1 /* pci_sabre.c: Sabre specific PCI controller support.
3 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/interrupt.h>
17 #include <asm/iommu.h>
20 #include <asm/oplib.h>
24 #include "iommu_common.h"
26 /* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
30 #define sabre_read(__reg) \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
38 #define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
45 /* SABRE PCI controller register offsets and definitions. */
46 #define SABRE_UE_AFSR 0x0030UL
47 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56 #define SABRE_UECE_AFAR 0x0038UL
57 #define SABRE_CE_AFSR 0x0040UL
58 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67 #define SABRE_IOMMU_CONTROL 0x0200UL
68 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84 #define SABRE_IOMMU_TSBBASE 0x0208UL
85 #define SABRE_IOMMU_FLUSH 0x0210UL
86 #define SABRE_IMAP_A_SLOT0 0x0c00UL
87 #define SABRE_IMAP_B_SLOT0 0x0c20UL
88 #define SABRE_IMAP_SCSI 0x1000UL
89 #define SABRE_IMAP_ETH 0x1008UL
90 #define SABRE_IMAP_BPP 0x1010UL
91 #define SABRE_IMAP_AU_REC 0x1018UL
92 #define SABRE_IMAP_AU_PLAY 0x1020UL
93 #define SABRE_IMAP_PFAIL 0x1028UL
94 #define SABRE_IMAP_KMS 0x1030UL
95 #define SABRE_IMAP_FLPY 0x1038UL
96 #define SABRE_IMAP_SHW 0x1040UL
97 #define SABRE_IMAP_KBD 0x1048UL
98 #define SABRE_IMAP_MS 0x1050UL
99 #define SABRE_IMAP_SER 0x1058UL
100 #define SABRE_IMAP_UE 0x1070UL
101 #define SABRE_IMAP_CE 0x1078UL
102 #define SABRE_IMAP_PCIERR 0x1080UL
103 #define SABRE_IMAP_GFX 0x1098UL
104 #define SABRE_IMAP_EUPA 0x10a0UL
105 #define SABRE_ICLR_A_SLOT0 0x1400UL
106 #define SABRE_ICLR_B_SLOT0 0x1480UL
107 #define SABRE_ICLR_SCSI 0x1800UL
108 #define SABRE_ICLR_ETH 0x1808UL
109 #define SABRE_ICLR_BPP 0x1810UL
110 #define SABRE_ICLR_AU_REC 0x1818UL
111 #define SABRE_ICLR_AU_PLAY 0x1820UL
112 #define SABRE_ICLR_PFAIL 0x1828UL
113 #define SABRE_ICLR_KMS 0x1830UL
114 #define SABRE_ICLR_FLPY 0x1838UL
115 #define SABRE_ICLR_SHW 0x1840UL
116 #define SABRE_ICLR_KBD 0x1848UL
117 #define SABRE_ICLR_MS 0x1850UL
118 #define SABRE_ICLR_SER 0x1858UL
119 #define SABRE_ICLR_UE 0x1870UL
120 #define SABRE_ICLR_CE 0x1878UL
121 #define SABRE_ICLR_PCIERR 0x1880UL
122 #define SABRE_WRSYNC 0x1c20UL
123 #define SABRE_PCICTRL 0x2000UL
124 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132 #define SABRE_PIOAFSR 0x2010UL
133 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143 #define SABRE_PIOAFAR 0x2018UL
144 #define SABRE_PCIDIAG 0x2020UL
145 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150 #define SABRE_PCITASR 0x2028UL
151 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159 #define SABRE_PIOBUF_DIAG 0x5000UL
160 #define SABRE_DMABUF_DIAGLO 0x5100UL
161 #define SABRE_DMABUF_DIAGHI 0x51c0UL
162 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164 #define SABRE_IOMMU_VADIAG 0xa400UL
165 #define SABRE_IOMMU_TCDIAG 0xa408UL
166 #define SABRE_IOMMU_TAG 0xa580UL
167 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173 #define SABRE_IOMMU_DATA 0xa600UL
174 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178 #define SABRE_PCI_IRQSTATE 0xa800UL
179 #define SABRE_OBIO_IRQSTATE 0xa808UL
180 #define SABRE_FFBCFG 0xf000UL
181 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183 #define SABRE_MCCTRL0 0xf010UL
184 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189 #define SABRE_MCCTRL1 0xf018UL
190 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200 #define SABRE_RESETCTRL 0xf020UL
202 #define SABRE_CONFIGSPACE 0x001000000UL
203 #define SABRE_IOSPACE 0x002000000UL
204 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
205 #define SABRE_MEMSPACE 0x100000000UL
206 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
209 * configuration space address format:
211 * 32 24 23 16 15 11 10 8 7 2 1 0
212 * ---------------------------------------------------------
213 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214 * ---------------------------------------------------------
216 #define SABRE_CONFIG_BASE(PBM) \
217 ((PBM)->config_space | (1UL << 24))
218 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
219 (((unsigned long)(BUS) << 16) | \
220 ((unsigned long)(DEVFN) << 8) | \
221 ((unsigned long)(REG)))
223 static int hummingbird_p
;
224 static struct pci_bus
*sabre_root_bus
;
226 static void *sabre_pci_config_mkaddr(struct pci_pbm_info
*pbm
,
234 (SABRE_CONFIG_BASE(pbm
) |
235 SABRE_CONFIG_ENCODE(bus
, devfn
, where
));
238 static int sabre_out_of_range(unsigned char devfn
)
243 return (((PCI_SLOT(devfn
) == 0) && (PCI_FUNC(devfn
) > 0)) ||
244 ((PCI_SLOT(devfn
) == 1) && (PCI_FUNC(devfn
) > 1)) ||
245 (PCI_SLOT(devfn
) > 1));
248 static int __sabre_out_of_range(struct pci_pbm_info
*pbm
,
255 return ((pbm
->parent
== 0) ||
256 ((pbm
== &pbm
->parent
->pbm_A
) &&
257 (bus
== pbm
->pci_first_busno
) &&
258 PCI_SLOT(devfn
) > 8));
261 static int __sabre_read_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
262 int where
, int size
, u32
*value
)
264 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
265 unsigned char bus
= bus_dev
->number
;
282 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
284 return PCIBIOS_SUCCESSFUL
;
286 if (__sabre_out_of_range(pbm
, bus
, devfn
))
287 return PCIBIOS_SUCCESSFUL
;
291 pci_config_read8((u8
*) addr
, &tmp8
);
297 printk("pci_read_config_word: misaligned reg [%x]\n",
299 return PCIBIOS_SUCCESSFUL
;
301 pci_config_read16((u16
*) addr
, &tmp16
);
307 printk("pci_read_config_dword: misaligned reg [%x]\n",
309 return PCIBIOS_SUCCESSFUL
;
311 pci_config_read32(addr
, value
);
315 return PCIBIOS_SUCCESSFUL
;
318 static int sabre_read_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
319 int where
, int size
, u32
*value
)
321 struct pci_pbm_info
*pbm
= bus
->sysdata
;
323 if (bus
== pbm
->pci_bus
&& devfn
== 0x00)
324 return pci_host_bridge_read_pci_cfg(bus
, devfn
, where
,
327 if (!bus
->number
&& sabre_out_of_range(devfn
)) {
339 return PCIBIOS_SUCCESSFUL
;
342 if (bus
->number
|| PCI_SLOT(devfn
))
343 return __sabre_read_pci_cfg(bus
, devfn
, where
, size
, value
);
345 /* When accessing PCI config space of the PCI controller itself (bus
346 * 0, device slot 0, function 0) there are restrictions. Each
347 * register must be accessed as it's natural size. Thus, for example
348 * the Vendor ID must be accessed as a 16-bit quantity.
357 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
362 *value
= tmp16
& 0xff;
364 return __sabre_read_pci_cfg(bus
, devfn
, where
, 1, value
);
369 return __sabre_read_pci_cfg(bus
, devfn
, where
, 2, value
);
374 __sabre_read_pci_cfg(bus
, devfn
, where
, 1, &tmp32
);
377 __sabre_read_pci_cfg(bus
, devfn
, where
+ 1, 1, &tmp32
);
387 sabre_read_pci_cfg(bus
, devfn
, where
, 2, &tmp32
);
390 sabre_read_pci_cfg(bus
, devfn
, where
+ 2, 2, &tmp32
);
392 *value
|= tmp16
<< 16;
396 return PCIBIOS_SUCCESSFUL
;
399 static int __sabre_write_pci_cfg(struct pci_bus
*bus_dev
, unsigned int devfn
,
400 int where
, int size
, u32 value
)
402 struct pci_pbm_info
*pbm
= bus_dev
->sysdata
;
403 unsigned char bus
= bus_dev
->number
;
406 addr
= sabre_pci_config_mkaddr(pbm
, bus
, devfn
, where
);
408 return PCIBIOS_SUCCESSFUL
;
410 if (__sabre_out_of_range(pbm
, bus
, devfn
))
411 return PCIBIOS_SUCCESSFUL
;
415 pci_config_write8((u8
*) addr
, value
);
420 printk("pci_write_config_word: misaligned reg [%x]\n",
422 return PCIBIOS_SUCCESSFUL
;
424 pci_config_write16((u16
*) addr
, value
);
429 printk("pci_write_config_dword: misaligned reg [%x]\n",
431 return PCIBIOS_SUCCESSFUL
;
433 pci_config_write32(addr
, value
);
437 return PCIBIOS_SUCCESSFUL
;
440 static int sabre_write_pci_cfg(struct pci_bus
*bus
, unsigned int devfn
,
441 int where
, int size
, u32 value
)
443 struct pci_pbm_info
*pbm
= bus
->sysdata
;
445 if (bus
== pbm
->pci_bus
&& devfn
== 0x00)
446 return pci_host_bridge_write_pci_cfg(bus
, devfn
, where
,
450 return __sabre_write_pci_cfg(bus
, devfn
, where
, size
, value
);
452 if (sabre_out_of_range(devfn
))
453 return PCIBIOS_SUCCESSFUL
;
461 __sabre_read_pci_cfg(bus
, devfn
, where
& ~1, 2, &tmp32
);
471 return __sabre_write_pci_cfg(bus
, devfn
, where
& ~1, 2, tmp32
);
473 return __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
);
477 return __sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
);
479 __sabre_write_pci_cfg(bus
, devfn
, where
, 1, value
& 0xff);
480 __sabre_write_pci_cfg(bus
, devfn
, where
+ 1, 1, value
>> 8);
484 sabre_write_pci_cfg(bus
, devfn
, where
, 2, value
& 0xffff);
485 sabre_write_pci_cfg(bus
, devfn
, where
+ 2, 2, value
>> 16);
488 return PCIBIOS_SUCCESSFUL
;
491 static struct pci_ops sabre_ops
= {
492 .read
= sabre_read_pci_cfg
,
493 .write
= sabre_write_pci_cfg
,
496 /* SABRE error handling support. */
497 static void sabre_check_iommu_error(struct pci_pbm_info
*pbm
,
501 struct iommu
*iommu
= pbm
->iommu
;
502 unsigned long iommu_tag
[16];
503 unsigned long iommu_data
[16];
508 spin_lock_irqsave(&iommu
->lock
, flags
);
509 control
= sabre_read(iommu
->iommu_control
);
510 if (control
& SABRE_IOMMUCTRL_ERR
) {
513 /* Clear the error encountered bit.
514 * NOTE: On Sabre this is write 1 to clear,
515 * which is different from Psycho.
517 sabre_write(iommu
->iommu_control
, control
);
518 switch((control
& SABRE_IOMMUCTRL_ERRSTS
) >> 25UL) {
520 type_string
= "Invalid Error";
523 type_string
= "ECC Error";
526 type_string
= "Unknown";
529 printk("%s: IOMMU Error, type[%s]\n",
530 pbm
->name
, type_string
);
532 /* Enter diagnostic mode and probe for error'd
533 * entries in the IOTLB.
535 control
&= ~(SABRE_IOMMUCTRL_ERRSTS
| SABRE_IOMMUCTRL_ERR
);
536 sabre_write(iommu
->iommu_control
,
537 (control
| SABRE_IOMMUCTRL_DENAB
));
538 for (i
= 0; i
< 16; i
++) {
539 unsigned long base
= pbm
->controller_regs
;
542 sabre_read(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL));
544 sabre_read(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL));
545 sabre_write(base
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
546 sabre_write(base
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
548 sabre_write(iommu
->iommu_control
, control
);
550 for (i
= 0; i
< 16; i
++) {
551 unsigned long tag
, data
;
554 if (!(tag
& SABRE_IOMMUTAG_ERR
))
557 data
= iommu_data
[i
];
558 switch((tag
& SABRE_IOMMUTAG_ERRSTS
) >> 23UL) {
560 type_string
= "Invalid Error";
563 type_string
= "ECC Error";
566 type_string
= "Unknown";
569 printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
570 pbm
->name
, i
, tag
, type_string
,
571 ((tag
& SABRE_IOMMUTAG_WRITE
) ? 1 : 0),
572 ((tag
& SABRE_IOMMUTAG_SIZE
) ? 64 : 8),
573 ((tag
& SABRE_IOMMUTAG_VPN
) << IOMMU_PAGE_SHIFT
));
574 printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
576 ((data
& SABRE_IOMMUDATA_VALID
) ? 1 : 0),
577 ((data
& SABRE_IOMMUDATA_USED
) ? 1 : 0),
578 ((data
& SABRE_IOMMUDATA_CACHE
) ? 1 : 0),
579 ((data
& SABRE_IOMMUDATA_PPN
) << IOMMU_PAGE_SHIFT
));
582 spin_unlock_irqrestore(&iommu
->lock
, flags
);
585 static irqreturn_t
sabre_ue_intr(int irq
, void *dev_id
)
587 struct pci_pbm_info
*pbm
= dev_id
;
588 unsigned long afsr_reg
= pbm
->controller_regs
+ SABRE_UE_AFSR
;
589 unsigned long afar_reg
= pbm
->controller_regs
+ SABRE_UECE_AFAR
;
590 unsigned long afsr
, afar
, error_bits
;
593 /* Latch uncorrectable error status. */
594 afar
= sabre_read(afar_reg
);
595 afsr
= sabre_read(afsr_reg
);
597 /* Clear the primary/secondary error status bits. */
599 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
600 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
601 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
);
604 sabre_write(afsr_reg
, error_bits
);
607 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
609 ((error_bits
& SABRE_UEAFSR_PDRD
) ?
611 ((error_bits
& SABRE_UEAFSR_PDWR
) ?
612 "DMA Write" : "???")),
613 ((error_bits
& SABRE_UEAFSR_PDTE
) ?
614 ":Translation Error" : ""));
615 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
617 (afsr
& SABRE_UEAFSR_BMSK
) >> 32UL,
618 (afsr
& SABRE_UEAFSR_OFF
) >> 29UL,
619 ((afsr
& SABRE_UEAFSR_BLK
) ? 1 : 0));
620 printk("%s: UE AFAR [%016lx]\n", pbm
->name
, afar
);
621 printk("%s: UE Secondary errors [", pbm
->name
);
623 if (afsr
& SABRE_UEAFSR_SDRD
) {
625 printk("(DMA Read)");
627 if (afsr
& SABRE_UEAFSR_SDWR
) {
629 printk("(DMA Write)");
631 if (afsr
& SABRE_UEAFSR_SDTE
) {
633 printk("(Translation Error)");
639 /* Interrogate IOMMU for error status. */
640 sabre_check_iommu_error(pbm
, afsr
, afar
);
645 static irqreturn_t
sabre_ce_intr(int irq
, void *dev_id
)
647 struct pci_pbm_info
*pbm
= dev_id
;
648 unsigned long afsr_reg
= pbm
->controller_regs
+ SABRE_CE_AFSR
;
649 unsigned long afar_reg
= pbm
->controller_regs
+ SABRE_UECE_AFAR
;
650 unsigned long afsr
, afar
, error_bits
;
653 /* Latch error status. */
654 afar
= sabre_read(afar_reg
);
655 afsr
= sabre_read(afsr_reg
);
657 /* Clear primary/secondary error status bits. */
659 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
660 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
);
663 sabre_write(afsr_reg
, error_bits
);
666 printk("%s: Correctable Error, primary error type[%s]\n",
668 ((error_bits
& SABRE_CEAFSR_PDRD
) ?
670 ((error_bits
& SABRE_CEAFSR_PDWR
) ?
671 "DMA Write" : "???")));
673 /* XXX Use syndrome and afar to print out module string just like
674 * XXX UDB CE trap handler does... -DaveM
676 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
679 (afsr
& SABRE_CEAFSR_ESYND
) >> 48UL,
680 (afsr
& SABRE_CEAFSR_BMSK
) >> 32UL,
681 (afsr
& SABRE_CEAFSR_OFF
) >> 29UL,
682 ((afsr
& SABRE_CEAFSR_BLK
) ? 1 : 0));
683 printk("%s: CE AFAR [%016lx]\n", pbm
->name
, afar
);
684 printk("%s: CE Secondary errors [", pbm
->name
);
686 if (afsr
& SABRE_CEAFSR_SDRD
) {
688 printk("(DMA Read)");
690 if (afsr
& SABRE_CEAFSR_SDWR
) {
692 printk("(DMA Write)");
701 static irqreturn_t
sabre_pcierr_intr_other(struct pci_pbm_info
*pbm
)
703 unsigned long csr_reg
, csr
, csr_error_bits
;
704 irqreturn_t ret
= IRQ_NONE
;
707 csr_reg
= pbm
->controller_regs
+ SABRE_PCICTRL
;
708 csr
= sabre_read(csr_reg
);
710 csr
& SABRE_PCICTRL_SERR
;
711 if (csr_error_bits
) {
712 /* Clear the errors. */
713 sabre_write(csr_reg
, csr
);
716 if (csr_error_bits
& SABRE_PCICTRL_SERR
)
717 printk("%s: PCI SERR signal asserted.\n",
721 pci_bus_read_config_word(sabre_root_bus
, 0,
723 if (stat
& (PCI_STATUS_PARITY
|
724 PCI_STATUS_SIG_TARGET_ABORT
|
725 PCI_STATUS_REC_TARGET_ABORT
|
726 PCI_STATUS_REC_MASTER_ABORT
|
727 PCI_STATUS_SIG_SYSTEM_ERROR
)) {
728 printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
730 pci_bus_write_config_word(sabre_root_bus
, 0,
737 static irqreturn_t
sabre_pcierr_intr(int irq
, void *dev_id
)
739 struct pci_pbm_info
*pbm
= dev_id
;
740 unsigned long afsr_reg
, afar_reg
;
741 unsigned long afsr
, afar
, error_bits
;
744 afsr_reg
= pbm
->controller_regs
+ SABRE_PIOAFSR
;
745 afar_reg
= pbm
->controller_regs
+ SABRE_PIOAFAR
;
747 /* Latch error status. */
748 afar
= sabre_read(afar_reg
);
749 afsr
= sabre_read(afsr_reg
);
751 /* Clear primary/secondary error status bits. */
753 (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_PTA
|
754 SABRE_PIOAFSR_PRTRY
| SABRE_PIOAFSR_PPERR
|
755 SABRE_PIOAFSR_SMA
| SABRE_PIOAFSR_STA
|
756 SABRE_PIOAFSR_SRTRY
| SABRE_PIOAFSR_SPERR
);
758 return sabre_pcierr_intr_other(pbm
);
759 sabre_write(afsr_reg
, error_bits
);
762 printk("%s: PCI Error, primary error type[%s]\n",
764 (((error_bits
& SABRE_PIOAFSR_PMA
) ?
766 ((error_bits
& SABRE_PIOAFSR_PTA
) ?
768 ((error_bits
& SABRE_PIOAFSR_PRTRY
) ?
769 "Excessive Retries" :
770 ((error_bits
& SABRE_PIOAFSR_PPERR
) ?
771 "Parity Error" : "???"))))));
772 printk("%s: bytemask[%04lx] was_block(%d)\n",
774 (afsr
& SABRE_PIOAFSR_BMSK
) >> 32UL,
775 (afsr
& SABRE_PIOAFSR_BLK
) ? 1 : 0);
776 printk("%s: PCI AFAR [%016lx]\n", pbm
->name
, afar
);
777 printk("%s: PCI Secondary errors [", pbm
->name
);
779 if (afsr
& SABRE_PIOAFSR_SMA
) {
781 printk("(Master Abort)");
783 if (afsr
& SABRE_PIOAFSR_STA
) {
785 printk("(Target Abort)");
787 if (afsr
& SABRE_PIOAFSR_SRTRY
) {
789 printk("(Excessive Retries)");
791 if (afsr
& SABRE_PIOAFSR_SPERR
) {
793 printk("(Parity Error)");
799 /* For the error types shown, scan both PCI buses for devices
800 * which have logged that error type.
803 /* If we see a Target Abort, this could be the result of an
804 * IOMMU translation error of some sort. It is extremely
805 * useful to log this information as usually it indicates
806 * a bug in the IOMMU support code or a PCI device driver.
808 if (error_bits
& (SABRE_PIOAFSR_PTA
| SABRE_PIOAFSR_STA
)) {
809 sabre_check_iommu_error(pbm
, afsr
, afar
);
810 pci_scan_for_target_abort(pbm
, pbm
->pci_bus
);
812 if (error_bits
& (SABRE_PIOAFSR_PMA
| SABRE_PIOAFSR_SMA
))
813 pci_scan_for_master_abort(pbm
, pbm
->pci_bus
);
815 /* For excessive retries, SABRE/PBM will abort the device
816 * and there is no way to specifically check for excessive
817 * retries in the config space status registers. So what
818 * we hope is that we'll catch it via the master/target
822 if (error_bits
& (SABRE_PIOAFSR_PPERR
| SABRE_PIOAFSR_SPERR
))
823 pci_scan_for_parity_error(pbm
, pbm
->pci_bus
);
828 static void sabre_register_error_handlers(struct pci_pbm_info
*pbm
)
830 struct device_node
*dp
= pbm
->prom_node
;
831 struct of_device
*op
;
832 unsigned long base
= pbm
->controller_regs
;
835 if (pbm
->chip_type
== PBM_CHIP_TYPE_SABRE
)
838 op
= of_find_device_by_node(dp
);
842 /* Sabre/Hummingbird IRQ property layout is:
848 if (op
->num_irqs
< 4)
851 /* We clear the error bits in the appropriate AFSR before
852 * registering the handler so that we don't get spurious
855 sabre_write(base
+ SABRE_UE_AFSR
,
856 (SABRE_UEAFSR_PDRD
| SABRE_UEAFSR_PDWR
|
857 SABRE_UEAFSR_SDRD
| SABRE_UEAFSR_SDWR
|
858 SABRE_UEAFSR_SDTE
| SABRE_UEAFSR_PDTE
));
860 request_irq(op
->irqs
[1], sabre_ue_intr
, 0, "SABRE_UE", pbm
);
862 sabre_write(base
+ SABRE_CE_AFSR
,
863 (SABRE_CEAFSR_PDRD
| SABRE_CEAFSR_PDWR
|
864 SABRE_CEAFSR_SDRD
| SABRE_CEAFSR_SDWR
));
866 request_irq(op
->irqs
[2], sabre_ce_intr
, 0, "SABRE_CE", pbm
);
867 request_irq(op
->irqs
[0], sabre_pcierr_intr
, 0,
868 "SABRE_PCIERR", pbm
);
870 tmp
= sabre_read(base
+ SABRE_PCICTRL
);
871 tmp
|= SABRE_PCICTRL_ERREN
;
872 sabre_write(base
+ SABRE_PCICTRL
, tmp
);
875 static void apb_init(struct pci_bus
*sabre_bus
)
877 struct pci_dev
*pdev
;
879 list_for_each_entry(pdev
, &sabre_bus
->devices
, bus_list
) {
880 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
881 pdev
->device
== PCI_DEVICE_ID_SUN_SIMBA
) {
884 pci_read_config_word(pdev
, PCI_COMMAND
, &word16
);
885 word16
|= PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
|
886 PCI_COMMAND_MASTER
| PCI_COMMAND_MEMORY
|
888 pci_write_config_word(pdev
, PCI_COMMAND
, word16
);
890 /* Status register bits are "write 1 to clear". */
891 pci_write_config_word(pdev
, PCI_STATUS
, 0xffff);
892 pci_write_config_word(pdev
, PCI_SEC_STATUS
, 0xffff);
894 /* Use a primary/seconday latency timer value
897 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 64);
898 pci_write_config_byte(pdev
, PCI_SEC_LATENCY_TIMER
, 64);
900 /* Enable reporting/forwarding of master aborts,
903 pci_write_config_byte(pdev
, PCI_BRIDGE_CONTROL
,
904 (PCI_BRIDGE_CTL_PARITY
|
905 PCI_BRIDGE_CTL_SERR
|
906 PCI_BRIDGE_CTL_MASTER_ABORT
));
911 static void sabre_scan_bus(struct pci_pbm_info
*pbm
)
914 struct pci_bus
*pbus
;
916 /* The APB bridge speaks to the Sabre host PCI bridge
917 * at 66Mhz, but the front side of APB runs at 33Mhz
920 pbm
->is_66mhz_capable
= 0;
922 /* This driver has not been verified to handle
923 * multiple SABREs yet, so trap this.
925 * Also note that the SABRE host bridge is hardwired
929 prom_printf("SABRE: Multiple controllers unsupported.\n");
934 pbus
= pci_scan_one_pbm(pbm
);
938 sabre_root_bus
= pbus
;
942 sabre_register_error_handlers(pbm
);
945 static void sabre_iommu_init(struct pci_pbm_info
*pbm
,
946 int tsbsize
, unsigned long dvma_offset
,
949 struct iommu
*iommu
= pbm
->iommu
;
953 /* Register addresses. */
954 iommu
->iommu_control
= pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
;
955 iommu
->iommu_tsbbase
= pbm
->controller_regs
+ SABRE_IOMMU_TSBBASE
;
956 iommu
->iommu_flush
= pbm
->controller_regs
+ SABRE_IOMMU_FLUSH
;
957 iommu
->write_complete_reg
= pbm
->controller_regs
+ SABRE_WRSYNC
;
958 /* Sabre's IOMMU lacks ctx flushing. */
959 iommu
->iommu_ctxflush
= 0;
961 /* Invalidate TLB Entries. */
962 control
= sabre_read(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
);
963 control
|= SABRE_IOMMUCTRL_DENAB
;
964 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
966 for(i
= 0; i
< 16; i
++) {
967 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_TAG
+ (i
* 8UL), 0);
968 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_DATA
+ (i
* 8UL), 0);
971 /* Leave diag mode enabled for full-flushing done
974 pci_iommu_table_init(iommu
, tsbsize
* 1024 * 8, dvma_offset
, dma_mask
);
976 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_TSBBASE
,
977 __pa(iommu
->page_table
));
979 control
= sabre_read(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
);
980 control
&= ~(SABRE_IOMMUCTRL_TSBSZ
| SABRE_IOMMUCTRL_TBWSZ
);
981 control
|= SABRE_IOMMUCTRL_ENAB
;
984 control
|= SABRE_IOMMU_TSBSZ_64K
;
987 control
|= SABRE_IOMMU_TSBSZ_128K
;
990 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize
);
994 sabre_write(pbm
->controller_regs
+ SABRE_IOMMU_CONTROL
, control
);
997 static void sabre_pbm_init(struct pci_controller_info
*p
, struct pci_pbm_info
*pbm
, struct device_node
*dp
)
999 pbm
->name
= dp
->full_name
;
1000 printk("%s: SABRE PCI Bus Module\n", pbm
->name
);
1002 pbm
->scan_bus
= sabre_scan_bus
;
1003 pbm
->pci_ops
= &sabre_ops
;
1005 pbm
->index
= pci_num_pbms
++;
1007 pbm
->chip_type
= PBM_CHIP_TYPE_SABRE
;
1009 pbm
->prom_node
= dp
;
1010 pci_get_pbm_props(pbm
);
1012 pci_determine_mem_io_space(pbm
);
1015 void sabre_init(struct device_node
*dp
, char *model_name
)
1017 const struct linux_prom64_registers
*pr_regs
;
1018 struct pci_controller_info
*p
;
1019 struct pci_pbm_info
*pbm
;
1020 struct iommu
*iommu
;
1023 u32 upa_portid
, dma_mask
;
1027 if (!strcmp(model_name
, "pci108e,a001"))
1029 else if (!strcmp(model_name
, "SUNW,sabre")) {
1030 const char *compat
= of_get_property(dp
, "compatible", NULL
);
1031 if (compat
&& !strcmp(compat
, "pci108e,a001"))
1033 if (!hummingbird_p
) {
1034 struct device_node
*dp
;
1036 /* Of course, Sun has to encode things a thousand
1037 * different ways, inconsistently.
1039 cpu_find_by_instance(0, &dp
, NULL
);
1040 if (!strcmp(dp
->name
, "SUNW,UltraSPARC-IIe"))
1045 p
= kzalloc(sizeof(*p
), GFP_ATOMIC
);
1047 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1051 iommu
= kzalloc(sizeof(*iommu
), GFP_ATOMIC
);
1053 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1059 upa_portid
= of_getintprop_default(dp
, "upa-portid", 0xff);
1061 pbm
->next
= pci_pbm_root
;
1064 pbm
->portid
= upa_portid
;
1067 * Map in SABRE register set and report the presence of this SABRE.
1070 pr_regs
= of_get_property(dp
, "reg", NULL
);
1073 * First REG in property is base of entire SABRE register space.
1075 pbm
->controller_regs
= pr_regs
[0].phys_addr
;
1077 /* Clear interrupts */
1080 for (clear_irq
= SABRE_ICLR_A_SLOT0
; clear_irq
< SABRE_ICLR_B_SLOT0
+ 0x80; clear_irq
+= 8)
1081 sabre_write(pbm
->controller_regs
+ clear_irq
, 0x0UL
);
1084 for (clear_irq
= SABRE_ICLR_SCSI
; clear_irq
< SABRE_ICLR_SCSI
+ 0x80; clear_irq
+= 8)
1085 sabre_write(pbm
->controller_regs
+ clear_irq
, 0x0UL
);
1087 /* Error interrupts are enabled later after the bus scan. */
1088 sabre_write(pbm
->controller_regs
+ SABRE_PCICTRL
,
1089 (SABRE_PCICTRL_MRLEN
| SABRE_PCICTRL_SERR
|
1090 SABRE_PCICTRL_ARBPARK
| SABRE_PCICTRL_AEN
));
1092 /* Now map in PCI config space for entire SABRE. */
1094 (pbm
->controller_regs
+ SABRE_CONFIGSPACE
);
1096 vdma
= of_get_property(dp
, "virtual-dma", NULL
);
1101 dma_mask
|= 0x1fffffff;
1105 dma_mask
|= 0x3fffffff;
1110 dma_mask
|= 0x7fffffff;
1114 prom_printf("SABRE: strange virtual-dma size.\n");
1118 sabre_iommu_init(pbm
, tsbsize
, vdma
[0], dma_mask
);
1121 * Look for APB underneath.
1123 sabre_pbm_init(p
, pbm
, dp
);