4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/spinlock.h>
18 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/backing-dev.h>
24 #include <linux/buffer_head.h>
26 extern struct super_block
*blockdev_superblock
;
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
35 * Put the inode on the super block's dirty list.
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
42 * In short, make sure you hash any inodes _before_ you start marking
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
55 void __mark_inode_dirty(struct inode
*inode
, int flags
)
57 struct super_block
*sb
= inode
->i_sb
;
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
63 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
64 if (sb
->s_op
->dirty_inode
)
65 sb
->s_op
->dirty_inode(inode
);
69 * make sure that changes are seen by all cpus before we test i_state
74 /* avoid the locking if we can */
75 if ((inode
->i_state
& flags
) == flags
)
78 if (unlikely(block_dump
)) {
79 struct dentry
*dentry
= NULL
;
80 const char *name
= "?";
82 if (!list_empty(&inode
->i_dentry
)) {
83 dentry
= list_entry(inode
->i_dentry
.next
,
84 struct dentry
, d_alias
);
85 if (dentry
&& dentry
->d_name
.name
)
86 name
= (const char *) dentry
->d_name
.name
;
89 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev"))
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
92 current
->comm
, current
->pid
, inode
->i_ino
,
93 name
, inode
->i_sb
->s_id
);
96 spin_lock(&inode_lock
);
97 if ((inode
->i_state
& flags
) != flags
) {
98 const int was_dirty
= inode
->i_state
& I_DIRTY
;
100 inode
->i_state
|= flags
;
103 * If the inode is locked, just update its dirty state.
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
107 if (inode
->i_state
& I_LOCK
)
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
114 if (!S_ISBLK(inode
->i_mode
)) {
115 if (hlist_unhashed(&inode
->i_hash
))
118 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
122 * If the inode was already on s_dirty or s_io, don't
123 * reposition it (that would break s_dirty time-ordering).
126 inode
->dirtied_when
= jiffies
;
127 list_move(&inode
->i_list
, &sb
->s_dirty
);
131 spin_unlock(&inode_lock
);
134 EXPORT_SYMBOL(__mark_inode_dirty
);
136 static int write_inode(struct inode
*inode
, int sync
)
138 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
139 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
144 * Write a single inode's dirty pages and inode data out to disk.
145 * If `wait' is set, wait on the writeout.
147 * The whole writeout design is quite complex and fragile. We want to avoid
148 * starvation of particular inodes when others are being redirtied, prevent
151 * Called under inode_lock.
154 __sync_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
157 struct address_space
*mapping
= inode
->i_mapping
;
158 struct super_block
*sb
= inode
->i_sb
;
159 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
162 BUG_ON(inode
->i_state
& I_LOCK
);
164 /* Set I_LOCK, reset I_DIRTY */
165 dirty
= inode
->i_state
& I_DIRTY
;
166 inode
->i_state
|= I_LOCK
;
167 inode
->i_state
&= ~I_DIRTY
;
169 spin_unlock(&inode_lock
);
171 ret
= do_writepages(mapping
, wbc
);
173 /* Don't write the inode if only I_DIRTY_PAGES was set */
174 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
175 int err
= write_inode(inode
, wait
);
181 int err
= filemap_fdatawait(mapping
);
186 spin_lock(&inode_lock
);
187 inode
->i_state
&= ~I_LOCK
;
188 if (!(inode
->i_state
& I_FREEING
)) {
189 if (!(inode
->i_state
& I_DIRTY
) &&
190 mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
192 * We didn't write back all the pages. nfs_writepages()
193 * sometimes bales out without doing anything. Redirty
194 * the inode. It is still on sb->s_io.
196 if (wbc
->for_kupdate
) {
198 * For the kupdate function we leave the inode
199 * at the head of sb_dirty so it will get more
200 * writeout as soon as the queue becomes
203 inode
->i_state
|= I_DIRTY_PAGES
;
204 list_move_tail(&inode
->i_list
, &sb
->s_dirty
);
207 * Otherwise fully redirty the inode so that
208 * other inodes on this superblock will get some
209 * writeout. Otherwise heavy writing to one
210 * file would indefinitely suspend writeout of
211 * all the other files.
213 inode
->i_state
|= I_DIRTY_PAGES
;
214 inode
->dirtied_when
= jiffies
;
215 list_move(&inode
->i_list
, &sb
->s_dirty
);
217 } else if (inode
->i_state
& I_DIRTY
) {
219 * Someone redirtied the inode while were writing back
222 list_move(&inode
->i_list
, &sb
->s_dirty
);
223 } else if (atomic_read(&inode
->i_count
)) {
225 * The inode is clean, inuse
227 list_move(&inode
->i_list
, &inode_in_use
);
230 * The inode is clean, unused
232 list_move(&inode
->i_list
, &inode_unused
);
233 inodes_stat
.nr_unused
++;
236 wake_up_inode(inode
);
241 * Write out an inode's dirty pages. Called under inode_lock.
244 __writeback_single_inode(struct inode
*inode
,
245 struct writeback_control
*wbc
)
247 wait_queue_head_t
*wqh
;
249 if ((wbc
->sync_mode
!= WB_SYNC_ALL
) && (inode
->i_state
& I_LOCK
)) {
250 list_move(&inode
->i_list
, &inode
->i_sb
->s_dirty
);
255 * It's a data-integrity sync. We must wait.
257 if (inode
->i_state
& I_LOCK
) {
258 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_LOCK
);
260 wqh
= bit_waitqueue(&inode
->i_state
, __I_LOCK
);
263 spin_unlock(&inode_lock
);
264 __wait_on_bit(wqh
, &wq
, inode_wait
,
265 TASK_UNINTERRUPTIBLE
);
267 spin_lock(&inode_lock
);
268 } while (inode
->i_state
& I_LOCK
);
270 return __sync_single_inode(inode
, wbc
);
274 * Write out a superblock's list of dirty inodes. A wait will be performed
275 * upon no inodes, all inodes or the final one, depending upon sync_mode.
277 * If older_than_this is non-NULL, then only write out inodes which
278 * had their first dirtying at a time earlier than *older_than_this.
280 * If we're a pdlfush thread, then implement pdflush collision avoidance
281 * against the entire list.
283 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
284 * that it can be located for waiting on in __writeback_single_inode().
286 * Called under inode_lock.
288 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
289 * This function assumes that the blockdev superblock's inodes are backed by
290 * a variety of queues, so all inodes are searched. For other superblocks,
291 * assume that all inodes are backed by the same queue.
293 * FIXME: this linear search could get expensive with many fileystems. But
294 * how to fix? We need to go from an address_space to all inodes which share
295 * a queue with that address_space. (Easy: have a global "dirty superblocks"
298 * The inodes to be written are parked on sb->s_io. They are moved back onto
299 * sb->s_dirty as they are selected for writing. This way, none can be missed
300 * on the writer throttling path, and we get decent balancing between many
301 * throttled threads: we don't want them all piling up on __wait_on_inode.
304 sync_sb_inodes(struct super_block
*sb
, struct writeback_control
*wbc
)
306 const unsigned long start
= jiffies
; /* livelock avoidance */
308 if (!wbc
->for_kupdate
|| list_empty(&sb
->s_io
))
309 list_splice_init(&sb
->s_dirty
, &sb
->s_io
);
311 while (!list_empty(&sb
->s_io
)) {
312 struct inode
*inode
= list_entry(sb
->s_io
.prev
,
313 struct inode
, i_list
);
314 struct address_space
*mapping
= inode
->i_mapping
;
315 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
318 if (!bdi_cap_writeback_dirty(bdi
)) {
319 list_move(&inode
->i_list
, &sb
->s_dirty
);
320 if (sb
== blockdev_superblock
) {
322 * Dirty memory-backed blockdev: the ramdisk
323 * driver does this. Skip just this inode
328 * Dirty memory-backed inode against a filesystem other
329 * than the kernel-internal bdev filesystem. Skip the
335 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
336 wbc
->encountered_congestion
= 1;
337 if (sb
!= blockdev_superblock
)
338 break; /* Skip a congested fs */
339 list_move(&inode
->i_list
, &sb
->s_dirty
);
340 continue; /* Skip a congested blockdev */
343 if (wbc
->bdi
&& bdi
!= wbc
->bdi
) {
344 if (sb
!= blockdev_superblock
)
345 break; /* fs has the wrong queue */
346 list_move(&inode
->i_list
, &sb
->s_dirty
);
347 continue; /* blockdev has wrong queue */
350 /* Was this inode dirtied after sync_sb_inodes was called? */
351 if (time_after(inode
->dirtied_when
, start
))
354 /* Was this inode dirtied too recently? */
355 if (wbc
->older_than_this
&& time_after(inode
->dirtied_when
,
356 *wbc
->older_than_this
))
359 /* Is another pdflush already flushing this queue? */
360 if (current_is_pdflush() && !writeback_acquire(bdi
))
363 BUG_ON(inode
->i_state
& I_FREEING
);
365 pages_skipped
= wbc
->pages_skipped
;
366 __writeback_single_inode(inode
, wbc
);
367 if (wbc
->sync_mode
== WB_SYNC_HOLD
) {
368 inode
->dirtied_when
= jiffies
;
369 list_move(&inode
->i_list
, &sb
->s_dirty
);
371 if (current_is_pdflush())
372 writeback_release(bdi
);
373 if (wbc
->pages_skipped
!= pages_skipped
) {
375 * writeback is not making progress due to locked
376 * buffers. Skip this inode for now.
378 list_move(&inode
->i_list
, &sb
->s_dirty
);
380 spin_unlock(&inode_lock
);
383 spin_lock(&inode_lock
);
384 if (wbc
->nr_to_write
<= 0)
387 return; /* Leave any unwritten inodes on s_io */
391 * Start writeback of dirty pagecache data against all unlocked inodes.
394 * We don't need to grab a reference to superblock here. If it has non-empty
395 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
396 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
397 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
398 * inode from superblock lists we are OK.
400 * If `older_than_this' is non-zero then only flush inodes which have a
401 * flushtime older than *older_than_this.
403 * If `bdi' is non-zero then we will scan the first inode against each
404 * superblock until we find the matching ones. One group will be the dirty
405 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
406 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
407 * super-efficient but we're about to do a ton of I/O...
410 writeback_inodes(struct writeback_control
*wbc
)
412 struct super_block
*sb
;
417 sb
= sb_entry(super_blocks
.prev
);
418 for (; sb
!= sb_entry(&super_blocks
); sb
= sb_entry(sb
->s_list
.prev
)) {
419 if (!list_empty(&sb
->s_dirty
) || !list_empty(&sb
->s_io
)) {
420 /* we're making our own get_super here */
422 spin_unlock(&sb_lock
);
424 * If we can't get the readlock, there's no sense in
425 * waiting around, most of the time the FS is going to
426 * be unmounted by the time it is released.
428 if (down_read_trylock(&sb
->s_umount
)) {
430 spin_lock(&inode_lock
);
431 sync_sb_inodes(sb
, wbc
);
432 spin_unlock(&inode_lock
);
434 up_read(&sb
->s_umount
);
437 if (__put_super_and_need_restart(sb
))
440 if (wbc
->nr_to_write
<= 0)
443 spin_unlock(&sb_lock
);
447 * writeback and wait upon the filesystem's dirty inodes. The caller will
448 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
449 * used to park the written inodes on sb->s_dirty for the wait pass.
451 * A finite limit is set on the number of pages which will be written.
452 * To prevent infinite livelock of sys_sync().
454 * We add in the number of potentially dirty inodes, because each inode write
455 * can dirty pagecache in the underlying blockdev.
457 void sync_inodes_sb(struct super_block
*sb
, int wait
)
459 struct writeback_control wbc
= {
460 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_HOLD
,
462 unsigned long nr_dirty
= read_page_state(nr_dirty
);
463 unsigned long nr_unstable
= read_page_state(nr_unstable
);
465 wbc
.nr_to_write
= nr_dirty
+ nr_unstable
+
466 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
) +
467 nr_dirty
+ nr_unstable
;
468 wbc
.nr_to_write
+= wbc
.nr_to_write
/ 2; /* Bit more for luck */
469 spin_lock(&inode_lock
);
470 sync_sb_inodes(sb
, &wbc
);
471 spin_unlock(&inode_lock
);
475 * Rather lame livelock avoidance.
477 static void set_sb_syncing(int val
)
479 struct super_block
*sb
;
481 sb
= sb_entry(super_blocks
.prev
);
482 for (; sb
!= sb_entry(&super_blocks
); sb
= sb_entry(sb
->s_list
.prev
)) {
485 spin_unlock(&sb_lock
);
489 * Find a superblock with inodes that need to be synced
491 static struct super_block
*get_super_to_sync(void)
493 struct super_block
*sb
;
496 sb
= sb_entry(super_blocks
.prev
);
497 for (; sb
!= sb_entry(&super_blocks
); sb
= sb_entry(sb
->s_list
.prev
)) {
502 spin_unlock(&sb_lock
);
503 down_read(&sb
->s_umount
);
510 spin_unlock(&sb_lock
);
515 * sync_inodes - writes all inodes to disk
516 * @wait: wait for completion
518 * sync_inodes() goes through each super block's dirty inode list, writes the
519 * inodes out, waits on the writeout and puts the inodes back on the normal
522 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
523 * part of the sync functions is that the blockdev "superblock" is processed
524 * last. This is because the write_inode() function of a typical fs will
525 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
526 * What we want to do is to perform all that dirtying first, and then write
527 * back all those inode blocks via the blockdev mapping in one sweep. So the
528 * additional (somewhat redundant) sync_blockdev() calls here are to make
529 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
530 * outstanding dirty inodes, the writeback goes block-at-a-time within the
531 * filesystem's write_inode(). This is extremely slow.
533 void sync_inodes(int wait
)
535 struct super_block
*sb
;
538 while ((sb
= get_super_to_sync()) != NULL
) {
539 sync_inodes_sb(sb
, 0);
540 sync_blockdev(sb
->s_bdev
);
545 while ((sb
= get_super_to_sync()) != NULL
) {
546 sync_inodes_sb(sb
, 1);
547 sync_blockdev(sb
->s_bdev
);
554 * write_inode_now - write an inode to disk
555 * @inode: inode to write to disk
556 * @sync: whether the write should be synchronous or not
558 * This function commits an inode to disk immediately if it is
559 * dirty. This is primarily needed by knfsd.
562 int write_inode_now(struct inode
*inode
, int sync
)
565 struct writeback_control wbc
= {
566 .nr_to_write
= LONG_MAX
,
567 .sync_mode
= WB_SYNC_ALL
,
570 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
574 spin_lock(&inode_lock
);
575 ret
= __writeback_single_inode(inode
, &wbc
);
576 spin_unlock(&inode_lock
);
578 wait_on_inode(inode
);
581 EXPORT_SYMBOL(write_inode_now
);
584 * sync_inode - write an inode and its pages to disk.
585 * @inode: the inode to sync
586 * @wbc: controls the writeback mode
588 * sync_inode() will write an inode and its pages to disk. It will also
589 * correctly update the inode on its superblock's dirty inode lists and will
590 * update inode->i_state.
592 * The caller must have a ref on the inode.
594 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
598 spin_lock(&inode_lock
);
599 ret
= __writeback_single_inode(inode
, wbc
);
600 spin_unlock(&inode_lock
);
603 EXPORT_SYMBOL(sync_inode
);
606 * generic_osync_inode - flush all dirty data for a given inode to disk
607 * @inode: inode to write
608 * @mapping: the address_space that should be flushed
609 * @what: what to write and wait upon
611 * This can be called by file_write functions for files which have the
612 * O_SYNC flag set, to flush dirty writes to disk.
614 * @what is a bitmask, specifying which part of the inode's data should be
615 * written and waited upon:
617 * OSYNC_DATA: i_mapping's dirty data
618 * OSYNC_METADATA: the buffers at i_mapping->private_list
619 * OSYNC_INODE: the inode itself
622 int generic_osync_inode(struct inode
*inode
, struct address_space
*mapping
, int what
)
625 int need_write_inode_now
= 0;
628 current
->flags
|= PF_SYNCWRITE
;
629 if (what
& OSYNC_DATA
)
630 err
= filemap_fdatawrite(mapping
);
631 if (what
& (OSYNC_METADATA
|OSYNC_DATA
)) {
632 err2
= sync_mapping_buffers(mapping
);
636 if (what
& OSYNC_DATA
) {
637 err2
= filemap_fdatawait(mapping
);
641 current
->flags
&= ~PF_SYNCWRITE
;
643 spin_lock(&inode_lock
);
644 if ((inode
->i_state
& I_DIRTY
) &&
645 ((what
& OSYNC_INODE
) || (inode
->i_state
& I_DIRTY_DATASYNC
)))
646 need_write_inode_now
= 1;
647 spin_unlock(&inode_lock
);
649 if (need_write_inode_now
) {
650 err2
= write_inode_now(inode
, 1);
655 wait_on_inode(inode
);
660 EXPORT_SYMBOL(generic_osync_inode
);
663 * writeback_acquire: attempt to get exclusive writeback access to a device
664 * @bdi: the device's backing_dev_info structure
666 * It is a waste of resources to have more than one pdflush thread blocked on
667 * a single request queue. Exclusion at the request_queue level is obtained
668 * via a flag in the request_queue's backing_dev_info.state.
670 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
671 * unless they implement their own. Which is somewhat inefficient, as this
672 * may prevent concurrent writeback against multiple devices.
674 int writeback_acquire(struct backing_dev_info
*bdi
)
676 return !test_and_set_bit(BDI_pdflush
, &bdi
->state
);
680 * writeback_in_progress: determine whether there is writeback in progress
681 * against a backing device.
682 * @bdi: the device's backing_dev_info structure.
684 int writeback_in_progress(struct backing_dev_info
*bdi
)
686 return test_bit(BDI_pdflush
, &bdi
->state
);
690 * writeback_release: relinquish exclusive writeback access against a device.
691 * @bdi: the device's backing_dev_info structure
693 void writeback_release(struct backing_dev_info
*bdi
)
695 BUG_ON(!writeback_in_progress(bdi
));
696 clear_bit(BDI_pdflush
, &bdi
->state
);