4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
53 * Protected counters by write_lock_irq(&tasklist_lock)
55 unsigned long total_forks
; /* Handle normal Linux uptimes. */
56 int nr_threads
; /* The idle threads do not count.. */
58 int max_threads
; /* tunable limit on nr_threads */
60 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
62 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
64 EXPORT_SYMBOL(tasklist_lock
);
66 int nr_processes(void)
71 for_each_online_cpu(cpu
)
72 total
+= per_cpu(process_counts
, cpu
);
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t
*task_struct_cachep
;
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t
*signal_cachep
;
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t
*sighand_cachep
;
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t
*files_cachep
;
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t
*fs_cachep
;
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t
*vm_area_cachep
;
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t
*mm_cachep
;
101 void free_task(struct task_struct
*tsk
)
103 free_thread_info(tsk
->thread_info
);
104 free_task_struct(tsk
);
106 EXPORT_SYMBOL(free_task
);
108 void __put_task_struct(struct task_struct
*tsk
)
110 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
111 WARN_ON(atomic_read(&tsk
->usage
));
112 WARN_ON(tsk
== current
);
114 if (unlikely(tsk
->audit_context
))
116 security_task_free(tsk
);
118 put_group_info(tsk
->group_info
);
120 if (!profile_handoff_task(tsk
))
124 void __init
fork_init(unsigned long mempages
)
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
130 /* create a slab on which task_structs can be allocated */
132 kmem_cache_create("task_struct", sizeof(struct task_struct
),
133 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
141 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
144 * we need to allow at least 20 threads to boot a system
149 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
150 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
151 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
152 init_task
.signal
->rlim
[RLIMIT_NPROC
];
155 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
157 struct task_struct
*tsk
;
158 struct thread_info
*ti
;
160 prepare_to_copy(orig
);
162 tsk
= alloc_task_struct();
166 ti
= alloc_thread_info(tsk
);
168 free_task_struct(tsk
);
172 *ti
= *orig
->thread_info
;
174 tsk
->thread_info
= ti
;
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk
->usage
,2);
183 static inline int dup_mmap(struct mm_struct
* mm
, struct mm_struct
* oldmm
)
185 struct vm_area_struct
* mpnt
, *tmp
, **pprev
;
186 struct rb_node
**rb_link
, *rb_parent
;
188 unsigned long charge
;
189 struct mempolicy
*pol
;
191 down_write(&oldmm
->mmap_sem
);
192 flush_cache_mm(current
->mm
);
195 mm
->mmap_cache
= NULL
;
196 mm
->free_area_cache
= oldmm
->mmap_base
;
197 mm
->cached_hole_size
= ~0UL;
199 set_mm_counter(mm
, rss
, 0);
200 set_mm_counter(mm
, anon_rss
, 0);
201 cpus_clear(mm
->cpu_vm_mask
);
203 rb_link
= &mm
->mm_rb
.rb_node
;
207 for (mpnt
= current
->mm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
210 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
211 long pages
= vma_pages(mpnt
);
212 mm
->total_vm
-= pages
;
213 __vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
218 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
219 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
220 if (security_vm_enough_memory(len
))
224 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
228 pol
= mpol_copy(vma_policy(mpnt
));
229 retval
= PTR_ERR(pol
);
231 goto fail_nomem_policy
;
232 vma_set_policy(tmp
, pol
);
233 tmp
->vm_flags
&= ~VM_LOCKED
;
239 struct inode
*inode
= file
->f_dentry
->d_inode
;
241 if (tmp
->vm_flags
& VM_DENYWRITE
)
242 atomic_dec(&inode
->i_writecount
);
244 /* insert tmp into the share list, just after mpnt */
245 spin_lock(&file
->f_mapping
->i_mmap_lock
);
246 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
247 flush_dcache_mmap_lock(file
->f_mapping
);
248 vma_prio_tree_add(tmp
, mpnt
);
249 flush_dcache_mmap_unlock(file
->f_mapping
);
250 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
254 * Link in the new vma and copy the page table entries:
255 * link in first so that swapoff can see swap entries.
256 * Note that, exceptionally, here the vma is inserted
257 * without holding mm->mmap_sem.
259 spin_lock(&mm
->page_table_lock
);
261 pprev
= &tmp
->vm_next
;
263 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
264 rb_link
= &tmp
->vm_rb
.rb_right
;
265 rb_parent
= &tmp
->vm_rb
;
268 retval
= copy_page_range(mm
, current
->mm
, tmp
);
269 spin_unlock(&mm
->page_table_lock
);
271 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
272 tmp
->vm_ops
->open(tmp
);
280 flush_tlb_mm(current
->mm
);
281 up_write(&oldmm
->mmap_sem
);
284 kmem_cache_free(vm_area_cachep
, tmp
);
287 vm_unacct_memory(charge
);
291 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
293 mm
->pgd
= pgd_alloc(mm
);
294 if (unlikely(!mm
->pgd
))
299 static inline void mm_free_pgd(struct mm_struct
* mm
)
304 #define dup_mmap(mm, oldmm) (0)
305 #define mm_alloc_pgd(mm) (0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
309 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
311 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
314 #include <linux/init_task.h>
316 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
318 atomic_set(&mm
->mm_users
, 1);
319 atomic_set(&mm
->mm_count
, 1);
320 init_rwsem(&mm
->mmap_sem
);
321 INIT_LIST_HEAD(&mm
->mmlist
);
322 mm
->core_waiters
= 0;
324 spin_lock_init(&mm
->page_table_lock
);
325 rwlock_init(&mm
->ioctx_list_lock
);
326 mm
->ioctx_list
= NULL
;
327 mm
->default_kioctx
= (struct kioctx
)INIT_KIOCTX(mm
->default_kioctx
, *mm
);
328 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
329 mm
->cached_hole_size
= ~0UL;
331 if (likely(!mm_alloc_pgd(mm
))) {
340 * Allocate and initialize an mm_struct.
342 struct mm_struct
* mm_alloc(void)
344 struct mm_struct
* mm
;
348 memset(mm
, 0, sizeof(*mm
));
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
359 void fastcall
__mmdrop(struct mm_struct
*mm
)
361 BUG_ON(mm
== &init_mm
);
368 * Decrement the use count and release all resources for an mm.
370 void mmput(struct mm_struct
*mm
)
372 if (atomic_dec_and_test(&mm
->mm_users
)) {
375 if (!list_empty(&mm
->mmlist
)) {
376 spin_lock(&mmlist_lock
);
377 list_del(&mm
->mmlist
);
378 spin_unlock(&mmlist_lock
);
384 EXPORT_SYMBOL_GPL(mmput
);
387 * get_task_mm - acquire a reference to the task's mm
389 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
390 * this kernel workthread has transiently adopted a user mm with use_mm,
391 * to do its AIO) is not set and if so returns a reference to it, after
392 * bumping up the use count. User must release the mm via mmput()
393 * after use. Typically used by /proc and ptrace.
395 struct mm_struct
*get_task_mm(struct task_struct
*task
)
397 struct mm_struct
*mm
;
402 if (task
->flags
& PF_BORROWED_MM
)
405 atomic_inc(&mm
->mm_users
);
410 EXPORT_SYMBOL_GPL(get_task_mm
);
412 /* Please note the differences between mmput and mm_release.
413 * mmput is called whenever we stop holding onto a mm_struct,
414 * error success whatever.
416 * mm_release is called after a mm_struct has been removed
417 * from the current process.
419 * This difference is important for error handling, when we
420 * only half set up a mm_struct for a new process and need to restore
421 * the old one. Because we mmput the new mm_struct before
422 * restoring the old one. . .
423 * Eric Biederman 10 January 1998
425 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
427 struct completion
*vfork_done
= tsk
->vfork_done
;
429 /* Get rid of any cached register state */
430 deactivate_mm(tsk
, mm
);
432 /* notify parent sleeping on vfork() */
434 tsk
->vfork_done
= NULL
;
435 complete(vfork_done
);
437 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
438 u32 __user
* tidptr
= tsk
->clear_child_tid
;
439 tsk
->clear_child_tid
= NULL
;
442 * We don't check the error code - if userspace has
443 * not set up a proper pointer then tough luck.
446 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
450 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
452 struct mm_struct
* mm
, *oldmm
;
455 tsk
->min_flt
= tsk
->maj_flt
= 0;
456 tsk
->nvcsw
= tsk
->nivcsw
= 0;
459 tsk
->active_mm
= NULL
;
462 * Are we cloning a kernel thread?
464 * We need to steal a active VM for that..
470 if (clone_flags
& CLONE_VM
) {
471 atomic_inc(&oldmm
->mm_users
);
474 * There are cases where the PTL is held to ensure no
475 * new threads start up in user mode using an mm, which
476 * allows optimizing out ipis; the tlb_gather_mmu code
479 spin_unlock_wait(&oldmm
->page_table_lock
);
488 /* Copy the current MM stuff.. */
489 memcpy(mm
, oldmm
, sizeof(*mm
));
493 if (init_new_context(tsk
,mm
))
496 retval
= dup_mmap(mm
, oldmm
);
500 mm
->hiwater_rss
= get_mm_counter(mm
,rss
);
501 mm
->hiwater_vm
= mm
->total_vm
;
515 * If init_new_context() failed, we cannot use mmput() to free the mm
516 * because it calls destroy_context()
523 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
525 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
526 /* We don't need to lock fs - think why ;-) */
528 atomic_set(&fs
->count
, 1);
529 rwlock_init(&fs
->lock
);
530 fs
->umask
= old
->umask
;
531 read_lock(&old
->lock
);
532 fs
->rootmnt
= mntget(old
->rootmnt
);
533 fs
->root
= dget(old
->root
);
534 fs
->pwdmnt
= mntget(old
->pwdmnt
);
535 fs
->pwd
= dget(old
->pwd
);
537 fs
->altrootmnt
= mntget(old
->altrootmnt
);
538 fs
->altroot
= dget(old
->altroot
);
540 fs
->altrootmnt
= NULL
;
543 read_unlock(&old
->lock
);
548 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
550 return __copy_fs_struct(old
);
553 EXPORT_SYMBOL_GPL(copy_fs_struct
);
555 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
557 if (clone_flags
& CLONE_FS
) {
558 atomic_inc(¤t
->fs
->count
);
561 tsk
->fs
= __copy_fs_struct(current
->fs
);
567 static int count_open_files(struct files_struct
*files
, int size
)
571 /* Find the last open fd */
572 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
573 if (files
->open_fds
->fds_bits
[--i
])
576 i
= (i
+1) * 8 * sizeof(long);
580 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
582 struct files_struct
*oldf
, *newf
;
583 struct file
**old_fds
, **new_fds
;
584 int open_files
, size
, i
, error
= 0, expand
;
587 * A background process may not have any files ...
589 oldf
= current
->files
;
593 if (clone_flags
& CLONE_FILES
) {
594 atomic_inc(&oldf
->count
);
599 * Note: we may be using current for both targets (See exec.c)
600 * This works because we cache current->files (old) as oldf. Don't
605 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
609 atomic_set(&newf
->count
, 1);
611 spin_lock_init(&newf
->file_lock
);
613 newf
->max_fds
= NR_OPEN_DEFAULT
;
614 newf
->max_fdset
= __FD_SETSIZE
;
615 newf
->close_on_exec
= &newf
->close_on_exec_init
;
616 newf
->open_fds
= &newf
->open_fds_init
;
617 newf
->fd
= &newf
->fd_array
[0];
619 spin_lock(&oldf
->file_lock
);
621 open_files
= count_open_files(oldf
, oldf
->max_fdset
);
625 * Check whether we need to allocate a larger fd array or fd set.
626 * Note: we're not a clone task, so the open count won't change.
628 if (open_files
> newf
->max_fdset
) {
632 if (open_files
> newf
->max_fds
) {
637 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
639 spin_unlock(&oldf
->file_lock
);
640 spin_lock(&newf
->file_lock
);
641 error
= expand_files(newf
, open_files
-1);
642 spin_unlock(&newf
->file_lock
);
645 spin_lock(&oldf
->file_lock
);
651 memcpy(newf
->open_fds
->fds_bits
, oldf
->open_fds
->fds_bits
, open_files
/8);
652 memcpy(newf
->close_on_exec
->fds_bits
, oldf
->close_on_exec
->fds_bits
, open_files
/8);
654 for (i
= open_files
; i
!= 0; i
--) {
655 struct file
*f
= *old_fds
++;
660 * The fd may be claimed in the fd bitmap but not yet
661 * instantiated in the files array if a sibling thread
662 * is partway through open(). So make sure that this
663 * fd is available to the new process.
665 FD_CLR(open_files
- i
, newf
->open_fds
);
669 spin_unlock(&oldf
->file_lock
);
671 /* compute the remainder to be cleared */
672 size
= (newf
->max_fds
- open_files
) * sizeof(struct file
*);
674 /* This is long word aligned thus could use a optimized version */
675 memset(new_fds
, 0, size
);
677 if (newf
->max_fdset
> open_files
) {
678 int left
= (newf
->max_fdset
-open_files
)/8;
679 int start
= open_files
/ (8 * sizeof(unsigned long));
681 memset(&newf
->open_fds
->fds_bits
[start
], 0, left
);
682 memset(&newf
->close_on_exec
->fds_bits
[start
], 0, left
);
691 free_fdset (newf
->close_on_exec
, newf
->max_fdset
);
692 free_fdset (newf
->open_fds
, newf
->max_fdset
);
693 free_fd_array(newf
->fd
, newf
->max_fds
);
694 kmem_cache_free(files_cachep
, newf
);
699 * Helper to unshare the files of the current task.
700 * We don't want to expose copy_files internals to
701 * the exec layer of the kernel.
704 int unshare_files(void)
706 struct files_struct
*files
= current
->files
;
712 /* This can race but the race causes us to copy when we don't
713 need to and drop the copy */
714 if(atomic_read(&files
->count
) == 1)
716 atomic_inc(&files
->count
);
719 rc
= copy_files(0, current
);
721 current
->files
= files
;
725 EXPORT_SYMBOL(unshare_files
);
727 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
729 struct sighand_struct
*sig
;
731 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
732 atomic_inc(¤t
->sighand
->count
);
735 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
739 spin_lock_init(&sig
->siglock
);
740 atomic_set(&sig
->count
, 1);
741 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
745 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
747 struct signal_struct
*sig
;
750 if (clone_flags
& CLONE_THREAD
) {
751 atomic_inc(¤t
->signal
->count
);
752 atomic_inc(¤t
->signal
->live
);
755 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
760 ret
= copy_thread_group_keys(tsk
);
762 kmem_cache_free(signal_cachep
, sig
);
766 atomic_set(&sig
->count
, 1);
767 atomic_set(&sig
->live
, 1);
768 init_waitqueue_head(&sig
->wait_chldexit
);
770 sig
->group_exit_code
= 0;
771 sig
->group_exit_task
= NULL
;
772 sig
->group_stop_count
= 0;
773 sig
->curr_target
= NULL
;
774 init_sigpending(&sig
->shared_pending
);
775 INIT_LIST_HEAD(&sig
->posix_timers
);
777 sig
->it_real_value
= sig
->it_real_incr
= 0;
778 sig
->real_timer
.function
= it_real_fn
;
779 sig
->real_timer
.data
= (unsigned long) tsk
;
780 init_timer(&sig
->real_timer
);
782 sig
->it_virt_expires
= cputime_zero
;
783 sig
->it_virt_incr
= cputime_zero
;
784 sig
->it_prof_expires
= cputime_zero
;
785 sig
->it_prof_incr
= cputime_zero
;
787 sig
->tty
= current
->signal
->tty
;
788 sig
->pgrp
= process_group(current
);
789 sig
->session
= current
->signal
->session
;
790 sig
->leader
= 0; /* session leadership doesn't inherit */
791 sig
->tty_old_pgrp
= 0;
793 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
794 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
795 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
797 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
798 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
799 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
801 task_lock(current
->group_leader
);
802 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
803 task_unlock(current
->group_leader
);
805 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
807 * New sole thread in the process gets an expiry time
808 * of the whole CPU time limit.
810 tsk
->it_prof_expires
=
811 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
817 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
819 unsigned long new_flags
= p
->flags
;
821 new_flags
&= ~PF_SUPERPRIV
;
822 new_flags
|= PF_FORKNOEXEC
;
823 if (!(clone_flags
& CLONE_PTRACE
))
825 p
->flags
= new_flags
;
828 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
830 current
->clear_child_tid
= tidptr
;
836 * This creates a new process as a copy of the old one,
837 * but does not actually start it yet.
839 * It copies the registers, and all the appropriate
840 * parts of the process environment (as per the clone
841 * flags). The actual kick-off is left to the caller.
843 static task_t
*copy_process(unsigned long clone_flags
,
844 unsigned long stack_start
,
845 struct pt_regs
*regs
,
846 unsigned long stack_size
,
847 int __user
*parent_tidptr
,
848 int __user
*child_tidptr
,
852 struct task_struct
*p
= NULL
;
854 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
855 return ERR_PTR(-EINVAL
);
858 * Thread groups must share signals as well, and detached threads
859 * can only be started up within the thread group.
861 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
862 return ERR_PTR(-EINVAL
);
865 * Shared signal handlers imply shared VM. By way of the above,
866 * thread groups also imply shared VM. Blocking this case allows
867 * for various simplifications in other code.
869 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
870 return ERR_PTR(-EINVAL
);
872 retval
= security_task_create(clone_flags
);
877 p
= dup_task_struct(current
);
882 if (atomic_read(&p
->user
->processes
) >=
883 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
884 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
885 p
->user
!= &root_user
)
889 atomic_inc(&p
->user
->__count
);
890 atomic_inc(&p
->user
->processes
);
891 get_group_info(p
->group_info
);
894 * If multiple threads are within copy_process(), then this check
895 * triggers too late. This doesn't hurt, the check is only there
896 * to stop root fork bombs.
898 if (nr_threads
>= max_threads
)
899 goto bad_fork_cleanup_count
;
901 if (!try_module_get(p
->thread_info
->exec_domain
->module
))
902 goto bad_fork_cleanup_count
;
904 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
905 goto bad_fork_cleanup_put_domain
;
908 copy_flags(clone_flags
, p
);
911 if (clone_flags
& CLONE_PARENT_SETTID
)
912 if (put_user(p
->pid
, parent_tidptr
))
913 goto bad_fork_cleanup
;
915 p
->proc_dentry
= NULL
;
917 INIT_LIST_HEAD(&p
->children
);
918 INIT_LIST_HEAD(&p
->sibling
);
919 p
->vfork_done
= NULL
;
920 spin_lock_init(&p
->alloc_lock
);
921 spin_lock_init(&p
->proc_lock
);
923 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
924 init_sigpending(&p
->pending
);
926 p
->utime
= cputime_zero
;
927 p
->stime
= cputime_zero
;
929 p
->rchar
= 0; /* I/O counter: bytes read */
930 p
->wchar
= 0; /* I/O counter: bytes written */
931 p
->syscr
= 0; /* I/O counter: read syscalls */
932 p
->syscw
= 0; /* I/O counter: write syscalls */
933 acct_clear_integrals(p
);
935 p
->it_virt_expires
= cputime_zero
;
936 p
->it_prof_expires
= cputime_zero
;
937 p
->it_sched_expires
= 0;
938 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
939 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
940 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
942 p
->lock_depth
= -1; /* -1 = no lock */
943 do_posix_clock_monotonic_gettime(&p
->start_time
);
945 p
->io_context
= NULL
;
947 p
->audit_context
= NULL
;
949 p
->mempolicy
= mpol_copy(p
->mempolicy
);
950 if (IS_ERR(p
->mempolicy
)) {
951 retval
= PTR_ERR(p
->mempolicy
);
953 goto bad_fork_cleanup
;
958 if (clone_flags
& CLONE_THREAD
)
959 p
->tgid
= current
->tgid
;
961 if ((retval
= security_task_alloc(p
)))
962 goto bad_fork_cleanup_policy
;
963 if ((retval
= audit_alloc(p
)))
964 goto bad_fork_cleanup_security
;
965 /* copy all the process information */
966 if ((retval
= copy_semundo(clone_flags
, p
)))
967 goto bad_fork_cleanup_audit
;
968 if ((retval
= copy_files(clone_flags
, p
)))
969 goto bad_fork_cleanup_semundo
;
970 if ((retval
= copy_fs(clone_flags
, p
)))
971 goto bad_fork_cleanup_files
;
972 if ((retval
= copy_sighand(clone_flags
, p
)))
973 goto bad_fork_cleanup_fs
;
974 if ((retval
= copy_signal(clone_flags
, p
)))
975 goto bad_fork_cleanup_sighand
;
976 if ((retval
= copy_mm(clone_flags
, p
)))
977 goto bad_fork_cleanup_signal
;
978 if ((retval
= copy_keys(clone_flags
, p
)))
979 goto bad_fork_cleanup_mm
;
980 if ((retval
= copy_namespace(clone_flags
, p
)))
981 goto bad_fork_cleanup_keys
;
982 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
984 goto bad_fork_cleanup_namespace
;
986 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
988 * Clear TID on mm_release()?
990 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
993 * Syscall tracing should be turned off in the child regardless
996 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
998 /* Our parent execution domain becomes current domain
999 These must match for thread signalling to apply */
1001 p
->parent_exec_id
= p
->self_exec_id
;
1003 /* ok, now we should be set up.. */
1004 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1005 p
->pdeath_signal
= 0;
1009 * Ok, make it visible to the rest of the system.
1010 * We dont wake it up yet.
1012 p
->group_leader
= p
;
1013 INIT_LIST_HEAD(&p
->ptrace_children
);
1014 INIT_LIST_HEAD(&p
->ptrace_list
);
1016 /* Perform scheduler related setup. Assign this task to a CPU. */
1017 sched_fork(p
, clone_flags
);
1019 /* Need tasklist lock for parent etc handling! */
1020 write_lock_irq(&tasklist_lock
);
1023 * The task hasn't been attached yet, so its cpus_allowed mask will
1024 * not be changed, nor will its assigned CPU.
1026 * The cpus_allowed mask of the parent may have changed after it was
1027 * copied first time - so re-copy it here, then check the child's CPU
1028 * to ensure it is on a valid CPU (and if not, just force it back to
1029 * parent's CPU). This avoids alot of nasty races.
1031 p
->cpus_allowed
= current
->cpus_allowed
;
1032 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
)))
1033 set_task_cpu(p
, smp_processor_id());
1036 * Check for pending SIGKILL! The new thread should not be allowed
1037 * to slip out of an OOM kill. (or normal SIGKILL.)
1039 if (sigismember(¤t
->pending
.signal
, SIGKILL
)) {
1040 write_unlock_irq(&tasklist_lock
);
1042 goto bad_fork_cleanup_namespace
;
1045 /* CLONE_PARENT re-uses the old parent */
1046 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1047 p
->real_parent
= current
->real_parent
;
1049 p
->real_parent
= current
;
1050 p
->parent
= p
->real_parent
;
1052 if (clone_flags
& CLONE_THREAD
) {
1053 spin_lock(¤t
->sighand
->siglock
);
1055 * Important: if an exit-all has been started then
1056 * do not create this new thread - the whole thread
1057 * group is supposed to exit anyway.
1059 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
) {
1060 spin_unlock(¤t
->sighand
->siglock
);
1061 write_unlock_irq(&tasklist_lock
);
1063 goto bad_fork_cleanup_namespace
;
1065 p
->group_leader
= current
->group_leader
;
1067 if (current
->signal
->group_stop_count
> 0) {
1069 * There is an all-stop in progress for the group.
1070 * We ourselves will stop as soon as we check signals.
1071 * Make the new thread part of that group stop too.
1073 current
->signal
->group_stop_count
++;
1074 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1077 if (!cputime_eq(current
->signal
->it_virt_expires
,
1079 !cputime_eq(current
->signal
->it_prof_expires
,
1081 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1082 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1083 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1084 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1086 * Have child wake up on its first tick to check
1087 * for process CPU timers.
1089 p
->it_prof_expires
= jiffies_to_cputime(1);
1092 spin_unlock(¤t
->sighand
->siglock
);
1098 p
->ioprio
= current
->ioprio
;
1101 if (unlikely(p
->ptrace
& PT_PTRACED
))
1102 __ptrace_link(p
, current
->parent
);
1106 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1107 attach_pid(p
, PIDTYPE_TGID
, p
->tgid
);
1108 if (thread_group_leader(p
)) {
1109 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1110 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1112 __get_cpu_var(process_counts
)++;
1117 write_unlock_irq(&tasklist_lock
);
1122 return ERR_PTR(retval
);
1125 bad_fork_cleanup_namespace
:
1127 bad_fork_cleanup_keys
:
1129 bad_fork_cleanup_mm
:
1132 bad_fork_cleanup_signal
:
1134 bad_fork_cleanup_sighand
:
1136 bad_fork_cleanup_fs
:
1137 exit_fs(p
); /* blocking */
1138 bad_fork_cleanup_files
:
1139 exit_files(p
); /* blocking */
1140 bad_fork_cleanup_semundo
:
1142 bad_fork_cleanup_audit
:
1144 bad_fork_cleanup_security
:
1145 security_task_free(p
);
1146 bad_fork_cleanup_policy
:
1148 mpol_free(p
->mempolicy
);
1152 module_put(p
->binfmt
->module
);
1153 bad_fork_cleanup_put_domain
:
1154 module_put(p
->thread_info
->exec_domain
->module
);
1155 bad_fork_cleanup_count
:
1156 put_group_info(p
->group_info
);
1157 atomic_dec(&p
->user
->processes
);
1164 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1166 memset(regs
, 0, sizeof(struct pt_regs
));
1170 task_t
* __devinit
fork_idle(int cpu
)
1173 struct pt_regs regs
;
1175 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1177 return ERR_PTR(-ENOMEM
);
1178 init_idle(task
, cpu
);
1179 unhash_process(task
);
1183 static inline int fork_traceflag (unsigned clone_flags
)
1185 if (clone_flags
& CLONE_UNTRACED
)
1187 else if (clone_flags
& CLONE_VFORK
) {
1188 if (current
->ptrace
& PT_TRACE_VFORK
)
1189 return PTRACE_EVENT_VFORK
;
1190 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1191 if (current
->ptrace
& PT_TRACE_CLONE
)
1192 return PTRACE_EVENT_CLONE
;
1193 } else if (current
->ptrace
& PT_TRACE_FORK
)
1194 return PTRACE_EVENT_FORK
;
1200 * Ok, this is the main fork-routine.
1202 * It copies the process, and if successful kick-starts
1203 * it and waits for it to finish using the VM if required.
1205 long do_fork(unsigned long clone_flags
,
1206 unsigned long stack_start
,
1207 struct pt_regs
*regs
,
1208 unsigned long stack_size
,
1209 int __user
*parent_tidptr
,
1210 int __user
*child_tidptr
)
1212 struct task_struct
*p
;
1214 long pid
= alloc_pidmap();
1218 if (unlikely(current
->ptrace
)) {
1219 trace
= fork_traceflag (clone_flags
);
1221 clone_flags
|= CLONE_PTRACE
;
1224 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, pid
);
1226 * Do this prior waking up the new thread - the thread pointer
1227 * might get invalid after that point, if the thread exits quickly.
1230 struct completion vfork
;
1232 if (clone_flags
& CLONE_VFORK
) {
1233 p
->vfork_done
= &vfork
;
1234 init_completion(&vfork
);
1237 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1239 * We'll start up with an immediate SIGSTOP.
1241 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1242 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1245 if (!(clone_flags
& CLONE_STOPPED
))
1246 wake_up_new_task(p
, clone_flags
);
1248 p
->state
= TASK_STOPPED
;
1250 if (unlikely (trace
)) {
1251 current
->ptrace_message
= pid
;
1252 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1255 if (clone_flags
& CLONE_VFORK
) {
1256 wait_for_completion(&vfork
);
1257 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
))
1258 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1267 void __init
proc_caches_init(void)
1269 sighand_cachep
= kmem_cache_create("sighand_cache",
1270 sizeof(struct sighand_struct
), 0,
1271 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1272 signal_cachep
= kmem_cache_create("signal_cache",
1273 sizeof(struct signal_struct
), 0,
1274 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1275 files_cachep
= kmem_cache_create("files_cache",
1276 sizeof(struct files_struct
), 0,
1277 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1278 fs_cachep
= kmem_cache_create("fs_cache",
1279 sizeof(struct fs_struct
), 0,
1280 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1281 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1282 sizeof(struct vm_area_struct
), 0,
1283 SLAB_PANIC
, NULL
, NULL
);
1284 mm_cachep
= kmem_cache_create("mm_struct",
1285 sizeof(struct mm_struct
), 0,
1286 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);