arp_queue overflows */
818 if (skb)
819 skb_get(skb);
820 write_unlock(&neigh->lock);
821 neigh->ops->solicit(neigh, skb);
822 atomic_inc(&neigh->probes);
823 if (skb)
824 kfree_skb(skb);
825 } else {
826 out:
827 write_unlock(&neigh->lock);
830 #ifdef CONFIG_ARPD
831 if (notify && neigh->parms->app_probes)
832 neigh_app_notify(neigh);
833 #endif
834 neigh_release(neigh);
837 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
839 int rc;
840 unsigned long now;
842 write_lock_bh(&neigh->lock);
844 rc = 0;
845 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
846 goto out_unlock_bh;
848 now = jiffies;
850 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
851 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
852 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
853 neigh->nud_state = NUD_INCOMPLETE;
854 neigh_hold(neigh);
855 neigh->timer.expires = now + 1;
856 add_timer(&neigh->timer);
857 } else {
858 neigh->nud_state = NUD_FAILED;
859 write_unlock_bh(&neigh->lock);
861 if (skb)
862 kfree_skb(skb);
863 return 1;
865 } else if (neigh->nud_state & NUD_STALE) {
866 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
867 neigh_hold(neigh);
868 neigh->nud_state = NUD_DELAY;
869 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
870 add_timer(&neigh->timer);
873 if (neigh->nud_state == NUD_INCOMPLETE) {
874 if (skb) {
875 if (skb_queue_len(&neigh->arp_queue) >=
876 neigh->parms->queue_len) {
877 struct sk_buff *buff;
878 buff = neigh->arp_queue.next;
879 __skb_unlink(buff, &neigh->arp_queue);
880 kfree_skb(buff);
882 __skb_queue_tail(&neigh->arp_queue, skb);
884 rc = 1;
886 out_unlock_bh:
887 write_unlock_bh(&neigh->lock);
888 return rc;
891 static __inline__ void neigh_update_hhs(struct neighbour *neigh)
893 struct hh_cache *hh;
894 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
895 neigh->dev->header_cache_update;
897 if (update) {
898 for (hh = neigh->hh; hh; hh = hh->hh_next) {
899 write_lock_bh(&hh->hh_lock);
900 update(hh, neigh->dev, neigh->ha);
901 write_unlock_bh(&hh->hh_lock);
908 /* Generic update routine.
909 -- lladdr is new lladdr or NULL, if it is not supplied.
910 -- new is new state.
911 -- flags
912 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
913 if it is different.
914 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
915 lladdr instead of overriding it
916 if it is different.
917 It also allows to retain current state
918 if lladdr is unchanged.
919 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
921 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
922 NTF_ROUTER flag.
923 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
924 a router.
926 Caller MUST hold reference count on the entry.
929 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
930 u32 flags)
932 u8 old;
933 int err;
934 #ifdef CONFIG_ARPD
935 int notify = 0;
936 #endif
937 struct net_device *dev;
938 int update_isrouter = 0;
940 write_lock_bh(&neigh->lock);
942 dev = neigh->dev;
943 old = neigh->nud_state;
944 err = -EPERM;
946 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
947 (old & (NUD_NOARP | NUD_PERMANENT)))
948 goto out;
950 if (!(new & NUD_VALID)) {
951 neigh_del_timer(neigh);
952 if (old & NUD_CONNECTED)
953 neigh_suspect(neigh);
954 neigh->nud_state = new;
955 err = 0;
956 #ifdef CONFIG_ARPD
957 notify = old & NUD_VALID;
958 #endif
959 goto out;
962 /* Compare new lladdr with cached one */
963 if (!dev->addr_len) {
964 /* First case: device needs no address. */
965 lladdr = neigh->ha;
966 } else if (lladdr) {
967 /* The second case: if something is already cached
968 and a new address is proposed:
969 - compare new & old
970 - if they are different, check override flag
972 if ((old & NUD_VALID) &&
973 !memcmp(lladdr, neigh->ha, dev->addr_len))
974 lladdr = neigh->ha;
975 } else {
976 /* No address is supplied; if we know something,
977 use it, otherwise discard the request.
979 err = -EINVAL;
980 if (!(old & NUD_VALID))
981 goto out;
982 lladdr = neigh->ha;
985 if (new & NUD_CONNECTED)
986 neigh->confirmed = jiffies;
987 neigh->updated = jiffies;
989 /* If entry was valid and address is not changed,
990 do not change entry state, if new one is STALE.
992 err = 0;
993 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
994 if (old & NUD_VALID) {
995 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
996 update_isrouter = 0;
997 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
998 (old & NUD_CONNECTED)) {
999 lladdr = neigh->ha;
1000 new = NUD_STALE;
1001 } else
1002 goto out;
1003 } else {
1004 if (lladdr == neigh->ha && new == NUD_STALE &&
1005 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1006 (old & NUD_CONNECTED))
1008 new = old;
1012 if (new != old) {
1013 neigh_del_timer(neigh);
1014 if (new & NUD_IN_TIMER) {
1015 neigh_hold(neigh);
1016 neigh->timer.expires = jiffies +
1017 ((new & NUD_REACHABLE) ?
1018 neigh->parms->reachable_time : 0);
1019 add_timer(&neigh->timer);
1021 neigh->nud_state = new;
1024 if (lladdr != neigh->ha) {
1025 memcpy(&neigh->ha, lladdr, dev->addr_len);
1026 neigh_update_hhs(neigh);
1027 if (!(new & NUD_CONNECTED))
1028 neigh->confirmed = jiffies -
1029 (neigh->parms->base_reachable_time << 1);
1030 #ifdef CONFIG_ARPD
1031 notify = 1;
1032 #endif
1034 if (new == old)
1035 goto out;
1036 if (new & NUD_CONNECTED)
1037 neigh_connect(neigh);
1038 else
1039 neigh_suspect(neigh);
1040 if (!(old & NUD_VALID)) {
1041 struct sk_buff *skb;
1043 /* Again: avoid dead loop if something went wrong */
1045 while (neigh->nud_state & NUD_VALID &&
1046 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1047 struct neighbour *n1 = neigh;
1048 write_unlock_bh(&neigh->lock);
1049 /* On shaper/eql skb->dst->neighbour != neigh :( */
1050 if (skb->dst && skb->dst->neighbour)
1051 n1 = skb->dst->neighbour;
1052 n1->output(skb);
1053 write_lock_bh(&neigh->lock);
1055 skb_queue_purge(&neigh->arp_queue);
1057 out:
1058 if (update_isrouter) {
1059 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1060 (neigh->flags | NTF_ROUTER) :
1061 (neigh->flags & ~NTF_ROUTER);
1063 write_unlock_bh(&neigh->lock);
1064 #ifdef CONFIG_ARPD
1065 if (notify && neigh->parms->app_probes)
1066 neigh_app_notify(neigh);
1067 #endif
1068 return err;
1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1072 u8 *lladdr, void *saddr,
1073 struct net_device *dev)
1075 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1076 lladdr || !dev->addr_len);
1077 if (neigh)
1078 neigh_update(neigh, lladdr, NUD_STALE,
1079 NEIGH_UPDATE_F_OVERRIDE);
1080 return neigh;
1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1084 u16 protocol)
1086 struct hh_cache *hh;
1087 struct net_device *dev = dst->dev;
1089 for (hh = n->hh; hh; hh = hh->hh_next)
1090 if (hh->hh_type == protocol)
1091 break;
1093 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1094 memset(hh, 0, sizeof(struct hh_cache));
1095 rwlock_init(&hh->hh_lock);
1096 hh->hh_type = protocol;
1097 atomic_set(&hh->hh_refcnt, 0);
1098 hh->hh_next = NULL;
1099 if (dev->hard_header_cache(n, hh)) {
1100 kfree(hh);
1101 hh = NULL;
1102 } else {
1103 atomic_inc(&hh->hh_refcnt);
1104 hh->hh_next = n->hh;
1105 n->hh = hh;
1106 if (n->nud_state & NUD_CONNECTED)
1107 hh->hh_output = n->ops->hh_output;
1108 else
1109 hh->hh_output = n->ops->output;
1112 if (hh) {
1113 atomic_inc(&hh->hh_refcnt);
1114 dst->hh = hh;
1118 /* This function can be used in contexts, where only old dev_queue_xmit
1119 worked, f.e. if you want to override normal output path (eql, shaper),
1120 but resolution is not made yet.
1123 int neigh_compat_output(struct sk_buff *skb)
1125 struct net_device *dev = skb->dev;
1127 __skb_pull(skb, skb->nh.raw - skb->data);
1129 if (dev->hard_header &&
1130 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1131 skb->len) < 0 &&
1132 dev->rebuild_header(skb))
1133 return 0;
1135 return dev_queue_xmit(skb);
1138 /* Slow and careful. */
1140 int neigh_resolve_output(struct sk_buff *skb)
1142 struct dst_entry *dst = skb->dst;
1143 struct neighbour *neigh;
1144 int rc = 0;
1146 if (!dst || !(neigh = dst->neighbour))
1147 goto discard;
1149 __skb_pull(skb, skb->nh.raw - skb->data);
1151 if (!neigh_event_send(neigh, skb)) {
1152 int err;
1153 struct net_device *dev = neigh->dev;
1154 if (dev->hard_header_cache && !dst->hh) {
1155 write_lock_bh(&neigh->lock);
1156 if (!dst->hh)
1157 neigh_hh_init(neigh, dst, dst->ops->protocol);
1158 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1159 neigh->ha, NULL, skb->len);
1160 write_unlock_bh(&neigh->lock);
1161 } else {
1162 read_lock_bh(&neigh->lock);
1163 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1164 neigh->ha, NULL, skb->len);
1165 read_unlock_bh(&neigh->lock);
1167 if (err >= 0)
1168 rc = neigh->ops->queue_xmit(skb);
1169 else
1170 goto out_kfree_skb;
1172 out:
1173 return rc;
1174 discard:
1175 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1176 dst, dst ? dst->neighbour : NULL);
1177 out_kfree_skb:
1178 rc = -EINVAL;
1179 kfree_skb(skb);
1180 goto out;
1183 /* As fast as possible without hh cache */
1185 int neigh_connected_output(struct sk_buff *skb)
1187 int err;
1188 struct dst_entry *dst = skb->dst;
1189 struct neighbour *neigh = dst->neighbour;
1190 struct net_device *dev = neigh->dev;
1192 __skb_pull(skb, skb->nh.raw - skb->data);
1194 read_lock_bh(&neigh->lock);
1195 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1196 neigh->ha, NULL, skb->len);
1197 read_unlock_bh(&neigh->lock);
1198 if (err >= 0)
1199 err = neigh->ops->queue_xmit(skb);
1200 else {
1201 err = -EINVAL;
1202 kfree_skb(skb);
1204 return err;
1207 static void neigh_proxy_process(unsigned long arg)
1209 struct neigh_table *tbl = (struct neigh_table *)arg;
1210 long sched_next = 0;
1211 unsigned long now = jiffies;
1212 struct sk_buff *skb;
1214 spin_lock(&tbl->proxy_queue.lock);
1216 skb = tbl->proxy_queue.next;
1218 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1219 struct sk_buff *back = skb;
1220 long tdif = back->stamp.tv_usec - now;
1222 skb = skb->next;
1223 if (tdif <= 0) {
1224 struct net_device *dev = back->dev;
1225 __skb_unlink(back, &tbl->proxy_queue);
1226 if (tbl->proxy_redo && netif_running(dev))
1227 tbl->proxy_redo(back);
1228 else
1229 kfree_skb(back);
1231 dev_put(dev);
1232 } else if (!sched_next || tdif < sched_next)
1233 sched_next = tdif;
1235 del_timer(&tbl->proxy_timer);
1236 if (sched_next)
1237 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1238 spin_unlock(&tbl->proxy_queue.lock);
1241 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1242 struct sk_buff *skb)
1244 unsigned long now = jiffies;
1245 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1247 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1248 kfree_skb(skb);
1249 return;
1251 skb->stamp.tv_sec = LOCALLY_ENQUEUED;
1252 skb->stamp.tv_usec = sched_next;
1254 spin_lock(&tbl->proxy_queue.lock);
1255 if (del_timer(&tbl->proxy_timer)) {
1256 if (time_before(tbl->proxy_timer.expires, sched_next))
1257 sched_next = tbl->proxy_timer.expires;
1259 dst_release(skb->dst);
1260 skb->dst = NULL;
1261 dev_hold(skb->dev);
1262 __skb_queue_tail(&tbl->proxy_queue, skb);
1263 mod_timer(&tbl->proxy_timer, sched_next);
1264 spin_unlock(&tbl->proxy_queue.lock);
1268 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1269 struct neigh_table *tbl)
1271 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1273 if (p) {
1274 memcpy(p, &tbl->parms, sizeof(*p));
1275 p->tbl = tbl;
1276 atomic_set(&p->refcnt, 1);
1277 INIT_RCU_HEAD(&p->rcu_head);
1278 p->reachable_time =
1279 neigh_rand_reach_time(p->base_reachable_time);
1280 if (dev) {
1281 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1282 kfree(p);
1283 return NULL;
1286 dev_hold(dev);
1287 p->dev = dev;
1289 p->sysctl_table = NULL;
1290 write_lock_bh(&tbl->lock);
1291 p->next = tbl->parms.next;
1292 tbl->parms.next = p;
1293 write_unlock_bh(&tbl->lock);
1295 return p;
1298 static void neigh_rcu_free_parms(struct rcu_head *head)
1300 struct neigh_parms *parms =
1301 container_of(head, struct neigh_parms, rcu_head);
1303 neigh_parms_put(parms);
1306 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1308 struct neigh_parms **p;
1310 if (!parms || parms == &tbl->parms)
1311 return;
1312 write_lock_bh(&tbl->lock);
1313 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1314 if (*p == parms) {
1315 *p = parms->next;
1316 parms->dead = 1;
1317 write_unlock_bh(&tbl->lock);
1318 if (parms->dev)
1319 dev_put(parms->dev);
1320 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1321 return;
1324 write_unlock_bh(&tbl->lock);
1325 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1328 void neigh_parms_destroy(struct neigh_parms *parms)
1330 kfree(parms);
1334 void neigh_table_init(struct neigh_table *tbl)
1336 unsigned long now = jiffies;
1337 unsigned long phsize;
1339 atomic_set(&tbl->parms.refcnt, 1);
1340 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1341 tbl->parms.reachable_time =
1342 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1344 if (!tbl->kmem_cachep)
1345 tbl->kmem_cachep = kmem_cache_create(tbl->id,
1346 tbl->entry_size,
1347 0, SLAB_HWCACHE_ALIGN,
1348 NULL, NULL);
1350 if (!tbl->kmem_cachep)
1351 panic("cannot create neighbour cache");
1353 tbl->stats = alloc_percpu(struct neigh_statistics);
1354 if (!tbl->stats)
1355 panic("cannot create neighbour cache statistics");
1357 #ifdef CONFIG_PROC_FS
1358 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1359 if (!tbl->pde)
1360 panic("cannot create neighbour proc dir entry");
1361 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1362 tbl->pde->data = tbl;
1363 #endif
1365 tbl->hash_mask = 1;
1366 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1368 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1369 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL);
1371 if (!tbl->hash_buckets || !tbl->phash_buckets)
1372 panic("cannot allocate neighbour cache hashes");
1374 memset(tbl->phash_buckets, 0, phsize);
1376 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1378 rwlock_init(&tbl->lock);
1379 init_timer(&tbl->gc_timer);
1380 tbl->gc_timer.data = (unsigned long)tbl;
1381 tbl->gc_timer.function = neigh_periodic_timer;
1382 tbl->gc_timer.expires = now + 1;
1383 add_timer(&tbl->gc_timer);
1385 init_timer(&tbl->proxy_timer);
1386 tbl->proxy_timer.data = (unsigned long)tbl;
1387 tbl->proxy_timer.function = neigh_proxy_process;
1388 skb_queue_head_init(&tbl->proxy_queue);
1390 tbl->last_flush = now;
1391 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1392 write_lock(&neigh_tbl_lock);
1393 tbl->next = neigh_tables;
1394 neigh_tables = tbl;
1395 write_unlock(&neigh_tbl_lock);
1398 int neigh_table_clear(struct neigh_table *tbl)
1400 struct neigh_table **tp;
1402 /* It is not clean... Fix it to unload IPv6 module safely */
1403 del_timer_sync(&tbl->gc_timer);
1404 del_timer_sync(&tbl->proxy_timer);
1405 pneigh_queue_purge(&tbl->proxy_queue);
1406 neigh_ifdown(tbl, NULL);
1407 if (atomic_read(&tbl->entries))
1408 printk(KERN_CRIT "neighbour leakage\n");
1409 write_lock(&neigh_tbl_lock);
1410 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1411 if (*tp == tbl) {
1412 *tp = tbl->next;
1413 break;
1416 write_unlock(&neigh_tbl_lock);
1418 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1419 tbl->hash_buckets = NULL;
1421 kfree(tbl->phash_buckets);
1422 tbl->phash_buckets = NULL;
1424 return 0;
1427 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1429 struct ndmsg *ndm = NLMSG_DATA(nlh);
1430 struct rtattr **nda = arg;
1431 struct neigh_table *tbl;
1432 struct net_device *dev = NULL;
1433 int err = -ENODEV;
1435 if (ndm->ndm_ifindex &&
1436 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1437 goto out;
1439 read_lock(&neigh_tbl_lock);
1440 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1441 struct rtattr *dst_attr = nda[NDA_DST - 1];
1442 struct neighbour *n;
1444 if (tbl->family != ndm->ndm_family)
1445 continue;
1446 read_unlock(&neigh_tbl_lock);
1448 err = -EINVAL;
1449 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1450 goto out_dev_put;
1452 if (ndm->ndm_flags & NTF_PROXY) {
1453 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1454 goto out_dev_put;
1457 if (!dev)
1458 goto out;
1460 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1461 if (n) {
1462 err = neigh_update(n, NULL, NUD_FAILED,
1463 NEIGH_UPDATE_F_OVERRIDE|
1464 NEIGH_UPDATE_F_ADMIN);
1465 neigh_release(n);
1467 goto out_dev_put;
1469 read_unlock(&neigh_tbl_lock);
1470 err = -EADDRNOTAVAIL;
1471 out_dev_put:
1472 if (dev)
1473 dev_put(dev);
1474 out:
1475 return err;
1478 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1480 struct ndmsg *ndm = NLMSG_DATA(nlh);
1481 struct rtattr **nda = arg;
1482 struct neigh_table *tbl;
1483 struct net_device *dev = NULL;
1484 int err = -ENODEV;
1486 if (ndm->ndm_ifindex &&
1487 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1488 goto out;
1490 read_lock(&neigh_tbl_lock);
1491 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1492 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1493 struct rtattr *dst_attr = nda[NDA_DST - 1];
1494 int override = 1;
1495 struct neighbour *n;
1497 if (tbl->family != ndm->ndm_family)
1498 continue;
1499 read_unlock(&neigh_tbl_lock);
1501 err = -EINVAL;
1502 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1503 goto out_dev_put;
1505 if (ndm->ndm_flags & NTF_PROXY) {
1506 err = -ENOBUFS;
1507 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1508 err = 0;
1509 goto out_dev_put;
1512 err = -EINVAL;
1513 if (!dev)
1514 goto out;
1515 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1516 goto out_dev_put;
1518 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1519 if (n) {
1520 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1521 err = -EEXIST;
1522 neigh_release(n);
1523 goto out_dev_put;
1526 override = nlh->nlmsg_flags & NLM_F_REPLACE;
1527 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1528 err = -ENOENT;
1529 goto out_dev_put;
1530 } else {
1531 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1532 if (IS_ERR(n)) {
1533 err = PTR_ERR(n);
1534 goto out_dev_put;
1538 err = neigh_update(n,
1539 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1540 ndm->ndm_state,
1541 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1542 NEIGH_UPDATE_F_ADMIN);
1544 neigh_release(n);
1545 goto out_dev_put;
1548 read_unlock(&neigh_tbl_lock);
1549 err = -EADDRNOTAVAIL;
1550 out_dev_put:
1551 if (dev)
1552 dev_put(dev);
1553 out:
1554 return err;
1557 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1559 struct rtattr *nest = NULL;
1561 nest = RTA_NEST(skb, NDTA_PARMS);
1563 if (parms->dev)
1564 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1566 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1567 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1568 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1569 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1570 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1571 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1572 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1573 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1574 parms->base_reachable_time);
1575 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1576 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1577 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1578 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1579 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1580 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1582 return RTA_NEST_END(skb, nest);
1584 rtattr_failure:
1585 return RTA_NEST_CANCEL(skb, nest);
1588 static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb,
1589 struct netlink_callback *cb)
1591 struct nlmsghdr *nlh;
1592 struct ndtmsg *ndtmsg;
1594 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1595 NLM_F_MULTI);
1597 ndtmsg = NLMSG_DATA(nlh);
1599 read_lock_bh(&tbl->lock);
1600 ndtmsg->ndtm_family = tbl->family;
1602 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1603 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1604 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1605 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1606 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1609 unsigned long now = jiffies;
1610 unsigned int flush_delta = now - tbl->last_flush;
1611 unsigned int rand_delta = now - tbl->last_rand;
1613 struct ndt_config ndc = {
1614 .ndtc_key_len = tbl->key_len,
1615 .ndtc_entry_size = tbl->entry_size,
1616 .ndtc_entries = atomic_read(&tbl->entries),
1617 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1618 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1619 .ndtc_hash_rnd = tbl->hash_rnd,
1620 .ndtc_hash_mask = tbl->hash_mask,
1621 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1622 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1625 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1629 int cpu;
1630 struct ndt_stats ndst;
1632 memset(&ndst, 0, sizeof(ndst));
1634 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1635 struct neigh_statistics *st;
1637 if (!cpu_possible(cpu))
1638 continue;
1640 st = per_cpu_ptr(tbl->stats, cpu);
1641 ndst.ndts_allocs += st->allocs;
1642 ndst.ndts_destroys += st->destroys;
1643 ndst.ndts_hash_grows += st->hash_grows;
1644 ndst.ndts_res_failed += st->res_failed;
1645 ndst.ndts_lookups += st->lookups;
1646 ndst.ndts_hits += st->hits;
1647 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1648 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1649 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1650 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1653 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1656 BUG_ON(tbl->parms.dev);
1657 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1658 goto rtattr_failure;
1660 read_unlock_bh(&tbl->lock);
1661 return NLMSG_END(skb, nlh);
1663 rtattr_failure:
1664 read_unlock_bh(&tbl->lock);
1665 return NLMSG_CANCEL(skb, nlh);
1667 nlmsg_failure:
1668 return -1;
1671 static int neightbl_fill_param_info(struct neigh_table *tbl,
1672 struct neigh_parms *parms,
1673 struct sk_buff *skb,
1674 struct netlink_callback *cb)
1676 struct ndtmsg *ndtmsg;
1677 struct nlmsghdr *nlh;
1679 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1680 NLM_F_MULTI);
1682 ndtmsg = NLMSG_DATA(nlh);
1684 read_lock_bh(&tbl->lock);
1685 ndtmsg->ndtm_family = tbl->family;
1686 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1688 if (neightbl_fill_parms(skb, parms) < 0)
1689 goto rtattr_failure;
1691 read_unlock_bh(&tbl->lock);
1692 return NLMSG_END(skb, nlh);
1694 rtattr_failure:
1695 read_unlock_bh(&tbl->lock);
1696 return NLMSG_CANCEL(skb, nlh);
1698 nlmsg_failure:
1699 return -1;
1702 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1703 int ifindex)
1705 struct neigh_parms *p;
1707 for (p = &tbl->parms; p; p = p->next)
1708 if ((p->dev && p->dev->ifindex == ifindex) ||
1709 (!p->dev && !ifindex))
1710 return p;
1712 return NULL;
1715 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1717 struct neigh_table *tbl;
1718 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh);
1719 struct rtattr **tb = arg;
1720 int err = -EINVAL;
1722 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1]))
1723 return -EINVAL;
1725 read_lock(&neigh_tbl_lock);
1726 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1727 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1728 continue;
1730 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id))
1731 break;
1734 if (tbl == NULL) {
1735 err = -ENOENT;
1736 goto errout;
1740 * We acquire tbl->lock to be nice to the periodic timers and
1741 * make sure they always see a consistent set of values.
1743 write_lock_bh(&tbl->lock);
1745 if (tb[NDTA_THRESH1 - 1])
1746 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]);
1748 if (tb[NDTA_THRESH2 - 1])
1749 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]);
1751 if (tb[NDTA_THRESH3 - 1])
1752 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]);
1754 if (tb[NDTA_GC_INTERVAL - 1])
1755 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]);
1757 if (tb[NDTA_PARMS - 1]) {
1758 struct rtattr *tbp[NDTPA_MAX];
1759 struct neigh_parms *p;
1760 u32 ifindex = 0;
1762 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0)
1763 goto rtattr_failure;
1765 if (tbp[NDTPA_IFINDEX - 1])
1766 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]);
1768 p = lookup_neigh_params(tbl, ifindex);
1769 if (p == NULL) {
1770 err = -ENOENT;
1771 goto rtattr_failure;
1774 if (tbp[NDTPA_QUEUE_LEN - 1])
1775 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]);
1777 if (tbp[NDTPA_PROXY_QLEN - 1])
1778 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]);
1780 if (tbp[NDTPA_APP_PROBES - 1])
1781 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]);
1783 if (tbp[NDTPA_UCAST_PROBES - 1])
1784 p->ucast_probes =
1785 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]);
1787 if (tbp[NDTPA_MCAST_PROBES - 1])
1788 p->mcast_probes =
1789 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]);
1791 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1])
1792 p->base_reachable_time =
1793 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]);
1795 if (tbp[NDTPA_GC_STALETIME - 1])
1796 p->gc_staletime =
1797 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]);
1799 if (tbp[NDTPA_DELAY_PROBE_TIME - 1])
1800 p->delay_probe_time =
1801 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]);
1803 if (tbp[NDTPA_RETRANS_TIME - 1])
1804 p->retrans_time =
1805 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]);
1807 if (tbp[NDTPA_ANYCAST_DELAY - 1])
1808 p->anycast_delay =
1809 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]);
1811 if (tbp[NDTPA_PROXY_DELAY - 1])
1812 p->proxy_delay =
1813 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]);
1815 if (tbp[NDTPA_LOCKTIME - 1])
1816 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]);
1819 err = 0;
1821 rtattr_failure:
1822 write_unlock_bh(&tbl->lock);
1823 errout:
1824 read_unlock(&neigh_tbl_lock);
1825 return err;
1828 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1830 int idx, family;
1831 int s_idx = cb->args[0];
1832 struct neigh_table *tbl;
1834 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1836 read_lock(&neigh_tbl_lock);
1837 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) {
1838 struct neigh_parms *p;
1840 if (idx < s_idx || (family && tbl->family != family))
1841 continue;
1843 if (neightbl_fill_info(tbl, skb, cb) <= 0)
1844 break;
1846 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) {
1847 if (idx < s_idx)
1848 continue;
1850 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0)
1851 goto out;
1855 out:
1856 read_unlock(&neigh_tbl_lock);
1857 cb->args[0] = idx;
1859 return skb->len;
1862 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
1863 u32 pid, u32 seq, int event, unsigned int flags)
1865 unsigned long now = jiffies;
1866 unsigned char *b = skb->tail;
1867 struct nda_cacheinfo ci;
1868 int locked = 0;
1869 u32 probes;
1870 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
1871 sizeof(struct ndmsg), flags);
1872 struct ndmsg *ndm = NLMSG_DATA(nlh);
1874 ndm->ndm_family = n->ops->family;
1875 ndm->ndm_flags = n->flags;
1876 ndm->ndm_type = n->type;
1877 ndm->ndm_ifindex = n->dev->ifindex;
1878 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1879 read_lock_bh(&n->lock);
1880 locked = 1;
1881 ndm->ndm_state = n->nud_state;
1882 if (n->nud_state & NUD_VALID)
1883 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1884 ci.ndm_used = now - n->used;
1885 ci.ndm_confirmed = now - n->confirmed;
1886 ci.ndm_updated = now - n->updated;
1887 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1;
1888 probes = atomic_read(&n->probes);
1889 read_unlock_bh(&n->lock);
1890 locked = 0;
1891 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1892 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1893 nlh->nlmsg_len = skb->tail - b;
1894 return skb->len;
1896 nlmsg_failure:
1897 rtattr_failure:
1898 if (locked)
1899 read_unlock_bh(&n->lock);
1900 skb_trim(skb, b - skb->data);
1901 return -1;
1905 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1906 struct netlink_callback *cb)
1908 struct neighbour *n;
1909 int rc, h, s_h = cb->args[1];
1910 int idx, s_idx = idx = cb->args[2];
1912 for (h = 0; h <= tbl->hash_mask; h++) {
1913 if (h < s_h)
1914 continue;
1915 if (h > s_h)
1916 s_idx = 0;
1917 read_lock_bh(&tbl->lock);
1918 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1919 if (idx < s_idx)
1920 continue;
1921 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1922 cb->nlh->nlmsg_seq,
1923 RTM_NEWNEIGH,
1924 NLM_F_MULTI) <= 0) {
1925 read_unlock_bh(&tbl->lock);
1926 rc = -1;
1927 goto out;
1930 read_unlock_bh(&tbl->lock);
1932 rc = skb->len;
1933 out:
1934 cb->args[1] = h;
1935 cb->args[2] = idx;
1936 return rc;
1939 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1941 struct neigh_table *tbl;
1942 int t, family, s_t;
1944 read_lock(&neigh_tbl_lock);
1945 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1946 s_t = cb->args[0];
1948 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1949 if (t < s_t || (family && tbl->family != family))
1950 continue;
1951 if (t > s_t)
1952 memset(&cb->args[1], 0, sizeof(cb->args) -
1953 sizeof(cb->args[0]));
1954 if (neigh_dump_table(tbl, skb, cb) < 0)
1955 break;
1957 read_unlock(&neigh_tbl_lock);
1959 cb->args[0] = t;
1960 return skb->len;
1963 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1965 int chain;
1967 read_lock_bh(&tbl->lock);
1968 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1969 struct neighbour *n;
1971 for (n = tbl->hash_buckets[chain]; n; n = n->next)
1972 cb(n, cookie);
1974 read_unlock_bh(&tbl->lock);
1976 EXPORT_SYMBOL(neigh_for_each);
1978 /* The tbl->lock must be held as a writer and BH disabled. */
1979 void __neigh_for_each_release(struct neigh_table *tbl,
1980 int (*cb)(struct neighbour *))
1982 int chain;
1984 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1985 struct neighbour *n, **np;
1987 np = &tbl->hash_buckets[chain];
1988 while ((n = *np) != NULL) {
1989 int release;
1991 write_lock(&n->lock);
1992 release = cb(n);
1993 if (release) {
1994 *np = n->next;
1995 n->dead = 1;
1996 } else
1997 np = &n->next;
1998 write_unlock(&n->lock);
1999 if (release)
2000 neigh_release(n);
2004 EXPORT_SYMBOL(__neigh_for_each_release);
2006 #ifdef CONFIG_PROC_FS
2008 static struct neighbour *neigh_get_first(struct seq_file *seq)
2010 struct neigh_seq_state *state = seq->private;
2011 struct neigh_table *tbl = state->tbl;
2012 struct neighbour *n = NULL;
2013 int bucket = state->bucket;
2015 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2016 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2017 n = tbl->hash_buckets[bucket];
2019 while (n) {
2020 if (state->neigh_sub_iter) {
2021 loff_t fakep = 0;
2022 void *v;
2024 v = state->neigh_sub_iter(state, n, &fakep);
2025 if (!v)
2026 goto next;
2028 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2029 break;
2030 if (n->nud_state & ~NUD_NOARP)
2031 break;
2032 next:
2033 n = n->next;
2036 if (n)
2037 break;
2039 state->bucket = bucket;
2041 return n;
2044 static struct neighbour *neigh_get_next(struct seq_file *seq,
2045 struct neighbour *n,
2046 loff_t *pos)
2048 struct neigh_seq_state *state = seq->private;
2049 struct neigh_table *tbl = state->tbl;
2051 if (state->neigh_sub_iter) {
2052 void *v = state->neigh_sub_iter(state, n, pos);
2053 if (v)
2054 return n;
2056 n = n->next;
2058 while (1) {
2059 while (n) {
2060 if (state->neigh_sub_iter) {
2061 void *v = state->neigh_sub_iter(state, n, pos);
2062 if (v)
2063 return n;
2064 goto next;
2066 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2067 break;
2069 if (n->nud_state & ~NUD_NOARP)
2070 break;
2071 next:
2072 n = n->next;
2075 if (n)
2076 break;
2078 if (++state->bucket > tbl->hash_mask)
2079 break;
2081 n = tbl->hash_buckets[state->bucket];
2084 if (n && pos)
2085 --(*pos);
2086 return n;
2089 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2091 struct neighbour *n = neigh_get_first(seq);
2093 if (n) {
2094 while (*pos) {
2095 n = neigh_get_next(seq, n, pos);
2096 if (!n)
2097 break;
2100 return *pos ? NULL : n;
2103 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2105 struct neigh_seq_state *state = seq->private;
2106 struct neigh_table *tbl = state->tbl;
2107 struct pneigh_entry *pn = NULL;
2108 int bucket = state->bucket;
2110 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2111 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2112 pn = tbl->phash_buckets[bucket];
2113 if (pn)
2114 break;
2116 state->bucket = bucket;
2118 return pn;
2121 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2122 struct pneigh_entry *pn,
2123 loff_t *pos)
2125 struct neigh_seq_state *state = seq->private;
2126 struct neigh_table *tbl = state->tbl;
2128 pn = pn->next;
2129 while (!pn) {
2130 if (++state->bucket > PNEIGH_HASHMASK)
2131 break;
2132 pn = tbl->phash_buckets[state->bucket];
2133 if (pn)
2134 break;
2137 if (pn && pos)
2138 --(*pos);
2140 return pn;
2143 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2145 struct pneigh_entry *pn = pneigh_get_first(seq);
2147 if (pn) {
2148 while (*pos) {
2149 pn = pneigh_get_next(seq, pn, pos);
2150 if (!pn)
2151 break;
2154 return *pos ? NULL : pn;
2157 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2159 struct neigh_seq_state *state = seq->private;
2160 void *rc;
2162 rc = neigh_get_idx(seq, pos);
2163 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2164 rc = pneigh_get_idx(seq, pos);
2166 return rc;
2169 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2171 struct neigh_seq_state *state = seq->private;
2172 loff_t pos_minus_one;
2174 state->tbl = tbl;
2175 state->bucket = 0;
2176 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2178 read_lock_bh(&tbl->lock);
2180 pos_minus_one = *pos - 1;
2181 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2183 EXPORT_SYMBOL(neigh_seq_start);
2185 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2187 struct neigh_seq_state *state;
2188 void *rc;
2190 if (v == SEQ_START_TOKEN) {
2191 rc = neigh_get_idx(seq, pos);
2192 goto out;
2195 state = seq->private;
2196 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2197 rc = neigh_get_next(seq, v, NULL);
2198 if (rc)
2199 goto out;
2200 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2201 rc = pneigh_get_first(seq);
2202 } else {
2203 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2204 rc = pneigh_get_next(seq, v, NULL);
2206 out:
2207 ++(*pos);
2208 return rc;
2210 EXPORT_SYMBOL(neigh_seq_next);
2212 void neigh_seq_stop(struct seq_file *seq, void *v)
2214 struct neigh_seq_state *state = seq->private;
2215 struct neigh_table *tbl = state->tbl;
2217 read_unlock_bh(&tbl->lock);
2219 EXPORT_SYMBOL(neigh_seq_stop);
2221 /* statistics via seq_file */
2223 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2225 struct proc_dir_entry *pde = seq->private;
2226 struct neigh_table *tbl = pde->data;
2227 int cpu;
2229 if (*pos == 0)
2230 return SEQ_START_TOKEN;
2232 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2233 if (!cpu_possible(cpu))
2234 continue;
2235 *pos = cpu+1;
2236 return per_cpu_ptr(tbl->stats, cpu);
2238 return NULL;
2241 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2243 struct proc_dir_entry *pde = seq->private;
2244 struct neigh_table *tbl = pde->data;
2245 int cpu;
2247 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2248 if (!cpu_possible(cpu))
2249 continue;
2250 *pos = cpu+1;
2251 return per_cpu_ptr(tbl->stats, cpu);
2253 return NULL;
2256 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2261 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2263 struct proc_dir_entry *pde = seq->private;
2264 struct neigh_table *tbl = pde->data;
2265 struct neigh_statistics *st = v;
2267 if (v == SEQ_START_TOKEN) {
2268 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2269 return 0;
2272 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2273 "%08lx %08lx %08lx %08lx\n",
2274 atomic_read(&tbl->entries),
2276 st->allocs,
2277 st->destroys,
2278 st->hash_grows,
2280 st->lookups,
2281 st->hits,
2283 st->res_failed,
2285 st->rcv_probes_mcast,
2286 st->rcv_probes_ucast,
2288 st->periodic_gc_runs,
2289 st->forced_gc_runs
2292 return 0;
2295 static struct seq_operations neigh_stat_seq_ops = {
2296 .start = neigh_stat_seq_start,
2297 .next = neigh_stat_seq_next,
2298 .stop = neigh_stat_seq_stop,
2299 .show = neigh_stat_seq_show,
2302 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2304 int ret = seq_open(file, &neigh_stat_seq_ops);
2306 if (!ret) {
2307 struct seq_file *sf = file->private_data;
2308 sf->private = PDE(inode);
2310 return ret;
2313 static struct file_operations neigh_stat_seq_fops = {
2314 .owner = THIS_MODULE,
2315 .open = neigh_stat_seq_open,
2316 .read = seq_read,
2317 .llseek = seq_lseek,
2318 .release = seq_release,
2321 #endif /* CONFIG_PROC_FS */
2323 #ifdef CONFIG_ARPD
2324 void neigh_app_ns(struct neighbour *n)
2326 struct nlmsghdr *nlh;
2327 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2328 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2330 if (!skb)
2331 return;
2333 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) {
2334 kfree_skb(skb);
2335 return;
2337 nlh = (struct nlmsghdr *)skb->data;
2338 nlh->nlmsg_flags = NLM_F_REQUEST;
2339 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2340 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2343 static void neigh_app_notify(struct neighbour *n)
2345 struct nlmsghdr *nlh;
2346 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2347 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2349 if (!skb)
2350 return;
2352 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) {
2353 kfree_skb(skb);
2354 return;
2356 nlh = (struct nlmsghdr *)skb->data;
2357 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
2358 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
2361 #endif /* CONFIG_ARPD */
2363 #ifdef CONFIG_SYSCTL
2365 static struct neigh_sysctl_table {
2366 struct ctl_table_header *sysctl_header;
2367 ctl_table neigh_vars[__NET_NEIGH_MAX];
2368 ctl_table neigh_dev[2];
2369 ctl_table neigh_neigh_dir[2];
2370 ctl_table neigh_proto_dir[2];
2371 ctl_table neigh_root_dir[2];
2372 } neigh_sysctl_template = {
2373 .neigh_vars = {
2375 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2376 .procname = "mcast_solicit",
2377 .maxlen = sizeof(int),
2378 .mode = 0644,
2379 .proc_handler = &proc_dointvec,
2382 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2383 .procname = "ucast_solicit",
2384 .maxlen = sizeof(int),
2385 .mode = 0644,
2386 .proc_handler = &proc_dointvec,
2389 .ctl_name = NET_NEIGH_APP_SOLICIT,
2390 .procname = "app_solicit",
2391 .maxlen = sizeof(int),
2392 .mode = 0644,
2393 .proc_handler = &proc_dointvec,
2396 .ctl_name = NET_NEIGH_RETRANS_TIME,
2397 .procname = "retrans_time",
2398 .maxlen = sizeof(int),
2399 .mode = 0644,
2400 .proc_handler = &proc_dointvec_userhz_jiffies,
2403 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2404 .procname = "base_reachable_time",
2405 .maxlen = sizeof(int),
2406 .mode = 0644,
2407 .proc_handler = &proc_dointvec_jiffies,
2408 .strategy = &sysctl_jiffies,
2411 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2412 .procname = "delay_first_probe_time",
2413 .maxlen = sizeof(int),
2414 .mode = 0644,
2415 .proc_handler = &proc_dointvec_jiffies,
2416 .strategy = &sysctl_jiffies,
2419 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2420 .procname = "gc_stale_time",
2421 .maxlen = sizeof(int),
2422 .mode = 0644,
2423 .proc_handler = &proc_dointvec_jiffies,
2424 .strategy = &sysctl_jiffies,
2427 .ctl_name = NET_NEIGH_UNRES_QLEN,
2428 .procname = "unres_qlen",
2429 .maxlen = sizeof(int),
2430 .mode = 0644,
2431 .proc_handler = &proc_dointvec,
2434 .ctl_name = NET_NEIGH_PROXY_QLEN,
2435 .procname = "proxy_qlen",
2436 .maxlen = sizeof(int),
2437 .mode = 0644,
2438 .proc_handler = &proc_dointvec,
2441 .ctl_name = NET_NEIGH_ANYCAST_DELAY,
2442 .procname = "anycast_delay",
2443 .maxlen = sizeof(int),
2444 .mode = 0644,
2445 .proc_handler = &proc_dointvec_userhz_jiffies,
2448 .ctl_name = NET_NEIGH_PROXY_DELAY,
2449 .procname = "proxy_delay",
2450 .maxlen = sizeof(int),
2451 .mode = 0644,
2452 .proc_handler = &proc_dointvec_userhz_jiffies,
2455 .ctl_name = NET_NEIGH_LOCKTIME,
2456 .procname = "locktime",
2457 .maxlen = sizeof(int),
2458 .mode = 0644,
2459 .proc_handler = &proc_dointvec_userhz_jiffies,
2462 .ctl_name = NET_NEIGH_GC_INTERVAL,
2463 .procname = "gc_interval",
2464 .maxlen = sizeof(int),
2465 .mode = 0644,
2466 .proc_handler = &proc_dointvec_jiffies,
2467 .strategy = &sysctl_jiffies,
2470 .ctl_name = NET_NEIGH_GC_THRESH1,
2471 .procname = "gc_thresh1",
2472 .maxlen = sizeof(int),
2473 .mode = 0644,
2474 .proc_handler = &proc_dointvec,
2477 .ctl_name = NET_NEIGH_GC_THRESH2,
2478 .procname = "gc_thresh2",
2479 .maxlen = sizeof(int),
2480 .mode = 0644,
2481 .proc_handler = &proc_dointvec,
2484 .ctl_name = NET_NEIGH_GC_THRESH3,
2485 .procname = "gc_thresh3",
2486 .maxlen = sizeof(int),
2487 .mode = 0644,
2488 .proc_handler = &proc_dointvec,
2491 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2492 .procname = "retrans_time_ms",
2493 .maxlen = sizeof(int),
2494 .mode = 0644,
2495 .proc_handler = &proc_dointvec_ms_jiffies,
2496 .strategy = &sysctl_ms_jiffies,
2499 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2500 .procname = "base_reachable_time_ms",
2501 .maxlen = sizeof(int),
2502 .mode = 0644,
2503 .proc_handler = &proc_dointvec_ms_jiffies,
2504 .strategy = &sysctl_ms_jiffies,
2507 .neigh_dev = {
2509 .ctl_name = NET_PROTO_CONF_DEFAULT,
2510 .procname = "default",
2511 .mode = 0555,
2514 .neigh_neigh_dir = {
2516 .procname = "neigh",
2517 .mode = 0555,
2520 .neigh_proto_dir = {
2522 .mode = 0555,
2525 .neigh_root_dir = {
2527 .ctl_name = CTL_NET,
2528 .procname = "net",
2529 .mode = 0555,
2534 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2535 int p_id, int pdev_id, char *p_name,
2536 proc_handler *handler, ctl_handler *strategy)
2538 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2539 const char *dev_name_source = NULL;
2540 char *dev_name = NULL;
2541 int err = 0;
2543 if (!t)
2544 return -ENOBUFS;
2545 memcpy(t, &neigh_sysctl_template, sizeof(*t));
2546 t->neigh_vars[0].data = &p->mcast_probes;
2547 t->neigh_vars[1].data = &p->ucast_probes;
2548 t->neigh_vars[2].data = &p->app_probes;
2549 t->neigh_vars[3].data = &p->retrans_time;
2550 t->neigh_vars[4].data = &p->base_reachable_time;
2551 t->neigh_vars[5].data = &p->delay_probe_time;
2552 t->neigh_vars[6].data = &p->gc_staletime;
2553 t->neigh_vars[7].data = &p->queue_len;
2554 t->neigh_vars[8].data = &p->proxy_qlen;
2555 t->neigh_vars[9].data = &p->anycast_delay;
2556 t->neigh_vars[10].data = &p->proxy_delay;
2557 t->neigh_vars[11].data = &p->locktime;
2559 if (dev) {
2560 dev_name_source = dev->name;
2561 t->neigh_dev[0].ctl_name = dev->ifindex;
2562 t->neigh_vars[12].procname = NULL;
2563 t->neigh_vars[13].procname = NULL;
2564 t->neigh_vars[14].procname = NULL;
2565 t->neigh_vars[15].procname = NULL;
2566 } else {
2567 dev_name_source = t->neigh_dev[0].procname;
2568 t->neigh_vars[12].data = (int *)(p + 1);
2569 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2570 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2571 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2574 t->neigh_vars[16].data = &p->retrans_time;
2575 t->neigh_vars[17].data = &p->base_reachable_time;
2577 if (handler || strategy) {
2578 /* RetransTime */
2579 t->neigh_vars[3].proc_handler = handler;
2580 t->neigh_vars[3].strategy = strategy;
2581 t->neigh_vars[3].extra1 = dev;
2582 /* ReachableTime */
2583 t->neigh_vars[4].proc_handler = handler;
2584 t->neigh_vars[4].strategy = strategy;
2585 t->neigh_vars[4].extra1 = dev;
2586 /* RetransTime (in milliseconds)*/
2587 t->neigh_vars[16].proc_handler = handler;
2588 t->neigh_vars[16].strategy = strategy;
2589 t->neigh_vars[16].extra1 = dev;
2590 /* ReachableTime (in milliseconds) */
2591 t->neigh_vars[17].proc_handler = handler;
2592 t->neigh_vars[17].strategy = strategy;
2593 t->neigh_vars[17].extra1 = dev;
2596 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2597 if (!dev_name) {
2598 err = -ENOBUFS;
2599 goto free;
2602 t->neigh_dev[0].procname = dev_name;
2604 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2606 t->neigh_proto_dir[0].procname = p_name;
2607 t->neigh_proto_dir[0].ctl_name = p_id;
2609 t->neigh_dev[0].child = t->neigh_vars;
2610 t->neigh_neigh_dir[0].child = t->neigh_dev;
2611 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2612 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2614 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2615 if (!t->sysctl_header) {
2616 err = -ENOBUFS;
2617 goto free_procname;
2619 p->sysctl_table = t;
2620 return 0;
2622 /* error path */
2623 free_procname:
2624 kfree(dev_name);
2625 free:
2626 kfree(t);
2628 return err;
2631 void neigh_sysctl_unregister(struct neigh_parms *p)
2633 if (p->sysctl_table) {
2634 struct neigh_sysctl_table *t = p->sysctl_table;
2635 p->sysctl_table = NULL;
2636 unregister_sysctl_table(t->sysctl_header);
2637 kfree(t->neigh_dev[0].procname);
2638 kfree(t);
2642 #endif /* CONFIG_SYSCTL */
2644 EXPORT_SYMBOL(__neigh_event_send);
2645 EXPORT_SYMBOL(neigh_add);
2646 EXPORT_SYMBOL(neigh_changeaddr);
2647 EXPORT_SYMBOL(neigh_compat_output);
2648 EXPORT_SYMBOL(neigh_connected_output);
2649 EXPORT_SYMBOL(neigh_create);
2650 EXPORT_SYMBOL(neigh_delete);
2651 EXPORT_SYMBOL(neigh_destroy);
2652 EXPORT_SYMBOL(neigh_dump_info);
2653 EXPORT_SYMBOL(neigh_event_ns);
2654 EXPORT_SYMBOL(neigh_ifdown);
2655 EXPORT_SYMBOL(neigh_lookup);
2656 EXPORT_SYMBOL(neigh_lookup_nodev);
2657 EXPORT_SYMBOL(neigh_parms_alloc);
2658 EXPORT_SYMBOL(neigh_parms_release);
2659 EXPORT_SYMBOL(neigh_rand_reach_time);
2660 EXPORT_SYMBOL(neigh_resolve_output);
2661 EXPORT_SYMBOL(neigh_table_clear);
2662 EXPORT_SYMBOL(neigh_table_init);
2663 EXPORT_SYMBOL(neigh_update);
2664 EXPORT_SYMBOL(neigh_update_hhs);
2665 EXPORT_SYMBOL(pneigh_enqueue);
2666 EXPORT_SYMBOL(pneigh_lookup);
2667 EXPORT_SYMBOL(neightbl_dump_info);
2668 EXPORT_SYMBOL(neightbl_set);
2670 #ifdef CONFIG_ARPD
2671 EXPORT_SYMBOL(neigh_app_ns);
2672 #endif
2673 #ifdef CONFIG_SYSCTL
2674 EXPORT_SYMBOL(neigh_sysctl_register);
2675 EXPORT_SYMBOL(neigh_sysctl_unregister);
2676 #endif