[PARISC] Further work for multiple page sizes
[linux-2.6.22.y-op.git] / arch / parisc / mm / init.c
blob6317125626569ec713b5471adf07fb9b50b260ad
1 /*
2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006 Helge Deller (deller@gmx.de)
13 #include <linux/config.h>
15 #include <linux/module.h>
16 #include <linux/mm.h>
17 #include <linux/bootmem.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
27 #include <asm/pgalloc.h>
28 #include <asm/tlb.h>
29 #include <asm/pdc_chassis.h>
30 #include <asm/mmzone.h>
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34 extern char _text; /* start of kernel code, defined by linker */
35 extern int data_start;
36 extern char _end; /* end of BSS, defined by linker */
37 extern char __init_begin, __init_end;
39 #ifdef CONFIG_DISCONTIGMEM
40 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
41 bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
42 unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
43 #endif
45 static struct resource data_resource = {
46 .name = "Kernel data",
47 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
50 static struct resource code_resource = {
51 .name = "Kernel code",
52 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
55 static struct resource pdcdata_resource = {
56 .name = "PDC data (Page Zero)",
57 .start = 0,
58 .end = 0x9ff,
59 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
62 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
64 /* The following array is initialized from the firmware specific
65 * information retrieved in kernel/inventory.c.
68 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
69 int npmem_ranges __read_mostly;
71 #ifdef __LP64__
72 #define MAX_MEM (~0UL)
73 #else /* !__LP64__ */
74 #define MAX_MEM (3584U*1024U*1024U)
75 #endif /* !__LP64__ */
77 static unsigned long mem_limit __read_mostly = MAX_MEM;
79 static void __init mem_limit_func(void)
81 char *cp, *end;
82 unsigned long limit;
83 extern char saved_command_line[];
85 /* We need this before __setup() functions are called */
87 limit = MAX_MEM;
88 for (cp = saved_command_line; *cp; ) {
89 if (memcmp(cp, "mem=", 4) == 0) {
90 cp += 4;
91 limit = memparse(cp, &end);
92 if (end != cp)
93 break;
94 cp = end;
95 } else {
96 while (*cp != ' ' && *cp)
97 ++cp;
98 while (*cp == ' ')
99 ++cp;
103 if (limit < mem_limit)
104 mem_limit = limit;
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
109 static void __init setup_bootmem(void)
111 unsigned long bootmap_size;
112 unsigned long mem_max;
113 unsigned long bootmap_pages;
114 unsigned long bootmap_start_pfn;
115 unsigned long bootmap_pfn;
116 #ifndef CONFIG_DISCONTIGMEM
117 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
118 int npmem_holes;
119 #endif
120 int i, sysram_resource_count;
122 disable_sr_hashing(); /* Turn off space register hashing */
125 * Sort the ranges. Since the number of ranges is typically
126 * small, and performance is not an issue here, just do
127 * a simple insertion sort.
130 for (i = 1; i < npmem_ranges; i++) {
131 int j;
133 for (j = i; j > 0; j--) {
134 unsigned long tmp;
136 if (pmem_ranges[j-1].start_pfn <
137 pmem_ranges[j].start_pfn) {
139 break;
141 tmp = pmem_ranges[j-1].start_pfn;
142 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
143 pmem_ranges[j].start_pfn = tmp;
144 tmp = pmem_ranges[j-1].pages;
145 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
146 pmem_ranges[j].pages = tmp;
150 #ifndef CONFIG_DISCONTIGMEM
152 * Throw out ranges that are too far apart (controlled by
153 * MAX_GAP).
156 for (i = 1; i < npmem_ranges; i++) {
157 if (pmem_ranges[i].start_pfn -
158 (pmem_ranges[i-1].start_pfn +
159 pmem_ranges[i-1].pages) > MAX_GAP) {
160 npmem_ranges = i;
161 printk("Large gap in memory detected (%ld pages). "
162 "Consider turning on CONFIG_DISCONTIGMEM\n",
163 pmem_ranges[i].start_pfn -
164 (pmem_ranges[i-1].start_pfn +
165 pmem_ranges[i-1].pages));
166 break;
169 #endif
171 if (npmem_ranges > 1) {
173 /* Print the memory ranges */
175 printk(KERN_INFO "Memory Ranges:\n");
177 for (i = 0; i < npmem_ranges; i++) {
178 unsigned long start;
179 unsigned long size;
181 size = (pmem_ranges[i].pages << PAGE_SHIFT);
182 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
183 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
184 i,start, start + (size - 1), size >> 20);
188 sysram_resource_count = npmem_ranges;
189 for (i = 0; i < sysram_resource_count; i++) {
190 struct resource *res = &sysram_resources[i];
191 res->name = "System RAM";
192 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
193 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
194 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
195 request_resource(&iomem_resource, res);
199 * For 32 bit kernels we limit the amount of memory we can
200 * support, in order to preserve enough kernel address space
201 * for other purposes. For 64 bit kernels we don't normally
202 * limit the memory, but this mechanism can be used to
203 * artificially limit the amount of memory (and it is written
204 * to work with multiple memory ranges).
207 mem_limit_func(); /* check for "mem=" argument */
209 mem_max = 0;
210 num_physpages = 0;
211 for (i = 0; i < npmem_ranges; i++) {
212 unsigned long rsize;
214 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
215 if ((mem_max + rsize) > mem_limit) {
216 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
217 if (mem_max == mem_limit)
218 npmem_ranges = i;
219 else {
220 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
221 - (mem_max >> PAGE_SHIFT);
222 npmem_ranges = i + 1;
223 mem_max = mem_limit;
225 num_physpages += pmem_ranges[i].pages;
226 break;
228 num_physpages += pmem_ranges[i].pages;
229 mem_max += rsize;
232 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
234 #ifndef CONFIG_DISCONTIGMEM
235 /* Merge the ranges, keeping track of the holes */
238 unsigned long end_pfn;
239 unsigned long hole_pages;
241 npmem_holes = 0;
242 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
243 for (i = 1; i < npmem_ranges; i++) {
245 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
246 if (hole_pages) {
247 pmem_holes[npmem_holes].start_pfn = end_pfn;
248 pmem_holes[npmem_holes++].pages = hole_pages;
249 end_pfn += hole_pages;
251 end_pfn += pmem_ranges[i].pages;
254 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
255 npmem_ranges = 1;
257 #endif
259 bootmap_pages = 0;
260 for (i = 0; i < npmem_ranges; i++)
261 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
263 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
265 #ifdef CONFIG_DISCONTIGMEM
266 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
267 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
268 NODE_DATA(i)->bdata = &bmem_data[i];
270 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
272 for (i = 0; i < npmem_ranges; i++)
273 node_set_online(i);
274 #endif
277 * Initialize and free the full range of memory in each range.
278 * Note that the only writing these routines do are to the bootmap,
279 * and we've made sure to locate the bootmap properly so that they
280 * won't be writing over anything important.
283 bootmap_pfn = bootmap_start_pfn;
284 max_pfn = 0;
285 for (i = 0; i < npmem_ranges; i++) {
286 unsigned long start_pfn;
287 unsigned long npages;
289 start_pfn = pmem_ranges[i].start_pfn;
290 npages = pmem_ranges[i].pages;
292 bootmap_size = init_bootmem_node(NODE_DATA(i),
293 bootmap_pfn,
294 start_pfn,
295 (start_pfn + npages) );
296 free_bootmem_node(NODE_DATA(i),
297 (start_pfn << PAGE_SHIFT),
298 (npages << PAGE_SHIFT) );
299 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
300 if ((start_pfn + npages) > max_pfn)
301 max_pfn = start_pfn + npages;
304 /* IOMMU is always used to access "high mem" on those boxes
305 * that can support enough mem that a PCI device couldn't
306 * directly DMA to any physical addresses.
307 * ISA DMA support will need to revisit this.
309 max_low_pfn = max_pfn;
311 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
312 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
313 BUG();
316 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
318 #define PDC_CONSOLE_IO_IODC_SIZE 32768
320 reserve_bootmem_node(NODE_DATA(0), 0UL,
321 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
322 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
323 (unsigned long)(&_end - &_text));
324 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
325 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
327 #ifndef CONFIG_DISCONTIGMEM
329 /* reserve the holes */
331 for (i = 0; i < npmem_holes; i++) {
332 reserve_bootmem_node(NODE_DATA(0),
333 (pmem_holes[i].start_pfn << PAGE_SHIFT),
334 (pmem_holes[i].pages << PAGE_SHIFT));
336 #endif
338 #ifdef CONFIG_BLK_DEV_INITRD
339 if (initrd_start) {
340 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
341 if (__pa(initrd_start) < mem_max) {
342 unsigned long initrd_reserve;
344 if (__pa(initrd_end) > mem_max) {
345 initrd_reserve = mem_max - __pa(initrd_start);
346 } else {
347 initrd_reserve = initrd_end - initrd_start;
349 initrd_below_start_ok = 1;
350 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
352 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
355 #endif
357 data_resource.start = virt_to_phys(&data_start);
358 data_resource.end = virt_to_phys(&_end)-1;
359 code_resource.start = virt_to_phys(&_text);
360 code_resource.end = virt_to_phys(&data_start)-1;
362 /* We don't know which region the kernel will be in, so try
363 * all of them.
365 for (i = 0; i < sysram_resource_count; i++) {
366 struct resource *res = &sysram_resources[i];
367 request_resource(res, &code_resource);
368 request_resource(res, &data_resource);
370 request_resource(&sysram_resources[0], &pdcdata_resource);
373 void free_initmem(void)
375 unsigned long addr, init_begin, init_end;
377 printk(KERN_INFO "Freeing unused kernel memory: ");
379 #ifdef CONFIG_DEBUG_KERNEL
380 /* Attempt to catch anyone trying to execute code here
381 * by filling the page with BRK insns.
383 * If we disable interrupts for all CPUs, then IPI stops working.
384 * Kinda breaks the global cache flushing.
386 local_irq_disable();
388 memset(&__init_begin, 0x00,
389 (unsigned long)&__init_end - (unsigned long)&__init_begin);
391 flush_data_cache();
392 asm volatile("sync" : : );
393 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
394 asm volatile("sync" : : );
396 local_irq_enable();
397 #endif
399 /* align __init_begin and __init_end to page size,
400 ignoring linker script where we might have tried to save RAM */
401 init_begin = PAGE_ALIGN((unsigned long)(&__init_begin));
402 init_end = PAGE_ALIGN((unsigned long)(&__init_end));
403 for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
404 ClearPageReserved(virt_to_page(addr));
405 init_page_count(virt_to_page(addr));
406 free_page(addr);
407 num_physpages++;
408 totalram_pages++;
411 /* set up a new led state on systems shipped LED State panel */
412 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
414 printk("%luk freed\n", (init_end - init_begin) >> 10);
418 #ifdef CONFIG_DEBUG_RODATA
419 void mark_rodata_ro(void)
421 extern char __start_rodata, __end_rodata;
422 /* rodata memory was already mapped with KERNEL_RO access rights by
423 pagetable_init() and map_pages(). No need to do additional stuff here */
424 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
425 (unsigned long)(&__end_rodata - &__start_rodata) >> 10);
427 #endif
431 * Just an arbitrary offset to serve as a "hole" between mapping areas
432 * (between top of physical memory and a potential pcxl dma mapping
433 * area, and below the vmalloc mapping area).
435 * The current 32K value just means that there will be a 32K "hole"
436 * between mapping areas. That means that any out-of-bounds memory
437 * accesses will hopefully be caught. The vmalloc() routines leaves
438 * a hole of 4kB between each vmalloced area for the same reason.
441 /* Leave room for gateway page expansion */
442 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
443 #error KERNEL_MAP_START is in gateway reserved region
444 #endif
445 #define MAP_START (KERNEL_MAP_START)
447 #define VM_MAP_OFFSET (32*1024)
448 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
449 & ~(VM_MAP_OFFSET-1)))
451 void *vmalloc_start __read_mostly;
452 EXPORT_SYMBOL(vmalloc_start);
454 #ifdef CONFIG_PA11
455 unsigned long pcxl_dma_start __read_mostly;
456 #endif
458 void __init mem_init(void)
460 high_memory = __va((max_pfn << PAGE_SHIFT));
462 #ifndef CONFIG_DISCONTIGMEM
463 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
464 totalram_pages += free_all_bootmem();
465 #else
467 int i;
469 for (i = 0; i < npmem_ranges; i++)
470 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
472 #endif
474 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
476 #ifdef CONFIG_PA11
477 if (hppa_dma_ops == &pcxl_dma_ops) {
478 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
479 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
480 } else {
481 pcxl_dma_start = 0;
482 vmalloc_start = SET_MAP_OFFSET(MAP_START);
484 #else
485 vmalloc_start = SET_MAP_OFFSET(MAP_START);
486 #endif
490 unsigned long *empty_zero_page __read_mostly;
492 void show_mem(void)
494 int i,free = 0,total = 0,reserved = 0;
495 int shared = 0, cached = 0;
497 printk(KERN_INFO "Mem-info:\n");
498 show_free_areas();
499 printk(KERN_INFO "Free swap: %6ldkB\n",
500 nr_swap_pages<<(PAGE_SHIFT-10));
501 #ifndef CONFIG_DISCONTIGMEM
502 i = max_mapnr;
503 while (i-- > 0) {
504 total++;
505 if (PageReserved(mem_map+i))
506 reserved++;
507 else if (PageSwapCache(mem_map+i))
508 cached++;
509 else if (!page_count(&mem_map[i]))
510 free++;
511 else
512 shared += page_count(&mem_map[i]) - 1;
514 #else
515 for (i = 0; i < npmem_ranges; i++) {
516 int j;
518 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
519 struct page *p;
520 unsigned long flags;
522 pgdat_resize_lock(NODE_DATA(i), &flags);
523 p = nid_page_nr(i, j) - node_start_pfn(i);
525 total++;
526 if (PageReserved(p))
527 reserved++;
528 else if (PageSwapCache(p))
529 cached++;
530 else if (!page_count(p))
531 free++;
532 else
533 shared += page_count(p) - 1;
534 pgdat_resize_unlock(NODE_DATA(i), &flags);
537 #endif
538 printk(KERN_INFO "%d pages of RAM\n", total);
539 printk(KERN_INFO "%d reserved pages\n", reserved);
540 printk(KERN_INFO "%d pages shared\n", shared);
541 printk(KERN_INFO "%d pages swap cached\n", cached);
544 #ifdef CONFIG_DISCONTIGMEM
546 struct zonelist *zl;
547 int i, j, k;
549 for (i = 0; i < npmem_ranges; i++) {
550 for (j = 0; j < MAX_NR_ZONES; j++) {
551 zl = NODE_DATA(i)->node_zonelists + j;
553 printk("Zone list for zone %d on node %d: ", j, i);
554 for (k = 0; zl->zones[k] != NULL; k++)
555 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
556 printk("\n");
560 #endif
564 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
566 pgd_t *pg_dir;
567 pmd_t *pmd;
568 pte_t *pg_table;
569 unsigned long end_paddr;
570 unsigned long start_pmd;
571 unsigned long start_pte;
572 unsigned long tmp1;
573 unsigned long tmp2;
574 unsigned long address;
575 unsigned long ro_start;
576 unsigned long ro_end;
577 unsigned long fv_addr;
578 unsigned long gw_addr;
579 extern const unsigned long fault_vector_20;
580 extern void * const linux_gateway_page;
582 ro_start = __pa((unsigned long)&_text);
583 ro_end = __pa((unsigned long)&data_start);
584 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
585 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
587 end_paddr = start_paddr + size;
589 pg_dir = pgd_offset_k(start_vaddr);
591 #if PTRS_PER_PMD == 1
592 start_pmd = 0;
593 #else
594 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
595 #endif
596 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
598 address = start_paddr;
599 while (address < end_paddr) {
600 #if PTRS_PER_PMD == 1
601 pmd = (pmd_t *)__pa(pg_dir);
602 #else
603 pmd = (pmd_t *)pgd_address(*pg_dir);
606 * pmd is physical at this point
609 if (!pmd) {
610 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
611 pmd = (pmd_t *) __pa(pmd);
614 pgd_populate(NULL, pg_dir, __va(pmd));
615 #endif
616 pg_dir++;
618 /* now change pmd to kernel virtual addresses */
620 pmd = (pmd_t *)__va(pmd) + start_pmd;
621 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
624 * pg_table is physical at this point
627 pg_table = (pte_t *)pmd_address(*pmd);
628 if (!pg_table) {
629 pg_table = (pte_t *)
630 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
631 pg_table = (pte_t *) __pa(pg_table);
634 pmd_populate_kernel(NULL, pmd, __va(pg_table));
636 /* now change pg_table to kernel virtual addresses */
638 pg_table = (pte_t *) __va(pg_table) + start_pte;
639 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
640 pte_t pte;
643 * Map the fault vector writable so we can
644 * write the HPMC checksum.
646 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
647 if (address >= ro_start && address < ro_end
648 && address != fv_addr
649 && address != gw_addr)
650 pte = __mk_pte(address, PAGE_KERNEL_RO);
651 else
652 #endif
653 pte = __mk_pte(address, pgprot);
655 if (address >= end_paddr)
656 pte_val(pte) = 0;
658 set_pte(pg_table, pte);
660 address += PAGE_SIZE;
662 start_pte = 0;
664 if (address >= end_paddr)
665 break;
667 start_pmd = 0;
672 * pagetable_init() sets up the page tables
674 * Note that gateway_init() places the Linux gateway page at page 0.
675 * Since gateway pages cannot be dereferenced this has the desirable
676 * side effect of trapping those pesky NULL-reference errors in the
677 * kernel.
679 static void __init pagetable_init(void)
681 int range;
683 /* Map each physical memory range to its kernel vaddr */
685 for (range = 0; range < npmem_ranges; range++) {
686 unsigned long start_paddr;
687 unsigned long end_paddr;
688 unsigned long size;
690 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
691 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
692 size = pmem_ranges[range].pages << PAGE_SHIFT;
694 map_pages((unsigned long)__va(start_paddr), start_paddr,
695 size, PAGE_KERNEL);
698 #ifdef CONFIG_BLK_DEV_INITRD
699 if (initrd_end && initrd_end > mem_limit) {
700 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
701 map_pages(initrd_start, __pa(initrd_start),
702 initrd_end - initrd_start, PAGE_KERNEL);
704 #endif
706 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
707 memset(empty_zero_page, 0, PAGE_SIZE);
710 static void __init gateway_init(void)
712 unsigned long linux_gateway_page_addr;
713 /* FIXME: This is 'const' in order to trick the compiler
714 into not treating it as DP-relative data. */
715 extern void * const linux_gateway_page;
717 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
720 * Setup Linux Gateway page.
722 * The Linux gateway page will reside in kernel space (on virtual
723 * page 0), so it doesn't need to be aliased into user space.
726 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
727 PAGE_SIZE, PAGE_GATEWAY);
730 #ifdef CONFIG_HPUX
731 void
732 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
734 pgd_t *pg_dir;
735 pmd_t *pmd;
736 pte_t *pg_table;
737 unsigned long start_pmd;
738 unsigned long start_pte;
739 unsigned long address;
740 unsigned long hpux_gw_page_addr;
741 /* FIXME: This is 'const' in order to trick the compiler
742 into not treating it as DP-relative data. */
743 extern void * const hpux_gateway_page;
745 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
748 * Setup HP-UX Gateway page.
750 * The HP-UX gateway page resides in the user address space,
751 * so it needs to be aliased into each process.
754 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
756 #if PTRS_PER_PMD == 1
757 start_pmd = 0;
758 #else
759 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
760 #endif
761 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
763 address = __pa(&hpux_gateway_page);
764 #if PTRS_PER_PMD == 1
765 pmd = (pmd_t *)__pa(pg_dir);
766 #else
767 pmd = (pmd_t *) pgd_address(*pg_dir);
770 * pmd is physical at this point
773 if (!pmd) {
774 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
775 pmd = (pmd_t *) __pa(pmd);
778 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
779 #endif
780 /* now change pmd to kernel virtual addresses */
782 pmd = (pmd_t *)__va(pmd) + start_pmd;
785 * pg_table is physical at this point
788 pg_table = (pte_t *) pmd_address(*pmd);
789 if (!pg_table)
790 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
792 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
794 /* now change pg_table to kernel virtual addresses */
796 pg_table = (pte_t *) __va(pg_table) + start_pte;
797 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
799 EXPORT_SYMBOL(map_hpux_gateway_page);
800 #endif
802 void __init paging_init(void)
804 int i;
806 setup_bootmem();
807 pagetable_init();
808 gateway_init();
809 flush_cache_all_local(); /* start with known state */
810 flush_tlb_all_local(NULL);
812 for (i = 0; i < npmem_ranges; i++) {
813 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
815 /* We have an IOMMU, so all memory can go into a single
816 ZONE_DMA zone. */
817 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
819 #ifdef CONFIG_DISCONTIGMEM
820 /* Need to initialize the pfnnid_map before we can initialize
821 the zone */
823 int j;
824 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
825 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
826 j++) {
827 pfnnid_map[j] = i;
830 #endif
832 free_area_init_node(i, NODE_DATA(i), zones_size,
833 pmem_ranges[i].start_pfn, NULL);
837 #ifdef CONFIG_PA20
840 * Currently, all PA20 chips have 18 bit protection id's, which is the
841 * limiting factor (space ids are 32 bits).
844 #define NR_SPACE_IDS 262144
846 #else
849 * Currently we have a one-to-one relationship between space id's and
850 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
851 * support 15 bit protection id's, so that is the limiting factor.
852 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
853 * probably not worth the effort for a special case here.
856 #define NR_SPACE_IDS 32768
858 #endif /* !CONFIG_PA20 */
860 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
861 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
863 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
864 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
865 static unsigned long space_id_index;
866 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
867 static unsigned long dirty_space_ids = 0;
869 static DEFINE_SPINLOCK(sid_lock);
871 unsigned long alloc_sid(void)
873 unsigned long index;
875 spin_lock(&sid_lock);
877 if (free_space_ids == 0) {
878 if (dirty_space_ids != 0) {
879 spin_unlock(&sid_lock);
880 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
881 spin_lock(&sid_lock);
883 BUG_ON(free_space_ids == 0);
886 free_space_ids--;
888 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
889 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
890 space_id_index = index;
892 spin_unlock(&sid_lock);
894 return index << SPACEID_SHIFT;
897 void free_sid(unsigned long spaceid)
899 unsigned long index = spaceid >> SPACEID_SHIFT;
900 unsigned long *dirty_space_offset;
902 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
903 index &= (BITS_PER_LONG - 1);
905 spin_lock(&sid_lock);
907 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
909 *dirty_space_offset |= (1L << index);
910 dirty_space_ids++;
912 spin_unlock(&sid_lock);
916 #ifdef CONFIG_SMP
917 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
919 int i;
921 /* NOTE: sid_lock must be held upon entry */
923 *ndirtyptr = dirty_space_ids;
924 if (dirty_space_ids != 0) {
925 for (i = 0; i < SID_ARRAY_SIZE; i++) {
926 dirty_array[i] = dirty_space_id[i];
927 dirty_space_id[i] = 0;
929 dirty_space_ids = 0;
932 return;
935 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
937 int i;
939 /* NOTE: sid_lock must be held upon entry */
941 if (ndirty != 0) {
942 for (i = 0; i < SID_ARRAY_SIZE; i++) {
943 space_id[i] ^= dirty_array[i];
946 free_space_ids += ndirty;
947 space_id_index = 0;
951 #else /* CONFIG_SMP */
953 static void recycle_sids(void)
955 int i;
957 /* NOTE: sid_lock must be held upon entry */
959 if (dirty_space_ids != 0) {
960 for (i = 0; i < SID_ARRAY_SIZE; i++) {
961 space_id[i] ^= dirty_space_id[i];
962 dirty_space_id[i] = 0;
965 free_space_ids += dirty_space_ids;
966 dirty_space_ids = 0;
967 space_id_index = 0;
970 #endif
973 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
974 * purged, we can safely reuse the space ids that were released but
975 * not flushed from the tlb.
978 #ifdef CONFIG_SMP
980 static unsigned long recycle_ndirty;
981 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
982 static unsigned int recycle_inuse;
984 void flush_tlb_all(void)
986 int do_recycle;
988 do_recycle = 0;
989 spin_lock(&sid_lock);
990 if (dirty_space_ids > RECYCLE_THRESHOLD) {
991 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
992 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
993 recycle_inuse++;
994 do_recycle++;
996 spin_unlock(&sid_lock);
997 on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
998 if (do_recycle) {
999 spin_lock(&sid_lock);
1000 recycle_sids(recycle_ndirty,recycle_dirty_array);
1001 recycle_inuse = 0;
1002 spin_unlock(&sid_lock);
1005 #else
1006 void flush_tlb_all(void)
1008 spin_lock(&sid_lock);
1009 flush_tlb_all_local(NULL);
1010 recycle_sids();
1011 spin_unlock(&sid_lock);
1013 #endif
1015 #ifdef CONFIG_BLK_DEV_INITRD
1016 void free_initrd_mem(unsigned long start, unsigned long end)
1018 if (start >= end)
1019 return;
1020 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1021 for (; start < end; start += PAGE_SIZE) {
1022 ClearPageReserved(virt_to_page(start));
1023 init_page_count(virt_to_page(start));
1024 free_page(start);
1025 num_physpages++;
1026 totalram_pages++;
1029 #endif