[PARISC] Remove unnecessary extern declarations from asm/pci.h
[linux-2.6.22.y-op.git] / mm / slab.c
blob6f8495e2185b36c4d4e08402a111a59a3deeb01b
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
277 /* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
280 #define BOOT_CPUCACHE_ENTRIES 1
281 struct arraycache_init {
282 struct array_cache cache;
283 void *entries[BOOT_CPUCACHE_ENTRIES];
287 * The slab lists for all objects.
289 struct kmem_list3 {
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
303 * Need this for bootstrapping a per node allocator.
305 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307 #define CACHE_CACHE 0
308 #define SIZE_AC 1
309 #define SIZE_L3 (1 + MAX_NUMNODES)
312 * This function must be completely optimized away if
313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
317 static __always_inline int index_of(const size_t size)
319 if (__builtin_constant_p(size)) {
320 int i = 0;
322 #define CACHE(x) \
323 if (size <=x) \
324 return i; \
325 else \
326 i++;
327 #include "linux/kmalloc_sizes.h"
328 #undef CACHE
330 extern void __bad_size(void);
331 __bad_size();
333 } else
334 BUG();
335 return 0;
338 #define INDEX_AC index_of(sizeof(struct arraycache_init))
339 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
341 static inline void kmem_list3_init(struct kmem_list3 *parent)
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
353 #define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
359 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
367 * kmem_cache_t
369 * manages a cache.
372 struct kmem_cache {
373 /* 1) per-cpu data, touched during every alloc/free */
374 struct array_cache *array[NR_CPUS];
375 unsigned int batchcount;
376 unsigned int limit;
377 unsigned int shared;
378 unsigned int objsize;
379 /* 2) touched by every alloc & free from the backend */
380 struct kmem_list3 *nodelists[MAX_NUMNODES];
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383 spinlock_t spinlock;
385 /* 3) cache_grow/shrink */
386 /* order of pgs per slab (2^n) */
387 unsigned int gfporder;
389 /* force GFP flags, e.g. GFP_DMA */
390 gfp_t gfpflags;
392 size_t colour; /* cache colouring range */
393 unsigned int colour_off; /* colour offset */
394 unsigned int colour_next; /* cache colouring */
395 kmem_cache_t *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
399 /* constructor func */
400 void (*ctor) (void *, kmem_cache_t *, unsigned long);
402 /* de-constructor func */
403 void (*dtor) (void *, kmem_cache_t *, unsigned long);
405 /* 4) cache creation/removal */
406 const char *name;
407 struct list_head next;
409 /* 5) statistics */
410 #if STATS
411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
424 #endif
425 #if DEBUG
426 int dbghead;
427 int reallen;
428 #endif
431 #define CFLGS_OFF_SLAB (0x80000000UL)
432 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
434 #define BATCHREFILL_LIMIT 16
435 /* Optimization question: fewer reaps means less
436 * probability for unnessary cpucache drain/refill cycles.
438 * OTOH the cpuarrays can contain lots of objects,
439 * which could lock up otherwise freeable slabs.
441 #define REAPTIMEOUT_CPUC (2*HZ)
442 #define REAPTIMEOUT_LIST3 (4*HZ)
444 #if STATS
445 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
446 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
447 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
448 #define STATS_INC_GROWN(x) ((x)->grown++)
449 #define STATS_INC_REAPED(x) ((x)->reaped++)
450 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
451 (x)->high_mark = (x)->num_active; \
452 } while (0)
453 #define STATS_INC_ERR(x) ((x)->errors++)
454 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
455 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
456 #define STATS_SET_FREEABLE(x, i) \
457 do { if ((x)->max_freeable < i) \
458 (x)->max_freeable = i; \
459 } while (0)
461 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
462 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
463 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
464 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
465 #else
466 #define STATS_INC_ACTIVE(x) do { } while (0)
467 #define STATS_DEC_ACTIVE(x) do { } while (0)
468 #define STATS_INC_ALLOCED(x) do { } while (0)
469 #define STATS_INC_GROWN(x) do { } while (0)
470 #define STATS_INC_REAPED(x) do { } while (0)
471 #define STATS_SET_HIGH(x) do { } while (0)
472 #define STATS_INC_ERR(x) do { } while (0)
473 #define STATS_INC_NODEALLOCS(x) do { } while (0)
474 #define STATS_INC_NODEFREES(x) do { } while (0)
475 #define STATS_SET_FREEABLE(x, i) \
476 do { } while (0)
478 #define STATS_INC_ALLOCHIT(x) do { } while (0)
479 #define STATS_INC_ALLOCMISS(x) do { } while (0)
480 #define STATS_INC_FREEHIT(x) do { } while (0)
481 #define STATS_INC_FREEMISS(x) do { } while (0)
482 #endif
484 #if DEBUG
485 /* Magic nums for obj red zoning.
486 * Placed in the first word before and the first word after an obj.
488 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
489 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
491 /* ...and for poisoning */
492 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
493 #define POISON_FREE 0x6b /* for use-after-free poisoning */
494 #define POISON_END 0xa5 /* end-byte of poisoning */
496 /* memory layout of objects:
497 * 0 : objp
498 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
499 * the end of an object is aligned with the end of the real
500 * allocation. Catches writes behind the end of the allocation.
501 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
502 * redzone word.
503 * cachep->dbghead: The real object.
504 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
505 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
507 static int obj_dbghead(kmem_cache_t *cachep)
509 return cachep->dbghead;
512 static int obj_reallen(kmem_cache_t *cachep)
514 return cachep->reallen;
517 static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
519 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
520 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
523 static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
526 if (cachep->flags & SLAB_STORE_USER)
527 return (unsigned long *)(objp + cachep->objsize -
528 2 * BYTES_PER_WORD);
529 return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD);
532 static void **dbg_userword(kmem_cache_t *cachep, void *objp)
534 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
535 return (void **)(objp + cachep->objsize - BYTES_PER_WORD);
538 #else
540 #define obj_dbghead(x) 0
541 #define obj_reallen(cachep) (cachep->objsize)
542 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
543 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
544 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
546 #endif
549 * Maximum size of an obj (in 2^order pages)
550 * and absolute limit for the gfp order.
552 #if defined(CONFIG_LARGE_ALLOCS)
553 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
554 #define MAX_GFP_ORDER 13 /* up to 32Mb */
555 #elif defined(CONFIG_MMU)
556 #define MAX_OBJ_ORDER 5 /* 32 pages */
557 #define MAX_GFP_ORDER 5 /* 32 pages */
558 #else
559 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
560 #define MAX_GFP_ORDER 8 /* up to 1Mb */
561 #endif
564 * Do not go above this order unless 0 objects fit into the slab.
566 #define BREAK_GFP_ORDER_HI 1
567 #define BREAK_GFP_ORDER_LO 0
568 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
570 /* Functions for storing/retrieving the cachep and or slab from the
571 * global 'mem_map'. These are used to find the slab an obj belongs to.
572 * With kfree(), these are used to find the cache which an obj belongs to.
574 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
576 page->lru.next = (struct list_head *)cache;
579 static inline struct kmem_cache *page_get_cache(struct page *page)
581 return (struct kmem_cache *)page->lru.next;
584 static inline void page_set_slab(struct page *page, struct slab *slab)
586 page->lru.prev = (struct list_head *)slab;
589 static inline struct slab *page_get_slab(struct page *page)
591 return (struct slab *)page->lru.prev;
594 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
595 struct cache_sizes malloc_sizes[] = {
596 #define CACHE(x) { .cs_size = (x) },
597 #include <linux/kmalloc_sizes.h>
598 CACHE(ULONG_MAX)
599 #undef CACHE
601 EXPORT_SYMBOL(malloc_sizes);
603 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
604 struct cache_names {
605 char *name;
606 char *name_dma;
609 static struct cache_names __initdata cache_names[] = {
610 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
611 #include <linux/kmalloc_sizes.h>
612 {NULL,}
613 #undef CACHE
616 static struct arraycache_init initarray_cache __initdata =
617 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
618 static struct arraycache_init initarray_generic =
619 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
621 /* internal cache of cache description objs */
622 static kmem_cache_t cache_cache = {
623 .batchcount = 1,
624 .limit = BOOT_CPUCACHE_ENTRIES,
625 .shared = 1,
626 .objsize = sizeof(kmem_cache_t),
627 .flags = SLAB_NO_REAP,
628 .spinlock = SPIN_LOCK_UNLOCKED,
629 .name = "kmem_cache",
630 #if DEBUG
631 .reallen = sizeof(kmem_cache_t),
632 #endif
635 /* Guard access to the cache-chain. */
636 static DEFINE_MUTEX(cache_chain_mutex);
637 static struct list_head cache_chain;
640 * vm_enough_memory() looks at this to determine how many
641 * slab-allocated pages are possibly freeable under pressure
643 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
645 atomic_t slab_reclaim_pages;
648 * chicken and egg problem: delay the per-cpu array allocation
649 * until the general caches are up.
651 static enum {
652 NONE,
653 PARTIAL_AC,
654 PARTIAL_L3,
655 FULL
656 } g_cpucache_up;
658 static DEFINE_PER_CPU(struct work_struct, reap_work);
660 static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
661 static void enable_cpucache(kmem_cache_t *cachep);
662 static void cache_reap(void *unused);
663 static int __node_shrink(kmem_cache_t *cachep, int node);
665 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
667 return cachep->array[smp_processor_id()];
670 static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
672 struct cache_sizes *csizep = malloc_sizes;
674 #if DEBUG
675 /* This happens if someone tries to call
676 * kmem_cache_create(), or __kmalloc(), before
677 * the generic caches are initialized.
679 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
680 #endif
681 while (size > csizep->cs_size)
682 csizep++;
685 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
686 * has cs_{dma,}cachep==NULL. Thus no special case
687 * for large kmalloc calls required.
689 if (unlikely(gfpflags & GFP_DMA))
690 return csizep->cs_dmacachep;
691 return csizep->cs_cachep;
694 kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
696 return __find_general_cachep(size, gfpflags);
698 EXPORT_SYMBOL(kmem_find_general_cachep);
700 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
701 static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
702 int flags, size_t *left_over, unsigned int *num)
704 int i;
705 size_t wastage = PAGE_SIZE << gfporder;
706 size_t extra = 0;
707 size_t base = 0;
709 if (!(flags & CFLGS_OFF_SLAB)) {
710 base = sizeof(struct slab);
711 extra = sizeof(kmem_bufctl_t);
713 i = 0;
714 while (i * size + ALIGN(base + i * extra, align) <= wastage)
715 i++;
716 if (i > 0)
717 i--;
719 if (i > SLAB_LIMIT)
720 i = SLAB_LIMIT;
722 *num = i;
723 wastage -= i * size;
724 wastage -= ALIGN(base + i * extra, align);
725 *left_over = wastage;
728 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
730 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
732 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
733 function, cachep->name, msg);
734 dump_stack();
738 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
739 * via the workqueue/eventd.
740 * Add the CPU number into the expiration time to minimize the possibility of
741 * the CPUs getting into lockstep and contending for the global cache chain
742 * lock.
744 static void __devinit start_cpu_timer(int cpu)
746 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
749 * When this gets called from do_initcalls via cpucache_init(),
750 * init_workqueues() has already run, so keventd will be setup
751 * at that time.
753 if (keventd_up() && reap_work->func == NULL) {
754 INIT_WORK(reap_work, cache_reap, NULL);
755 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
759 static struct array_cache *alloc_arraycache(int node, int entries,
760 int batchcount)
762 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
763 struct array_cache *nc = NULL;
765 nc = kmalloc_node(memsize, GFP_KERNEL, node);
766 if (nc) {
767 nc->avail = 0;
768 nc->limit = entries;
769 nc->batchcount = batchcount;
770 nc->touched = 0;
771 spin_lock_init(&nc->lock);
773 return nc;
776 #ifdef CONFIG_NUMA
777 static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
779 static inline struct array_cache **alloc_alien_cache(int node, int limit)
781 struct array_cache **ac_ptr;
782 int memsize = sizeof(void *) * MAX_NUMNODES;
783 int i;
785 if (limit > 1)
786 limit = 12;
787 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
788 if (ac_ptr) {
789 for_each_node(i) {
790 if (i == node || !node_online(i)) {
791 ac_ptr[i] = NULL;
792 continue;
794 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
795 if (!ac_ptr[i]) {
796 for (i--; i <= 0; i--)
797 kfree(ac_ptr[i]);
798 kfree(ac_ptr);
799 return NULL;
803 return ac_ptr;
806 static inline void free_alien_cache(struct array_cache **ac_ptr)
808 int i;
810 if (!ac_ptr)
811 return;
813 for_each_node(i)
814 kfree(ac_ptr[i]);
816 kfree(ac_ptr);
819 static inline void __drain_alien_cache(kmem_cache_t *cachep,
820 struct array_cache *ac, int node)
822 struct kmem_list3 *rl3 = cachep->nodelists[node];
824 if (ac->avail) {
825 spin_lock(&rl3->list_lock);
826 free_block(cachep, ac->entry, ac->avail, node);
827 ac->avail = 0;
828 spin_unlock(&rl3->list_lock);
832 static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
834 int i = 0;
835 struct array_cache *ac;
836 unsigned long flags;
838 for_each_online_node(i) {
839 ac = l3->alien[i];
840 if (ac) {
841 spin_lock_irqsave(&ac->lock, flags);
842 __drain_alien_cache(cachep, ac, i);
843 spin_unlock_irqrestore(&ac->lock, flags);
847 #else
848 #define alloc_alien_cache(node, limit) do { } while (0)
849 #define free_alien_cache(ac_ptr) do { } while (0)
850 #define drain_alien_cache(cachep, l3) do { } while (0)
851 #endif
853 static int __devinit cpuup_callback(struct notifier_block *nfb,
854 unsigned long action, void *hcpu)
856 long cpu = (long)hcpu;
857 kmem_cache_t *cachep;
858 struct kmem_list3 *l3 = NULL;
859 int node = cpu_to_node(cpu);
860 int memsize = sizeof(struct kmem_list3);
862 switch (action) {
863 case CPU_UP_PREPARE:
864 mutex_lock(&cache_chain_mutex);
865 /* we need to do this right in the beginning since
866 * alloc_arraycache's are going to use this list.
867 * kmalloc_node allows us to add the slab to the right
868 * kmem_list3 and not this cpu's kmem_list3
871 list_for_each_entry(cachep, &cache_chain, next) {
872 /* setup the size64 kmemlist for cpu before we can
873 * begin anything. Make sure some other cpu on this
874 * node has not already allocated this
876 if (!cachep->nodelists[node]) {
877 if (!(l3 = kmalloc_node(memsize,
878 GFP_KERNEL, node)))
879 goto bad;
880 kmem_list3_init(l3);
881 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
882 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
884 cachep->nodelists[node] = l3;
887 spin_lock_irq(&cachep->nodelists[node]->list_lock);
888 cachep->nodelists[node]->free_limit =
889 (1 + nr_cpus_node(node)) *
890 cachep->batchcount + cachep->num;
891 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
894 /* Now we can go ahead with allocating the shared array's
895 & array cache's */
896 list_for_each_entry(cachep, &cache_chain, next) {
897 struct array_cache *nc;
899 nc = alloc_arraycache(node, cachep->limit,
900 cachep->batchcount);
901 if (!nc)
902 goto bad;
903 cachep->array[cpu] = nc;
905 l3 = cachep->nodelists[node];
906 BUG_ON(!l3);
907 if (!l3->shared) {
908 if (!(nc = alloc_arraycache(node,
909 cachep->shared *
910 cachep->batchcount,
911 0xbaadf00d)))
912 goto bad;
914 /* we are serialised from CPU_DEAD or
915 CPU_UP_CANCELLED by the cpucontrol lock */
916 l3->shared = nc;
919 mutex_unlock(&cache_chain_mutex);
920 break;
921 case CPU_ONLINE:
922 start_cpu_timer(cpu);
923 break;
924 #ifdef CONFIG_HOTPLUG_CPU
925 case CPU_DEAD:
926 /* fall thru */
927 case CPU_UP_CANCELED:
928 mutex_lock(&cache_chain_mutex);
930 list_for_each_entry(cachep, &cache_chain, next) {
931 struct array_cache *nc;
932 cpumask_t mask;
934 mask = node_to_cpumask(node);
935 spin_lock_irq(&cachep->spinlock);
936 /* cpu is dead; no one can alloc from it. */
937 nc = cachep->array[cpu];
938 cachep->array[cpu] = NULL;
939 l3 = cachep->nodelists[node];
941 if (!l3)
942 goto unlock_cache;
944 spin_lock(&l3->list_lock);
946 /* Free limit for this kmem_list3 */
947 l3->free_limit -= cachep->batchcount;
948 if (nc)
949 free_block(cachep, nc->entry, nc->avail, node);
951 if (!cpus_empty(mask)) {
952 spin_unlock(&l3->list_lock);
953 goto unlock_cache;
956 if (l3->shared) {
957 free_block(cachep, l3->shared->entry,
958 l3->shared->avail, node);
959 kfree(l3->shared);
960 l3->shared = NULL;
962 if (l3->alien) {
963 drain_alien_cache(cachep, l3);
964 free_alien_cache(l3->alien);
965 l3->alien = NULL;
968 /* free slabs belonging to this node */
969 if (__node_shrink(cachep, node)) {
970 cachep->nodelists[node] = NULL;
971 spin_unlock(&l3->list_lock);
972 kfree(l3);
973 } else {
974 spin_unlock(&l3->list_lock);
976 unlock_cache:
977 spin_unlock_irq(&cachep->spinlock);
978 kfree(nc);
980 mutex_unlock(&cache_chain_mutex);
981 break;
982 #endif
984 return NOTIFY_OK;
985 bad:
986 mutex_unlock(&cache_chain_mutex);
987 return NOTIFY_BAD;
990 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
993 * swap the static kmem_list3 with kmalloced memory
995 static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
997 struct kmem_list3 *ptr;
999 BUG_ON(cachep->nodelists[nodeid] != list);
1000 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1001 BUG_ON(!ptr);
1003 local_irq_disable();
1004 memcpy(ptr, list, sizeof(struct kmem_list3));
1005 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1006 cachep->nodelists[nodeid] = ptr;
1007 local_irq_enable();
1010 /* Initialisation.
1011 * Called after the gfp() functions have been enabled, and before smp_init().
1013 void __init kmem_cache_init(void)
1015 size_t left_over;
1016 struct cache_sizes *sizes;
1017 struct cache_names *names;
1018 int i;
1020 for (i = 0; i < NUM_INIT_LISTS; i++) {
1021 kmem_list3_init(&initkmem_list3[i]);
1022 if (i < MAX_NUMNODES)
1023 cache_cache.nodelists[i] = NULL;
1027 * Fragmentation resistance on low memory - only use bigger
1028 * page orders on machines with more than 32MB of memory.
1030 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1031 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1033 /* Bootstrap is tricky, because several objects are allocated
1034 * from caches that do not exist yet:
1035 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1036 * structures of all caches, except cache_cache itself: cache_cache
1037 * is statically allocated.
1038 * Initially an __init data area is used for the head array and the
1039 * kmem_list3 structures, it's replaced with a kmalloc allocated
1040 * array at the end of the bootstrap.
1041 * 2) Create the first kmalloc cache.
1042 * The kmem_cache_t for the new cache is allocated normally.
1043 * An __init data area is used for the head array.
1044 * 3) Create the remaining kmalloc caches, with minimally sized
1045 * head arrays.
1046 * 4) Replace the __init data head arrays for cache_cache and the first
1047 * kmalloc cache with kmalloc allocated arrays.
1048 * 5) Replace the __init data for kmem_list3 for cache_cache and
1049 * the other cache's with kmalloc allocated memory.
1050 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1053 /* 1) create the cache_cache */
1054 INIT_LIST_HEAD(&cache_chain);
1055 list_add(&cache_cache.next, &cache_chain);
1056 cache_cache.colour_off = cache_line_size();
1057 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1058 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1060 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1062 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1063 &left_over, &cache_cache.num);
1064 if (!cache_cache.num)
1065 BUG();
1067 cache_cache.colour = left_over / cache_cache.colour_off;
1068 cache_cache.colour_next = 0;
1069 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1070 sizeof(struct slab), cache_line_size());
1072 /* 2+3) create the kmalloc caches */
1073 sizes = malloc_sizes;
1074 names = cache_names;
1076 /* Initialize the caches that provide memory for the array cache
1077 * and the kmem_list3 structures first.
1078 * Without this, further allocations will bug
1081 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1082 sizes[INDEX_AC].cs_size,
1083 ARCH_KMALLOC_MINALIGN,
1084 (ARCH_KMALLOC_FLAGS |
1085 SLAB_PANIC), NULL, NULL);
1087 if (INDEX_AC != INDEX_L3)
1088 sizes[INDEX_L3].cs_cachep =
1089 kmem_cache_create(names[INDEX_L3].name,
1090 sizes[INDEX_L3].cs_size,
1091 ARCH_KMALLOC_MINALIGN,
1092 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1093 NULL);
1095 while (sizes->cs_size != ULONG_MAX) {
1097 * For performance, all the general caches are L1 aligned.
1098 * This should be particularly beneficial on SMP boxes, as it
1099 * eliminates "false sharing".
1100 * Note for systems short on memory removing the alignment will
1101 * allow tighter packing of the smaller caches.
1103 if (!sizes->cs_cachep)
1104 sizes->cs_cachep = kmem_cache_create(names->name,
1105 sizes->cs_size,
1106 ARCH_KMALLOC_MINALIGN,
1107 (ARCH_KMALLOC_FLAGS
1108 | SLAB_PANIC),
1109 NULL, NULL);
1111 /* Inc off-slab bufctl limit until the ceiling is hit. */
1112 if (!(OFF_SLAB(sizes->cs_cachep))) {
1113 offslab_limit = sizes->cs_size - sizeof(struct slab);
1114 offslab_limit /= sizeof(kmem_bufctl_t);
1117 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1118 sizes->cs_size,
1119 ARCH_KMALLOC_MINALIGN,
1120 (ARCH_KMALLOC_FLAGS |
1121 SLAB_CACHE_DMA |
1122 SLAB_PANIC), NULL,
1123 NULL);
1125 sizes++;
1126 names++;
1128 /* 4) Replace the bootstrap head arrays */
1130 void *ptr;
1132 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1134 local_irq_disable();
1135 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1136 memcpy(ptr, ac_data(&cache_cache),
1137 sizeof(struct arraycache_init));
1138 cache_cache.array[smp_processor_id()] = ptr;
1139 local_irq_enable();
1141 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1143 local_irq_disable();
1144 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1145 != &initarray_generic.cache);
1146 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1147 sizeof(struct arraycache_init));
1148 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1149 ptr;
1150 local_irq_enable();
1152 /* 5) Replace the bootstrap kmem_list3's */
1154 int node;
1155 /* Replace the static kmem_list3 structures for the boot cpu */
1156 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1157 numa_node_id());
1159 for_each_online_node(node) {
1160 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1161 &initkmem_list3[SIZE_AC + node], node);
1163 if (INDEX_AC != INDEX_L3) {
1164 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1165 &initkmem_list3[SIZE_L3 + node],
1166 node);
1171 /* 6) resize the head arrays to their final sizes */
1173 kmem_cache_t *cachep;
1174 mutex_lock(&cache_chain_mutex);
1175 list_for_each_entry(cachep, &cache_chain, next)
1176 enable_cpucache(cachep);
1177 mutex_unlock(&cache_chain_mutex);
1180 /* Done! */
1181 g_cpucache_up = FULL;
1183 /* Register a cpu startup notifier callback
1184 * that initializes ac_data for all new cpus
1186 register_cpu_notifier(&cpucache_notifier);
1188 /* The reap timers are started later, with a module init call:
1189 * That part of the kernel is not yet operational.
1193 static int __init cpucache_init(void)
1195 int cpu;
1198 * Register the timers that return unneeded
1199 * pages to gfp.
1201 for_each_online_cpu(cpu)
1202 start_cpu_timer(cpu);
1204 return 0;
1207 __initcall(cpucache_init);
1210 * Interface to system's page allocator. No need to hold the cache-lock.
1212 * If we requested dmaable memory, we will get it. Even if we
1213 * did not request dmaable memory, we might get it, but that
1214 * would be relatively rare and ignorable.
1216 static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1218 struct page *page;
1219 void *addr;
1220 int i;
1222 flags |= cachep->gfpflags;
1223 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1224 if (!page)
1225 return NULL;
1226 addr = page_address(page);
1228 i = (1 << cachep->gfporder);
1229 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1230 atomic_add(i, &slab_reclaim_pages);
1231 add_page_state(nr_slab, i);
1232 while (i--) {
1233 SetPageSlab(page);
1234 page++;
1236 return addr;
1240 * Interface to system's page release.
1242 static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1244 unsigned long i = (1 << cachep->gfporder);
1245 struct page *page = virt_to_page(addr);
1246 const unsigned long nr_freed = i;
1248 while (i--) {
1249 if (!TestClearPageSlab(page))
1250 BUG();
1251 page++;
1253 sub_page_state(nr_slab, nr_freed);
1254 if (current->reclaim_state)
1255 current->reclaim_state->reclaimed_slab += nr_freed;
1256 free_pages((unsigned long)addr, cachep->gfporder);
1257 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1258 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1261 static void kmem_rcu_free(struct rcu_head *head)
1263 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1264 kmem_cache_t *cachep = slab_rcu->cachep;
1266 kmem_freepages(cachep, slab_rcu->addr);
1267 if (OFF_SLAB(cachep))
1268 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1271 #if DEBUG
1273 #ifdef CONFIG_DEBUG_PAGEALLOC
1274 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1275 unsigned long caller)
1277 int size = obj_reallen(cachep);
1279 addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];
1281 if (size < 5 * sizeof(unsigned long))
1282 return;
1284 *addr++ = 0x12345678;
1285 *addr++ = caller;
1286 *addr++ = smp_processor_id();
1287 size -= 3 * sizeof(unsigned long);
1289 unsigned long *sptr = &caller;
1290 unsigned long svalue;
1292 while (!kstack_end(sptr)) {
1293 svalue = *sptr++;
1294 if (kernel_text_address(svalue)) {
1295 *addr++ = svalue;
1296 size -= sizeof(unsigned long);
1297 if (size <= sizeof(unsigned long))
1298 break;
1303 *addr++ = 0x87654321;
1305 #endif
1307 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1309 int size = obj_reallen(cachep);
1310 addr = &((char *)addr)[obj_dbghead(cachep)];
1312 memset(addr, val, size);
1313 *(unsigned char *)(addr + size - 1) = POISON_END;
1316 static void dump_line(char *data, int offset, int limit)
1318 int i;
1319 printk(KERN_ERR "%03x:", offset);
1320 for (i = 0; i < limit; i++) {
1321 printk(" %02x", (unsigned char)data[offset + i]);
1323 printk("\n");
1325 #endif
1327 #if DEBUG
1329 static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1331 int i, size;
1332 char *realobj;
1334 if (cachep->flags & SLAB_RED_ZONE) {
1335 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1336 *dbg_redzone1(cachep, objp),
1337 *dbg_redzone2(cachep, objp));
1340 if (cachep->flags & SLAB_STORE_USER) {
1341 printk(KERN_ERR "Last user: [<%p>]",
1342 *dbg_userword(cachep, objp));
1343 print_symbol("(%s)",
1344 (unsigned long)*dbg_userword(cachep, objp));
1345 printk("\n");
1347 realobj = (char *)objp + obj_dbghead(cachep);
1348 size = obj_reallen(cachep);
1349 for (i = 0; i < size && lines; i += 16, lines--) {
1350 int limit;
1351 limit = 16;
1352 if (i + limit > size)
1353 limit = size - i;
1354 dump_line(realobj, i, limit);
1358 static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1360 char *realobj;
1361 int size, i;
1362 int lines = 0;
1364 realobj = (char *)objp + obj_dbghead(cachep);
1365 size = obj_reallen(cachep);
1367 for (i = 0; i < size; i++) {
1368 char exp = POISON_FREE;
1369 if (i == size - 1)
1370 exp = POISON_END;
1371 if (realobj[i] != exp) {
1372 int limit;
1373 /* Mismatch ! */
1374 /* Print header */
1375 if (lines == 0) {
1376 printk(KERN_ERR
1377 "Slab corruption: start=%p, len=%d\n",
1378 realobj, size);
1379 print_objinfo(cachep, objp, 0);
1381 /* Hexdump the affected line */
1382 i = (i / 16) * 16;
1383 limit = 16;
1384 if (i + limit > size)
1385 limit = size - i;
1386 dump_line(realobj, i, limit);
1387 i += 16;
1388 lines++;
1389 /* Limit to 5 lines */
1390 if (lines > 5)
1391 break;
1394 if (lines != 0) {
1395 /* Print some data about the neighboring objects, if they
1396 * exist:
1398 struct slab *slabp = page_get_slab(virt_to_page(objp));
1399 int objnr;
1401 objnr = (objp - slabp->s_mem) / cachep->objsize;
1402 if (objnr) {
1403 objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
1404 realobj = (char *)objp + obj_dbghead(cachep);
1405 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1406 realobj, size);
1407 print_objinfo(cachep, objp, 2);
1409 if (objnr + 1 < cachep->num) {
1410 objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
1411 realobj = (char *)objp + obj_dbghead(cachep);
1412 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1413 realobj, size);
1414 print_objinfo(cachep, objp, 2);
1418 #endif
1420 /* Destroy all the objs in a slab, and release the mem back to the system.
1421 * Before calling the slab must have been unlinked from the cache.
1422 * The cache-lock is not held/needed.
1424 static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
1426 void *addr = slabp->s_mem - slabp->colouroff;
1428 #if DEBUG
1429 int i;
1430 for (i = 0; i < cachep->num; i++) {
1431 void *objp = slabp->s_mem + cachep->objsize * i;
1433 if (cachep->flags & SLAB_POISON) {
1434 #ifdef CONFIG_DEBUG_PAGEALLOC
1435 if ((cachep->objsize % PAGE_SIZE) == 0
1436 && OFF_SLAB(cachep))
1437 kernel_map_pages(virt_to_page(objp),
1438 cachep->objsize / PAGE_SIZE,
1440 else
1441 check_poison_obj(cachep, objp);
1442 #else
1443 check_poison_obj(cachep, objp);
1444 #endif
1446 if (cachep->flags & SLAB_RED_ZONE) {
1447 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1448 slab_error(cachep, "start of a freed object "
1449 "was overwritten");
1450 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1451 slab_error(cachep, "end of a freed object "
1452 "was overwritten");
1454 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1455 (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0);
1457 #else
1458 if (cachep->dtor) {
1459 int i;
1460 for (i = 0; i < cachep->num; i++) {
1461 void *objp = slabp->s_mem + cachep->objsize * i;
1462 (cachep->dtor) (objp, cachep, 0);
1465 #endif
1467 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1468 struct slab_rcu *slab_rcu;
1470 slab_rcu = (struct slab_rcu *)slabp;
1471 slab_rcu->cachep = cachep;
1472 slab_rcu->addr = addr;
1473 call_rcu(&slab_rcu->head, kmem_rcu_free);
1474 } else {
1475 kmem_freepages(cachep, addr);
1476 if (OFF_SLAB(cachep))
1477 kmem_cache_free(cachep->slabp_cache, slabp);
1481 /* For setting up all the kmem_list3s for cache whose objsize is same
1482 as size of kmem_list3. */
1483 static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1485 int node;
1487 for_each_online_node(node) {
1488 cachep->nodelists[node] = &initkmem_list3[index + node];
1489 cachep->nodelists[node]->next_reap = jiffies +
1490 REAPTIMEOUT_LIST3 +
1491 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1496 * calculate_slab_order - calculate size (page order) of slabs and the number
1497 * of objects per slab.
1499 * This could be made much more intelligent. For now, try to avoid using
1500 * high order pages for slabs. When the gfp() functions are more friendly
1501 * towards high-order requests, this should be changed.
1503 static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1504 size_t align, gfp_t flags)
1506 size_t left_over = 0;
1508 for (;; cachep->gfporder++) {
1509 unsigned int num;
1510 size_t remainder;
1512 if (cachep->gfporder > MAX_GFP_ORDER) {
1513 cachep->num = 0;
1514 break;
1517 cache_estimate(cachep->gfporder, size, align, flags,
1518 &remainder, &num);
1519 if (!num)
1520 continue;
1521 /* More than offslab_limit objects will cause problems */
1522 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1523 break;
1525 cachep->num = num;
1526 left_over = remainder;
1529 * Large number of objects is good, but very large slabs are
1530 * currently bad for the gfp()s.
1532 if (cachep->gfporder >= slab_break_gfp_order)
1533 break;
1535 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1536 /* Acceptable internal fragmentation */
1537 break;
1539 return left_over;
1543 * kmem_cache_create - Create a cache.
1544 * @name: A string which is used in /proc/slabinfo to identify this cache.
1545 * @size: The size of objects to be created in this cache.
1546 * @align: The required alignment for the objects.
1547 * @flags: SLAB flags
1548 * @ctor: A constructor for the objects.
1549 * @dtor: A destructor for the objects.
1551 * Returns a ptr to the cache on success, NULL on failure.
1552 * Cannot be called within a int, but can be interrupted.
1553 * The @ctor is run when new pages are allocated by the cache
1554 * and the @dtor is run before the pages are handed back.
1556 * @name must be valid until the cache is destroyed. This implies that
1557 * the module calling this has to destroy the cache before getting
1558 * unloaded.
1560 * The flags are
1562 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1563 * to catch references to uninitialised memory.
1565 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1566 * for buffer overruns.
1568 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1569 * memory pressure.
1571 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1572 * cacheline. This can be beneficial if you're counting cycles as closely
1573 * as davem.
1575 kmem_cache_t *
1576 kmem_cache_create (const char *name, size_t size, size_t align,
1577 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1578 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1580 size_t left_over, slab_size, ralign;
1581 kmem_cache_t *cachep = NULL;
1582 struct list_head *p;
1585 * Sanity checks... these are all serious usage bugs.
1587 if ((!name) ||
1588 in_interrupt() ||
1589 (size < BYTES_PER_WORD) ||
1590 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1591 printk(KERN_ERR "%s: Early error in slab %s\n",
1592 __FUNCTION__, name);
1593 BUG();
1596 mutex_lock(&cache_chain_mutex);
1598 list_for_each(p, &cache_chain) {
1599 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1600 mm_segment_t old_fs = get_fs();
1601 char tmp;
1602 int res;
1605 * This happens when the module gets unloaded and doesn't
1606 * destroy its slab cache and no-one else reuses the vmalloc
1607 * area of the module. Print a warning.
1609 set_fs(KERNEL_DS);
1610 res = __get_user(tmp, pc->name);
1611 set_fs(old_fs);
1612 if (res) {
1613 printk("SLAB: cache with size %d has lost its name\n",
1614 pc->objsize);
1615 continue;
1618 if (!strcmp(pc->name, name)) {
1619 printk("kmem_cache_create: duplicate cache %s\n", name);
1620 dump_stack();
1621 goto oops;
1625 #if DEBUG
1626 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1627 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1628 /* No constructor, but inital state check requested */
1629 printk(KERN_ERR "%s: No con, but init state check "
1630 "requested - %s\n", __FUNCTION__, name);
1631 flags &= ~SLAB_DEBUG_INITIAL;
1633 #if FORCED_DEBUG
1635 * Enable redzoning and last user accounting, except for caches with
1636 * large objects, if the increased size would increase the object size
1637 * above the next power of two: caches with object sizes just above a
1638 * power of two have a significant amount of internal fragmentation.
1640 if ((size < 4096
1641 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1642 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1643 if (!(flags & SLAB_DESTROY_BY_RCU))
1644 flags |= SLAB_POISON;
1645 #endif
1646 if (flags & SLAB_DESTROY_BY_RCU)
1647 BUG_ON(flags & SLAB_POISON);
1648 #endif
1649 if (flags & SLAB_DESTROY_BY_RCU)
1650 BUG_ON(dtor);
1653 * Always checks flags, a caller might be expecting debug
1654 * support which isn't available.
1656 if (flags & ~CREATE_MASK)
1657 BUG();
1659 /* Check that size is in terms of words. This is needed to avoid
1660 * unaligned accesses for some archs when redzoning is used, and makes
1661 * sure any on-slab bufctl's are also correctly aligned.
1663 if (size & (BYTES_PER_WORD - 1)) {
1664 size += (BYTES_PER_WORD - 1);
1665 size &= ~(BYTES_PER_WORD - 1);
1668 /* calculate out the final buffer alignment: */
1669 /* 1) arch recommendation: can be overridden for debug */
1670 if (flags & SLAB_HWCACHE_ALIGN) {
1671 /* Default alignment: as specified by the arch code.
1672 * Except if an object is really small, then squeeze multiple
1673 * objects into one cacheline.
1675 ralign = cache_line_size();
1676 while (size <= ralign / 2)
1677 ralign /= 2;
1678 } else {
1679 ralign = BYTES_PER_WORD;
1681 /* 2) arch mandated alignment: disables debug if necessary */
1682 if (ralign < ARCH_SLAB_MINALIGN) {
1683 ralign = ARCH_SLAB_MINALIGN;
1684 if (ralign > BYTES_PER_WORD)
1685 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1687 /* 3) caller mandated alignment: disables debug if necessary */
1688 if (ralign < align) {
1689 ralign = align;
1690 if (ralign > BYTES_PER_WORD)
1691 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1693 /* 4) Store it. Note that the debug code below can reduce
1694 * the alignment to BYTES_PER_WORD.
1696 align = ralign;
1698 /* Get cache's description obj. */
1699 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1700 if (!cachep)
1701 goto oops;
1702 memset(cachep, 0, sizeof(kmem_cache_t));
1704 #if DEBUG
1705 cachep->reallen = size;
1707 if (flags & SLAB_RED_ZONE) {
1708 /* redzoning only works with word aligned caches */
1709 align = BYTES_PER_WORD;
1711 /* add space for red zone words */
1712 cachep->dbghead += BYTES_PER_WORD;
1713 size += 2 * BYTES_PER_WORD;
1715 if (flags & SLAB_STORE_USER) {
1716 /* user store requires word alignment and
1717 * one word storage behind the end of the real
1718 * object.
1720 align = BYTES_PER_WORD;
1721 size += BYTES_PER_WORD;
1723 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1724 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1725 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1726 cachep->dbghead += PAGE_SIZE - size;
1727 size = PAGE_SIZE;
1729 #endif
1730 #endif
1732 /* Determine if the slab management is 'on' or 'off' slab. */
1733 if (size >= (PAGE_SIZE >> 3))
1735 * Size is large, assume best to place the slab management obj
1736 * off-slab (should allow better packing of objs).
1738 flags |= CFLGS_OFF_SLAB;
1740 size = ALIGN(size, align);
1742 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1744 * A VFS-reclaimable slab tends to have most allocations
1745 * as GFP_NOFS and we really don't want to have to be allocating
1746 * higher-order pages when we are unable to shrink dcache.
1748 cachep->gfporder = 0;
1749 cache_estimate(cachep->gfporder, size, align, flags,
1750 &left_over, &cachep->num);
1751 } else
1752 left_over = calculate_slab_order(cachep, size, align, flags);
1754 if (!cachep->num) {
1755 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1756 kmem_cache_free(&cache_cache, cachep);
1757 cachep = NULL;
1758 goto oops;
1760 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1761 + sizeof(struct slab), align);
1764 * If the slab has been placed off-slab, and we have enough space then
1765 * move it on-slab. This is at the expense of any extra colouring.
1767 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1768 flags &= ~CFLGS_OFF_SLAB;
1769 left_over -= slab_size;
1772 if (flags & CFLGS_OFF_SLAB) {
1773 /* really off slab. No need for manual alignment */
1774 slab_size =
1775 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1778 cachep->colour_off = cache_line_size();
1779 /* Offset must be a multiple of the alignment. */
1780 if (cachep->colour_off < align)
1781 cachep->colour_off = align;
1782 cachep->colour = left_over / cachep->colour_off;
1783 cachep->slab_size = slab_size;
1784 cachep->flags = flags;
1785 cachep->gfpflags = 0;
1786 if (flags & SLAB_CACHE_DMA)
1787 cachep->gfpflags |= GFP_DMA;
1788 spin_lock_init(&cachep->spinlock);
1789 cachep->objsize = size;
1791 if (flags & CFLGS_OFF_SLAB)
1792 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1793 cachep->ctor = ctor;
1794 cachep->dtor = dtor;
1795 cachep->name = name;
1797 /* Don't let CPUs to come and go */
1798 lock_cpu_hotplug();
1800 if (g_cpucache_up == FULL) {
1801 enable_cpucache(cachep);
1802 } else {
1803 if (g_cpucache_up == NONE) {
1804 /* Note: the first kmem_cache_create must create
1805 * the cache that's used by kmalloc(24), otherwise
1806 * the creation of further caches will BUG().
1808 cachep->array[smp_processor_id()] =
1809 &initarray_generic.cache;
1811 /* If the cache that's used by
1812 * kmalloc(sizeof(kmem_list3)) is the first cache,
1813 * then we need to set up all its list3s, otherwise
1814 * the creation of further caches will BUG().
1816 set_up_list3s(cachep, SIZE_AC);
1817 if (INDEX_AC == INDEX_L3)
1818 g_cpucache_up = PARTIAL_L3;
1819 else
1820 g_cpucache_up = PARTIAL_AC;
1821 } else {
1822 cachep->array[smp_processor_id()] =
1823 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1825 if (g_cpucache_up == PARTIAL_AC) {
1826 set_up_list3s(cachep, SIZE_L3);
1827 g_cpucache_up = PARTIAL_L3;
1828 } else {
1829 int node;
1830 for_each_online_node(node) {
1832 cachep->nodelists[node] =
1833 kmalloc_node(sizeof
1834 (struct kmem_list3),
1835 GFP_KERNEL, node);
1836 BUG_ON(!cachep->nodelists[node]);
1837 kmem_list3_init(cachep->
1838 nodelists[node]);
1842 cachep->nodelists[numa_node_id()]->next_reap =
1843 jiffies + REAPTIMEOUT_LIST3 +
1844 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1846 BUG_ON(!ac_data(cachep));
1847 ac_data(cachep)->avail = 0;
1848 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1849 ac_data(cachep)->batchcount = 1;
1850 ac_data(cachep)->touched = 0;
1851 cachep->batchcount = 1;
1852 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1855 /* cache setup completed, link it into the list */
1856 list_add(&cachep->next, &cache_chain);
1857 unlock_cpu_hotplug();
1858 oops:
1859 if (!cachep && (flags & SLAB_PANIC))
1860 panic("kmem_cache_create(): failed to create slab `%s'\n",
1861 name);
1862 mutex_unlock(&cache_chain_mutex);
1863 return cachep;
1865 EXPORT_SYMBOL(kmem_cache_create);
1867 #if DEBUG
1868 static void check_irq_off(void)
1870 BUG_ON(!irqs_disabled());
1873 static void check_irq_on(void)
1875 BUG_ON(irqs_disabled());
1878 static void check_spinlock_acquired(kmem_cache_t *cachep)
1880 #ifdef CONFIG_SMP
1881 check_irq_off();
1882 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1883 #endif
1886 static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1888 #ifdef CONFIG_SMP
1889 check_irq_off();
1890 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1891 #endif
1894 #else
1895 #define check_irq_off() do { } while(0)
1896 #define check_irq_on() do { } while(0)
1897 #define check_spinlock_acquired(x) do { } while(0)
1898 #define check_spinlock_acquired_node(x, y) do { } while(0)
1899 #endif
1902 * Waits for all CPUs to execute func().
1904 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
1906 check_irq_on();
1907 preempt_disable();
1909 local_irq_disable();
1910 func(arg);
1911 local_irq_enable();
1913 if (smp_call_function(func, arg, 1, 1))
1914 BUG();
1916 preempt_enable();
1919 static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1920 int force, int node);
1922 static void do_drain(void *arg)
1924 kmem_cache_t *cachep = (kmem_cache_t *) arg;
1925 struct array_cache *ac;
1926 int node = numa_node_id();
1928 check_irq_off();
1929 ac = ac_data(cachep);
1930 spin_lock(&cachep->nodelists[node]->list_lock);
1931 free_block(cachep, ac->entry, ac->avail, node);
1932 spin_unlock(&cachep->nodelists[node]->list_lock);
1933 ac->avail = 0;
1936 static void drain_cpu_caches(kmem_cache_t *cachep)
1938 struct kmem_list3 *l3;
1939 int node;
1941 smp_call_function_all_cpus(do_drain, cachep);
1942 check_irq_on();
1943 spin_lock_irq(&cachep->spinlock);
1944 for_each_online_node(node) {
1945 l3 = cachep->nodelists[node];
1946 if (l3) {
1947 spin_lock(&l3->list_lock);
1948 drain_array_locked(cachep, l3->shared, 1, node);
1949 spin_unlock(&l3->list_lock);
1950 if (l3->alien)
1951 drain_alien_cache(cachep, l3);
1954 spin_unlock_irq(&cachep->spinlock);
1957 static int __node_shrink(kmem_cache_t *cachep, int node)
1959 struct slab *slabp;
1960 struct kmem_list3 *l3 = cachep->nodelists[node];
1961 int ret;
1963 for (;;) {
1964 struct list_head *p;
1966 p = l3->slabs_free.prev;
1967 if (p == &l3->slabs_free)
1968 break;
1970 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1971 #if DEBUG
1972 if (slabp->inuse)
1973 BUG();
1974 #endif
1975 list_del(&slabp->list);
1977 l3->free_objects -= cachep->num;
1978 spin_unlock_irq(&l3->list_lock);
1979 slab_destroy(cachep, slabp);
1980 spin_lock_irq(&l3->list_lock);
1982 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
1983 return ret;
1986 static int __cache_shrink(kmem_cache_t *cachep)
1988 int ret = 0, i = 0;
1989 struct kmem_list3 *l3;
1991 drain_cpu_caches(cachep);
1993 check_irq_on();
1994 for_each_online_node(i) {
1995 l3 = cachep->nodelists[i];
1996 if (l3) {
1997 spin_lock_irq(&l3->list_lock);
1998 ret += __node_shrink(cachep, i);
1999 spin_unlock_irq(&l3->list_lock);
2002 return (ret ? 1 : 0);
2006 * kmem_cache_shrink - Shrink a cache.
2007 * @cachep: The cache to shrink.
2009 * Releases as many slabs as possible for a cache.
2010 * To help debugging, a zero exit status indicates all slabs were released.
2012 int kmem_cache_shrink(kmem_cache_t *cachep)
2014 if (!cachep || in_interrupt())
2015 BUG();
2017 return __cache_shrink(cachep);
2019 EXPORT_SYMBOL(kmem_cache_shrink);
2022 * kmem_cache_destroy - delete a cache
2023 * @cachep: the cache to destroy
2025 * Remove a kmem_cache_t object from the slab cache.
2026 * Returns 0 on success.
2028 * It is expected this function will be called by a module when it is
2029 * unloaded. This will remove the cache completely, and avoid a duplicate
2030 * cache being allocated each time a module is loaded and unloaded, if the
2031 * module doesn't have persistent in-kernel storage across loads and unloads.
2033 * The cache must be empty before calling this function.
2035 * The caller must guarantee that noone will allocate memory from the cache
2036 * during the kmem_cache_destroy().
2038 int kmem_cache_destroy(kmem_cache_t *cachep)
2040 int i;
2041 struct kmem_list3 *l3;
2043 if (!cachep || in_interrupt())
2044 BUG();
2046 /* Don't let CPUs to come and go */
2047 lock_cpu_hotplug();
2049 /* Find the cache in the chain of caches. */
2050 mutex_lock(&cache_chain_mutex);
2052 * the chain is never empty, cache_cache is never destroyed
2054 list_del(&cachep->next);
2055 mutex_unlock(&cache_chain_mutex);
2057 if (__cache_shrink(cachep)) {
2058 slab_error(cachep, "Can't free all objects");
2059 mutex_lock(&cache_chain_mutex);
2060 list_add(&cachep->next, &cache_chain);
2061 mutex_unlock(&cache_chain_mutex);
2062 unlock_cpu_hotplug();
2063 return 1;
2066 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2067 synchronize_rcu();
2069 for_each_online_cpu(i)
2070 kfree(cachep->array[i]);
2072 /* NUMA: free the list3 structures */
2073 for_each_online_node(i) {
2074 if ((l3 = cachep->nodelists[i])) {
2075 kfree(l3->shared);
2076 free_alien_cache(l3->alien);
2077 kfree(l3);
2080 kmem_cache_free(&cache_cache, cachep);
2082 unlock_cpu_hotplug();
2084 return 0;
2086 EXPORT_SYMBOL(kmem_cache_destroy);
2088 /* Get the memory for a slab management obj. */
2089 static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2090 int colour_off, gfp_t local_flags)
2092 struct slab *slabp;
2094 if (OFF_SLAB(cachep)) {
2095 /* Slab management obj is off-slab. */
2096 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2097 if (!slabp)
2098 return NULL;
2099 } else {
2100 slabp = objp + colour_off;
2101 colour_off += cachep->slab_size;
2103 slabp->inuse = 0;
2104 slabp->colouroff = colour_off;
2105 slabp->s_mem = objp + colour_off;
2107 return slabp;
2110 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2112 return (kmem_bufctl_t *) (slabp + 1);
2115 static void cache_init_objs(kmem_cache_t *cachep,
2116 struct slab *slabp, unsigned long ctor_flags)
2118 int i;
2120 for (i = 0; i < cachep->num; i++) {
2121 void *objp = slabp->s_mem + cachep->objsize * i;
2122 #if DEBUG
2123 /* need to poison the objs? */
2124 if (cachep->flags & SLAB_POISON)
2125 poison_obj(cachep, objp, POISON_FREE);
2126 if (cachep->flags & SLAB_STORE_USER)
2127 *dbg_userword(cachep, objp) = NULL;
2129 if (cachep->flags & SLAB_RED_ZONE) {
2130 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2131 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2134 * Constructors are not allowed to allocate memory from
2135 * the same cache which they are a constructor for.
2136 * Otherwise, deadlock. They must also be threaded.
2138 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2139 cachep->ctor(objp + obj_dbghead(cachep), cachep,
2140 ctor_flags);
2142 if (cachep->flags & SLAB_RED_ZONE) {
2143 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2144 slab_error(cachep, "constructor overwrote the"
2145 " end of an object");
2146 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2147 slab_error(cachep, "constructor overwrote the"
2148 " start of an object");
2150 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
2151 && cachep->flags & SLAB_POISON)
2152 kernel_map_pages(virt_to_page(objp),
2153 cachep->objsize / PAGE_SIZE, 0);
2154 #else
2155 if (cachep->ctor)
2156 cachep->ctor(objp, cachep, ctor_flags);
2157 #endif
2158 slab_bufctl(slabp)[i] = i + 1;
2160 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2161 slabp->free = 0;
2164 static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2166 if (flags & SLAB_DMA) {
2167 if (!(cachep->gfpflags & GFP_DMA))
2168 BUG();
2169 } else {
2170 if (cachep->gfpflags & GFP_DMA)
2171 BUG();
2175 static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2177 int i;
2178 struct page *page;
2180 /* Nasty!!!!!! I hope this is OK. */
2181 i = 1 << cachep->gfporder;
2182 page = virt_to_page(objp);
2183 do {
2184 page_set_cache(page, cachep);
2185 page_set_slab(page, slabp);
2186 page++;
2187 } while (--i);
2191 * Grow (by 1) the number of slabs within a cache. This is called by
2192 * kmem_cache_alloc() when there are no active objs left in a cache.
2194 static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2196 struct slab *slabp;
2197 void *objp;
2198 size_t offset;
2199 gfp_t local_flags;
2200 unsigned long ctor_flags;
2201 struct kmem_list3 *l3;
2203 /* Be lazy and only check for valid flags here,
2204 * keeping it out of the critical path in kmem_cache_alloc().
2206 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2207 BUG();
2208 if (flags & SLAB_NO_GROW)
2209 return 0;
2211 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2212 local_flags = (flags & SLAB_LEVEL_MASK);
2213 if (!(local_flags & __GFP_WAIT))
2215 * Not allowed to sleep. Need to tell a constructor about
2216 * this - it might need to know...
2218 ctor_flags |= SLAB_CTOR_ATOMIC;
2220 /* About to mess with non-constant members - lock. */
2221 check_irq_off();
2222 spin_lock(&cachep->spinlock);
2224 /* Get colour for the slab, and cal the next value. */
2225 offset = cachep->colour_next;
2226 cachep->colour_next++;
2227 if (cachep->colour_next >= cachep->colour)
2228 cachep->colour_next = 0;
2229 offset *= cachep->colour_off;
2231 spin_unlock(&cachep->spinlock);
2233 check_irq_off();
2234 if (local_flags & __GFP_WAIT)
2235 local_irq_enable();
2238 * The test for missing atomic flag is performed here, rather than
2239 * the more obvious place, simply to reduce the critical path length
2240 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2241 * will eventually be caught here (where it matters).
2243 kmem_flagcheck(cachep, flags);
2245 /* Get mem for the objs.
2246 * Attempt to allocate a physical page from 'nodeid',
2248 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2249 goto failed;
2251 /* Get slab management. */
2252 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2253 goto opps1;
2255 slabp->nodeid = nodeid;
2256 set_slab_attr(cachep, slabp, objp);
2258 cache_init_objs(cachep, slabp, ctor_flags);
2260 if (local_flags & __GFP_WAIT)
2261 local_irq_disable();
2262 check_irq_off();
2263 l3 = cachep->nodelists[nodeid];
2264 spin_lock(&l3->list_lock);
2266 /* Make slab active. */
2267 list_add_tail(&slabp->list, &(l3->slabs_free));
2268 STATS_INC_GROWN(cachep);
2269 l3->free_objects += cachep->num;
2270 spin_unlock(&l3->list_lock);
2271 return 1;
2272 opps1:
2273 kmem_freepages(cachep, objp);
2274 failed:
2275 if (local_flags & __GFP_WAIT)
2276 local_irq_disable();
2277 return 0;
2280 #if DEBUG
2283 * Perform extra freeing checks:
2284 * - detect bad pointers.
2285 * - POISON/RED_ZONE checking
2286 * - destructor calls, for caches with POISON+dtor
2288 static void kfree_debugcheck(const void *objp)
2290 struct page *page;
2292 if (!virt_addr_valid(objp)) {
2293 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2294 (unsigned long)objp);
2295 BUG();
2297 page = virt_to_page(objp);
2298 if (!PageSlab(page)) {
2299 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2300 (unsigned long)objp);
2301 BUG();
2305 static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2306 void *caller)
2308 struct page *page;
2309 unsigned int objnr;
2310 struct slab *slabp;
2312 objp -= obj_dbghead(cachep);
2313 kfree_debugcheck(objp);
2314 page = virt_to_page(objp);
2316 if (page_get_cache(page) != cachep) {
2317 printk(KERN_ERR
2318 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2319 page_get_cache(page), cachep);
2320 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2321 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2322 page_get_cache(page)->name);
2323 WARN_ON(1);
2325 slabp = page_get_slab(page);
2327 if (cachep->flags & SLAB_RED_ZONE) {
2328 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2329 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2330 slab_error(cachep,
2331 "double free, or memory outside"
2332 " object was overwritten");
2333 printk(KERN_ERR
2334 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2335 objp, *dbg_redzone1(cachep, objp),
2336 *dbg_redzone2(cachep, objp));
2338 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2339 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2341 if (cachep->flags & SLAB_STORE_USER)
2342 *dbg_userword(cachep, objp) = caller;
2344 objnr = (objp - slabp->s_mem) / cachep->objsize;
2346 BUG_ON(objnr >= cachep->num);
2347 BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);
2349 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2350 /* Need to call the slab's constructor so the
2351 * caller can perform a verify of its state (debugging).
2352 * Called without the cache-lock held.
2354 cachep->ctor(objp + obj_dbghead(cachep),
2355 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2357 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2358 /* we want to cache poison the object,
2359 * call the destruction callback
2361 cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
2363 if (cachep->flags & SLAB_POISON) {
2364 #ifdef CONFIG_DEBUG_PAGEALLOC
2365 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2366 store_stackinfo(cachep, objp, (unsigned long)caller);
2367 kernel_map_pages(virt_to_page(objp),
2368 cachep->objsize / PAGE_SIZE, 0);
2369 } else {
2370 poison_obj(cachep, objp, POISON_FREE);
2372 #else
2373 poison_obj(cachep, objp, POISON_FREE);
2374 #endif
2376 return objp;
2379 static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2381 kmem_bufctl_t i;
2382 int entries = 0;
2384 /* Check slab's freelist to see if this obj is there. */
2385 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2386 entries++;
2387 if (entries > cachep->num || i >= cachep->num)
2388 goto bad;
2390 if (entries != cachep->num - slabp->inuse) {
2391 bad:
2392 printk(KERN_ERR
2393 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2394 cachep->name, cachep->num, slabp, slabp->inuse);
2395 for (i = 0;
2396 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2397 i++) {
2398 if ((i % 16) == 0)
2399 printk("\n%03x:", i);
2400 printk(" %02x", ((unsigned char *)slabp)[i]);
2402 printk("\n");
2403 BUG();
2406 #else
2407 #define kfree_debugcheck(x) do { } while(0)
2408 #define cache_free_debugcheck(x,objp,z) (objp)
2409 #define check_slabp(x,y) do { } while(0)
2410 #endif
2412 static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2414 int batchcount;
2415 struct kmem_list3 *l3;
2416 struct array_cache *ac;
2418 check_irq_off();
2419 ac = ac_data(cachep);
2420 retry:
2421 batchcount = ac->batchcount;
2422 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2423 /* if there was little recent activity on this
2424 * cache, then perform only a partial refill.
2425 * Otherwise we could generate refill bouncing.
2427 batchcount = BATCHREFILL_LIMIT;
2429 l3 = cachep->nodelists[numa_node_id()];
2431 BUG_ON(ac->avail > 0 || !l3);
2432 spin_lock(&l3->list_lock);
2434 if (l3->shared) {
2435 struct array_cache *shared_array = l3->shared;
2436 if (shared_array->avail) {
2437 if (batchcount > shared_array->avail)
2438 batchcount = shared_array->avail;
2439 shared_array->avail -= batchcount;
2440 ac->avail = batchcount;
2441 memcpy(ac->entry,
2442 &(shared_array->entry[shared_array->avail]),
2443 sizeof(void *) * batchcount);
2444 shared_array->touched = 1;
2445 goto alloc_done;
2448 while (batchcount > 0) {
2449 struct list_head *entry;
2450 struct slab *slabp;
2451 /* Get slab alloc is to come from. */
2452 entry = l3->slabs_partial.next;
2453 if (entry == &l3->slabs_partial) {
2454 l3->free_touched = 1;
2455 entry = l3->slabs_free.next;
2456 if (entry == &l3->slabs_free)
2457 goto must_grow;
2460 slabp = list_entry(entry, struct slab, list);
2461 check_slabp(cachep, slabp);
2462 check_spinlock_acquired(cachep);
2463 while (slabp->inuse < cachep->num && batchcount--) {
2464 kmem_bufctl_t next;
2465 STATS_INC_ALLOCED(cachep);
2466 STATS_INC_ACTIVE(cachep);
2467 STATS_SET_HIGH(cachep);
2469 /* get obj pointer */
2470 ac->entry[ac->avail++] = slabp->s_mem +
2471 slabp->free * cachep->objsize;
2473 slabp->inuse++;
2474 next = slab_bufctl(slabp)[slabp->free];
2475 #if DEBUG
2476 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2477 WARN_ON(numa_node_id() != slabp->nodeid);
2478 #endif
2479 slabp->free = next;
2481 check_slabp(cachep, slabp);
2483 /* move slabp to correct slabp list: */
2484 list_del(&slabp->list);
2485 if (slabp->free == BUFCTL_END)
2486 list_add(&slabp->list, &l3->slabs_full);
2487 else
2488 list_add(&slabp->list, &l3->slabs_partial);
2491 must_grow:
2492 l3->free_objects -= ac->avail;
2493 alloc_done:
2494 spin_unlock(&l3->list_lock);
2496 if (unlikely(!ac->avail)) {
2497 int x;
2498 x = cache_grow(cachep, flags, numa_node_id());
2500 // cache_grow can reenable interrupts, then ac could change.
2501 ac = ac_data(cachep);
2502 if (!x && ac->avail == 0) // no objects in sight? abort
2503 return NULL;
2505 if (!ac->avail) // objects refilled by interrupt?
2506 goto retry;
2508 ac->touched = 1;
2509 return ac->entry[--ac->avail];
2512 static inline void
2513 cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2515 might_sleep_if(flags & __GFP_WAIT);
2516 #if DEBUG
2517 kmem_flagcheck(cachep, flags);
2518 #endif
2521 #if DEBUG
2522 static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2523 void *objp, void *caller)
2525 if (!objp)
2526 return objp;
2527 if (cachep->flags & SLAB_POISON) {
2528 #ifdef CONFIG_DEBUG_PAGEALLOC
2529 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2530 kernel_map_pages(virt_to_page(objp),
2531 cachep->objsize / PAGE_SIZE, 1);
2532 else
2533 check_poison_obj(cachep, objp);
2534 #else
2535 check_poison_obj(cachep, objp);
2536 #endif
2537 poison_obj(cachep, objp, POISON_INUSE);
2539 if (cachep->flags & SLAB_STORE_USER)
2540 *dbg_userword(cachep, objp) = caller;
2542 if (cachep->flags & SLAB_RED_ZONE) {
2543 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2544 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2545 slab_error(cachep,
2546 "double free, or memory outside"
2547 " object was overwritten");
2548 printk(KERN_ERR
2549 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2550 objp, *dbg_redzone1(cachep, objp),
2551 *dbg_redzone2(cachep, objp));
2553 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2554 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2556 objp += obj_dbghead(cachep);
2557 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2558 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2560 if (!(flags & __GFP_WAIT))
2561 ctor_flags |= SLAB_CTOR_ATOMIC;
2563 cachep->ctor(objp, cachep, ctor_flags);
2565 return objp;
2567 #else
2568 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2569 #endif
2571 static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2573 void *objp;
2574 struct array_cache *ac;
2576 #ifdef CONFIG_NUMA
2577 if (unlikely(current->mempolicy && !in_interrupt())) {
2578 int nid = slab_node(current->mempolicy);
2580 if (nid != numa_node_id())
2581 return __cache_alloc_node(cachep, flags, nid);
2583 #endif
2585 check_irq_off();
2586 ac = ac_data(cachep);
2587 if (likely(ac->avail)) {
2588 STATS_INC_ALLOCHIT(cachep);
2589 ac->touched = 1;
2590 objp = ac->entry[--ac->avail];
2591 } else {
2592 STATS_INC_ALLOCMISS(cachep);
2593 objp = cache_alloc_refill(cachep, flags);
2595 return objp;
2598 static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2600 unsigned long save_flags;
2601 void *objp;
2603 cache_alloc_debugcheck_before(cachep, flags);
2605 local_irq_save(save_flags);
2606 objp = ____cache_alloc(cachep, flags);
2607 local_irq_restore(save_flags);
2608 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2609 __builtin_return_address(0));
2610 prefetchw(objp);
2611 return objp;
2614 #ifdef CONFIG_NUMA
2616 * A interface to enable slab creation on nodeid
2618 static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2620 struct list_head *entry;
2621 struct slab *slabp;
2622 struct kmem_list3 *l3;
2623 void *obj;
2624 kmem_bufctl_t next;
2625 int x;
2627 l3 = cachep->nodelists[nodeid];
2628 BUG_ON(!l3);
2630 retry:
2631 spin_lock(&l3->list_lock);
2632 entry = l3->slabs_partial.next;
2633 if (entry == &l3->slabs_partial) {
2634 l3->free_touched = 1;
2635 entry = l3->slabs_free.next;
2636 if (entry == &l3->slabs_free)
2637 goto must_grow;
2640 slabp = list_entry(entry, struct slab, list);
2641 check_spinlock_acquired_node(cachep, nodeid);
2642 check_slabp(cachep, slabp);
2644 STATS_INC_NODEALLOCS(cachep);
2645 STATS_INC_ACTIVE(cachep);
2646 STATS_SET_HIGH(cachep);
2648 BUG_ON(slabp->inuse == cachep->num);
2650 /* get obj pointer */
2651 obj = slabp->s_mem + slabp->free * cachep->objsize;
2652 slabp->inuse++;
2653 next = slab_bufctl(slabp)[slabp->free];
2654 #if DEBUG
2655 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2656 #endif
2657 slabp->free = next;
2658 check_slabp(cachep, slabp);
2659 l3->free_objects--;
2660 /* move slabp to correct slabp list: */
2661 list_del(&slabp->list);
2663 if (slabp->free == BUFCTL_END) {
2664 list_add(&slabp->list, &l3->slabs_full);
2665 } else {
2666 list_add(&slabp->list, &l3->slabs_partial);
2669 spin_unlock(&l3->list_lock);
2670 goto done;
2672 must_grow:
2673 spin_unlock(&l3->list_lock);
2674 x = cache_grow(cachep, flags, nodeid);
2676 if (!x)
2677 return NULL;
2679 goto retry;
2680 done:
2681 return obj;
2683 #endif
2686 * Caller needs to acquire correct kmem_list's list_lock
2688 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2689 int node)
2691 int i;
2692 struct kmem_list3 *l3;
2694 for (i = 0; i < nr_objects; i++) {
2695 void *objp = objpp[i];
2696 struct slab *slabp;
2697 unsigned int objnr;
2699 slabp = page_get_slab(virt_to_page(objp));
2700 l3 = cachep->nodelists[node];
2701 list_del(&slabp->list);
2702 objnr = (objp - slabp->s_mem) / cachep->objsize;
2703 check_spinlock_acquired_node(cachep, node);
2704 check_slabp(cachep, slabp);
2706 #if DEBUG
2707 /* Verify that the slab belongs to the intended node */
2708 WARN_ON(slabp->nodeid != node);
2710 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2711 printk(KERN_ERR "slab: double free detected in cache "
2712 "'%s', objp %p\n", cachep->name, objp);
2713 BUG();
2715 #endif
2716 slab_bufctl(slabp)[objnr] = slabp->free;
2717 slabp->free = objnr;
2718 STATS_DEC_ACTIVE(cachep);
2719 slabp->inuse--;
2720 l3->free_objects++;
2721 check_slabp(cachep, slabp);
2723 /* fixup slab chains */
2724 if (slabp->inuse == 0) {
2725 if (l3->free_objects > l3->free_limit) {
2726 l3->free_objects -= cachep->num;
2727 slab_destroy(cachep, slabp);
2728 } else {
2729 list_add(&slabp->list, &l3->slabs_free);
2731 } else {
2732 /* Unconditionally move a slab to the end of the
2733 * partial list on free - maximum time for the
2734 * other objects to be freed, too.
2736 list_add_tail(&slabp->list, &l3->slabs_partial);
2741 static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2743 int batchcount;
2744 struct kmem_list3 *l3;
2745 int node = numa_node_id();
2747 batchcount = ac->batchcount;
2748 #if DEBUG
2749 BUG_ON(!batchcount || batchcount > ac->avail);
2750 #endif
2751 check_irq_off();
2752 l3 = cachep->nodelists[node];
2753 spin_lock(&l3->list_lock);
2754 if (l3->shared) {
2755 struct array_cache *shared_array = l3->shared;
2756 int max = shared_array->limit - shared_array->avail;
2757 if (max) {
2758 if (batchcount > max)
2759 batchcount = max;
2760 memcpy(&(shared_array->entry[shared_array->avail]),
2761 ac->entry, sizeof(void *) * batchcount);
2762 shared_array->avail += batchcount;
2763 goto free_done;
2767 free_block(cachep, ac->entry, batchcount, node);
2768 free_done:
2769 #if STATS
2771 int i = 0;
2772 struct list_head *p;
2774 p = l3->slabs_free.next;
2775 while (p != &(l3->slabs_free)) {
2776 struct slab *slabp;
2778 slabp = list_entry(p, struct slab, list);
2779 BUG_ON(slabp->inuse);
2781 i++;
2782 p = p->next;
2784 STATS_SET_FREEABLE(cachep, i);
2786 #endif
2787 spin_unlock(&l3->list_lock);
2788 ac->avail -= batchcount;
2789 memmove(ac->entry, &(ac->entry[batchcount]),
2790 sizeof(void *) * ac->avail);
2794 * __cache_free
2795 * Release an obj back to its cache. If the obj has a constructed
2796 * state, it must be in this state _before_ it is released.
2798 * Called with disabled ints.
2800 static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2802 struct array_cache *ac = ac_data(cachep);
2804 check_irq_off();
2805 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2807 /* Make sure we are not freeing a object from another
2808 * node to the array cache on this cpu.
2810 #ifdef CONFIG_NUMA
2812 struct slab *slabp;
2813 slabp = page_get_slab(virt_to_page(objp));
2814 if (unlikely(slabp->nodeid != numa_node_id())) {
2815 struct array_cache *alien = NULL;
2816 int nodeid = slabp->nodeid;
2817 struct kmem_list3 *l3 =
2818 cachep->nodelists[numa_node_id()];
2820 STATS_INC_NODEFREES(cachep);
2821 if (l3->alien && l3->alien[nodeid]) {
2822 alien = l3->alien[nodeid];
2823 spin_lock(&alien->lock);
2824 if (unlikely(alien->avail == alien->limit))
2825 __drain_alien_cache(cachep,
2826 alien, nodeid);
2827 alien->entry[alien->avail++] = objp;
2828 spin_unlock(&alien->lock);
2829 } else {
2830 spin_lock(&(cachep->nodelists[nodeid])->
2831 list_lock);
2832 free_block(cachep, &objp, 1, nodeid);
2833 spin_unlock(&(cachep->nodelists[nodeid])->
2834 list_lock);
2836 return;
2839 #endif
2840 if (likely(ac->avail < ac->limit)) {
2841 STATS_INC_FREEHIT(cachep);
2842 ac->entry[ac->avail++] = objp;
2843 return;
2844 } else {
2845 STATS_INC_FREEMISS(cachep);
2846 cache_flusharray(cachep, ac);
2847 ac->entry[ac->avail++] = objp;
2852 * kmem_cache_alloc - Allocate an object
2853 * @cachep: The cache to allocate from.
2854 * @flags: See kmalloc().
2856 * Allocate an object from this cache. The flags are only relevant
2857 * if the cache has no available objects.
2859 void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2861 return __cache_alloc(cachep, flags);
2863 EXPORT_SYMBOL(kmem_cache_alloc);
2866 * kmem_ptr_validate - check if an untrusted pointer might
2867 * be a slab entry.
2868 * @cachep: the cache we're checking against
2869 * @ptr: pointer to validate
2871 * This verifies that the untrusted pointer looks sane:
2872 * it is _not_ a guarantee that the pointer is actually
2873 * part of the slab cache in question, but it at least
2874 * validates that the pointer can be dereferenced and
2875 * looks half-way sane.
2877 * Currently only used for dentry validation.
2879 int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2881 unsigned long addr = (unsigned long)ptr;
2882 unsigned long min_addr = PAGE_OFFSET;
2883 unsigned long align_mask = BYTES_PER_WORD - 1;
2884 unsigned long size = cachep->objsize;
2885 struct page *page;
2887 if (unlikely(addr < min_addr))
2888 goto out;
2889 if (unlikely(addr > (unsigned long)high_memory - size))
2890 goto out;
2891 if (unlikely(addr & align_mask))
2892 goto out;
2893 if (unlikely(!kern_addr_valid(addr)))
2894 goto out;
2895 if (unlikely(!kern_addr_valid(addr + size - 1)))
2896 goto out;
2897 page = virt_to_page(ptr);
2898 if (unlikely(!PageSlab(page)))
2899 goto out;
2900 if (unlikely(page_get_cache(page) != cachep))
2901 goto out;
2902 return 1;
2903 out:
2904 return 0;
2907 #ifdef CONFIG_NUMA
2909 * kmem_cache_alloc_node - Allocate an object on the specified node
2910 * @cachep: The cache to allocate from.
2911 * @flags: See kmalloc().
2912 * @nodeid: node number of the target node.
2914 * Identical to kmem_cache_alloc, except that this function is slow
2915 * and can sleep. And it will allocate memory on the given node, which
2916 * can improve the performance for cpu bound structures.
2917 * New and improved: it will now make sure that the object gets
2918 * put on the correct node list so that there is no false sharing.
2920 void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2922 unsigned long save_flags;
2923 void *ptr;
2925 if (nodeid == -1)
2926 return __cache_alloc(cachep, flags);
2928 if (unlikely(!cachep->nodelists[nodeid])) {
2929 /* Fall back to __cache_alloc if we run into trouble */
2930 printk(KERN_WARNING
2931 "slab: not allocating in inactive node %d for cache %s\n",
2932 nodeid, cachep->name);
2933 return __cache_alloc(cachep, flags);
2936 cache_alloc_debugcheck_before(cachep, flags);
2937 local_irq_save(save_flags);
2938 if (nodeid == numa_node_id())
2939 ptr = ____cache_alloc(cachep, flags);
2940 else
2941 ptr = __cache_alloc_node(cachep, flags, nodeid);
2942 local_irq_restore(save_flags);
2943 ptr =
2944 cache_alloc_debugcheck_after(cachep, flags, ptr,
2945 __builtin_return_address(0));
2947 return ptr;
2949 EXPORT_SYMBOL(kmem_cache_alloc_node);
2951 void *kmalloc_node(size_t size, gfp_t flags, int node)
2953 kmem_cache_t *cachep;
2955 cachep = kmem_find_general_cachep(size, flags);
2956 if (unlikely(cachep == NULL))
2957 return NULL;
2958 return kmem_cache_alloc_node(cachep, flags, node);
2960 EXPORT_SYMBOL(kmalloc_node);
2961 #endif
2964 * kmalloc - allocate memory
2965 * @size: how many bytes of memory are required.
2966 * @flags: the type of memory to allocate.
2968 * kmalloc is the normal method of allocating memory
2969 * in the kernel.
2971 * The @flags argument may be one of:
2973 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2975 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2977 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2979 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2980 * must be suitable for DMA. This can mean different things on different
2981 * platforms. For example, on i386, it means that the memory must come
2982 * from the first 16MB.
2984 void *__kmalloc(size_t size, gfp_t flags)
2986 kmem_cache_t *cachep;
2988 /* If you want to save a few bytes .text space: replace
2989 * __ with kmem_.
2990 * Then kmalloc uses the uninlined functions instead of the inline
2991 * functions.
2993 cachep = __find_general_cachep(size, flags);
2994 if (unlikely(cachep == NULL))
2995 return NULL;
2996 return __cache_alloc(cachep, flags);
2998 EXPORT_SYMBOL(__kmalloc);
3000 #ifdef CONFIG_SMP
3002 * __alloc_percpu - allocate one copy of the object for every present
3003 * cpu in the system, zeroing them.
3004 * Objects should be dereferenced using the per_cpu_ptr macro only.
3006 * @size: how many bytes of memory are required.
3008 void *__alloc_percpu(size_t size)
3010 int i;
3011 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3013 if (!pdata)
3014 return NULL;
3017 * Cannot use for_each_online_cpu since a cpu may come online
3018 * and we have no way of figuring out how to fix the array
3019 * that we have allocated then....
3021 for_each_cpu(i) {
3022 int node = cpu_to_node(i);
3024 if (node_online(node))
3025 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3026 else
3027 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3029 if (!pdata->ptrs[i])
3030 goto unwind_oom;
3031 memset(pdata->ptrs[i], 0, size);
3034 /* Catch derefs w/o wrappers */
3035 return (void *)(~(unsigned long)pdata);
3037 unwind_oom:
3038 while (--i >= 0) {
3039 if (!cpu_possible(i))
3040 continue;
3041 kfree(pdata->ptrs[i]);
3043 kfree(pdata);
3044 return NULL;
3046 EXPORT_SYMBOL(__alloc_percpu);
3047 #endif
3050 * kmem_cache_free - Deallocate an object
3051 * @cachep: The cache the allocation was from.
3052 * @objp: The previously allocated object.
3054 * Free an object which was previously allocated from this
3055 * cache.
3057 void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3059 unsigned long flags;
3061 local_irq_save(flags);
3062 __cache_free(cachep, objp);
3063 local_irq_restore(flags);
3065 EXPORT_SYMBOL(kmem_cache_free);
3068 * kfree - free previously allocated memory
3069 * @objp: pointer returned by kmalloc.
3071 * If @objp is NULL, no operation is performed.
3073 * Don't free memory not originally allocated by kmalloc()
3074 * or you will run into trouble.
3076 void kfree(const void *objp)
3078 kmem_cache_t *c;
3079 unsigned long flags;
3081 if (unlikely(!objp))
3082 return;
3083 local_irq_save(flags);
3084 kfree_debugcheck(objp);
3085 c = page_get_cache(virt_to_page(objp));
3086 mutex_debug_check_no_locks_freed(objp, obj_reallen(c));
3087 __cache_free(c, (void *)objp);
3088 local_irq_restore(flags);
3090 EXPORT_SYMBOL(kfree);
3092 #ifdef CONFIG_SMP
3094 * free_percpu - free previously allocated percpu memory
3095 * @objp: pointer returned by alloc_percpu.
3097 * Don't free memory not originally allocated by alloc_percpu()
3098 * The complemented objp is to check for that.
3100 void free_percpu(const void *objp)
3102 int i;
3103 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3106 * We allocate for all cpus so we cannot use for online cpu here.
3108 for_each_cpu(i)
3109 kfree(p->ptrs[i]);
3110 kfree(p);
3112 EXPORT_SYMBOL(free_percpu);
3113 #endif
3115 unsigned int kmem_cache_size(kmem_cache_t *cachep)
3117 return obj_reallen(cachep);
3119 EXPORT_SYMBOL(kmem_cache_size);
3121 const char *kmem_cache_name(kmem_cache_t *cachep)
3123 return cachep->name;
3125 EXPORT_SYMBOL_GPL(kmem_cache_name);
3128 * This initializes kmem_list3 for all nodes.
3130 static int alloc_kmemlist(kmem_cache_t *cachep)
3132 int node;
3133 struct kmem_list3 *l3;
3134 int err = 0;
3136 for_each_online_node(node) {
3137 struct array_cache *nc = NULL, *new;
3138 struct array_cache **new_alien = NULL;
3139 #ifdef CONFIG_NUMA
3140 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3141 goto fail;
3142 #endif
3143 if (!(new = alloc_arraycache(node, (cachep->shared *
3144 cachep->batchcount),
3145 0xbaadf00d)))
3146 goto fail;
3147 if ((l3 = cachep->nodelists[node])) {
3149 spin_lock_irq(&l3->list_lock);
3151 if ((nc = cachep->nodelists[node]->shared))
3152 free_block(cachep, nc->entry, nc->avail, node);
3154 l3->shared = new;
3155 if (!cachep->nodelists[node]->alien) {
3156 l3->alien = new_alien;
3157 new_alien = NULL;
3159 l3->free_limit = (1 + nr_cpus_node(node)) *
3160 cachep->batchcount + cachep->num;
3161 spin_unlock_irq(&l3->list_lock);
3162 kfree(nc);
3163 free_alien_cache(new_alien);
3164 continue;
3166 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3167 GFP_KERNEL, node)))
3168 goto fail;
3170 kmem_list3_init(l3);
3171 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3172 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3173 l3->shared = new;
3174 l3->alien = new_alien;
3175 l3->free_limit = (1 + nr_cpus_node(node)) *
3176 cachep->batchcount + cachep->num;
3177 cachep->nodelists[node] = l3;
3179 return err;
3180 fail:
3181 err = -ENOMEM;
3182 return err;
3185 struct ccupdate_struct {
3186 kmem_cache_t *cachep;
3187 struct array_cache *new[NR_CPUS];
3190 static void do_ccupdate_local(void *info)
3192 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3193 struct array_cache *old;
3195 check_irq_off();
3196 old = ac_data(new->cachep);
3198 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3199 new->new[smp_processor_id()] = old;
3202 static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3203 int shared)
3205 struct ccupdate_struct new;
3206 int i, err;
3208 memset(&new.new, 0, sizeof(new.new));
3209 for_each_online_cpu(i) {
3210 new.new[i] =
3211 alloc_arraycache(cpu_to_node(i), limit, batchcount);
3212 if (!new.new[i]) {
3213 for (i--; i >= 0; i--)
3214 kfree(new.new[i]);
3215 return -ENOMEM;
3218 new.cachep = cachep;
3220 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3222 check_irq_on();
3223 spin_lock_irq(&cachep->spinlock);
3224 cachep->batchcount = batchcount;
3225 cachep->limit = limit;
3226 cachep->shared = shared;
3227 spin_unlock_irq(&cachep->spinlock);
3229 for_each_online_cpu(i) {
3230 struct array_cache *ccold = new.new[i];
3231 if (!ccold)
3232 continue;
3233 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3234 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3235 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3236 kfree(ccold);
3239 err = alloc_kmemlist(cachep);
3240 if (err) {
3241 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3242 cachep->name, -err);
3243 BUG();
3245 return 0;
3248 static void enable_cpucache(kmem_cache_t *cachep)
3250 int err;
3251 int limit, shared;
3253 /* The head array serves three purposes:
3254 * - create a LIFO ordering, i.e. return objects that are cache-warm
3255 * - reduce the number of spinlock operations.
3256 * - reduce the number of linked list operations on the slab and
3257 * bufctl chains: array operations are cheaper.
3258 * The numbers are guessed, we should auto-tune as described by
3259 * Bonwick.
3261 if (cachep->objsize > 131072)
3262 limit = 1;
3263 else if (cachep->objsize > PAGE_SIZE)
3264 limit = 8;
3265 else if (cachep->objsize > 1024)
3266 limit = 24;
3267 else if (cachep->objsize > 256)
3268 limit = 54;
3269 else
3270 limit = 120;
3272 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3273 * allocation behaviour: Most allocs on one cpu, most free operations
3274 * on another cpu. For these cases, an efficient object passing between
3275 * cpus is necessary. This is provided by a shared array. The array
3276 * replaces Bonwick's magazine layer.
3277 * On uniprocessor, it's functionally equivalent (but less efficient)
3278 * to a larger limit. Thus disabled by default.
3280 shared = 0;
3281 #ifdef CONFIG_SMP
3282 if (cachep->objsize <= PAGE_SIZE)
3283 shared = 8;
3284 #endif
3286 #if DEBUG
3287 /* With debugging enabled, large batchcount lead to excessively
3288 * long periods with disabled local interrupts. Limit the
3289 * batchcount
3291 if (limit > 32)
3292 limit = 32;
3293 #endif
3294 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3295 if (err)
3296 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3297 cachep->name, -err);
3300 static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3301 int force, int node)
3303 int tofree;
3305 check_spinlock_acquired_node(cachep, node);
3306 if (ac->touched && !force) {
3307 ac->touched = 0;
3308 } else if (ac->avail) {
3309 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3310 if (tofree > ac->avail) {
3311 tofree = (ac->avail + 1) / 2;
3313 free_block(cachep, ac->entry, tofree, node);
3314 ac->avail -= tofree;
3315 memmove(ac->entry, &(ac->entry[tofree]),
3316 sizeof(void *) * ac->avail);
3321 * cache_reap - Reclaim memory from caches.
3322 * @unused: unused parameter
3324 * Called from workqueue/eventd every few seconds.
3325 * Purpose:
3326 * - clear the per-cpu caches for this CPU.
3327 * - return freeable pages to the main free memory pool.
3329 * If we cannot acquire the cache chain mutex then just give up - we'll
3330 * try again on the next iteration.
3332 static void cache_reap(void *unused)
3334 struct list_head *walk;
3335 struct kmem_list3 *l3;
3337 if (!mutex_trylock(&cache_chain_mutex)) {
3338 /* Give up. Setup the next iteration. */
3339 schedule_delayed_work(&__get_cpu_var(reap_work),
3340 REAPTIMEOUT_CPUC);
3341 return;
3344 list_for_each(walk, &cache_chain) {
3345 kmem_cache_t *searchp;
3346 struct list_head *p;
3347 int tofree;
3348 struct slab *slabp;
3350 searchp = list_entry(walk, kmem_cache_t, next);
3352 if (searchp->flags & SLAB_NO_REAP)
3353 goto next;
3355 check_irq_on();
3357 l3 = searchp->nodelists[numa_node_id()];
3358 if (l3->alien)
3359 drain_alien_cache(searchp, l3);
3360 spin_lock_irq(&l3->list_lock);
3362 drain_array_locked(searchp, ac_data(searchp), 0,
3363 numa_node_id());
3365 if (time_after(l3->next_reap, jiffies))
3366 goto next_unlock;
3368 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3370 if (l3->shared)
3371 drain_array_locked(searchp, l3->shared, 0,
3372 numa_node_id());
3374 if (l3->free_touched) {
3375 l3->free_touched = 0;
3376 goto next_unlock;
3379 tofree =
3380 (l3->free_limit + 5 * searchp->num -
3381 1) / (5 * searchp->num);
3382 do {
3383 p = l3->slabs_free.next;
3384 if (p == &(l3->slabs_free))
3385 break;
3387 slabp = list_entry(p, struct slab, list);
3388 BUG_ON(slabp->inuse);
3389 list_del(&slabp->list);
3390 STATS_INC_REAPED(searchp);
3392 /* Safe to drop the lock. The slab is no longer
3393 * linked to the cache.
3394 * searchp cannot disappear, we hold
3395 * cache_chain_lock
3397 l3->free_objects -= searchp->num;
3398 spin_unlock_irq(&l3->list_lock);
3399 slab_destroy(searchp, slabp);
3400 spin_lock_irq(&l3->list_lock);
3401 } while (--tofree > 0);
3402 next_unlock:
3403 spin_unlock_irq(&l3->list_lock);
3404 next:
3405 cond_resched();
3407 check_irq_on();
3408 mutex_unlock(&cache_chain_mutex);
3409 drain_remote_pages();
3410 /* Setup the next iteration */
3411 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3414 #ifdef CONFIG_PROC_FS
3416 static void print_slabinfo_header(struct seq_file *m)
3419 * Output format version, so at least we can change it
3420 * without _too_ many complaints.
3422 #if STATS
3423 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3424 #else
3425 seq_puts(m, "slabinfo - version: 2.1\n");
3426 #endif
3427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3428 "<objperslab> <pagesperslab>");
3429 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3430 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3431 #if STATS
3432 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3433 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3434 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3435 #endif
3436 seq_putc(m, '\n');
3439 static void *s_start(struct seq_file *m, loff_t *pos)
3441 loff_t n = *pos;
3442 struct list_head *p;
3444 mutex_lock(&cache_chain_mutex);
3445 if (!n)
3446 print_slabinfo_header(m);
3447 p = cache_chain.next;
3448 while (n--) {
3449 p = p->next;
3450 if (p == &cache_chain)
3451 return NULL;
3453 return list_entry(p, kmem_cache_t, next);
3456 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3458 kmem_cache_t *cachep = p;
3459 ++*pos;
3460 return cachep->next.next == &cache_chain ? NULL
3461 : list_entry(cachep->next.next, kmem_cache_t, next);
3464 static void s_stop(struct seq_file *m, void *p)
3466 mutex_unlock(&cache_chain_mutex);
3469 static int s_show(struct seq_file *m, void *p)
3471 kmem_cache_t *cachep = p;
3472 struct list_head *q;
3473 struct slab *slabp;
3474 unsigned long active_objs;
3475 unsigned long num_objs;
3476 unsigned long active_slabs = 0;
3477 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3478 const char *name;
3479 char *error = NULL;
3480 int node;
3481 struct kmem_list3 *l3;
3483 check_irq_on();
3484 spin_lock_irq(&cachep->spinlock);
3485 active_objs = 0;
3486 num_slabs = 0;
3487 for_each_online_node(node) {
3488 l3 = cachep->nodelists[node];
3489 if (!l3)
3490 continue;
3492 spin_lock(&l3->list_lock);
3494 list_for_each(q, &l3->slabs_full) {
3495 slabp = list_entry(q, struct slab, list);
3496 if (slabp->inuse != cachep->num && !error)
3497 error = "slabs_full accounting error";
3498 active_objs += cachep->num;
3499 active_slabs++;
3501 list_for_each(q, &l3->slabs_partial) {
3502 slabp = list_entry(q, struct slab, list);
3503 if (slabp->inuse == cachep->num && !error)
3504 error = "slabs_partial inuse accounting error";
3505 if (!slabp->inuse && !error)
3506 error = "slabs_partial/inuse accounting error";
3507 active_objs += slabp->inuse;
3508 active_slabs++;
3510 list_for_each(q, &l3->slabs_free) {
3511 slabp = list_entry(q, struct slab, list);
3512 if (slabp->inuse && !error)
3513 error = "slabs_free/inuse accounting error";
3514 num_slabs++;
3516 free_objects += l3->free_objects;
3517 shared_avail += l3->shared->avail;
3519 spin_unlock(&l3->list_lock);
3521 num_slabs += active_slabs;
3522 num_objs = num_slabs * cachep->num;
3523 if (num_objs - active_objs != free_objects && !error)
3524 error = "free_objects accounting error";
3526 name = cachep->name;
3527 if (error)
3528 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3530 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3531 name, active_objs, num_objs, cachep->objsize,
3532 cachep->num, (1 << cachep->gfporder));
3533 seq_printf(m, " : tunables %4u %4u %4u",
3534 cachep->limit, cachep->batchcount, cachep->shared);
3535 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3536 active_slabs, num_slabs, shared_avail);
3537 #if STATS
3538 { /* list3 stats */
3539 unsigned long high = cachep->high_mark;
3540 unsigned long allocs = cachep->num_allocations;
3541 unsigned long grown = cachep->grown;
3542 unsigned long reaped = cachep->reaped;
3543 unsigned long errors = cachep->errors;
3544 unsigned long max_freeable = cachep->max_freeable;
3545 unsigned long node_allocs = cachep->node_allocs;
3546 unsigned long node_frees = cachep->node_frees;
3548 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3549 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
3551 /* cpu stats */
3553 unsigned long allochit = atomic_read(&cachep->allochit);
3554 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3555 unsigned long freehit = atomic_read(&cachep->freehit);
3556 unsigned long freemiss = atomic_read(&cachep->freemiss);
3558 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3559 allochit, allocmiss, freehit, freemiss);
3561 #endif
3562 seq_putc(m, '\n');
3563 spin_unlock_irq(&cachep->spinlock);
3564 return 0;
3568 * slabinfo_op - iterator that generates /proc/slabinfo
3570 * Output layout:
3571 * cache-name
3572 * num-active-objs
3573 * total-objs
3574 * object size
3575 * num-active-slabs
3576 * total-slabs
3577 * num-pages-per-slab
3578 * + further values on SMP and with statistics enabled
3581 struct seq_operations slabinfo_op = {
3582 .start = s_start,
3583 .next = s_next,
3584 .stop = s_stop,
3585 .show = s_show,
3588 #define MAX_SLABINFO_WRITE 128
3590 * slabinfo_write - Tuning for the slab allocator
3591 * @file: unused
3592 * @buffer: user buffer
3593 * @count: data length
3594 * @ppos: unused
3596 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3597 size_t count, loff_t *ppos)
3599 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3600 int limit, batchcount, shared, res;
3601 struct list_head *p;
3603 if (count > MAX_SLABINFO_WRITE)
3604 return -EINVAL;
3605 if (copy_from_user(&kbuf, buffer, count))
3606 return -EFAULT;
3607 kbuf[MAX_SLABINFO_WRITE] = '\0';
3609 tmp = strchr(kbuf, ' ');
3610 if (!tmp)
3611 return -EINVAL;
3612 *tmp = '\0';
3613 tmp++;
3614 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3615 return -EINVAL;
3617 /* Find the cache in the chain of caches. */
3618 mutex_lock(&cache_chain_mutex);
3619 res = -EINVAL;
3620 list_for_each(p, &cache_chain) {
3621 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3623 if (!strcmp(cachep->name, kbuf)) {
3624 if (limit < 1 ||
3625 batchcount < 1 ||
3626 batchcount > limit || shared < 0) {
3627 res = 0;
3628 } else {
3629 res = do_tune_cpucache(cachep, limit,
3630 batchcount, shared);
3632 break;
3635 mutex_unlock(&cache_chain_mutex);
3636 if (res >= 0)
3637 res = count;
3638 return res;
3640 #endif
3643 * ksize - get the actual amount of memory allocated for a given object
3644 * @objp: Pointer to the object
3646 * kmalloc may internally round up allocations and return more memory
3647 * than requested. ksize() can be used to determine the actual amount of
3648 * memory allocated. The caller may use this additional memory, even though
3649 * a smaller amount of memory was initially specified with the kmalloc call.
3650 * The caller must guarantee that objp points to a valid object previously
3651 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3652 * must not be freed during the duration of the call.
3654 unsigned int ksize(const void *objp)
3656 if (unlikely(objp == NULL))
3657 return 0;
3659 return obj_reallen(page_get_cache(virt_to_page(objp)));