[PATCH] cfq-iosched: Don't set the queue batching limits
[linux-2.6.22.y-op.git] / block / cfq-iosched.c
blobc88f161d3fb3192d18fdc109e23e6b774a8fcb39
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/hash.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
18 * tunables
20 static const int cfq_quantum = 4; /* max queue in one round of service */
21 static const int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
24 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 70;
31 #define CFQ_IDLE_GRACE (HZ / 10)
32 #define CFQ_SLICE_SCALE (5)
34 #define CFQ_KEY_ASYNC (0)
36 static DEFINE_SPINLOCK(cfq_exit_lock);
39 * for the hash of cfqq inside the cfqd
41 #define CFQ_QHASH_SHIFT 6
42 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
43 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
46 * for the hash of crq inside the cfqq
48 #define CFQ_MHASH_SHIFT 6
49 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
50 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
51 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
52 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
53 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
55 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
56 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
58 #define RQ_DATA(rq) (rq)->elevator_private
61 * rb-tree defines
63 #define RB_EMPTY(node) ((node)->rb_node == NULL)
64 #define RB_CLEAR(node) do { \
65 memset(node, 0, sizeof(*node)); \
66 } while (0)
67 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
68 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
69 #define rq_rb_key(rq) (rq)->sector
71 static kmem_cache_t *crq_pool;
72 static kmem_cache_t *cfq_pool;
73 static kmem_cache_t *cfq_ioc_pool;
75 static atomic_t ioc_count = ATOMIC_INIT(0);
76 static struct completion *ioc_gone;
78 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
79 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
80 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
81 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
83 #define ASYNC (0)
84 #define SYNC (1)
86 #define cfq_cfqq_dispatched(cfqq) \
87 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
89 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
91 #define cfq_cfqq_sync(cfqq) \
92 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
94 #define sample_valid(samples) ((samples) > 80)
97 * Per block device queue structure
99 struct cfq_data {
100 request_queue_t *queue;
103 * rr list of queues with requests and the count of them
105 struct list_head rr_list[CFQ_PRIO_LISTS];
106 struct list_head busy_rr;
107 struct list_head cur_rr;
108 struct list_head idle_rr;
109 unsigned int busy_queues;
112 * non-ordered list of empty cfqq's
114 struct list_head empty_list;
117 * cfqq lookup hash
119 struct hlist_head *cfq_hash;
122 * global crq hash for all queues
124 struct hlist_head *crq_hash;
126 mempool_t *crq_pool;
128 int rq_in_driver;
129 int hw_tag;
132 * schedule slice state info
135 * idle window management
137 struct timer_list idle_slice_timer;
138 struct work_struct unplug_work;
140 struct cfq_queue *active_queue;
141 struct cfq_io_context *active_cic;
142 int cur_prio, cur_end_prio;
143 unsigned int dispatch_slice;
145 struct timer_list idle_class_timer;
147 sector_t last_sector;
148 unsigned long last_end_request;
150 unsigned int rq_starved;
153 * tunables, see top of file
155 unsigned int cfq_quantum;
156 unsigned int cfq_queued;
157 unsigned int cfq_fifo_expire[2];
158 unsigned int cfq_back_penalty;
159 unsigned int cfq_back_max;
160 unsigned int cfq_slice[2];
161 unsigned int cfq_slice_async_rq;
162 unsigned int cfq_slice_idle;
164 struct list_head cic_list;
168 * Per process-grouping structure
170 struct cfq_queue {
171 /* reference count */
172 atomic_t ref;
173 /* parent cfq_data */
174 struct cfq_data *cfqd;
175 /* cfqq lookup hash */
176 struct hlist_node cfq_hash;
177 /* hash key */
178 unsigned int key;
179 /* on either rr or empty list of cfqd */
180 struct list_head cfq_list;
181 /* sorted list of pending requests */
182 struct rb_root sort_list;
183 /* if fifo isn't expired, next request to serve */
184 struct cfq_rq *next_crq;
185 /* requests queued in sort_list */
186 int queued[2];
187 /* currently allocated requests */
188 int allocated[2];
189 /* fifo list of requests in sort_list */
190 struct list_head fifo;
192 unsigned long slice_start;
193 unsigned long slice_end;
194 unsigned long slice_left;
195 unsigned long service_last;
197 /* number of requests that are on the dispatch list */
198 int on_dispatch[2];
200 /* io prio of this group */
201 unsigned short ioprio, org_ioprio;
202 unsigned short ioprio_class, org_ioprio_class;
204 /* various state flags, see below */
205 unsigned int flags;
208 struct cfq_rq {
209 struct rb_node rb_node;
210 sector_t rb_key;
211 struct request *request;
212 struct hlist_node hash;
214 struct cfq_queue *cfq_queue;
215 struct cfq_io_context *io_context;
217 unsigned int crq_flags;
220 enum cfqq_state_flags {
221 CFQ_CFQQ_FLAG_on_rr = 0,
222 CFQ_CFQQ_FLAG_wait_request,
223 CFQ_CFQQ_FLAG_must_alloc,
224 CFQ_CFQQ_FLAG_must_alloc_slice,
225 CFQ_CFQQ_FLAG_must_dispatch,
226 CFQ_CFQQ_FLAG_fifo_expire,
227 CFQ_CFQQ_FLAG_idle_window,
228 CFQ_CFQQ_FLAG_prio_changed,
231 #define CFQ_CFQQ_FNS(name) \
232 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
234 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
236 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
238 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
240 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
242 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
245 CFQ_CFQQ_FNS(on_rr);
246 CFQ_CFQQ_FNS(wait_request);
247 CFQ_CFQQ_FNS(must_alloc);
248 CFQ_CFQQ_FNS(must_alloc_slice);
249 CFQ_CFQQ_FNS(must_dispatch);
250 CFQ_CFQQ_FNS(fifo_expire);
251 CFQ_CFQQ_FNS(idle_window);
252 CFQ_CFQQ_FNS(prio_changed);
253 #undef CFQ_CFQQ_FNS
255 enum cfq_rq_state_flags {
256 CFQ_CRQ_FLAG_is_sync = 0,
259 #define CFQ_CRQ_FNS(name) \
260 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
262 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
264 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
266 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
268 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
270 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
273 CFQ_CRQ_FNS(is_sync);
274 #undef CFQ_CRQ_FNS
276 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
277 static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
278 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
280 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
283 * lots of deadline iosched dupes, can be abstracted later...
285 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
287 hlist_del_init(&crq->hash);
290 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
292 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
294 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
297 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
299 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
300 struct hlist_node *entry, *next;
302 hlist_for_each_safe(entry, next, hash_list) {
303 struct cfq_rq *crq = list_entry_hash(entry);
304 struct request *__rq = crq->request;
306 if (!rq_mergeable(__rq)) {
307 cfq_del_crq_hash(crq);
308 continue;
311 if (rq_hash_key(__rq) == offset)
312 return __rq;
315 return NULL;
319 * scheduler run of queue, if there are requests pending and no one in the
320 * driver that will restart queueing
322 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
324 if (cfqd->busy_queues)
325 kblockd_schedule_work(&cfqd->unplug_work);
328 static int cfq_queue_empty(request_queue_t *q)
330 struct cfq_data *cfqd = q->elevator->elevator_data;
332 return !cfqd->busy_queues;
335 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
337 if (rw == READ || process_sync(task))
338 return task->pid;
340 return CFQ_KEY_ASYNC;
344 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
345 * We choose the request that is closest to the head right now. Distance
346 * behind the head is penalized and only allowed to a certain extent.
348 static struct cfq_rq *
349 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
351 sector_t last, s1, s2, d1 = 0, d2 = 0;
352 unsigned long back_max;
353 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
354 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
355 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
357 if (crq1 == NULL || crq1 == crq2)
358 return crq2;
359 if (crq2 == NULL)
360 return crq1;
362 if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
363 return crq1;
364 else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
365 return crq2;
367 s1 = crq1->request->sector;
368 s2 = crq2->request->sector;
370 last = cfqd->last_sector;
373 * by definition, 1KiB is 2 sectors
375 back_max = cfqd->cfq_back_max * 2;
378 * Strict one way elevator _except_ in the case where we allow
379 * short backward seeks which are biased as twice the cost of a
380 * similar forward seek.
382 if (s1 >= last)
383 d1 = s1 - last;
384 else if (s1 + back_max >= last)
385 d1 = (last - s1) * cfqd->cfq_back_penalty;
386 else
387 wrap |= CFQ_RQ1_WRAP;
389 if (s2 >= last)
390 d2 = s2 - last;
391 else if (s2 + back_max >= last)
392 d2 = (last - s2) * cfqd->cfq_back_penalty;
393 else
394 wrap |= CFQ_RQ2_WRAP;
396 /* Found required data */
399 * By doing switch() on the bit mask "wrap" we avoid having to
400 * check two variables for all permutations: --> faster!
402 switch (wrap) {
403 case 0: /* common case for CFQ: crq1 and crq2 not wrapped */
404 if (d1 < d2)
405 return crq1;
406 else if (d2 < d1)
407 return crq2;
408 else {
409 if (s1 >= s2)
410 return crq1;
411 else
412 return crq2;
415 case CFQ_RQ2_WRAP:
416 return crq1;
417 case CFQ_RQ1_WRAP:
418 return crq2;
419 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both crqs wrapped */
420 default:
422 * Since both rqs are wrapped,
423 * start with the one that's further behind head
424 * (--> only *one* back seek required),
425 * since back seek takes more time than forward.
427 if (s1 <= s2)
428 return crq1;
429 else
430 return crq2;
435 * would be nice to take fifo expire time into account as well
437 static struct cfq_rq *
438 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
439 struct cfq_rq *last)
441 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
442 struct rb_node *rbnext, *rbprev;
444 if (!(rbnext = rb_next(&last->rb_node))) {
445 rbnext = rb_first(&cfqq->sort_list);
446 if (rbnext == &last->rb_node)
447 rbnext = NULL;
450 rbprev = rb_prev(&last->rb_node);
452 if (rbprev)
453 crq_prev = rb_entry_crq(rbprev);
454 if (rbnext)
455 crq_next = rb_entry_crq(rbnext);
457 return cfq_choose_req(cfqd, crq_next, crq_prev);
460 static void cfq_update_next_crq(struct cfq_rq *crq)
462 struct cfq_queue *cfqq = crq->cfq_queue;
464 if (cfqq->next_crq == crq)
465 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
468 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
470 struct cfq_data *cfqd = cfqq->cfqd;
471 struct list_head *list, *entry;
473 BUG_ON(!cfq_cfqq_on_rr(cfqq));
475 list_del(&cfqq->cfq_list);
477 if (cfq_class_rt(cfqq))
478 list = &cfqd->cur_rr;
479 else if (cfq_class_idle(cfqq))
480 list = &cfqd->idle_rr;
481 else {
483 * if cfqq has requests in flight, don't allow it to be
484 * found in cfq_set_active_queue before it has finished them.
485 * this is done to increase fairness between a process that
486 * has lots of io pending vs one that only generates one
487 * sporadically or synchronously
489 if (cfq_cfqq_dispatched(cfqq))
490 list = &cfqd->busy_rr;
491 else
492 list = &cfqd->rr_list[cfqq->ioprio];
496 * if queue was preempted, just add to front to be fair. busy_rr
497 * isn't sorted, but insert at the back for fairness.
499 if (preempted || list == &cfqd->busy_rr) {
500 if (preempted)
501 list = list->prev;
503 list_add_tail(&cfqq->cfq_list, list);
504 return;
508 * sort by when queue was last serviced
510 entry = list;
511 while ((entry = entry->prev) != list) {
512 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
514 if (!__cfqq->service_last)
515 break;
516 if (time_before(__cfqq->service_last, cfqq->service_last))
517 break;
520 list_add(&cfqq->cfq_list, entry);
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
534 cfq_resort_rr_list(cfqq, 0);
537 static inline void
538 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
540 BUG_ON(!cfq_cfqq_on_rr(cfqq));
541 cfq_clear_cfqq_on_rr(cfqq);
542 list_move(&cfqq->cfq_list, &cfqd->empty_list);
544 BUG_ON(!cfqd->busy_queues);
545 cfqd->busy_queues--;
549 * rb tree support functions
551 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
553 struct cfq_queue *cfqq = crq->cfq_queue;
554 struct cfq_data *cfqd = cfqq->cfqd;
555 const int sync = cfq_crq_is_sync(crq);
557 BUG_ON(!cfqq->queued[sync]);
558 cfqq->queued[sync]--;
560 cfq_update_next_crq(crq);
562 rb_erase(&crq->rb_node, &cfqq->sort_list);
564 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
565 cfq_del_cfqq_rr(cfqd, cfqq);
568 static struct cfq_rq *
569 __cfq_add_crq_rb(struct cfq_rq *crq)
571 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
572 struct rb_node *parent = NULL;
573 struct cfq_rq *__crq;
575 while (*p) {
576 parent = *p;
577 __crq = rb_entry_crq(parent);
579 if (crq->rb_key < __crq->rb_key)
580 p = &(*p)->rb_left;
581 else if (crq->rb_key > __crq->rb_key)
582 p = &(*p)->rb_right;
583 else
584 return __crq;
587 rb_link_node(&crq->rb_node, parent, p);
588 return NULL;
591 static void cfq_add_crq_rb(struct cfq_rq *crq)
593 struct cfq_queue *cfqq = crq->cfq_queue;
594 struct cfq_data *cfqd = cfqq->cfqd;
595 struct request *rq = crq->request;
596 struct cfq_rq *__alias;
598 crq->rb_key = rq_rb_key(rq);
599 cfqq->queued[cfq_crq_is_sync(crq)]++;
602 * looks a little odd, but the first insert might return an alias.
603 * if that happens, put the alias on the dispatch list
605 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
606 cfq_dispatch_insert(cfqd->queue, __alias);
608 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
610 if (!cfq_cfqq_on_rr(cfqq))
611 cfq_add_cfqq_rr(cfqd, cfqq);
614 * check if this request is a better next-serve candidate
616 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
619 static inline void
620 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
622 rb_erase(&crq->rb_node, &cfqq->sort_list);
623 cfqq->queued[cfq_crq_is_sync(crq)]--;
625 cfq_add_crq_rb(crq);
628 static struct request *
629 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
631 struct task_struct *tsk = current;
632 pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
633 struct cfq_queue *cfqq;
634 struct rb_node *n;
635 sector_t sector;
637 cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
638 if (!cfqq)
639 goto out;
641 sector = bio->bi_sector + bio_sectors(bio);
642 n = cfqq->sort_list.rb_node;
643 while (n) {
644 struct cfq_rq *crq = rb_entry_crq(n);
646 if (sector < crq->rb_key)
647 n = n->rb_left;
648 else if (sector > crq->rb_key)
649 n = n->rb_right;
650 else
651 return crq->request;
654 out:
655 return NULL;
658 static void cfq_activate_request(request_queue_t *q, struct request *rq)
660 struct cfq_data *cfqd = q->elevator->elevator_data;
662 cfqd->rq_in_driver++;
665 * If the depth is larger 1, it really could be queueing. But lets
666 * make the mark a little higher - idling could still be good for
667 * low queueing, and a low queueing number could also just indicate
668 * a SCSI mid layer like behaviour where limit+1 is often seen.
670 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
671 cfqd->hw_tag = 1;
674 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
676 struct cfq_data *cfqd = q->elevator->elevator_data;
678 WARN_ON(!cfqd->rq_in_driver);
679 cfqd->rq_in_driver--;
682 static void cfq_remove_request(struct request *rq)
684 struct cfq_rq *crq = RQ_DATA(rq);
686 list_del_init(&rq->queuelist);
687 cfq_del_crq_rb(crq);
688 cfq_del_crq_hash(crq);
691 static int
692 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
694 struct cfq_data *cfqd = q->elevator->elevator_data;
695 struct request *__rq;
696 int ret;
698 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
699 if (__rq && elv_rq_merge_ok(__rq, bio)) {
700 ret = ELEVATOR_BACK_MERGE;
701 goto out;
704 __rq = cfq_find_rq_fmerge(cfqd, bio);
705 if (__rq && elv_rq_merge_ok(__rq, bio)) {
706 ret = ELEVATOR_FRONT_MERGE;
707 goto out;
710 return ELEVATOR_NO_MERGE;
711 out:
712 *req = __rq;
713 return ret;
716 static void cfq_merged_request(request_queue_t *q, struct request *req)
718 struct cfq_data *cfqd = q->elevator->elevator_data;
719 struct cfq_rq *crq = RQ_DATA(req);
721 cfq_del_crq_hash(crq);
722 cfq_add_crq_hash(cfqd, crq);
724 if (rq_rb_key(req) != crq->rb_key) {
725 struct cfq_queue *cfqq = crq->cfq_queue;
727 cfq_update_next_crq(crq);
728 cfq_reposition_crq_rb(cfqq, crq);
732 static void
733 cfq_merged_requests(request_queue_t *q, struct request *rq,
734 struct request *next)
736 cfq_merged_request(q, rq);
739 * reposition in fifo if next is older than rq
741 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
742 time_before(next->start_time, rq->start_time))
743 list_move(&rq->queuelist, &next->queuelist);
745 cfq_remove_request(next);
748 static inline void
749 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
751 if (cfqq) {
753 * stop potential idle class queues waiting service
755 del_timer(&cfqd->idle_class_timer);
757 cfqq->slice_start = jiffies;
758 cfqq->slice_end = 0;
759 cfqq->slice_left = 0;
760 cfq_clear_cfqq_must_alloc_slice(cfqq);
761 cfq_clear_cfqq_fifo_expire(cfqq);
764 cfqd->active_queue = cfqq;
768 * current cfqq expired its slice (or was too idle), select new one
770 static void
771 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
772 int preempted)
774 unsigned long now = jiffies;
776 if (cfq_cfqq_wait_request(cfqq))
777 del_timer(&cfqd->idle_slice_timer);
779 if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
780 cfqq->service_last = now;
781 cfq_schedule_dispatch(cfqd);
784 cfq_clear_cfqq_must_dispatch(cfqq);
785 cfq_clear_cfqq_wait_request(cfqq);
788 * store what was left of this slice, if the queue idled out
789 * or was preempted
791 if (time_after(cfqq->slice_end, now))
792 cfqq->slice_left = cfqq->slice_end - now;
793 else
794 cfqq->slice_left = 0;
796 if (cfq_cfqq_on_rr(cfqq))
797 cfq_resort_rr_list(cfqq, preempted);
799 if (cfqq == cfqd->active_queue)
800 cfqd->active_queue = NULL;
802 if (cfqd->active_cic) {
803 put_io_context(cfqd->active_cic->ioc);
804 cfqd->active_cic = NULL;
807 cfqd->dispatch_slice = 0;
810 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
812 struct cfq_queue *cfqq = cfqd->active_queue;
814 if (cfqq)
815 __cfq_slice_expired(cfqd, cfqq, preempted);
820 * 0,1
821 * 0,1,2
822 * 0,1,2,3
823 * 0,1,2,3,4
824 * 0,1,2,3,4,5
825 * 0,1,2,3,4,5,6
826 * 0,1,2,3,4,5,6,7
828 static int cfq_get_next_prio_level(struct cfq_data *cfqd)
830 int prio, wrap;
832 prio = -1;
833 wrap = 0;
834 do {
835 int p;
837 for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
838 if (!list_empty(&cfqd->rr_list[p])) {
839 prio = p;
840 break;
844 if (prio != -1)
845 break;
846 cfqd->cur_prio = 0;
847 if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
848 cfqd->cur_end_prio = 0;
849 if (wrap)
850 break;
851 wrap = 1;
853 } while (1);
855 if (unlikely(prio == -1))
856 return -1;
858 BUG_ON(prio >= CFQ_PRIO_LISTS);
860 list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
862 cfqd->cur_prio = prio + 1;
863 if (cfqd->cur_prio > cfqd->cur_end_prio) {
864 cfqd->cur_end_prio = cfqd->cur_prio;
865 cfqd->cur_prio = 0;
867 if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
868 cfqd->cur_prio = 0;
869 cfqd->cur_end_prio = 0;
872 return prio;
875 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
877 struct cfq_queue *cfqq = NULL;
880 * if current list is non-empty, grab first entry. if it is empty,
881 * get next prio level and grab first entry then if any are spliced
883 if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
884 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
887 * If no new queues are available, check if the busy list has some
888 * before falling back to idle io.
890 if (!cfqq && !list_empty(&cfqd->busy_rr))
891 cfqq = list_entry_cfqq(cfqd->busy_rr.next);
894 * if we have idle queues and no rt or be queues had pending
895 * requests, either allow immediate service if the grace period
896 * has passed or arm the idle grace timer
898 if (!cfqq && !list_empty(&cfqd->idle_rr)) {
899 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
901 if (time_after_eq(jiffies, end))
902 cfqq = list_entry_cfqq(cfqd->idle_rr.next);
903 else
904 mod_timer(&cfqd->idle_class_timer, end);
907 __cfq_set_active_queue(cfqd, cfqq);
908 return cfqq;
911 static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
914 struct cfq_io_context *cic;
915 unsigned long sl;
917 WARN_ON(!RB_EMPTY(&cfqq->sort_list));
918 WARN_ON(cfqq != cfqd->active_queue);
921 * idle is disabled, either manually or by past process history
923 if (!cfqd->cfq_slice_idle)
924 return 0;
925 if (!cfq_cfqq_idle_window(cfqq))
926 return 0;
928 * task has exited, don't wait
930 cic = cfqd->active_cic;
931 if (!cic || !cic->ioc->task)
932 return 0;
934 cfq_mark_cfqq_must_dispatch(cfqq);
935 cfq_mark_cfqq_wait_request(cfqq);
937 sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
940 * we don't want to idle for seeks, but we do want to allow
941 * fair distribution of slice time for a process doing back-to-back
942 * seeks. so allow a little bit of time for him to submit a new rq
944 if (sample_valid(cic->seek_samples) && cic->seek_mean > 131072)
945 sl = 2;
947 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
948 return 1;
951 static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
953 struct cfq_data *cfqd = q->elevator->elevator_data;
954 struct cfq_queue *cfqq = crq->cfq_queue;
956 cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
957 cfq_remove_request(crq->request);
958 cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
959 elv_dispatch_sort(q, crq->request);
963 * return expired entry, or NULL to just start from scratch in rbtree
965 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
967 struct cfq_data *cfqd = cfqq->cfqd;
968 struct request *rq;
969 struct cfq_rq *crq;
971 if (cfq_cfqq_fifo_expire(cfqq))
972 return NULL;
974 if (!list_empty(&cfqq->fifo)) {
975 int fifo = cfq_cfqq_class_sync(cfqq);
977 crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
978 rq = crq->request;
979 if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
980 cfq_mark_cfqq_fifo_expire(cfqq);
981 return crq;
985 return NULL;
989 * Scale schedule slice based on io priority. Use the sync time slice only
990 * if a queue is marked sync and has sync io queued. A sync queue with async
991 * io only, should not get full sync slice length.
993 static inline int
994 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
996 const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
998 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1000 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
1003 static inline void
1004 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1006 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
1009 static inline int
1010 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1012 const int base_rq = cfqd->cfq_slice_async_rq;
1014 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1016 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1020 * get next queue for service
1022 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1024 unsigned long now = jiffies;
1025 struct cfq_queue *cfqq;
1027 cfqq = cfqd->active_queue;
1028 if (!cfqq)
1029 goto new_queue;
1032 * slice has expired
1034 if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1035 goto expire;
1038 * if queue has requests, dispatch one. if not, check if
1039 * enough slice is left to wait for one
1041 if (!RB_EMPTY(&cfqq->sort_list))
1042 goto keep_queue;
1043 else if (cfq_cfqq_class_sync(cfqq) &&
1044 time_before(now, cfqq->slice_end)) {
1045 if (cfq_arm_slice_timer(cfqd, cfqq))
1046 return NULL;
1049 expire:
1050 cfq_slice_expired(cfqd, 0);
1051 new_queue:
1052 cfqq = cfq_set_active_queue(cfqd);
1053 keep_queue:
1054 return cfqq;
1057 static int
1058 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1059 int max_dispatch)
1061 int dispatched = 0;
1063 BUG_ON(RB_EMPTY(&cfqq->sort_list));
1065 do {
1066 struct cfq_rq *crq;
1069 * follow expired path, else get first next available
1071 if ((crq = cfq_check_fifo(cfqq)) == NULL)
1072 crq = cfqq->next_crq;
1075 * finally, insert request into driver dispatch list
1077 cfq_dispatch_insert(cfqd->queue, crq);
1079 cfqd->dispatch_slice++;
1080 dispatched++;
1082 if (!cfqd->active_cic) {
1083 atomic_inc(&crq->io_context->ioc->refcount);
1084 cfqd->active_cic = crq->io_context;
1087 if (RB_EMPTY(&cfqq->sort_list))
1088 break;
1090 } while (dispatched < max_dispatch);
1093 * if slice end isn't set yet, set it. if at least one request was
1094 * sync, use the sync time slice value
1096 if (!cfqq->slice_end)
1097 cfq_set_prio_slice(cfqd, cfqq);
1100 * expire an async queue immediately if it has used up its slice. idle
1101 * queue always expire after 1 dispatch round.
1103 if ((!cfq_cfqq_sync(cfqq) &&
1104 cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1105 cfq_class_idle(cfqq))
1106 cfq_slice_expired(cfqd, 0);
1108 return dispatched;
1111 static int
1112 cfq_forced_dispatch_cfqqs(struct list_head *list)
1114 int dispatched = 0;
1115 struct cfq_queue *cfqq, *next;
1116 struct cfq_rq *crq;
1118 list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1119 while ((crq = cfqq->next_crq)) {
1120 cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1121 dispatched++;
1123 BUG_ON(!list_empty(&cfqq->fifo));
1125 return dispatched;
1128 static int
1129 cfq_forced_dispatch(struct cfq_data *cfqd)
1131 int i, dispatched = 0;
1133 for (i = 0; i < CFQ_PRIO_LISTS; i++)
1134 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1136 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1137 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1138 dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1140 cfq_slice_expired(cfqd, 0);
1142 BUG_ON(cfqd->busy_queues);
1144 return dispatched;
1147 static int
1148 cfq_dispatch_requests(request_queue_t *q, int force)
1150 struct cfq_data *cfqd = q->elevator->elevator_data;
1151 struct cfq_queue *cfqq;
1153 if (!cfqd->busy_queues)
1154 return 0;
1156 if (unlikely(force))
1157 return cfq_forced_dispatch(cfqd);
1159 cfqq = cfq_select_queue(cfqd);
1160 if (cfqq) {
1161 int max_dispatch;
1163 cfq_clear_cfqq_must_dispatch(cfqq);
1164 cfq_clear_cfqq_wait_request(cfqq);
1165 del_timer(&cfqd->idle_slice_timer);
1167 max_dispatch = cfqd->cfq_quantum;
1168 if (cfq_class_idle(cfqq))
1169 max_dispatch = 1;
1171 return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1174 return 0;
1178 * task holds one reference to the queue, dropped when task exits. each crq
1179 * in-flight on this queue also holds a reference, dropped when crq is freed.
1181 * queue lock must be held here.
1183 static void cfq_put_queue(struct cfq_queue *cfqq)
1185 struct cfq_data *cfqd = cfqq->cfqd;
1187 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1189 if (!atomic_dec_and_test(&cfqq->ref))
1190 return;
1192 BUG_ON(rb_first(&cfqq->sort_list));
1193 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1194 BUG_ON(cfq_cfqq_on_rr(cfqq));
1196 if (unlikely(cfqd->active_queue == cfqq))
1197 __cfq_slice_expired(cfqd, cfqq, 0);
1200 * it's on the empty list and still hashed
1202 list_del(&cfqq->cfq_list);
1203 hlist_del(&cfqq->cfq_hash);
1204 kmem_cache_free(cfq_pool, cfqq);
1207 static inline struct cfq_queue *
1208 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1209 const int hashval)
1211 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1212 struct hlist_node *entry;
1213 struct cfq_queue *__cfqq;
1215 hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1216 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1218 if (__cfqq->key == key && (__p == prio || !prio))
1219 return __cfqq;
1222 return NULL;
1225 static struct cfq_queue *
1226 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1228 return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1231 static void cfq_free_io_context(struct io_context *ioc)
1233 struct cfq_io_context *__cic;
1234 struct rb_node *n;
1235 int freed = 0;
1237 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1238 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1239 rb_erase(&__cic->rb_node, &ioc->cic_root);
1240 kmem_cache_free(cfq_ioc_pool, __cic);
1241 freed++;
1244 if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1245 complete(ioc_gone);
1248 static void cfq_trim(struct io_context *ioc)
1250 ioc->set_ioprio = NULL;
1251 cfq_free_io_context(ioc);
1255 * Called with interrupts disabled
1257 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1259 struct cfq_data *cfqd = cic->key;
1260 request_queue_t *q;
1262 if (!cfqd)
1263 return;
1265 q = cfqd->queue;
1267 WARN_ON(!irqs_disabled());
1269 spin_lock(q->queue_lock);
1271 if (cic->cfqq[ASYNC]) {
1272 if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1273 __cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1274 cfq_put_queue(cic->cfqq[ASYNC]);
1275 cic->cfqq[ASYNC] = NULL;
1278 if (cic->cfqq[SYNC]) {
1279 if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1280 __cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1281 cfq_put_queue(cic->cfqq[SYNC]);
1282 cic->cfqq[SYNC] = NULL;
1285 cic->key = NULL;
1286 list_del_init(&cic->queue_list);
1287 spin_unlock(q->queue_lock);
1290 static void cfq_exit_io_context(struct io_context *ioc)
1292 struct cfq_io_context *__cic;
1293 unsigned long flags;
1294 struct rb_node *n;
1297 * put the reference this task is holding to the various queues
1299 spin_lock_irqsave(&cfq_exit_lock, flags);
1301 n = rb_first(&ioc->cic_root);
1302 while (n != NULL) {
1303 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1305 cfq_exit_single_io_context(__cic);
1306 n = rb_next(n);
1309 spin_unlock_irqrestore(&cfq_exit_lock, flags);
1312 static struct cfq_io_context *
1313 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1315 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1317 if (cic) {
1318 memset(cic, 0, sizeof(*cic));
1319 cic->last_end_request = jiffies;
1320 INIT_LIST_HEAD(&cic->queue_list);
1321 cic->dtor = cfq_free_io_context;
1322 cic->exit = cfq_exit_io_context;
1323 atomic_inc(&ioc_count);
1326 return cic;
1329 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1331 struct task_struct *tsk = current;
1332 int ioprio_class;
1334 if (!cfq_cfqq_prio_changed(cfqq))
1335 return;
1337 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1338 switch (ioprio_class) {
1339 default:
1340 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1341 case IOPRIO_CLASS_NONE:
1343 * no prio set, place us in the middle of the BE classes
1345 cfqq->ioprio = task_nice_ioprio(tsk);
1346 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1347 break;
1348 case IOPRIO_CLASS_RT:
1349 cfqq->ioprio = task_ioprio(tsk);
1350 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1351 break;
1352 case IOPRIO_CLASS_BE:
1353 cfqq->ioprio = task_ioprio(tsk);
1354 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1355 break;
1356 case IOPRIO_CLASS_IDLE:
1357 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1358 cfqq->ioprio = 7;
1359 cfq_clear_cfqq_idle_window(cfqq);
1360 break;
1364 * keep track of original prio settings in case we have to temporarily
1365 * elevate the priority of this queue
1367 cfqq->org_ioprio = cfqq->ioprio;
1368 cfqq->org_ioprio_class = cfqq->ioprio_class;
1370 if (cfq_cfqq_on_rr(cfqq))
1371 cfq_resort_rr_list(cfqq, 0);
1373 cfq_clear_cfqq_prio_changed(cfqq);
1376 static inline void changed_ioprio(struct cfq_io_context *cic)
1378 struct cfq_data *cfqd = cic->key;
1379 struct cfq_queue *cfqq;
1380 if (cfqd) {
1381 spin_lock(cfqd->queue->queue_lock);
1382 cfqq = cic->cfqq[ASYNC];
1383 if (cfqq) {
1384 struct cfq_queue *new_cfqq;
1385 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1386 cic->ioc->task, GFP_ATOMIC);
1387 if (new_cfqq) {
1388 cic->cfqq[ASYNC] = new_cfqq;
1389 cfq_put_queue(cfqq);
1392 cfqq = cic->cfqq[SYNC];
1393 if (cfqq) {
1394 cfq_mark_cfqq_prio_changed(cfqq);
1395 cfq_init_prio_data(cfqq);
1397 spin_unlock(cfqd->queue->queue_lock);
1402 * callback from sys_ioprio_set, irqs are disabled
1404 static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1406 struct cfq_io_context *cic;
1407 struct rb_node *n;
1409 spin_lock(&cfq_exit_lock);
1411 n = rb_first(&ioc->cic_root);
1412 while (n != NULL) {
1413 cic = rb_entry(n, struct cfq_io_context, rb_node);
1415 changed_ioprio(cic);
1416 n = rb_next(n);
1419 spin_unlock(&cfq_exit_lock);
1421 return 0;
1424 static struct cfq_queue *
1425 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1426 gfp_t gfp_mask)
1428 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1429 struct cfq_queue *cfqq, *new_cfqq = NULL;
1430 unsigned short ioprio;
1432 retry:
1433 ioprio = tsk->ioprio;
1434 cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1436 if (!cfqq) {
1437 if (new_cfqq) {
1438 cfqq = new_cfqq;
1439 new_cfqq = NULL;
1440 } else if (gfp_mask & __GFP_WAIT) {
1441 spin_unlock_irq(cfqd->queue->queue_lock);
1442 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1443 spin_lock_irq(cfqd->queue->queue_lock);
1444 goto retry;
1445 } else {
1446 cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1447 if (!cfqq)
1448 goto out;
1451 memset(cfqq, 0, sizeof(*cfqq));
1453 INIT_HLIST_NODE(&cfqq->cfq_hash);
1454 INIT_LIST_HEAD(&cfqq->cfq_list);
1455 RB_CLEAR_ROOT(&cfqq->sort_list);
1456 INIT_LIST_HEAD(&cfqq->fifo);
1458 cfqq->key = key;
1459 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1460 atomic_set(&cfqq->ref, 0);
1461 cfqq->cfqd = cfqd;
1462 cfqq->service_last = 0;
1464 * set ->slice_left to allow preemption for a new process
1466 cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1467 if (!cfqd->hw_tag)
1468 cfq_mark_cfqq_idle_window(cfqq);
1469 cfq_mark_cfqq_prio_changed(cfqq);
1470 cfq_init_prio_data(cfqq);
1473 if (new_cfqq)
1474 kmem_cache_free(cfq_pool, new_cfqq);
1476 atomic_inc(&cfqq->ref);
1477 out:
1478 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1479 return cfqq;
1482 static void
1483 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1485 spin_lock(&cfq_exit_lock);
1486 rb_erase(&cic->rb_node, &ioc->cic_root);
1487 list_del_init(&cic->queue_list);
1488 spin_unlock(&cfq_exit_lock);
1489 kmem_cache_free(cfq_ioc_pool, cic);
1490 atomic_dec(&ioc_count);
1493 static struct cfq_io_context *
1494 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1496 struct rb_node *n;
1497 struct cfq_io_context *cic;
1498 void *k, *key = cfqd;
1500 restart:
1501 n = ioc->cic_root.rb_node;
1502 while (n) {
1503 cic = rb_entry(n, struct cfq_io_context, rb_node);
1504 /* ->key must be copied to avoid race with cfq_exit_queue() */
1505 k = cic->key;
1506 if (unlikely(!k)) {
1507 cfq_drop_dead_cic(ioc, cic);
1508 goto restart;
1511 if (key < k)
1512 n = n->rb_left;
1513 else if (key > k)
1514 n = n->rb_right;
1515 else
1516 return cic;
1519 return NULL;
1522 static inline void
1523 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1524 struct cfq_io_context *cic)
1526 struct rb_node **p;
1527 struct rb_node *parent;
1528 struct cfq_io_context *__cic;
1529 void *k;
1531 cic->ioc = ioc;
1532 cic->key = cfqd;
1534 ioc->set_ioprio = cfq_ioc_set_ioprio;
1535 restart:
1536 parent = NULL;
1537 p = &ioc->cic_root.rb_node;
1538 while (*p) {
1539 parent = *p;
1540 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1541 /* ->key must be copied to avoid race with cfq_exit_queue() */
1542 k = __cic->key;
1543 if (unlikely(!k)) {
1544 cfq_drop_dead_cic(ioc, cic);
1545 goto restart;
1548 if (cic->key < k)
1549 p = &(*p)->rb_left;
1550 else if (cic->key > k)
1551 p = &(*p)->rb_right;
1552 else
1553 BUG();
1556 spin_lock(&cfq_exit_lock);
1557 rb_link_node(&cic->rb_node, parent, p);
1558 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1559 list_add(&cic->queue_list, &cfqd->cic_list);
1560 spin_unlock(&cfq_exit_lock);
1564 * Setup general io context and cfq io context. There can be several cfq
1565 * io contexts per general io context, if this process is doing io to more
1566 * than one device managed by cfq.
1568 static struct cfq_io_context *
1569 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1571 struct io_context *ioc = NULL;
1572 struct cfq_io_context *cic;
1574 might_sleep_if(gfp_mask & __GFP_WAIT);
1576 ioc = get_io_context(gfp_mask);
1577 if (!ioc)
1578 return NULL;
1580 cic = cfq_cic_rb_lookup(cfqd, ioc);
1581 if (cic)
1582 goto out;
1584 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1585 if (cic == NULL)
1586 goto err;
1588 cfq_cic_link(cfqd, ioc, cic);
1589 out:
1590 return cic;
1591 err:
1592 put_io_context(ioc);
1593 return NULL;
1596 static void
1597 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1599 unsigned long elapsed, ttime;
1602 * if this context already has stuff queued, thinktime is from
1603 * last queue not last end
1605 #if 0
1606 if (time_after(cic->last_end_request, cic->last_queue))
1607 elapsed = jiffies - cic->last_end_request;
1608 else
1609 elapsed = jiffies - cic->last_queue;
1610 #else
1611 elapsed = jiffies - cic->last_end_request;
1612 #endif
1614 ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1616 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1617 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1618 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1621 static void
1622 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1623 struct cfq_rq *crq)
1625 sector_t sdist;
1626 u64 total;
1628 if (cic->last_request_pos < crq->request->sector)
1629 sdist = crq->request->sector - cic->last_request_pos;
1630 else
1631 sdist = cic->last_request_pos - crq->request->sector;
1634 * Don't allow the seek distance to get too large from the
1635 * odd fragment, pagein, etc
1637 if (cic->seek_samples <= 60) /* second&third seek */
1638 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1639 else
1640 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1642 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1643 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1644 total = cic->seek_total + (cic->seek_samples/2);
1645 do_div(total, cic->seek_samples);
1646 cic->seek_mean = (sector_t)total;
1650 * Disable idle window if the process thinks too long or seeks so much that
1651 * it doesn't matter
1653 static void
1654 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1655 struct cfq_io_context *cic)
1657 int enable_idle = cfq_cfqq_idle_window(cfqq);
1659 if (!cic->ioc->task || !cfqd->cfq_slice_idle || cfqd->hw_tag)
1660 enable_idle = 0;
1661 else if (sample_valid(cic->ttime_samples)) {
1662 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1663 enable_idle = 0;
1664 else
1665 enable_idle = 1;
1668 if (enable_idle)
1669 cfq_mark_cfqq_idle_window(cfqq);
1670 else
1671 cfq_clear_cfqq_idle_window(cfqq);
1676 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1677 * no or if we aren't sure, a 1 will cause a preempt.
1679 static int
1680 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1681 struct cfq_rq *crq)
1683 struct cfq_queue *cfqq = cfqd->active_queue;
1685 if (cfq_class_idle(new_cfqq))
1686 return 0;
1688 if (!cfqq)
1689 return 1;
1691 if (cfq_class_idle(cfqq))
1692 return 1;
1693 if (!cfq_cfqq_wait_request(new_cfqq))
1694 return 0;
1696 * if it doesn't have slice left, forget it
1698 if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1699 return 0;
1700 if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1701 return 1;
1703 return 0;
1707 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1708 * let it have half of its nominal slice.
1710 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1712 struct cfq_queue *__cfqq, *next;
1714 list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1715 cfq_resort_rr_list(__cfqq, 1);
1717 if (!cfqq->slice_left)
1718 cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1720 cfqq->slice_end = cfqq->slice_left + jiffies;
1721 __cfq_slice_expired(cfqd, cfqq, 1);
1722 __cfq_set_active_queue(cfqd, cfqq);
1726 * should really be a ll_rw_blk.c helper
1728 static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730 request_queue_t *q = cfqd->queue;
1732 if (!blk_queue_plugged(q))
1733 q->request_fn(q);
1734 else
1735 __generic_unplug_device(q);
1739 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1740 * something we should do about it
1742 static void
1743 cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1744 struct cfq_rq *crq)
1746 struct cfq_io_context *cic;
1748 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1750 cic = crq->io_context;
1753 * we never wait for an async request and we don't allow preemption
1754 * of an async request. so just return early
1756 if (!cfq_crq_is_sync(crq)) {
1758 * sync process issued an async request, if it's waiting
1759 * then expire it and kick rq handling.
1761 if (cic == cfqd->active_cic &&
1762 del_timer(&cfqd->idle_slice_timer)) {
1763 cfq_slice_expired(cfqd, 0);
1764 cfq_start_queueing(cfqd, cfqq);
1766 return;
1769 cfq_update_io_thinktime(cfqd, cic);
1770 cfq_update_io_seektime(cfqd, cic, crq);
1771 cfq_update_idle_window(cfqd, cfqq, cic);
1773 cic->last_queue = jiffies;
1774 cic->last_request_pos = crq->request->sector + crq->request->nr_sectors;
1776 if (cfqq == cfqd->active_queue) {
1778 * if we are waiting for a request for this queue, let it rip
1779 * immediately and flag that we must not expire this queue
1780 * just now
1782 if (cfq_cfqq_wait_request(cfqq)) {
1783 cfq_mark_cfqq_must_dispatch(cfqq);
1784 del_timer(&cfqd->idle_slice_timer);
1785 cfq_start_queueing(cfqd, cfqq);
1787 } else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1789 * not the active queue - expire current slice if it is
1790 * idle and has expired it's mean thinktime or this new queue
1791 * has some old slice time left and is of higher priority
1793 cfq_preempt_queue(cfqd, cfqq);
1794 cfq_mark_cfqq_must_dispatch(cfqq);
1795 cfq_start_queueing(cfqd, cfqq);
1799 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1801 struct cfq_data *cfqd = q->elevator->elevator_data;
1802 struct cfq_rq *crq = RQ_DATA(rq);
1803 struct cfq_queue *cfqq = crq->cfq_queue;
1805 cfq_init_prio_data(cfqq);
1807 cfq_add_crq_rb(crq);
1809 list_add_tail(&rq->queuelist, &cfqq->fifo);
1811 if (rq_mergeable(rq))
1812 cfq_add_crq_hash(cfqd, crq);
1814 cfq_crq_enqueued(cfqd, cfqq, crq);
1817 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1819 struct cfq_rq *crq = RQ_DATA(rq);
1820 struct cfq_queue *cfqq = crq->cfq_queue;
1821 struct cfq_data *cfqd = cfqq->cfqd;
1822 const int sync = cfq_crq_is_sync(crq);
1823 unsigned long now;
1825 now = jiffies;
1827 WARN_ON(!cfqd->rq_in_driver);
1828 WARN_ON(!cfqq->on_dispatch[sync]);
1829 cfqd->rq_in_driver--;
1830 cfqq->on_dispatch[sync]--;
1832 if (!cfq_class_idle(cfqq))
1833 cfqd->last_end_request = now;
1835 if (!cfq_cfqq_dispatched(cfqq)) {
1836 if (cfq_cfqq_on_rr(cfqq)) {
1837 cfqq->service_last = now;
1838 cfq_resort_rr_list(cfqq, 0);
1840 cfq_schedule_dispatch(cfqd);
1843 if (cfq_crq_is_sync(crq))
1844 crq->io_context->last_end_request = now;
1847 static struct request *
1848 cfq_former_request(request_queue_t *q, struct request *rq)
1850 struct cfq_rq *crq = RQ_DATA(rq);
1851 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1853 if (rbprev)
1854 return rb_entry_crq(rbprev)->request;
1856 return NULL;
1859 static struct request *
1860 cfq_latter_request(request_queue_t *q, struct request *rq)
1862 struct cfq_rq *crq = RQ_DATA(rq);
1863 struct rb_node *rbnext = rb_next(&crq->rb_node);
1865 if (rbnext)
1866 return rb_entry_crq(rbnext)->request;
1868 return NULL;
1872 * we temporarily boost lower priority queues if they are holding fs exclusive
1873 * resources. they are boosted to normal prio (CLASS_BE/4)
1875 static void cfq_prio_boost(struct cfq_queue *cfqq)
1877 const int ioprio_class = cfqq->ioprio_class;
1878 const int ioprio = cfqq->ioprio;
1880 if (has_fs_excl()) {
1882 * boost idle prio on transactions that would lock out other
1883 * users of the filesystem
1885 if (cfq_class_idle(cfqq))
1886 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1887 if (cfqq->ioprio > IOPRIO_NORM)
1888 cfqq->ioprio = IOPRIO_NORM;
1889 } else {
1891 * check if we need to unboost the queue
1893 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1894 cfqq->ioprio_class = cfqq->org_ioprio_class;
1895 if (cfqq->ioprio != cfqq->org_ioprio)
1896 cfqq->ioprio = cfqq->org_ioprio;
1900 * refile between round-robin lists if we moved the priority class
1902 if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1903 cfq_cfqq_on_rr(cfqq))
1904 cfq_resort_rr_list(cfqq, 0);
1907 static inline int
1908 __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1909 struct task_struct *task, int rw)
1911 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1912 !cfq_cfqq_must_alloc_slice(cfqq)) {
1913 cfq_mark_cfqq_must_alloc_slice(cfqq);
1914 return ELV_MQUEUE_MUST;
1917 return ELV_MQUEUE_MAY;
1920 static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1922 struct cfq_data *cfqd = q->elevator->elevator_data;
1923 struct task_struct *tsk = current;
1924 struct cfq_queue *cfqq;
1927 * don't force setup of a queue from here, as a call to may_queue
1928 * does not necessarily imply that a request actually will be queued.
1929 * so just lookup a possibly existing queue, or return 'may queue'
1930 * if that fails
1932 cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1933 if (cfqq) {
1934 cfq_init_prio_data(cfqq);
1935 cfq_prio_boost(cfqq);
1937 return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1940 return ELV_MQUEUE_MAY;
1943 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1945 struct cfq_data *cfqd = q->elevator->elevator_data;
1947 if (unlikely(cfqd->rq_starved)) {
1948 struct request_list *rl = &q->rq;
1950 smp_mb();
1951 if (waitqueue_active(&rl->wait[READ]))
1952 wake_up(&rl->wait[READ]);
1953 if (waitqueue_active(&rl->wait[WRITE]))
1954 wake_up(&rl->wait[WRITE]);
1959 * queue lock held here
1961 static void cfq_put_request(request_queue_t *q, struct request *rq)
1963 struct cfq_data *cfqd = q->elevator->elevator_data;
1964 struct cfq_rq *crq = RQ_DATA(rq);
1966 if (crq) {
1967 struct cfq_queue *cfqq = crq->cfq_queue;
1968 const int rw = rq_data_dir(rq);
1970 BUG_ON(!cfqq->allocated[rw]);
1971 cfqq->allocated[rw]--;
1973 put_io_context(crq->io_context->ioc);
1975 mempool_free(crq, cfqd->crq_pool);
1976 rq->elevator_private = NULL;
1978 cfq_check_waiters(q, cfqq);
1979 cfq_put_queue(cfqq);
1984 * Allocate cfq data structures associated with this request.
1986 static int
1987 cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1988 gfp_t gfp_mask)
1990 struct cfq_data *cfqd = q->elevator->elevator_data;
1991 struct task_struct *tsk = current;
1992 struct cfq_io_context *cic;
1993 const int rw = rq_data_dir(rq);
1994 pid_t key = cfq_queue_pid(tsk, rw);
1995 struct cfq_queue *cfqq;
1996 struct cfq_rq *crq;
1997 unsigned long flags;
1998 int is_sync = key != CFQ_KEY_ASYNC;
2000 might_sleep_if(gfp_mask & __GFP_WAIT);
2002 cic = cfq_get_io_context(cfqd, gfp_mask);
2004 spin_lock_irqsave(q->queue_lock, flags);
2006 if (!cic)
2007 goto queue_fail;
2009 if (!cic->cfqq[is_sync]) {
2010 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
2011 if (!cfqq)
2012 goto queue_fail;
2014 cic->cfqq[is_sync] = cfqq;
2015 } else
2016 cfqq = cic->cfqq[is_sync];
2018 cfqq->allocated[rw]++;
2019 cfq_clear_cfqq_must_alloc(cfqq);
2020 cfqd->rq_starved = 0;
2021 atomic_inc(&cfqq->ref);
2022 spin_unlock_irqrestore(q->queue_lock, flags);
2024 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
2025 if (crq) {
2026 RB_CLEAR(&crq->rb_node);
2027 crq->rb_key = 0;
2028 crq->request = rq;
2029 INIT_HLIST_NODE(&crq->hash);
2030 crq->cfq_queue = cfqq;
2031 crq->io_context = cic;
2033 if (is_sync)
2034 cfq_mark_crq_is_sync(crq);
2035 else
2036 cfq_clear_crq_is_sync(crq);
2038 rq->elevator_private = crq;
2039 return 0;
2042 spin_lock_irqsave(q->queue_lock, flags);
2043 cfqq->allocated[rw]--;
2044 if (!(cfqq->allocated[0] + cfqq->allocated[1]))
2045 cfq_mark_cfqq_must_alloc(cfqq);
2046 cfq_put_queue(cfqq);
2047 queue_fail:
2048 if (cic)
2049 put_io_context(cic->ioc);
2051 * mark us rq allocation starved. we need to kickstart the process
2052 * ourselves if there are no pending requests that can do it for us.
2053 * that would be an extremely rare OOM situation
2055 cfqd->rq_starved = 1;
2056 cfq_schedule_dispatch(cfqd);
2057 spin_unlock_irqrestore(q->queue_lock, flags);
2058 return 1;
2061 static void cfq_kick_queue(void *data)
2063 request_queue_t *q = data;
2064 struct cfq_data *cfqd = q->elevator->elevator_data;
2065 unsigned long flags;
2067 spin_lock_irqsave(q->queue_lock, flags);
2069 if (cfqd->rq_starved) {
2070 struct request_list *rl = &q->rq;
2073 * we aren't guaranteed to get a request after this, but we
2074 * have to be opportunistic
2076 smp_mb();
2077 if (waitqueue_active(&rl->wait[READ]))
2078 wake_up(&rl->wait[READ]);
2079 if (waitqueue_active(&rl->wait[WRITE]))
2080 wake_up(&rl->wait[WRITE]);
2083 blk_remove_plug(q);
2084 q->request_fn(q);
2085 spin_unlock_irqrestore(q->queue_lock, flags);
2089 * Timer running if the active_queue is currently idling inside its time slice
2091 static void cfq_idle_slice_timer(unsigned long data)
2093 struct cfq_data *cfqd = (struct cfq_data *) data;
2094 struct cfq_queue *cfqq;
2095 unsigned long flags;
2097 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2099 if ((cfqq = cfqd->active_queue) != NULL) {
2100 unsigned long now = jiffies;
2103 * expired
2105 if (time_after(now, cfqq->slice_end))
2106 goto expire;
2109 * only expire and reinvoke request handler, if there are
2110 * other queues with pending requests
2112 if (!cfqd->busy_queues) {
2113 cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2114 add_timer(&cfqd->idle_slice_timer);
2115 goto out_cont;
2119 * not expired and it has a request pending, let it dispatch
2121 if (!RB_EMPTY(&cfqq->sort_list)) {
2122 cfq_mark_cfqq_must_dispatch(cfqq);
2123 goto out_kick;
2126 expire:
2127 cfq_slice_expired(cfqd, 0);
2128 out_kick:
2129 cfq_schedule_dispatch(cfqd);
2130 out_cont:
2131 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2135 * Timer running if an idle class queue is waiting for service
2137 static void cfq_idle_class_timer(unsigned long data)
2139 struct cfq_data *cfqd = (struct cfq_data *) data;
2140 unsigned long flags, end;
2142 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2145 * race with a non-idle queue, reset timer
2147 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2148 if (!time_after_eq(jiffies, end))
2149 mod_timer(&cfqd->idle_class_timer, end);
2150 else
2151 cfq_schedule_dispatch(cfqd);
2153 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2156 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2158 del_timer_sync(&cfqd->idle_slice_timer);
2159 del_timer_sync(&cfqd->idle_class_timer);
2160 blk_sync_queue(cfqd->queue);
2163 static void cfq_exit_queue(elevator_t *e)
2165 struct cfq_data *cfqd = e->elevator_data;
2166 request_queue_t *q = cfqd->queue;
2168 cfq_shutdown_timer_wq(cfqd);
2170 spin_lock(&cfq_exit_lock);
2171 spin_lock_irq(q->queue_lock);
2173 if (cfqd->active_queue)
2174 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2176 while (!list_empty(&cfqd->cic_list)) {
2177 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2178 struct cfq_io_context,
2179 queue_list);
2180 if (cic->cfqq[ASYNC]) {
2181 cfq_put_queue(cic->cfqq[ASYNC]);
2182 cic->cfqq[ASYNC] = NULL;
2184 if (cic->cfqq[SYNC]) {
2185 cfq_put_queue(cic->cfqq[SYNC]);
2186 cic->cfqq[SYNC] = NULL;
2188 cic->key = NULL;
2189 list_del_init(&cic->queue_list);
2192 spin_unlock_irq(q->queue_lock);
2193 spin_unlock(&cfq_exit_lock);
2195 cfq_shutdown_timer_wq(cfqd);
2197 mempool_destroy(cfqd->crq_pool);
2198 kfree(cfqd->crq_hash);
2199 kfree(cfqd->cfq_hash);
2200 kfree(cfqd);
2203 static void *cfq_init_queue(request_queue_t *q, elevator_t *e)
2205 struct cfq_data *cfqd;
2206 int i;
2208 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2209 if (!cfqd)
2210 return NULL;
2212 memset(cfqd, 0, sizeof(*cfqd));
2214 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2215 INIT_LIST_HEAD(&cfqd->rr_list[i]);
2217 INIT_LIST_HEAD(&cfqd->busy_rr);
2218 INIT_LIST_HEAD(&cfqd->cur_rr);
2219 INIT_LIST_HEAD(&cfqd->idle_rr);
2220 INIT_LIST_HEAD(&cfqd->empty_list);
2221 INIT_LIST_HEAD(&cfqd->cic_list);
2223 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2224 if (!cfqd->crq_hash)
2225 goto out_crqhash;
2227 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2228 if (!cfqd->cfq_hash)
2229 goto out_cfqhash;
2231 cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2232 if (!cfqd->crq_pool)
2233 goto out_crqpool;
2235 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2236 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2237 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2238 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2240 cfqd->queue = q;
2242 init_timer(&cfqd->idle_slice_timer);
2243 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2244 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2246 init_timer(&cfqd->idle_class_timer);
2247 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2248 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2250 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2252 cfqd->cfq_queued = cfq_queued;
2253 cfqd->cfq_quantum = cfq_quantum;
2254 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2255 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2256 cfqd->cfq_back_max = cfq_back_max;
2257 cfqd->cfq_back_penalty = cfq_back_penalty;
2258 cfqd->cfq_slice[0] = cfq_slice_async;
2259 cfqd->cfq_slice[1] = cfq_slice_sync;
2260 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2261 cfqd->cfq_slice_idle = cfq_slice_idle;
2263 return cfqd;
2264 out_crqpool:
2265 kfree(cfqd->cfq_hash);
2266 out_cfqhash:
2267 kfree(cfqd->crq_hash);
2268 out_crqhash:
2269 kfree(cfqd);
2270 return NULL;
2273 static void cfq_slab_kill(void)
2275 if (crq_pool)
2276 kmem_cache_destroy(crq_pool);
2277 if (cfq_pool)
2278 kmem_cache_destroy(cfq_pool);
2279 if (cfq_ioc_pool)
2280 kmem_cache_destroy(cfq_ioc_pool);
2283 static int __init cfq_slab_setup(void)
2285 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2286 NULL, NULL);
2287 if (!crq_pool)
2288 goto fail;
2290 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2291 NULL, NULL);
2292 if (!cfq_pool)
2293 goto fail;
2295 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2296 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2297 if (!cfq_ioc_pool)
2298 goto fail;
2300 return 0;
2301 fail:
2302 cfq_slab_kill();
2303 return -ENOMEM;
2307 * sysfs parts below -->
2310 static ssize_t
2311 cfq_var_show(unsigned int var, char *page)
2313 return sprintf(page, "%d\n", var);
2316 static ssize_t
2317 cfq_var_store(unsigned int *var, const char *page, size_t count)
2319 char *p = (char *) page;
2321 *var = simple_strtoul(p, &p, 10);
2322 return count;
2325 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2326 static ssize_t __FUNC(elevator_t *e, char *page) \
2328 struct cfq_data *cfqd = e->elevator_data; \
2329 unsigned int __data = __VAR; \
2330 if (__CONV) \
2331 __data = jiffies_to_msecs(__data); \
2332 return cfq_var_show(__data, (page)); \
2334 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2335 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2336 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2337 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2338 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2339 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2340 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2341 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2342 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2343 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2344 #undef SHOW_FUNCTION
2346 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2347 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2349 struct cfq_data *cfqd = e->elevator_data; \
2350 unsigned int __data; \
2351 int ret = cfq_var_store(&__data, (page), count); \
2352 if (__data < (MIN)) \
2353 __data = (MIN); \
2354 else if (__data > (MAX)) \
2355 __data = (MAX); \
2356 if (__CONV) \
2357 *(__PTR) = msecs_to_jiffies(__data); \
2358 else \
2359 *(__PTR) = __data; \
2360 return ret; \
2362 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2363 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2364 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2365 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2366 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2367 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2368 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2369 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2370 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2371 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2372 #undef STORE_FUNCTION
2374 #define CFQ_ATTR(name) \
2375 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2377 static struct elv_fs_entry cfq_attrs[] = {
2378 CFQ_ATTR(quantum),
2379 CFQ_ATTR(queued),
2380 CFQ_ATTR(fifo_expire_sync),
2381 CFQ_ATTR(fifo_expire_async),
2382 CFQ_ATTR(back_seek_max),
2383 CFQ_ATTR(back_seek_penalty),
2384 CFQ_ATTR(slice_sync),
2385 CFQ_ATTR(slice_async),
2386 CFQ_ATTR(slice_async_rq),
2387 CFQ_ATTR(slice_idle),
2388 __ATTR_NULL
2391 static struct elevator_type iosched_cfq = {
2392 .ops = {
2393 .elevator_merge_fn = cfq_merge,
2394 .elevator_merged_fn = cfq_merged_request,
2395 .elevator_merge_req_fn = cfq_merged_requests,
2396 .elevator_dispatch_fn = cfq_dispatch_requests,
2397 .elevator_add_req_fn = cfq_insert_request,
2398 .elevator_activate_req_fn = cfq_activate_request,
2399 .elevator_deactivate_req_fn = cfq_deactivate_request,
2400 .elevator_queue_empty_fn = cfq_queue_empty,
2401 .elevator_completed_req_fn = cfq_completed_request,
2402 .elevator_former_req_fn = cfq_former_request,
2403 .elevator_latter_req_fn = cfq_latter_request,
2404 .elevator_set_req_fn = cfq_set_request,
2405 .elevator_put_req_fn = cfq_put_request,
2406 .elevator_may_queue_fn = cfq_may_queue,
2407 .elevator_init_fn = cfq_init_queue,
2408 .elevator_exit_fn = cfq_exit_queue,
2409 .trim = cfq_trim,
2411 .elevator_attrs = cfq_attrs,
2412 .elevator_name = "cfq",
2413 .elevator_owner = THIS_MODULE,
2416 static int __init cfq_init(void)
2418 int ret;
2421 * could be 0 on HZ < 1000 setups
2423 if (!cfq_slice_async)
2424 cfq_slice_async = 1;
2425 if (!cfq_slice_idle)
2426 cfq_slice_idle = 1;
2428 if (cfq_slab_setup())
2429 return -ENOMEM;
2431 ret = elv_register(&iosched_cfq);
2432 if (ret)
2433 cfq_slab_kill();
2435 return ret;
2438 static void __exit cfq_exit(void)
2440 DECLARE_COMPLETION(all_gone);
2441 elv_unregister(&iosched_cfq);
2442 ioc_gone = &all_gone;
2443 /* ioc_gone's update must be visible before reading ioc_count */
2444 smp_wmb();
2445 if (atomic_read(&ioc_count))
2446 wait_for_completion(ioc_gone);
2447 synchronize_rcu();
2448 cfq_slab_kill();
2451 module_init(cfq_init);
2452 module_exit(cfq_exit);
2454 MODULE_AUTHOR("Jens Axboe");
2455 MODULE_LICENSE("GPL");
2456 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");