PCI: pci.txt fix __devexit() usage
[linux-2.6.22.y-op.git] / fs / buffer.c
blobf99c509697cd7b11865b6d40f8abda1bd349d7a1
1 /*
2 * linux/fs/buffer.c
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
54 bh->b_end_io = handler;
55 bh->b_private = private;
58 static int sync_buffer(void *word)
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
72 void fastcall __lock_buffer(struct buffer_head *bh)
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
77 EXPORT_SYMBOL(__lock_buffer);
79 void fastcall unlock_buffer(struct buffer_head *bh)
81 smp_mb__before_clear_bit();
82 clear_buffer_locked(bh);
83 smp_mb__after_clear_bit();
84 wake_up_bit(&bh->b_state, BH_Lock);
88 * Block until a buffer comes unlocked. This doesn't stop it
89 * from becoming locked again - you have to lock it yourself
90 * if you want to preserve its state.
92 void __wait_on_buffer(struct buffer_head * bh)
94 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
97 static void
98 __clear_page_buffers(struct page *page)
100 ClearPagePrivate(page);
101 set_page_private(page, 0);
102 page_cache_release(page);
105 static void buffer_io_error(struct buffer_head *bh)
107 char b[BDEVNAME_SIZE];
109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh->b_bdev, b),
111 (unsigned long long)bh->b_blocknr);
115 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
116 * unlock the buffer. This is what ll_rw_block uses too.
118 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
120 if (uptodate) {
121 set_buffer_uptodate(bh);
122 } else {
123 /* This happens, due to failed READA attempts. */
124 clear_buffer_uptodate(bh);
126 unlock_buffer(bh);
127 put_bh(bh);
130 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
132 char b[BDEVNAME_SIZE];
134 if (uptodate) {
135 set_buffer_uptodate(bh);
136 } else {
137 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
138 buffer_io_error(bh);
139 printk(KERN_WARNING "lost page write due to "
140 "I/O error on %s\n",
141 bdevname(bh->b_bdev, b));
143 set_buffer_write_io_error(bh);
144 clear_buffer_uptodate(bh);
146 unlock_buffer(bh);
147 put_bh(bh);
151 * Write out and wait upon all the dirty data associated with a block
152 * device via its mapping. Does not take the superblock lock.
154 int sync_blockdev(struct block_device *bdev)
156 int ret = 0;
158 if (bdev)
159 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 return ret;
162 EXPORT_SYMBOL(sync_blockdev);
165 * Write out and wait upon all dirty data associated with this
166 * device. Filesystem data as well as the underlying block
167 * device. Takes the superblock lock.
169 int fsync_bdev(struct block_device *bdev)
171 struct super_block *sb = get_super(bdev);
172 if (sb) {
173 int res = fsync_super(sb);
174 drop_super(sb);
175 return res;
177 return sync_blockdev(bdev);
181 * freeze_bdev -- lock a filesystem and force it into a consistent state
182 * @bdev: blockdevice to lock
184 * This takes the block device bd_mount_sem to make sure no new mounts
185 * happen on bdev until thaw_bdev() is called.
186 * If a superblock is found on this device, we take the s_umount semaphore
187 * on it to make sure nobody unmounts until the snapshot creation is done.
189 struct super_block *freeze_bdev(struct block_device *bdev)
191 struct super_block *sb;
193 down(&bdev->bd_mount_sem);
194 sb = get_super(bdev);
195 if (sb && !(sb->s_flags & MS_RDONLY)) {
196 sb->s_frozen = SB_FREEZE_WRITE;
197 smp_wmb();
199 __fsync_super(sb);
201 sb->s_frozen = SB_FREEZE_TRANS;
202 smp_wmb();
204 sync_blockdev(sb->s_bdev);
206 if (sb->s_op->write_super_lockfs)
207 sb->s_op->write_super_lockfs(sb);
210 sync_blockdev(bdev);
211 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
213 EXPORT_SYMBOL(freeze_bdev);
216 * thaw_bdev -- unlock filesystem
217 * @bdev: blockdevice to unlock
218 * @sb: associated superblock
220 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
222 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
224 if (sb) {
225 BUG_ON(sb->s_bdev != bdev);
227 if (sb->s_op->unlockfs)
228 sb->s_op->unlockfs(sb);
229 sb->s_frozen = SB_UNFROZEN;
230 smp_wmb();
231 wake_up(&sb->s_wait_unfrozen);
232 drop_super(sb);
235 up(&bdev->bd_mount_sem);
237 EXPORT_SYMBOL(thaw_bdev);
240 * Various filesystems appear to want __find_get_block to be non-blocking.
241 * But it's the page lock which protects the buffers. To get around this,
242 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * private_lock.
245 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
246 * may be quite high. This code could TryLock the page, and if that
247 * succeeds, there is no need to take private_lock. (But if
248 * private_lock is contended then so is mapping->tree_lock).
250 static struct buffer_head *
251 __find_get_block_slow(struct block_device *bdev, sector_t block)
253 struct inode *bd_inode = bdev->bd_inode;
254 struct address_space *bd_mapping = bd_inode->i_mapping;
255 struct buffer_head *ret = NULL;
256 pgoff_t index;
257 struct buffer_head *bh;
258 struct buffer_head *head;
259 struct page *page;
260 int all_mapped = 1;
262 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
263 page = find_get_page(bd_mapping, index);
264 if (!page)
265 goto out;
267 spin_lock(&bd_mapping->private_lock);
268 if (!page_has_buffers(page))
269 goto out_unlock;
270 head = page_buffers(page);
271 bh = head;
272 do {
273 if (bh->b_blocknr == block) {
274 ret = bh;
275 get_bh(bh);
276 goto out_unlock;
278 if (!buffer_mapped(bh))
279 all_mapped = 0;
280 bh = bh->b_this_page;
281 } while (bh != head);
283 /* we might be here because some of the buffers on this page are
284 * not mapped. This is due to various races between
285 * file io on the block device and getblk. It gets dealt with
286 * elsewhere, don't buffer_error if we had some unmapped buffers
288 if (all_mapped) {
289 printk("__find_get_block_slow() failed. "
290 "block=%llu, b_blocknr=%llu\n",
291 (unsigned long long)block,
292 (unsigned long long)bh->b_blocknr);
293 printk("b_state=0x%08lx, b_size=%zu\n",
294 bh->b_state, bh->b_size);
295 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
297 out_unlock:
298 spin_unlock(&bd_mapping->private_lock);
299 page_cache_release(page);
300 out:
301 return ret;
304 /* If invalidate_buffers() will trash dirty buffers, it means some kind
305 of fs corruption is going on. Trashing dirty data always imply losing
306 information that was supposed to be just stored on the physical layer
307 by the user.
309 Thus invalidate_buffers in general usage is not allwowed to trash
310 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
311 be preserved. These buffers are simply skipped.
313 We also skip buffers which are still in use. For example this can
314 happen if a userspace program is reading the block device.
316 NOTE: In the case where the user removed a removable-media-disk even if
317 there's still dirty data not synced on disk (due a bug in the device driver
318 or due an error of the user), by not destroying the dirty buffers we could
319 generate corruption also on the next media inserted, thus a parameter is
320 necessary to handle this case in the most safe way possible (trying
321 to not corrupt also the new disk inserted with the data belonging to
322 the old now corrupted disk). Also for the ramdisk the natural thing
323 to do in order to release the ramdisk memory is to destroy dirty buffers.
325 These are two special cases. Normal usage imply the device driver
326 to issue a sync on the device (without waiting I/O completion) and
327 then an invalidate_buffers call that doesn't trash dirty buffers.
329 For handling cache coherency with the blkdev pagecache the 'update' case
330 is been introduced. It is needed to re-read from disk any pinned
331 buffer. NOTE: re-reading from disk is destructive so we can do it only
332 when we assume nobody is changing the buffercache under our I/O and when
333 we think the disk contains more recent information than the buffercache.
334 The update == 1 pass marks the buffers we need to update, the update == 2
335 pass does the actual I/O. */
336 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
338 struct address_space *mapping = bdev->bd_inode->i_mapping;
340 if (mapping->nrpages == 0)
341 return;
343 invalidate_bh_lrus();
345 * FIXME: what about destroy_dirty_buffers?
346 * We really want to use invalidate_inode_pages2() for
347 * that, but not until that's cleaned up.
349 invalidate_mapping_pages(mapping, 0, -1);
353 * Kick pdflush then try to free up some ZONE_NORMAL memory.
355 static void free_more_memory(void)
357 struct zone **zones;
358 pg_data_t *pgdat;
360 wakeup_pdflush(1024);
361 yield();
363 for_each_online_pgdat(pgdat) {
364 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
365 if (*zones)
366 try_to_free_pages(zones, GFP_NOFS);
371 * I/O completion handler for block_read_full_page() - pages
372 * which come unlocked at the end of I/O.
374 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
376 unsigned long flags;
377 struct buffer_head *first;
378 struct buffer_head *tmp;
379 struct page *page;
380 int page_uptodate = 1;
382 BUG_ON(!buffer_async_read(bh));
384 page = bh->b_page;
385 if (uptodate) {
386 set_buffer_uptodate(bh);
387 } else {
388 clear_buffer_uptodate(bh);
389 if (printk_ratelimit())
390 buffer_io_error(bh);
391 SetPageError(page);
395 * Be _very_ careful from here on. Bad things can happen if
396 * two buffer heads end IO at almost the same time and both
397 * decide that the page is now completely done.
399 first = page_buffers(page);
400 local_irq_save(flags);
401 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
402 clear_buffer_async_read(bh);
403 unlock_buffer(bh);
404 tmp = bh;
405 do {
406 if (!buffer_uptodate(tmp))
407 page_uptodate = 0;
408 if (buffer_async_read(tmp)) {
409 BUG_ON(!buffer_locked(tmp));
410 goto still_busy;
412 tmp = tmp->b_this_page;
413 } while (tmp != bh);
414 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
415 local_irq_restore(flags);
418 * If none of the buffers had errors and they are all
419 * uptodate then we can set the page uptodate.
421 if (page_uptodate && !PageError(page))
422 SetPageUptodate(page);
423 unlock_page(page);
424 return;
426 still_busy:
427 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
428 local_irq_restore(flags);
429 return;
433 * Completion handler for block_write_full_page() - pages which are unlocked
434 * during I/O, and which have PageWriteback cleared upon I/O completion.
436 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
438 char b[BDEVNAME_SIZE];
439 unsigned long flags;
440 struct buffer_head *first;
441 struct buffer_head *tmp;
442 struct page *page;
444 BUG_ON(!buffer_async_write(bh));
446 page = bh->b_page;
447 if (uptodate) {
448 set_buffer_uptodate(bh);
449 } else {
450 if (printk_ratelimit()) {
451 buffer_io_error(bh);
452 printk(KERN_WARNING "lost page write due to "
453 "I/O error on %s\n",
454 bdevname(bh->b_bdev, b));
456 set_bit(AS_EIO, &page->mapping->flags);
457 set_buffer_write_io_error(bh);
458 clear_buffer_uptodate(bh);
459 SetPageError(page);
462 first = page_buffers(page);
463 local_irq_save(flags);
464 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
466 clear_buffer_async_write(bh);
467 unlock_buffer(bh);
468 tmp = bh->b_this_page;
469 while (tmp != bh) {
470 if (buffer_async_write(tmp)) {
471 BUG_ON(!buffer_locked(tmp));
472 goto still_busy;
474 tmp = tmp->b_this_page;
476 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
477 local_irq_restore(flags);
478 end_page_writeback(page);
479 return;
481 still_busy:
482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 local_irq_restore(flags);
484 return;
488 * If a page's buffers are under async readin (end_buffer_async_read
489 * completion) then there is a possibility that another thread of
490 * control could lock one of the buffers after it has completed
491 * but while some of the other buffers have not completed. This
492 * locked buffer would confuse end_buffer_async_read() into not unlocking
493 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
494 * that this buffer is not under async I/O.
496 * The page comes unlocked when it has no locked buffer_async buffers
497 * left.
499 * PageLocked prevents anyone starting new async I/O reads any of
500 * the buffers.
502 * PageWriteback is used to prevent simultaneous writeout of the same
503 * page.
505 * PageLocked prevents anyone from starting writeback of a page which is
506 * under read I/O (PageWriteback is only ever set against a locked page).
508 static void mark_buffer_async_read(struct buffer_head *bh)
510 bh->b_end_io = end_buffer_async_read;
511 set_buffer_async_read(bh);
514 void mark_buffer_async_write(struct buffer_head *bh)
516 bh->b_end_io = end_buffer_async_write;
517 set_buffer_async_write(bh);
519 EXPORT_SYMBOL(mark_buffer_async_write);
523 * fs/buffer.c contains helper functions for buffer-backed address space's
524 * fsync functions. A common requirement for buffer-based filesystems is
525 * that certain data from the backing blockdev needs to be written out for
526 * a successful fsync(). For example, ext2 indirect blocks need to be
527 * written back and waited upon before fsync() returns.
529 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
530 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
531 * management of a list of dependent buffers at ->i_mapping->private_list.
533 * Locking is a little subtle: try_to_free_buffers() will remove buffers
534 * from their controlling inode's queue when they are being freed. But
535 * try_to_free_buffers() will be operating against the *blockdev* mapping
536 * at the time, not against the S_ISREG file which depends on those buffers.
537 * So the locking for private_list is via the private_lock in the address_space
538 * which backs the buffers. Which is different from the address_space
539 * against which the buffers are listed. So for a particular address_space,
540 * mapping->private_lock does *not* protect mapping->private_list! In fact,
541 * mapping->private_list will always be protected by the backing blockdev's
542 * ->private_lock.
544 * Which introduces a requirement: all buffers on an address_space's
545 * ->private_list must be from the same address_space: the blockdev's.
547 * address_spaces which do not place buffers at ->private_list via these
548 * utility functions are free to use private_lock and private_list for
549 * whatever they want. The only requirement is that list_empty(private_list)
550 * be true at clear_inode() time.
552 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
553 * filesystems should do that. invalidate_inode_buffers() should just go
554 * BUG_ON(!list_empty).
556 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
557 * take an address_space, not an inode. And it should be called
558 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
559 * queued up.
561 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
562 * list if it is already on a list. Because if the buffer is on a list,
563 * it *must* already be on the right one. If not, the filesystem is being
564 * silly. This will save a ton of locking. But first we have to ensure
565 * that buffers are taken *off* the old inode's list when they are freed
566 * (presumably in truncate). That requires careful auditing of all
567 * filesystems (do it inside bforget()). It could also be done by bringing
568 * b_inode back.
572 * The buffer's backing address_space's private_lock must be held
574 static inline void __remove_assoc_queue(struct buffer_head *bh)
576 list_del_init(&bh->b_assoc_buffers);
577 WARN_ON(!bh->b_assoc_map);
578 if (buffer_write_io_error(bh))
579 set_bit(AS_EIO, &bh->b_assoc_map->flags);
580 bh->b_assoc_map = NULL;
583 int inode_has_buffers(struct inode *inode)
585 return !list_empty(&inode->i_data.private_list);
589 * osync is designed to support O_SYNC io. It waits synchronously for
590 * all already-submitted IO to complete, but does not queue any new
591 * writes to the disk.
593 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
594 * you dirty the buffers, and then use osync_inode_buffers to wait for
595 * completion. Any other dirty buffers which are not yet queued for
596 * write will not be flushed to disk by the osync.
598 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
600 struct buffer_head *bh;
601 struct list_head *p;
602 int err = 0;
604 spin_lock(lock);
605 repeat:
606 list_for_each_prev(p, list) {
607 bh = BH_ENTRY(p);
608 if (buffer_locked(bh)) {
609 get_bh(bh);
610 spin_unlock(lock);
611 wait_on_buffer(bh);
612 if (!buffer_uptodate(bh))
613 err = -EIO;
614 brelse(bh);
615 spin_lock(lock);
616 goto repeat;
619 spin_unlock(lock);
620 return err;
624 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
625 * buffers
626 * @mapping: the mapping which wants those buffers written
628 * Starts I/O against the buffers at mapping->private_list, and waits upon
629 * that I/O.
631 * Basically, this is a convenience function for fsync().
632 * @mapping is a file or directory which needs those buffers to be written for
633 * a successful fsync().
635 int sync_mapping_buffers(struct address_space *mapping)
637 struct address_space *buffer_mapping = mapping->assoc_mapping;
639 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
640 return 0;
642 return fsync_buffers_list(&buffer_mapping->private_lock,
643 &mapping->private_list);
645 EXPORT_SYMBOL(sync_mapping_buffers);
648 * Called when we've recently written block `bblock', and it is known that
649 * `bblock' was for a buffer_boundary() buffer. This means that the block at
650 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
651 * dirty, schedule it for IO. So that indirects merge nicely with their data.
653 void write_boundary_block(struct block_device *bdev,
654 sector_t bblock, unsigned blocksize)
656 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
657 if (bh) {
658 if (buffer_dirty(bh))
659 ll_rw_block(WRITE, 1, &bh);
660 put_bh(bh);
664 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
666 struct address_space *mapping = inode->i_mapping;
667 struct address_space *buffer_mapping = bh->b_page->mapping;
669 mark_buffer_dirty(bh);
670 if (!mapping->assoc_mapping) {
671 mapping->assoc_mapping = buffer_mapping;
672 } else {
673 BUG_ON(mapping->assoc_mapping != buffer_mapping);
675 if (list_empty(&bh->b_assoc_buffers)) {
676 spin_lock(&buffer_mapping->private_lock);
677 list_move_tail(&bh->b_assoc_buffers,
678 &mapping->private_list);
679 bh->b_assoc_map = mapping;
680 spin_unlock(&buffer_mapping->private_lock);
683 EXPORT_SYMBOL(mark_buffer_dirty_inode);
686 * Add a page to the dirty page list.
688 * It is a sad fact of life that this function is called from several places
689 * deeply under spinlocking. It may not sleep.
691 * If the page has buffers, the uptodate buffers are set dirty, to preserve
692 * dirty-state coherency between the page and the buffers. It the page does
693 * not have buffers then when they are later attached they will all be set
694 * dirty.
696 * The buffers are dirtied before the page is dirtied. There's a small race
697 * window in which a writepage caller may see the page cleanness but not the
698 * buffer dirtiness. That's fine. If this code were to set the page dirty
699 * before the buffers, a concurrent writepage caller could clear the page dirty
700 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
701 * page on the dirty page list.
703 * We use private_lock to lock against try_to_free_buffers while using the
704 * page's buffer list. Also use this to protect against clean buffers being
705 * added to the page after it was set dirty.
707 * FIXME: may need to call ->reservepage here as well. That's rather up to the
708 * address_space though.
710 int __set_page_dirty_buffers(struct page *page)
712 struct address_space * const mapping = page_mapping(page);
714 if (unlikely(!mapping))
715 return !TestSetPageDirty(page);
717 spin_lock(&mapping->private_lock);
718 if (page_has_buffers(page)) {
719 struct buffer_head *head = page_buffers(page);
720 struct buffer_head *bh = head;
722 do {
723 set_buffer_dirty(bh);
724 bh = bh->b_this_page;
725 } while (bh != head);
727 spin_unlock(&mapping->private_lock);
729 if (TestSetPageDirty(page))
730 return 0;
732 write_lock_irq(&mapping->tree_lock);
733 if (page->mapping) { /* Race with truncate? */
734 if (mapping_cap_account_dirty(mapping)) {
735 __inc_zone_page_state(page, NR_FILE_DIRTY);
736 task_io_account_write(PAGE_CACHE_SIZE);
738 radix_tree_tag_set(&mapping->page_tree,
739 page_index(page), PAGECACHE_TAG_DIRTY);
741 write_unlock_irq(&mapping->tree_lock);
742 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
743 return 1;
745 EXPORT_SYMBOL(__set_page_dirty_buffers);
748 * Write out and wait upon a list of buffers.
750 * We have conflicting pressures: we want to make sure that all
751 * initially dirty buffers get waited on, but that any subsequently
752 * dirtied buffers don't. After all, we don't want fsync to last
753 * forever if somebody is actively writing to the file.
755 * Do this in two main stages: first we copy dirty buffers to a
756 * temporary inode list, queueing the writes as we go. Then we clean
757 * up, waiting for those writes to complete.
759 * During this second stage, any subsequent updates to the file may end
760 * up refiling the buffer on the original inode's dirty list again, so
761 * there is a chance we will end up with a buffer queued for write but
762 * not yet completed on that list. So, as a final cleanup we go through
763 * the osync code to catch these locked, dirty buffers without requeuing
764 * any newly dirty buffers for write.
766 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
768 struct buffer_head *bh;
769 struct list_head tmp;
770 int err = 0, err2;
772 INIT_LIST_HEAD(&tmp);
774 spin_lock(lock);
775 while (!list_empty(list)) {
776 bh = BH_ENTRY(list->next);
777 __remove_assoc_queue(bh);
778 if (buffer_dirty(bh) || buffer_locked(bh)) {
779 list_add(&bh->b_assoc_buffers, &tmp);
780 if (buffer_dirty(bh)) {
781 get_bh(bh);
782 spin_unlock(lock);
784 * Ensure any pending I/O completes so that
785 * ll_rw_block() actually writes the current
786 * contents - it is a noop if I/O is still in
787 * flight on potentially older contents.
789 ll_rw_block(SWRITE, 1, &bh);
790 brelse(bh);
791 spin_lock(lock);
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
798 list_del_init(&bh->b_assoc_buffers);
799 get_bh(bh);
800 spin_unlock(lock);
801 wait_on_buffer(bh);
802 if (!buffer_uptodate(bh))
803 err = -EIO;
804 brelse(bh);
805 spin_lock(lock);
808 spin_unlock(lock);
809 err2 = osync_buffers_list(lock, list);
810 if (err)
811 return err;
812 else
813 return err2;
817 * Invalidate any and all dirty buffers on a given inode. We are
818 * probably unmounting the fs, but that doesn't mean we have already
819 * done a sync(). Just drop the buffers from the inode list.
821 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
822 * assumes that all the buffers are against the blockdev. Not true
823 * for reiserfs.
825 void invalidate_inode_buffers(struct inode *inode)
827 if (inode_has_buffers(inode)) {
828 struct address_space *mapping = &inode->i_data;
829 struct list_head *list = &mapping->private_list;
830 struct address_space *buffer_mapping = mapping->assoc_mapping;
832 spin_lock(&buffer_mapping->private_lock);
833 while (!list_empty(list))
834 __remove_assoc_queue(BH_ENTRY(list->next));
835 spin_unlock(&buffer_mapping->private_lock);
840 * Remove any clean buffers from the inode's buffer list. This is called
841 * when we're trying to free the inode itself. Those buffers can pin it.
843 * Returns true if all buffers were removed.
845 int remove_inode_buffers(struct inode *inode)
847 int ret = 1;
849 if (inode_has_buffers(inode)) {
850 struct address_space *mapping = &inode->i_data;
851 struct list_head *list = &mapping->private_list;
852 struct address_space *buffer_mapping = mapping->assoc_mapping;
854 spin_lock(&buffer_mapping->private_lock);
855 while (!list_empty(list)) {
856 struct buffer_head *bh = BH_ENTRY(list->next);
857 if (buffer_dirty(bh)) {
858 ret = 0;
859 break;
861 __remove_assoc_queue(bh);
863 spin_unlock(&buffer_mapping->private_lock);
865 return ret;
869 * Create the appropriate buffers when given a page for data area and
870 * the size of each buffer.. Use the bh->b_this_page linked list to
871 * follow the buffers created. Return NULL if unable to create more
872 * buffers.
874 * The retry flag is used to differentiate async IO (paging, swapping)
875 * which may not fail from ordinary buffer allocations.
877 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
878 int retry)
880 struct buffer_head *bh, *head;
881 long offset;
883 try_again:
884 head = NULL;
885 offset = PAGE_SIZE;
886 while ((offset -= size) >= 0) {
887 bh = alloc_buffer_head(GFP_NOFS);
888 if (!bh)
889 goto no_grow;
891 bh->b_bdev = NULL;
892 bh->b_this_page = head;
893 bh->b_blocknr = -1;
894 head = bh;
896 bh->b_state = 0;
897 atomic_set(&bh->b_count, 0);
898 bh->b_private = NULL;
899 bh->b_size = size;
901 /* Link the buffer to its page */
902 set_bh_page(bh, page, offset);
904 init_buffer(bh, NULL, NULL);
906 return head;
908 * In case anything failed, we just free everything we got.
910 no_grow:
911 if (head) {
912 do {
913 bh = head;
914 head = head->b_this_page;
915 free_buffer_head(bh);
916 } while (head);
920 * Return failure for non-async IO requests. Async IO requests
921 * are not allowed to fail, so we have to wait until buffer heads
922 * become available. But we don't want tasks sleeping with
923 * partially complete buffers, so all were released above.
925 if (!retry)
926 return NULL;
928 /* We're _really_ low on memory. Now we just
929 * wait for old buffer heads to become free due to
930 * finishing IO. Since this is an async request and
931 * the reserve list is empty, we're sure there are
932 * async buffer heads in use.
934 free_more_memory();
935 goto try_again;
937 EXPORT_SYMBOL_GPL(alloc_page_buffers);
939 static inline void
940 link_dev_buffers(struct page *page, struct buffer_head *head)
942 struct buffer_head *bh, *tail;
944 bh = head;
945 do {
946 tail = bh;
947 bh = bh->b_this_page;
948 } while (bh);
949 tail->b_this_page = head;
950 attach_page_buffers(page, head);
954 * Initialise the state of a blockdev page's buffers.
956 static void
957 init_page_buffers(struct page *page, struct block_device *bdev,
958 sector_t block, int size)
960 struct buffer_head *head = page_buffers(page);
961 struct buffer_head *bh = head;
962 int uptodate = PageUptodate(page);
964 do {
965 if (!buffer_mapped(bh)) {
966 init_buffer(bh, NULL, NULL);
967 bh->b_bdev = bdev;
968 bh->b_blocknr = block;
969 if (uptodate)
970 set_buffer_uptodate(bh);
971 set_buffer_mapped(bh);
973 block++;
974 bh = bh->b_this_page;
975 } while (bh != head);
979 * Create the page-cache page that contains the requested block.
981 * This is user purely for blockdev mappings.
983 static struct page *
984 grow_dev_page(struct block_device *bdev, sector_t block,
985 pgoff_t index, int size)
987 struct inode *inode = bdev->bd_inode;
988 struct page *page;
989 struct buffer_head *bh;
991 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
992 if (!page)
993 return NULL;
995 BUG_ON(!PageLocked(page));
997 if (page_has_buffers(page)) {
998 bh = page_buffers(page);
999 if (bh->b_size == size) {
1000 init_page_buffers(page, bdev, block, size);
1001 return page;
1003 if (!try_to_free_buffers(page))
1004 goto failed;
1008 * Allocate some buffers for this page
1010 bh = alloc_page_buffers(page, size, 0);
1011 if (!bh)
1012 goto failed;
1015 * Link the page to the buffers and initialise them. Take the
1016 * lock to be atomic wrt __find_get_block(), which does not
1017 * run under the page lock.
1019 spin_lock(&inode->i_mapping->private_lock);
1020 link_dev_buffers(page, bh);
1021 init_page_buffers(page, bdev, block, size);
1022 spin_unlock(&inode->i_mapping->private_lock);
1023 return page;
1025 failed:
1026 BUG();
1027 unlock_page(page);
1028 page_cache_release(page);
1029 return NULL;
1033 * Create buffers for the specified block device block's page. If
1034 * that page was dirty, the buffers are set dirty also.
1036 * Except that's a bug. Attaching dirty buffers to a dirty
1037 * blockdev's page can result in filesystem corruption, because
1038 * some of those buffers may be aliases of filesystem data.
1039 * grow_dev_page() will go BUG() if this happens.
1041 static int
1042 grow_buffers(struct block_device *bdev, sector_t block, int size)
1044 struct page *page;
1045 pgoff_t index;
1046 int sizebits;
1048 sizebits = -1;
1049 do {
1050 sizebits++;
1051 } while ((size << sizebits) < PAGE_SIZE);
1053 index = block >> sizebits;
1056 * Check for a block which wants to lie outside our maximum possible
1057 * pagecache index. (this comparison is done using sector_t types).
1059 if (unlikely(index != block >> sizebits)) {
1060 char b[BDEVNAME_SIZE];
1062 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1063 "device %s\n",
1064 __FUNCTION__, (unsigned long long)block,
1065 bdevname(bdev, b));
1066 return -EIO;
1068 block = index << sizebits;
1069 /* Create a page with the proper size buffers.. */
1070 page = grow_dev_page(bdev, block, index, size);
1071 if (!page)
1072 return 0;
1073 unlock_page(page);
1074 page_cache_release(page);
1075 return 1;
1078 static struct buffer_head *
1079 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1081 /* Size must be multiple of hard sectorsize */
1082 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1083 (size < 512 || size > PAGE_SIZE))) {
1084 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1085 size);
1086 printk(KERN_ERR "hardsect size: %d\n",
1087 bdev_hardsect_size(bdev));
1089 dump_stack();
1090 return NULL;
1093 for (;;) {
1094 struct buffer_head * bh;
1095 int ret;
1097 bh = __find_get_block(bdev, block, size);
1098 if (bh)
1099 return bh;
1101 ret = grow_buffers(bdev, block, size);
1102 if (ret < 0)
1103 return NULL;
1104 if (ret == 0)
1105 free_more_memory();
1110 * The relationship between dirty buffers and dirty pages:
1112 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1113 * the page is tagged dirty in its radix tree.
1115 * At all times, the dirtiness of the buffers represents the dirtiness of
1116 * subsections of the page. If the page has buffers, the page dirty bit is
1117 * merely a hint about the true dirty state.
1119 * When a page is set dirty in its entirety, all its buffers are marked dirty
1120 * (if the page has buffers).
1122 * When a buffer is marked dirty, its page is dirtied, but the page's other
1123 * buffers are not.
1125 * Also. When blockdev buffers are explicitly read with bread(), they
1126 * individually become uptodate. But their backing page remains not
1127 * uptodate - even if all of its buffers are uptodate. A subsequent
1128 * block_read_full_page() against that page will discover all the uptodate
1129 * buffers, will set the page uptodate and will perform no I/O.
1133 * mark_buffer_dirty - mark a buffer_head as needing writeout
1134 * @bh: the buffer_head to mark dirty
1136 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1137 * backing page dirty, then tag the page as dirty in its address_space's radix
1138 * tree and then attach the address_space's inode to its superblock's dirty
1139 * inode list.
1141 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1142 * mapping->tree_lock and the global inode_lock.
1144 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1146 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1147 __set_page_dirty_nobuffers(bh->b_page);
1151 * Decrement a buffer_head's reference count. If all buffers against a page
1152 * have zero reference count, are clean and unlocked, and if the page is clean
1153 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1154 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1155 * a page but it ends up not being freed, and buffers may later be reattached).
1157 void __brelse(struct buffer_head * buf)
1159 if (atomic_read(&buf->b_count)) {
1160 put_bh(buf);
1161 return;
1163 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1164 WARN_ON(1);
1168 * bforget() is like brelse(), except it discards any
1169 * potentially dirty data.
1171 void __bforget(struct buffer_head *bh)
1173 clear_buffer_dirty(bh);
1174 if (!list_empty(&bh->b_assoc_buffers)) {
1175 struct address_space *buffer_mapping = bh->b_page->mapping;
1177 spin_lock(&buffer_mapping->private_lock);
1178 list_del_init(&bh->b_assoc_buffers);
1179 bh->b_assoc_map = NULL;
1180 spin_unlock(&buffer_mapping->private_lock);
1182 __brelse(bh);
1185 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1187 lock_buffer(bh);
1188 if (buffer_uptodate(bh)) {
1189 unlock_buffer(bh);
1190 return bh;
1191 } else {
1192 get_bh(bh);
1193 bh->b_end_io = end_buffer_read_sync;
1194 submit_bh(READ, bh);
1195 wait_on_buffer(bh);
1196 if (buffer_uptodate(bh))
1197 return bh;
1199 brelse(bh);
1200 return NULL;
1204 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1205 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1206 * refcount elevated by one when they're in an LRU. A buffer can only appear
1207 * once in a particular CPU's LRU. A single buffer can be present in multiple
1208 * CPU's LRUs at the same time.
1210 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1211 * sb_find_get_block().
1213 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1214 * a local interrupt disable for that.
1217 #define BH_LRU_SIZE 8
1219 struct bh_lru {
1220 struct buffer_head *bhs[BH_LRU_SIZE];
1223 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1225 #ifdef CONFIG_SMP
1226 #define bh_lru_lock() local_irq_disable()
1227 #define bh_lru_unlock() local_irq_enable()
1228 #else
1229 #define bh_lru_lock() preempt_disable()
1230 #define bh_lru_unlock() preempt_enable()
1231 #endif
1233 static inline void check_irqs_on(void)
1235 #ifdef irqs_disabled
1236 BUG_ON(irqs_disabled());
1237 #endif
1241 * The LRU management algorithm is dopey-but-simple. Sorry.
1243 static void bh_lru_install(struct buffer_head *bh)
1245 struct buffer_head *evictee = NULL;
1246 struct bh_lru *lru;
1248 check_irqs_on();
1249 bh_lru_lock();
1250 lru = &__get_cpu_var(bh_lrus);
1251 if (lru->bhs[0] != bh) {
1252 struct buffer_head *bhs[BH_LRU_SIZE];
1253 int in;
1254 int out = 0;
1256 get_bh(bh);
1257 bhs[out++] = bh;
1258 for (in = 0; in < BH_LRU_SIZE; in++) {
1259 struct buffer_head *bh2 = lru->bhs[in];
1261 if (bh2 == bh) {
1262 __brelse(bh2);
1263 } else {
1264 if (out >= BH_LRU_SIZE) {
1265 BUG_ON(evictee != NULL);
1266 evictee = bh2;
1267 } else {
1268 bhs[out++] = bh2;
1272 while (out < BH_LRU_SIZE)
1273 bhs[out++] = NULL;
1274 memcpy(lru->bhs, bhs, sizeof(bhs));
1276 bh_lru_unlock();
1278 if (evictee)
1279 __brelse(evictee);
1283 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1285 static struct buffer_head *
1286 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1288 struct buffer_head *ret = NULL;
1289 struct bh_lru *lru;
1290 unsigned int i;
1292 check_irqs_on();
1293 bh_lru_lock();
1294 lru = &__get_cpu_var(bh_lrus);
1295 for (i = 0; i < BH_LRU_SIZE; i++) {
1296 struct buffer_head *bh = lru->bhs[i];
1298 if (bh && bh->b_bdev == bdev &&
1299 bh->b_blocknr == block && bh->b_size == size) {
1300 if (i) {
1301 while (i) {
1302 lru->bhs[i] = lru->bhs[i - 1];
1303 i--;
1305 lru->bhs[0] = bh;
1307 get_bh(bh);
1308 ret = bh;
1309 break;
1312 bh_lru_unlock();
1313 return ret;
1317 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1318 * it in the LRU and mark it as accessed. If it is not present then return
1319 * NULL
1321 struct buffer_head *
1322 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1324 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1326 if (bh == NULL) {
1327 bh = __find_get_block_slow(bdev, block);
1328 if (bh)
1329 bh_lru_install(bh);
1331 if (bh)
1332 touch_buffer(bh);
1333 return bh;
1335 EXPORT_SYMBOL(__find_get_block);
1338 * __getblk will locate (and, if necessary, create) the buffer_head
1339 * which corresponds to the passed block_device, block and size. The
1340 * returned buffer has its reference count incremented.
1342 * __getblk() cannot fail - it just keeps trying. If you pass it an
1343 * illegal block number, __getblk() will happily return a buffer_head
1344 * which represents the non-existent block. Very weird.
1346 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1347 * attempt is failing. FIXME, perhaps?
1349 struct buffer_head *
1350 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1352 struct buffer_head *bh = __find_get_block(bdev, block, size);
1354 might_sleep();
1355 if (bh == NULL)
1356 bh = __getblk_slow(bdev, block, size);
1357 return bh;
1359 EXPORT_SYMBOL(__getblk);
1362 * Do async read-ahead on a buffer..
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1366 struct buffer_head *bh = __getblk(bdev, block, size);
1367 if (likely(bh)) {
1368 ll_rw_block(READA, 1, &bh);
1369 brelse(bh);
1372 EXPORT_SYMBOL(__breadahead);
1375 * __bread() - reads a specified block and returns the bh
1376 * @bdev: the block_device to read from
1377 * @block: number of block
1378 * @size: size (in bytes) to read
1380 * Reads a specified block, and returns buffer head that contains it.
1381 * It returns NULL if the block was unreadable.
1383 struct buffer_head *
1384 __bread(struct block_device *bdev, sector_t block, unsigned size)
1386 struct buffer_head *bh = __getblk(bdev, block, size);
1388 if (likely(bh) && !buffer_uptodate(bh))
1389 bh = __bread_slow(bh);
1390 return bh;
1392 EXPORT_SYMBOL(__bread);
1395 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1396 * This doesn't race because it runs in each cpu either in irq
1397 * or with preempt disabled.
1399 static void invalidate_bh_lru(void *arg)
1401 struct bh_lru *b = &get_cpu_var(bh_lrus);
1402 int i;
1404 for (i = 0; i < BH_LRU_SIZE; i++) {
1405 brelse(b->bhs[i]);
1406 b->bhs[i] = NULL;
1408 put_cpu_var(bh_lrus);
1411 static void invalidate_bh_lrus(void)
1413 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1416 void set_bh_page(struct buffer_head *bh,
1417 struct page *page, unsigned long offset)
1419 bh->b_page = page;
1420 BUG_ON(offset >= PAGE_SIZE);
1421 if (PageHighMem(page))
1423 * This catches illegal uses and preserves the offset:
1425 bh->b_data = (char *)(0 + offset);
1426 else
1427 bh->b_data = page_address(page) + offset;
1429 EXPORT_SYMBOL(set_bh_page);
1432 * Called when truncating a buffer on a page completely.
1434 static void discard_buffer(struct buffer_head * bh)
1436 lock_buffer(bh);
1437 clear_buffer_dirty(bh);
1438 bh->b_bdev = NULL;
1439 clear_buffer_mapped(bh);
1440 clear_buffer_req(bh);
1441 clear_buffer_new(bh);
1442 clear_buffer_delay(bh);
1443 clear_buffer_unwritten(bh);
1444 unlock_buffer(bh);
1448 * block_invalidatepage - invalidate part of all of a buffer-backed page
1450 * @page: the page which is affected
1451 * @offset: the index of the truncation point
1453 * block_invalidatepage() is called when all or part of the page has become
1454 * invalidatedby a truncate operation.
1456 * block_invalidatepage() does not have to release all buffers, but it must
1457 * ensure that no dirty buffer is left outside @offset and that no I/O
1458 * is underway against any of the blocks which are outside the truncation
1459 * point. Because the caller is about to free (and possibly reuse) those
1460 * blocks on-disk.
1462 void block_invalidatepage(struct page *page, unsigned long offset)
1464 struct buffer_head *head, *bh, *next;
1465 unsigned int curr_off = 0;
1467 BUG_ON(!PageLocked(page));
1468 if (!page_has_buffers(page))
1469 goto out;
1471 head = page_buffers(page);
1472 bh = head;
1473 do {
1474 unsigned int next_off = curr_off + bh->b_size;
1475 next = bh->b_this_page;
1478 * is this block fully invalidated?
1480 if (offset <= curr_off)
1481 discard_buffer(bh);
1482 curr_off = next_off;
1483 bh = next;
1484 } while (bh != head);
1487 * We release buffers only if the entire page is being invalidated.
1488 * The get_block cached value has been unconditionally invalidated,
1489 * so real IO is not possible anymore.
1491 if (offset == 0)
1492 try_to_release_page(page, 0);
1493 out:
1494 return;
1496 EXPORT_SYMBOL(block_invalidatepage);
1499 * We attach and possibly dirty the buffers atomically wrt
1500 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1501 * is already excluded via the page lock.
1503 void create_empty_buffers(struct page *page,
1504 unsigned long blocksize, unsigned long b_state)
1506 struct buffer_head *bh, *head, *tail;
1508 head = alloc_page_buffers(page, blocksize, 1);
1509 bh = head;
1510 do {
1511 bh->b_state |= b_state;
1512 tail = bh;
1513 bh = bh->b_this_page;
1514 } while (bh);
1515 tail->b_this_page = head;
1517 spin_lock(&page->mapping->private_lock);
1518 if (PageUptodate(page) || PageDirty(page)) {
1519 bh = head;
1520 do {
1521 if (PageDirty(page))
1522 set_buffer_dirty(bh);
1523 if (PageUptodate(page))
1524 set_buffer_uptodate(bh);
1525 bh = bh->b_this_page;
1526 } while (bh != head);
1528 attach_page_buffers(page, head);
1529 spin_unlock(&page->mapping->private_lock);
1531 EXPORT_SYMBOL(create_empty_buffers);
1534 * We are taking a block for data and we don't want any output from any
1535 * buffer-cache aliases starting from return from that function and
1536 * until the moment when something will explicitly mark the buffer
1537 * dirty (hopefully that will not happen until we will free that block ;-)
1538 * We don't even need to mark it not-uptodate - nobody can expect
1539 * anything from a newly allocated buffer anyway. We used to used
1540 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1541 * don't want to mark the alias unmapped, for example - it would confuse
1542 * anyone who might pick it with bread() afterwards...
1544 * Also.. Note that bforget() doesn't lock the buffer. So there can
1545 * be writeout I/O going on against recently-freed buffers. We don't
1546 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1547 * only if we really need to. That happens here.
1549 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1551 struct buffer_head *old_bh;
1553 might_sleep();
1555 old_bh = __find_get_block_slow(bdev, block);
1556 if (old_bh) {
1557 clear_buffer_dirty(old_bh);
1558 wait_on_buffer(old_bh);
1559 clear_buffer_req(old_bh);
1560 __brelse(old_bh);
1563 EXPORT_SYMBOL(unmap_underlying_metadata);
1566 * NOTE! All mapped/uptodate combinations are valid:
1568 * Mapped Uptodate Meaning
1570 * No No "unknown" - must do get_block()
1571 * No Yes "hole" - zero-filled
1572 * Yes No "allocated" - allocated on disk, not read in
1573 * Yes Yes "valid" - allocated and up-to-date in memory.
1575 * "Dirty" is valid only with the last case (mapped+uptodate).
1579 * While block_write_full_page is writing back the dirty buffers under
1580 * the page lock, whoever dirtied the buffers may decide to clean them
1581 * again at any time. We handle that by only looking at the buffer
1582 * state inside lock_buffer().
1584 * If block_write_full_page() is called for regular writeback
1585 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1586 * locked buffer. This only can happen if someone has written the buffer
1587 * directly, with submit_bh(). At the address_space level PageWriteback
1588 * prevents this contention from occurring.
1590 static int __block_write_full_page(struct inode *inode, struct page *page,
1591 get_block_t *get_block, struct writeback_control *wbc)
1593 int err;
1594 sector_t block;
1595 sector_t last_block;
1596 struct buffer_head *bh, *head;
1597 const unsigned blocksize = 1 << inode->i_blkbits;
1598 int nr_underway = 0;
1600 BUG_ON(!PageLocked(page));
1602 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1604 if (!page_has_buffers(page)) {
1605 create_empty_buffers(page, blocksize,
1606 (1 << BH_Dirty)|(1 << BH_Uptodate));
1610 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1611 * here, and the (potentially unmapped) buffers may become dirty at
1612 * any time. If a buffer becomes dirty here after we've inspected it
1613 * then we just miss that fact, and the page stays dirty.
1615 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1616 * handle that here by just cleaning them.
1619 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1620 head = page_buffers(page);
1621 bh = head;
1624 * Get all the dirty buffers mapped to disk addresses and
1625 * handle any aliases from the underlying blockdev's mapping.
1627 do {
1628 if (block > last_block) {
1630 * mapped buffers outside i_size will occur, because
1631 * this page can be outside i_size when there is a
1632 * truncate in progress.
1635 * The buffer was zeroed by block_write_full_page()
1637 clear_buffer_dirty(bh);
1638 set_buffer_uptodate(bh);
1639 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1640 WARN_ON(bh->b_size != blocksize);
1641 err = get_block(inode, block, bh, 1);
1642 if (err)
1643 goto recover;
1644 if (buffer_new(bh)) {
1645 /* blockdev mappings never come here */
1646 clear_buffer_new(bh);
1647 unmap_underlying_metadata(bh->b_bdev,
1648 bh->b_blocknr);
1651 bh = bh->b_this_page;
1652 block++;
1653 } while (bh != head);
1655 do {
1656 if (!buffer_mapped(bh))
1657 continue;
1659 * If it's a fully non-blocking write attempt and we cannot
1660 * lock the buffer then redirty the page. Note that this can
1661 * potentially cause a busy-wait loop from pdflush and kswapd
1662 * activity, but those code paths have their own higher-level
1663 * throttling.
1665 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1666 lock_buffer(bh);
1667 } else if (test_set_buffer_locked(bh)) {
1668 redirty_page_for_writepage(wbc, page);
1669 continue;
1671 if (test_clear_buffer_dirty(bh)) {
1672 mark_buffer_async_write(bh);
1673 } else {
1674 unlock_buffer(bh);
1676 } while ((bh = bh->b_this_page) != head);
1679 * The page and its buffers are protected by PageWriteback(), so we can
1680 * drop the bh refcounts early.
1682 BUG_ON(PageWriteback(page));
1683 set_page_writeback(page);
1685 do {
1686 struct buffer_head *next = bh->b_this_page;
1687 if (buffer_async_write(bh)) {
1688 submit_bh(WRITE, bh);
1689 nr_underway++;
1691 bh = next;
1692 } while (bh != head);
1693 unlock_page(page);
1695 err = 0;
1696 done:
1697 if (nr_underway == 0) {
1699 * The page was marked dirty, but the buffers were
1700 * clean. Someone wrote them back by hand with
1701 * ll_rw_block/submit_bh. A rare case.
1703 int uptodate = 1;
1704 do {
1705 if (!buffer_uptodate(bh)) {
1706 uptodate = 0;
1707 break;
1709 bh = bh->b_this_page;
1710 } while (bh != head);
1711 if (uptodate)
1712 SetPageUptodate(page);
1713 end_page_writeback(page);
1715 * The page and buffer_heads can be released at any time from
1716 * here on.
1718 wbc->pages_skipped++; /* We didn't write this page */
1720 return err;
1722 recover:
1724 * ENOSPC, or some other error. We may already have added some
1725 * blocks to the file, so we need to write these out to avoid
1726 * exposing stale data.
1727 * The page is currently locked and not marked for writeback
1729 bh = head;
1730 /* Recovery: lock and submit the mapped buffers */
1731 do {
1732 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1733 lock_buffer(bh);
1734 mark_buffer_async_write(bh);
1735 } else {
1737 * The buffer may have been set dirty during
1738 * attachment to a dirty page.
1740 clear_buffer_dirty(bh);
1742 } while ((bh = bh->b_this_page) != head);
1743 SetPageError(page);
1744 BUG_ON(PageWriteback(page));
1745 set_page_writeback(page);
1746 unlock_page(page);
1747 do {
1748 struct buffer_head *next = bh->b_this_page;
1749 if (buffer_async_write(bh)) {
1750 clear_buffer_dirty(bh);
1751 submit_bh(WRITE, bh);
1752 nr_underway++;
1754 bh = next;
1755 } while (bh != head);
1756 goto done;
1759 static int __block_prepare_write(struct inode *inode, struct page *page,
1760 unsigned from, unsigned to, get_block_t *get_block)
1762 unsigned block_start, block_end;
1763 sector_t block;
1764 int err = 0;
1765 unsigned blocksize, bbits;
1766 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1768 BUG_ON(!PageLocked(page));
1769 BUG_ON(from > PAGE_CACHE_SIZE);
1770 BUG_ON(to > PAGE_CACHE_SIZE);
1771 BUG_ON(from > to);
1773 blocksize = 1 << inode->i_blkbits;
1774 if (!page_has_buffers(page))
1775 create_empty_buffers(page, blocksize, 0);
1776 head = page_buffers(page);
1778 bbits = inode->i_blkbits;
1779 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1781 for(bh = head, block_start = 0; bh != head || !block_start;
1782 block++, block_start=block_end, bh = bh->b_this_page) {
1783 block_end = block_start + blocksize;
1784 if (block_end <= from || block_start >= to) {
1785 if (PageUptodate(page)) {
1786 if (!buffer_uptodate(bh))
1787 set_buffer_uptodate(bh);
1789 continue;
1791 if (buffer_new(bh))
1792 clear_buffer_new(bh);
1793 if (!buffer_mapped(bh)) {
1794 WARN_ON(bh->b_size != blocksize);
1795 err = get_block(inode, block, bh, 1);
1796 if (err)
1797 break;
1798 if (buffer_new(bh)) {
1799 unmap_underlying_metadata(bh->b_bdev,
1800 bh->b_blocknr);
1801 if (PageUptodate(page)) {
1802 set_buffer_uptodate(bh);
1803 continue;
1805 if (block_end > to || block_start < from) {
1806 void *kaddr;
1808 kaddr = kmap_atomic(page, KM_USER0);
1809 if (block_end > to)
1810 memset(kaddr+to, 0,
1811 block_end-to);
1812 if (block_start < from)
1813 memset(kaddr+block_start,
1814 0, from-block_start);
1815 flush_dcache_page(page);
1816 kunmap_atomic(kaddr, KM_USER0);
1818 continue;
1821 if (PageUptodate(page)) {
1822 if (!buffer_uptodate(bh))
1823 set_buffer_uptodate(bh);
1824 continue;
1826 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1827 !buffer_unwritten(bh) &&
1828 (block_start < from || block_end > to)) {
1829 ll_rw_block(READ, 1, &bh);
1830 *wait_bh++=bh;
1834 * If we issued read requests - let them complete.
1836 while(wait_bh > wait) {
1837 wait_on_buffer(*--wait_bh);
1838 if (!buffer_uptodate(*wait_bh))
1839 err = -EIO;
1841 if (!err) {
1842 bh = head;
1843 do {
1844 if (buffer_new(bh))
1845 clear_buffer_new(bh);
1846 } while ((bh = bh->b_this_page) != head);
1847 return 0;
1849 /* Error case: */
1851 * Zero out any newly allocated blocks to avoid exposing stale
1852 * data. If BH_New is set, we know that the block was newly
1853 * allocated in the above loop.
1855 bh = head;
1856 block_start = 0;
1857 do {
1858 block_end = block_start+blocksize;
1859 if (block_end <= from)
1860 goto next_bh;
1861 if (block_start >= to)
1862 break;
1863 if (buffer_new(bh)) {
1864 void *kaddr;
1866 clear_buffer_new(bh);
1867 kaddr = kmap_atomic(page, KM_USER0);
1868 memset(kaddr+block_start, 0, bh->b_size);
1869 flush_dcache_page(page);
1870 kunmap_atomic(kaddr, KM_USER0);
1871 set_buffer_uptodate(bh);
1872 mark_buffer_dirty(bh);
1874 next_bh:
1875 block_start = block_end;
1876 bh = bh->b_this_page;
1877 } while (bh != head);
1878 return err;
1881 static int __block_commit_write(struct inode *inode, struct page *page,
1882 unsigned from, unsigned to)
1884 unsigned block_start, block_end;
1885 int partial = 0;
1886 unsigned blocksize;
1887 struct buffer_head *bh, *head;
1889 blocksize = 1 << inode->i_blkbits;
1891 for(bh = head = page_buffers(page), block_start = 0;
1892 bh != head || !block_start;
1893 block_start=block_end, bh = bh->b_this_page) {
1894 block_end = block_start + blocksize;
1895 if (block_end <= from || block_start >= to) {
1896 if (!buffer_uptodate(bh))
1897 partial = 1;
1898 } else {
1899 set_buffer_uptodate(bh);
1900 mark_buffer_dirty(bh);
1905 * If this is a partial write which happened to make all buffers
1906 * uptodate then we can optimize away a bogus readpage() for
1907 * the next read(). Here we 'discover' whether the page went
1908 * uptodate as a result of this (potentially partial) write.
1910 if (!partial)
1911 SetPageUptodate(page);
1912 return 0;
1916 * Generic "read page" function for block devices that have the normal
1917 * get_block functionality. This is most of the block device filesystems.
1918 * Reads the page asynchronously --- the unlock_buffer() and
1919 * set/clear_buffer_uptodate() functions propagate buffer state into the
1920 * page struct once IO has completed.
1922 int block_read_full_page(struct page *page, get_block_t *get_block)
1924 struct inode *inode = page->mapping->host;
1925 sector_t iblock, lblock;
1926 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1927 unsigned int blocksize;
1928 int nr, i;
1929 int fully_mapped = 1;
1931 BUG_ON(!PageLocked(page));
1932 blocksize = 1 << inode->i_blkbits;
1933 if (!page_has_buffers(page))
1934 create_empty_buffers(page, blocksize, 0);
1935 head = page_buffers(page);
1937 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1938 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1939 bh = head;
1940 nr = 0;
1941 i = 0;
1943 do {
1944 if (buffer_uptodate(bh))
1945 continue;
1947 if (!buffer_mapped(bh)) {
1948 int err = 0;
1950 fully_mapped = 0;
1951 if (iblock < lblock) {
1952 WARN_ON(bh->b_size != blocksize);
1953 err = get_block(inode, iblock, bh, 0);
1954 if (err)
1955 SetPageError(page);
1957 if (!buffer_mapped(bh)) {
1958 void *kaddr = kmap_atomic(page, KM_USER0);
1959 memset(kaddr + i * blocksize, 0, blocksize);
1960 flush_dcache_page(page);
1961 kunmap_atomic(kaddr, KM_USER0);
1962 if (!err)
1963 set_buffer_uptodate(bh);
1964 continue;
1967 * get_block() might have updated the buffer
1968 * synchronously
1970 if (buffer_uptodate(bh))
1971 continue;
1973 arr[nr++] = bh;
1974 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1976 if (fully_mapped)
1977 SetPageMappedToDisk(page);
1979 if (!nr) {
1981 * All buffers are uptodate - we can set the page uptodate
1982 * as well. But not if get_block() returned an error.
1984 if (!PageError(page))
1985 SetPageUptodate(page);
1986 unlock_page(page);
1987 return 0;
1990 /* Stage two: lock the buffers */
1991 for (i = 0; i < nr; i++) {
1992 bh = arr[i];
1993 lock_buffer(bh);
1994 mark_buffer_async_read(bh);
1998 * Stage 3: start the IO. Check for uptodateness
1999 * inside the buffer lock in case another process reading
2000 * the underlying blockdev brought it uptodate (the sct fix).
2002 for (i = 0; i < nr; i++) {
2003 bh = arr[i];
2004 if (buffer_uptodate(bh))
2005 end_buffer_async_read(bh, 1);
2006 else
2007 submit_bh(READ, bh);
2009 return 0;
2012 /* utility function for filesystems that need to do work on expanding
2013 * truncates. Uses prepare/commit_write to allow the filesystem to
2014 * deal with the hole.
2016 static int __generic_cont_expand(struct inode *inode, loff_t size,
2017 pgoff_t index, unsigned int offset)
2019 struct address_space *mapping = inode->i_mapping;
2020 struct page *page;
2021 unsigned long limit;
2022 int err;
2024 err = -EFBIG;
2025 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2026 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2027 send_sig(SIGXFSZ, current, 0);
2028 goto out;
2030 if (size > inode->i_sb->s_maxbytes)
2031 goto out;
2033 err = -ENOMEM;
2034 page = grab_cache_page(mapping, index);
2035 if (!page)
2036 goto out;
2037 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2038 if (err) {
2040 * ->prepare_write() may have instantiated a few blocks
2041 * outside i_size. Trim these off again.
2043 unlock_page(page);
2044 page_cache_release(page);
2045 vmtruncate(inode, inode->i_size);
2046 goto out;
2049 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2051 unlock_page(page);
2052 page_cache_release(page);
2053 if (err > 0)
2054 err = 0;
2055 out:
2056 return err;
2059 int generic_cont_expand(struct inode *inode, loff_t size)
2061 pgoff_t index;
2062 unsigned int offset;
2064 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2066 /* ugh. in prepare/commit_write, if from==to==start of block, we
2067 ** skip the prepare. make sure we never send an offset for the start
2068 ** of a block
2070 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2071 /* caller must handle this extra byte. */
2072 offset++;
2074 index = size >> PAGE_CACHE_SHIFT;
2076 return __generic_cont_expand(inode, size, index, offset);
2079 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2081 loff_t pos = size - 1;
2082 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2083 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2085 /* prepare/commit_write can handle even if from==to==start of block. */
2086 return __generic_cont_expand(inode, size, index, offset);
2090 * For moronic filesystems that do not allow holes in file.
2091 * We may have to extend the file.
2094 int cont_prepare_write(struct page *page, unsigned offset,
2095 unsigned to, get_block_t *get_block, loff_t *bytes)
2097 struct address_space *mapping = page->mapping;
2098 struct inode *inode = mapping->host;
2099 struct page *new_page;
2100 pgoff_t pgpos;
2101 long status;
2102 unsigned zerofrom;
2103 unsigned blocksize = 1 << inode->i_blkbits;
2104 void *kaddr;
2106 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2107 status = -ENOMEM;
2108 new_page = grab_cache_page(mapping, pgpos);
2109 if (!new_page)
2110 goto out;
2111 /* we might sleep */
2112 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2113 unlock_page(new_page);
2114 page_cache_release(new_page);
2115 continue;
2117 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2118 if (zerofrom & (blocksize-1)) {
2119 *bytes |= (blocksize-1);
2120 (*bytes)++;
2122 status = __block_prepare_write(inode, new_page, zerofrom,
2123 PAGE_CACHE_SIZE, get_block);
2124 if (status)
2125 goto out_unmap;
2126 kaddr = kmap_atomic(new_page, KM_USER0);
2127 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2128 flush_dcache_page(new_page);
2129 kunmap_atomic(kaddr, KM_USER0);
2130 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2131 unlock_page(new_page);
2132 page_cache_release(new_page);
2135 if (page->index < pgpos) {
2136 /* completely inside the area */
2137 zerofrom = offset;
2138 } else {
2139 /* page covers the boundary, find the boundary offset */
2140 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2142 /* if we will expand the thing last block will be filled */
2143 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2144 *bytes |= (blocksize-1);
2145 (*bytes)++;
2148 /* starting below the boundary? Nothing to zero out */
2149 if (offset <= zerofrom)
2150 zerofrom = offset;
2152 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2153 if (status)
2154 goto out1;
2155 if (zerofrom < offset) {
2156 kaddr = kmap_atomic(page, KM_USER0);
2157 memset(kaddr+zerofrom, 0, offset-zerofrom);
2158 flush_dcache_page(page);
2159 kunmap_atomic(kaddr, KM_USER0);
2160 __block_commit_write(inode, page, zerofrom, offset);
2162 return 0;
2163 out1:
2164 ClearPageUptodate(page);
2165 return status;
2167 out_unmap:
2168 ClearPageUptodate(new_page);
2169 unlock_page(new_page);
2170 page_cache_release(new_page);
2171 out:
2172 return status;
2175 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2176 get_block_t *get_block)
2178 struct inode *inode = page->mapping->host;
2179 int err = __block_prepare_write(inode, page, from, to, get_block);
2180 if (err)
2181 ClearPageUptodate(page);
2182 return err;
2185 int block_commit_write(struct page *page, unsigned from, unsigned to)
2187 struct inode *inode = page->mapping->host;
2188 __block_commit_write(inode,page,from,to);
2189 return 0;
2192 int generic_commit_write(struct file *file, struct page *page,
2193 unsigned from, unsigned to)
2195 struct inode *inode = page->mapping->host;
2196 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2197 __block_commit_write(inode,page,from,to);
2199 * No need to use i_size_read() here, the i_size
2200 * cannot change under us because we hold i_mutex.
2202 if (pos > inode->i_size) {
2203 i_size_write(inode, pos);
2204 mark_inode_dirty(inode);
2206 return 0;
2211 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2212 * immediately, while under the page lock. So it needs a special end_io
2213 * handler which does not touch the bh after unlocking it.
2215 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2216 * a race there is benign: unlock_buffer() only use the bh's address for
2217 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2218 * itself.
2220 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2222 if (uptodate) {
2223 set_buffer_uptodate(bh);
2224 } else {
2225 /* This happens, due to failed READA attempts. */
2226 clear_buffer_uptodate(bh);
2228 unlock_buffer(bh);
2232 * On entry, the page is fully not uptodate.
2233 * On exit the page is fully uptodate in the areas outside (from,to)
2235 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2236 get_block_t *get_block)
2238 struct inode *inode = page->mapping->host;
2239 const unsigned blkbits = inode->i_blkbits;
2240 const unsigned blocksize = 1 << blkbits;
2241 struct buffer_head map_bh;
2242 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2243 unsigned block_in_page;
2244 unsigned block_start;
2245 sector_t block_in_file;
2246 char *kaddr;
2247 int nr_reads = 0;
2248 int i;
2249 int ret = 0;
2250 int is_mapped_to_disk = 1;
2251 int dirtied_it = 0;
2253 if (PageMappedToDisk(page))
2254 return 0;
2256 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2257 map_bh.b_page = page;
2260 * We loop across all blocks in the page, whether or not they are
2261 * part of the affected region. This is so we can discover if the
2262 * page is fully mapped-to-disk.
2264 for (block_start = 0, block_in_page = 0;
2265 block_start < PAGE_CACHE_SIZE;
2266 block_in_page++, block_start += blocksize) {
2267 unsigned block_end = block_start + blocksize;
2268 int create;
2270 map_bh.b_state = 0;
2271 create = 1;
2272 if (block_start >= to)
2273 create = 0;
2274 map_bh.b_size = blocksize;
2275 ret = get_block(inode, block_in_file + block_in_page,
2276 &map_bh, create);
2277 if (ret)
2278 goto failed;
2279 if (!buffer_mapped(&map_bh))
2280 is_mapped_to_disk = 0;
2281 if (buffer_new(&map_bh))
2282 unmap_underlying_metadata(map_bh.b_bdev,
2283 map_bh.b_blocknr);
2284 if (PageUptodate(page))
2285 continue;
2286 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2287 kaddr = kmap_atomic(page, KM_USER0);
2288 if (block_start < from) {
2289 memset(kaddr+block_start, 0, from-block_start);
2290 dirtied_it = 1;
2292 if (block_end > to) {
2293 memset(kaddr + to, 0, block_end - to);
2294 dirtied_it = 1;
2296 flush_dcache_page(page);
2297 kunmap_atomic(kaddr, KM_USER0);
2298 continue;
2300 if (buffer_uptodate(&map_bh))
2301 continue; /* reiserfs does this */
2302 if (block_start < from || block_end > to) {
2303 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2305 if (!bh) {
2306 ret = -ENOMEM;
2307 goto failed;
2309 bh->b_state = map_bh.b_state;
2310 atomic_set(&bh->b_count, 0);
2311 bh->b_this_page = NULL;
2312 bh->b_page = page;
2313 bh->b_blocknr = map_bh.b_blocknr;
2314 bh->b_size = blocksize;
2315 bh->b_data = (char *)(long)block_start;
2316 bh->b_bdev = map_bh.b_bdev;
2317 bh->b_private = NULL;
2318 read_bh[nr_reads++] = bh;
2322 if (nr_reads) {
2323 struct buffer_head *bh;
2326 * The page is locked, so these buffers are protected from
2327 * any VM or truncate activity. Hence we don't need to care
2328 * for the buffer_head refcounts.
2330 for (i = 0; i < nr_reads; i++) {
2331 bh = read_bh[i];
2332 lock_buffer(bh);
2333 bh->b_end_io = end_buffer_read_nobh;
2334 submit_bh(READ, bh);
2336 for (i = 0; i < nr_reads; i++) {
2337 bh = read_bh[i];
2338 wait_on_buffer(bh);
2339 if (!buffer_uptodate(bh))
2340 ret = -EIO;
2341 free_buffer_head(bh);
2342 read_bh[i] = NULL;
2344 if (ret)
2345 goto failed;
2348 if (is_mapped_to_disk)
2349 SetPageMappedToDisk(page);
2350 SetPageUptodate(page);
2353 * Setting the page dirty here isn't necessary for the prepare_write
2354 * function - commit_write will do that. But if/when this function is
2355 * used within the pagefault handler to ensure that all mmapped pages
2356 * have backing space in the filesystem, we will need to dirty the page
2357 * if its contents were altered.
2359 if (dirtied_it)
2360 set_page_dirty(page);
2362 return 0;
2364 failed:
2365 for (i = 0; i < nr_reads; i++) {
2366 if (read_bh[i])
2367 free_buffer_head(read_bh[i]);
2371 * Error recovery is pretty slack. Clear the page and mark it dirty
2372 * so we'll later zero out any blocks which _were_ allocated.
2374 kaddr = kmap_atomic(page, KM_USER0);
2375 memset(kaddr, 0, PAGE_CACHE_SIZE);
2376 flush_dcache_page(page);
2377 kunmap_atomic(kaddr, KM_USER0);
2378 SetPageUptodate(page);
2379 set_page_dirty(page);
2380 return ret;
2382 EXPORT_SYMBOL(nobh_prepare_write);
2384 int nobh_commit_write(struct file *file, struct page *page,
2385 unsigned from, unsigned to)
2387 struct inode *inode = page->mapping->host;
2388 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2390 set_page_dirty(page);
2391 if (pos > inode->i_size) {
2392 i_size_write(inode, pos);
2393 mark_inode_dirty(inode);
2395 return 0;
2397 EXPORT_SYMBOL(nobh_commit_write);
2400 * nobh_writepage() - based on block_full_write_page() except
2401 * that it tries to operate without attaching bufferheads to
2402 * the page.
2404 int nobh_writepage(struct page *page, get_block_t *get_block,
2405 struct writeback_control *wbc)
2407 struct inode * const inode = page->mapping->host;
2408 loff_t i_size = i_size_read(inode);
2409 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2410 unsigned offset;
2411 void *kaddr;
2412 int ret;
2414 /* Is the page fully inside i_size? */
2415 if (page->index < end_index)
2416 goto out;
2418 /* Is the page fully outside i_size? (truncate in progress) */
2419 offset = i_size & (PAGE_CACHE_SIZE-1);
2420 if (page->index >= end_index+1 || !offset) {
2422 * The page may have dirty, unmapped buffers. For example,
2423 * they may have been added in ext3_writepage(). Make them
2424 * freeable here, so the page does not leak.
2426 #if 0
2427 /* Not really sure about this - do we need this ? */
2428 if (page->mapping->a_ops->invalidatepage)
2429 page->mapping->a_ops->invalidatepage(page, offset);
2430 #endif
2431 unlock_page(page);
2432 return 0; /* don't care */
2436 * The page straddles i_size. It must be zeroed out on each and every
2437 * writepage invocation because it may be mmapped. "A file is mapped
2438 * in multiples of the page size. For a file that is not a multiple of
2439 * the page size, the remaining memory is zeroed when mapped, and
2440 * writes to that region are not written out to the file."
2442 kaddr = kmap_atomic(page, KM_USER0);
2443 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2444 flush_dcache_page(page);
2445 kunmap_atomic(kaddr, KM_USER0);
2446 out:
2447 ret = mpage_writepage(page, get_block, wbc);
2448 if (ret == -EAGAIN)
2449 ret = __block_write_full_page(inode, page, get_block, wbc);
2450 return ret;
2452 EXPORT_SYMBOL(nobh_writepage);
2455 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2457 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2459 struct inode *inode = mapping->host;
2460 unsigned blocksize = 1 << inode->i_blkbits;
2461 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2462 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2463 unsigned to;
2464 struct page *page;
2465 const struct address_space_operations *a_ops = mapping->a_ops;
2466 char *kaddr;
2467 int ret = 0;
2469 if ((offset & (blocksize - 1)) == 0)
2470 goto out;
2472 ret = -ENOMEM;
2473 page = grab_cache_page(mapping, index);
2474 if (!page)
2475 goto out;
2477 to = (offset + blocksize) & ~(blocksize - 1);
2478 ret = a_ops->prepare_write(NULL, page, offset, to);
2479 if (ret == 0) {
2480 kaddr = kmap_atomic(page, KM_USER0);
2481 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2482 flush_dcache_page(page);
2483 kunmap_atomic(kaddr, KM_USER0);
2484 set_page_dirty(page);
2486 unlock_page(page);
2487 page_cache_release(page);
2488 out:
2489 return ret;
2491 EXPORT_SYMBOL(nobh_truncate_page);
2493 int block_truncate_page(struct address_space *mapping,
2494 loff_t from, get_block_t *get_block)
2496 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2497 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2498 unsigned blocksize;
2499 sector_t iblock;
2500 unsigned length, pos;
2501 struct inode *inode = mapping->host;
2502 struct page *page;
2503 struct buffer_head *bh;
2504 void *kaddr;
2505 int err;
2507 blocksize = 1 << inode->i_blkbits;
2508 length = offset & (blocksize - 1);
2510 /* Block boundary? Nothing to do */
2511 if (!length)
2512 return 0;
2514 length = blocksize - length;
2515 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2517 page = grab_cache_page(mapping, index);
2518 err = -ENOMEM;
2519 if (!page)
2520 goto out;
2522 if (!page_has_buffers(page))
2523 create_empty_buffers(page, blocksize, 0);
2525 /* Find the buffer that contains "offset" */
2526 bh = page_buffers(page);
2527 pos = blocksize;
2528 while (offset >= pos) {
2529 bh = bh->b_this_page;
2530 iblock++;
2531 pos += blocksize;
2534 err = 0;
2535 if (!buffer_mapped(bh)) {
2536 WARN_ON(bh->b_size != blocksize);
2537 err = get_block(inode, iblock, bh, 0);
2538 if (err)
2539 goto unlock;
2540 /* unmapped? It's a hole - nothing to do */
2541 if (!buffer_mapped(bh))
2542 goto unlock;
2545 /* Ok, it's mapped. Make sure it's up-to-date */
2546 if (PageUptodate(page))
2547 set_buffer_uptodate(bh);
2549 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2550 err = -EIO;
2551 ll_rw_block(READ, 1, &bh);
2552 wait_on_buffer(bh);
2553 /* Uhhuh. Read error. Complain and punt. */
2554 if (!buffer_uptodate(bh))
2555 goto unlock;
2558 kaddr = kmap_atomic(page, KM_USER0);
2559 memset(kaddr + offset, 0, length);
2560 flush_dcache_page(page);
2561 kunmap_atomic(kaddr, KM_USER0);
2563 mark_buffer_dirty(bh);
2564 err = 0;
2566 unlock:
2567 unlock_page(page);
2568 page_cache_release(page);
2569 out:
2570 return err;
2574 * The generic ->writepage function for buffer-backed address_spaces
2576 int block_write_full_page(struct page *page, get_block_t *get_block,
2577 struct writeback_control *wbc)
2579 struct inode * const inode = page->mapping->host;
2580 loff_t i_size = i_size_read(inode);
2581 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2582 unsigned offset;
2583 void *kaddr;
2585 /* Is the page fully inside i_size? */
2586 if (page->index < end_index)
2587 return __block_write_full_page(inode, page, get_block, wbc);
2589 /* Is the page fully outside i_size? (truncate in progress) */
2590 offset = i_size & (PAGE_CACHE_SIZE-1);
2591 if (page->index >= end_index+1 || !offset) {
2593 * The page may have dirty, unmapped buffers. For example,
2594 * they may have been added in ext3_writepage(). Make them
2595 * freeable here, so the page does not leak.
2597 do_invalidatepage(page, 0);
2598 unlock_page(page);
2599 return 0; /* don't care */
2603 * The page straddles i_size. It must be zeroed out on each and every
2604 * writepage invokation because it may be mmapped. "A file is mapped
2605 * in multiples of the page size. For a file that is not a multiple of
2606 * the page size, the remaining memory is zeroed when mapped, and
2607 * writes to that region are not written out to the file."
2609 kaddr = kmap_atomic(page, KM_USER0);
2610 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2611 flush_dcache_page(page);
2612 kunmap_atomic(kaddr, KM_USER0);
2613 return __block_write_full_page(inode, page, get_block, wbc);
2616 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2617 get_block_t *get_block)
2619 struct buffer_head tmp;
2620 struct inode *inode = mapping->host;
2621 tmp.b_state = 0;
2622 tmp.b_blocknr = 0;
2623 tmp.b_size = 1 << inode->i_blkbits;
2624 get_block(inode, block, &tmp, 0);
2625 return tmp.b_blocknr;
2628 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2630 struct buffer_head *bh = bio->bi_private;
2632 if (bio->bi_size)
2633 return 1;
2635 if (err == -EOPNOTSUPP) {
2636 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2637 set_bit(BH_Eopnotsupp, &bh->b_state);
2640 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2641 bio_put(bio);
2642 return 0;
2645 int submit_bh(int rw, struct buffer_head * bh)
2647 struct bio *bio;
2648 int ret = 0;
2650 BUG_ON(!buffer_locked(bh));
2651 BUG_ON(!buffer_mapped(bh));
2652 BUG_ON(!bh->b_end_io);
2654 if (buffer_ordered(bh) && (rw == WRITE))
2655 rw = WRITE_BARRIER;
2658 * Only clear out a write error when rewriting, should this
2659 * include WRITE_SYNC as well?
2661 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2662 clear_buffer_write_io_error(bh);
2665 * from here on down, it's all bio -- do the initial mapping,
2666 * submit_bio -> generic_make_request may further map this bio around
2668 bio = bio_alloc(GFP_NOIO, 1);
2670 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2671 bio->bi_bdev = bh->b_bdev;
2672 bio->bi_io_vec[0].bv_page = bh->b_page;
2673 bio->bi_io_vec[0].bv_len = bh->b_size;
2674 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2676 bio->bi_vcnt = 1;
2677 bio->bi_idx = 0;
2678 bio->bi_size = bh->b_size;
2680 bio->bi_end_io = end_bio_bh_io_sync;
2681 bio->bi_private = bh;
2683 bio_get(bio);
2684 submit_bio(rw, bio);
2686 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2687 ret = -EOPNOTSUPP;
2689 bio_put(bio);
2690 return ret;
2694 * ll_rw_block: low-level access to block devices (DEPRECATED)
2695 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2696 * @nr: number of &struct buffer_heads in the array
2697 * @bhs: array of pointers to &struct buffer_head
2699 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2700 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2701 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2702 * are sent to disk. The fourth %READA option is described in the documentation
2703 * for generic_make_request() which ll_rw_block() calls.
2705 * This function drops any buffer that it cannot get a lock on (with the
2706 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2707 * clean when doing a write request, and any buffer that appears to be
2708 * up-to-date when doing read request. Further it marks as clean buffers that
2709 * are processed for writing (the buffer cache won't assume that they are
2710 * actually clean until the buffer gets unlocked).
2712 * ll_rw_block sets b_end_io to simple completion handler that marks
2713 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2714 * any waiters.
2716 * All of the buffers must be for the same device, and must also be a
2717 * multiple of the current approved size for the device.
2719 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2721 int i;
2723 for (i = 0; i < nr; i++) {
2724 struct buffer_head *bh = bhs[i];
2726 if (rw == SWRITE)
2727 lock_buffer(bh);
2728 else if (test_set_buffer_locked(bh))
2729 continue;
2731 if (rw == WRITE || rw == SWRITE) {
2732 if (test_clear_buffer_dirty(bh)) {
2733 bh->b_end_io = end_buffer_write_sync;
2734 get_bh(bh);
2735 submit_bh(WRITE, bh);
2736 continue;
2738 } else {
2739 if (!buffer_uptodate(bh)) {
2740 bh->b_end_io = end_buffer_read_sync;
2741 get_bh(bh);
2742 submit_bh(rw, bh);
2743 continue;
2746 unlock_buffer(bh);
2751 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2752 * and then start new I/O and then wait upon it. The caller must have a ref on
2753 * the buffer_head.
2755 int sync_dirty_buffer(struct buffer_head *bh)
2757 int ret = 0;
2759 WARN_ON(atomic_read(&bh->b_count) < 1);
2760 lock_buffer(bh);
2761 if (test_clear_buffer_dirty(bh)) {
2762 get_bh(bh);
2763 bh->b_end_io = end_buffer_write_sync;
2764 ret = submit_bh(WRITE, bh);
2765 wait_on_buffer(bh);
2766 if (buffer_eopnotsupp(bh)) {
2767 clear_buffer_eopnotsupp(bh);
2768 ret = -EOPNOTSUPP;
2770 if (!ret && !buffer_uptodate(bh))
2771 ret = -EIO;
2772 } else {
2773 unlock_buffer(bh);
2775 return ret;
2779 * try_to_free_buffers() checks if all the buffers on this particular page
2780 * are unused, and releases them if so.
2782 * Exclusion against try_to_free_buffers may be obtained by either
2783 * locking the page or by holding its mapping's private_lock.
2785 * If the page is dirty but all the buffers are clean then we need to
2786 * be sure to mark the page clean as well. This is because the page
2787 * may be against a block device, and a later reattachment of buffers
2788 * to a dirty page will set *all* buffers dirty. Which would corrupt
2789 * filesystem data on the same device.
2791 * The same applies to regular filesystem pages: if all the buffers are
2792 * clean then we set the page clean and proceed. To do that, we require
2793 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2794 * private_lock.
2796 * try_to_free_buffers() is non-blocking.
2798 static inline int buffer_busy(struct buffer_head *bh)
2800 return atomic_read(&bh->b_count) |
2801 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2804 static int
2805 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2807 struct buffer_head *head = page_buffers(page);
2808 struct buffer_head *bh;
2810 bh = head;
2811 do {
2812 if (buffer_write_io_error(bh) && page->mapping)
2813 set_bit(AS_EIO, &page->mapping->flags);
2814 if (buffer_busy(bh))
2815 goto failed;
2816 bh = bh->b_this_page;
2817 } while (bh != head);
2819 do {
2820 struct buffer_head *next = bh->b_this_page;
2822 if (!list_empty(&bh->b_assoc_buffers))
2823 __remove_assoc_queue(bh);
2824 bh = next;
2825 } while (bh != head);
2826 *buffers_to_free = head;
2827 __clear_page_buffers(page);
2828 return 1;
2829 failed:
2830 return 0;
2833 int try_to_free_buffers(struct page *page)
2835 struct address_space * const mapping = page->mapping;
2836 struct buffer_head *buffers_to_free = NULL;
2837 int ret = 0;
2839 BUG_ON(!PageLocked(page));
2840 if (PageWriteback(page))
2841 return 0;
2843 if (mapping == NULL) { /* can this still happen? */
2844 ret = drop_buffers(page, &buffers_to_free);
2845 goto out;
2848 spin_lock(&mapping->private_lock);
2849 ret = drop_buffers(page, &buffers_to_free);
2852 * If the filesystem writes its buffers by hand (eg ext3)
2853 * then we can have clean buffers against a dirty page. We
2854 * clean the page here; otherwise the VM will never notice
2855 * that the filesystem did any IO at all.
2857 * Also, during truncate, discard_buffer will have marked all
2858 * the page's buffers clean. We discover that here and clean
2859 * the page also.
2861 * private_lock must be held over this entire operation in order
2862 * to synchronise against __set_page_dirty_buffers and prevent the
2863 * dirty bit from being lost.
2865 if (ret)
2866 cancel_dirty_page(page, PAGE_CACHE_SIZE);
2867 spin_unlock(&mapping->private_lock);
2868 out:
2869 if (buffers_to_free) {
2870 struct buffer_head *bh = buffers_to_free;
2872 do {
2873 struct buffer_head *next = bh->b_this_page;
2874 free_buffer_head(bh);
2875 bh = next;
2876 } while (bh != buffers_to_free);
2878 return ret;
2880 EXPORT_SYMBOL(try_to_free_buffers);
2882 void block_sync_page(struct page *page)
2884 struct address_space *mapping;
2886 smp_mb();
2887 mapping = page_mapping(page);
2888 if (mapping)
2889 blk_run_backing_dev(mapping->backing_dev_info, page);
2893 * There are no bdflush tunables left. But distributions are
2894 * still running obsolete flush daemons, so we terminate them here.
2896 * Use of bdflush() is deprecated and will be removed in a future kernel.
2897 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2899 asmlinkage long sys_bdflush(int func, long data)
2901 static int msg_count;
2903 if (!capable(CAP_SYS_ADMIN))
2904 return -EPERM;
2906 if (msg_count < 5) {
2907 msg_count++;
2908 printk(KERN_INFO
2909 "warning: process `%s' used the obsolete bdflush"
2910 " system call\n", current->comm);
2911 printk(KERN_INFO "Fix your initscripts?\n");
2914 if (func == 1)
2915 do_exit(0);
2916 return 0;
2920 * Buffer-head allocation
2922 static struct kmem_cache *bh_cachep;
2925 * Once the number of bh's in the machine exceeds this level, we start
2926 * stripping them in writeback.
2928 static int max_buffer_heads;
2930 int buffer_heads_over_limit;
2932 struct bh_accounting {
2933 int nr; /* Number of live bh's */
2934 int ratelimit; /* Limit cacheline bouncing */
2937 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2939 static void recalc_bh_state(void)
2941 int i;
2942 int tot = 0;
2944 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2945 return;
2946 __get_cpu_var(bh_accounting).ratelimit = 0;
2947 for_each_online_cpu(i)
2948 tot += per_cpu(bh_accounting, i).nr;
2949 buffer_heads_over_limit = (tot > max_buffer_heads);
2952 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2954 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2955 if (ret) {
2956 get_cpu_var(bh_accounting).nr++;
2957 recalc_bh_state();
2958 put_cpu_var(bh_accounting);
2960 return ret;
2962 EXPORT_SYMBOL(alloc_buffer_head);
2964 void free_buffer_head(struct buffer_head *bh)
2966 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2967 kmem_cache_free(bh_cachep, bh);
2968 get_cpu_var(bh_accounting).nr--;
2969 recalc_bh_state();
2970 put_cpu_var(bh_accounting);
2972 EXPORT_SYMBOL(free_buffer_head);
2974 static void
2975 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2977 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2978 SLAB_CTOR_CONSTRUCTOR) {
2979 struct buffer_head * bh = (struct buffer_head *)data;
2981 memset(bh, 0, sizeof(*bh));
2982 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2986 static void buffer_exit_cpu(int cpu)
2988 int i;
2989 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2991 for (i = 0; i < BH_LRU_SIZE; i++) {
2992 brelse(b->bhs[i]);
2993 b->bhs[i] = NULL;
2995 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2996 per_cpu(bh_accounting, cpu).nr = 0;
2997 put_cpu_var(bh_accounting);
3000 static int buffer_cpu_notify(struct notifier_block *self,
3001 unsigned long action, void *hcpu)
3003 if (action == CPU_DEAD)
3004 buffer_exit_cpu((unsigned long)hcpu);
3005 return NOTIFY_OK;
3008 void __init buffer_init(void)
3010 int nrpages;
3012 bh_cachep = kmem_cache_create("buffer_head",
3013 sizeof(struct buffer_head), 0,
3014 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3015 SLAB_MEM_SPREAD),
3016 init_buffer_head,
3017 NULL);
3020 * Limit the bh occupancy to 10% of ZONE_NORMAL
3022 nrpages = (nr_free_buffer_pages() * 10) / 100;
3023 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3024 hotcpu_notifier(buffer_cpu_notify, 0);
3027 EXPORT_SYMBOL(__bforget);
3028 EXPORT_SYMBOL(__brelse);
3029 EXPORT_SYMBOL(__wait_on_buffer);
3030 EXPORT_SYMBOL(block_commit_write);
3031 EXPORT_SYMBOL(block_prepare_write);
3032 EXPORT_SYMBOL(block_read_full_page);
3033 EXPORT_SYMBOL(block_sync_page);
3034 EXPORT_SYMBOL(block_truncate_page);
3035 EXPORT_SYMBOL(block_write_full_page);
3036 EXPORT_SYMBOL(cont_prepare_write);
3037 EXPORT_SYMBOL(end_buffer_read_sync);
3038 EXPORT_SYMBOL(end_buffer_write_sync);
3039 EXPORT_SYMBOL(file_fsync);
3040 EXPORT_SYMBOL(fsync_bdev);
3041 EXPORT_SYMBOL(generic_block_bmap);
3042 EXPORT_SYMBOL(generic_commit_write);
3043 EXPORT_SYMBOL(generic_cont_expand);
3044 EXPORT_SYMBOL(generic_cont_expand_simple);
3045 EXPORT_SYMBOL(init_buffer);
3046 EXPORT_SYMBOL(invalidate_bdev);
3047 EXPORT_SYMBOL(ll_rw_block);
3048 EXPORT_SYMBOL(mark_buffer_dirty);
3049 EXPORT_SYMBOL(submit_bh);
3050 EXPORT_SYMBOL(sync_dirty_buffer);
3051 EXPORT_SYMBOL(unlock_buffer);