2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 nodemask_t node_online_map __read_mostly
= { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map
);
49 nodemask_t node_possible_map __read_mostly
= NODE_MASK_ALL
;
50 EXPORT_SYMBOL(node_possible_map
);
51 struct pglist_data
*pgdat_list __read_mostly
;
52 unsigned long totalram_pages __read_mostly
;
53 unsigned long totalhigh_pages __read_mostly
;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = { 256, 32 };
66 EXPORT_SYMBOL(totalram_pages
);
67 EXPORT_SYMBOL(nr_swap_pages
);
70 * Used by page_zone() to look up the address of the struct zone whose
71 * id is encoded in the upper bits of page->flags
73 struct zone
*zone_table
[1 << ZONETABLE_SHIFT
] __read_mostly
;
74 EXPORT_SYMBOL(zone_table
);
76 static char *zone_names
[MAX_NR_ZONES
] = { "DMA", "Normal", "HighMem" };
77 int min_free_kbytes
= 1024;
79 unsigned long __initdata nr_kernel_pages
;
80 unsigned long __initdata nr_all_pages
;
82 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
86 unsigned long pfn
= page_to_pfn(page
);
89 seq
= zone_span_seqbegin(zone
);
90 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
92 else if (pfn
< zone
->zone_start_pfn
)
94 } while (zone_span_seqretry(zone
, seq
));
99 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
101 #ifdef CONFIG_HOLES_IN_ZONE
102 if (!pfn_valid(page_to_pfn(page
)))
105 if (zone
!= page_zone(page
))
111 * Temporary debugging check for pages not lying within a given zone.
113 static int bad_range(struct zone
*zone
, struct page
*page
)
115 if (page_outside_zone_boundaries(zone
, page
))
117 if (!page_is_consistent(zone
, page
))
123 static void bad_page(const char *function
, struct page
*page
)
125 printk(KERN_EMERG
"Bad page state at %s (in process '%s', page %p)\n",
126 function
, current
->comm
, page
);
127 printk(KERN_EMERG
"flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
128 (int)(2*sizeof(page_flags_t
)), (unsigned long)page
->flags
,
129 page
->mapping
, page_mapcount(page
), page_count(page
));
130 printk(KERN_EMERG
"Backtrace:\n");
132 printk(KERN_EMERG
"Trying to fix it up, but a reboot is needed\n");
133 page
->flags
&= ~(1 << PG_lru
|
143 set_page_count(page
, 0);
144 reset_page_mapcount(page
);
145 page
->mapping
= NULL
;
146 add_taint(TAINT_BAD_PAGE
);
149 #ifndef CONFIG_HUGETLB_PAGE
150 #define prep_compound_page(page, order) do { } while (0)
151 #define destroy_compound_page(page, order) do { } while (0)
154 * Higher-order pages are called "compound pages". They are structured thusly:
156 * The first PAGE_SIZE page is called the "head page".
158 * The remaining PAGE_SIZE pages are called "tail pages".
160 * All pages have PG_compound set. All pages have their ->private pointing at
161 * the head page (even the head page has this).
163 * The first tail page's ->mapping, if non-zero, holds the address of the
164 * compound page's put_page() function.
166 * The order of the allocation is stored in the first tail page's ->index
167 * This is only for debug at present. This usage means that zero-order pages
168 * may not be compound.
170 static void prep_compound_page(struct page
*page
, unsigned long order
)
173 int nr_pages
= 1 << order
;
175 page
[1].mapping
= NULL
;
176 page
[1].index
= order
;
177 for (i
= 0; i
< nr_pages
; i
++) {
178 struct page
*p
= page
+ i
;
181 set_page_private(p
, (unsigned long)page
);
185 static void destroy_compound_page(struct page
*page
, unsigned long order
)
188 int nr_pages
= 1 << order
;
190 if (!PageCompound(page
))
193 if (page
[1].index
!= order
)
194 bad_page(__FUNCTION__
, page
);
196 for (i
= 0; i
< nr_pages
; i
++) {
197 struct page
*p
= page
+ i
;
199 if (!PageCompound(p
))
200 bad_page(__FUNCTION__
, page
);
201 if (page_private(p
) != (unsigned long)page
)
202 bad_page(__FUNCTION__
, page
);
203 ClearPageCompound(p
);
206 #endif /* CONFIG_HUGETLB_PAGE */
209 * function for dealing with page's order in buddy system.
210 * zone->lock is already acquired when we use these.
211 * So, we don't need atomic page->flags operations here.
213 static inline unsigned long page_order(struct page
*page
) {
214 return page_private(page
);
217 static inline void set_page_order(struct page
*page
, int order
) {
218 set_page_private(page
, order
);
219 __SetPagePrivate(page
);
222 static inline void rmv_page_order(struct page
*page
)
224 __ClearPagePrivate(page
);
225 set_page_private(page
, 0);
229 * Locate the struct page for both the matching buddy in our
230 * pair (buddy1) and the combined O(n+1) page they form (page).
232 * 1) Any buddy B1 will have an order O twin B2 which satisfies
233 * the following equation:
235 * For example, if the starting buddy (buddy2) is #8 its order
237 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
239 * 2) Any buddy B will have an order O+1 parent P which
240 * satisfies the following equation:
243 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
245 static inline struct page
*
246 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
248 unsigned long buddy_idx
= page_idx
^ (1 << order
);
250 return page
+ (buddy_idx
- page_idx
);
253 static inline unsigned long
254 __find_combined_index(unsigned long page_idx
, unsigned int order
)
256 return (page_idx
& ~(1 << order
));
260 * This function checks whether a page is free && is the buddy
261 * we can do coalesce a page and its buddy if
262 * (a) the buddy is free &&
263 * (b) the buddy is on the buddy system &&
264 * (c) a page and its buddy have the same order.
265 * for recording page's order, we use page_private(page) and PG_private.
268 static inline int page_is_buddy(struct page
*page
, int order
)
270 if (PagePrivate(page
) &&
271 (page_order(page
) == order
) &&
272 page_count(page
) == 0)
278 * Freeing function for a buddy system allocator.
280 * The concept of a buddy system is to maintain direct-mapped table
281 * (containing bit values) for memory blocks of various "orders".
282 * The bottom level table contains the map for the smallest allocatable
283 * units of memory (here, pages), and each level above it describes
284 * pairs of units from the levels below, hence, "buddies".
285 * At a high level, all that happens here is marking the table entry
286 * at the bottom level available, and propagating the changes upward
287 * as necessary, plus some accounting needed to play nicely with other
288 * parts of the VM system.
289 * At each level, we keep a list of pages, which are heads of continuous
290 * free pages of length of (1 << order) and marked with PG_Private.Page's
291 * order is recorded in page_private(page) field.
292 * So when we are allocating or freeing one, we can derive the state of the
293 * other. That is, if we allocate a small block, and both were
294 * free, the remainder of the region must be split into blocks.
295 * If a block is freed, and its buddy is also free, then this
296 * triggers coalescing into a block of larger size.
301 static inline void __free_pages_bulk (struct page
*page
,
302 struct zone
*zone
, unsigned int order
)
304 unsigned long page_idx
;
305 int order_size
= 1 << order
;
308 destroy_compound_page(page
, order
);
310 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
312 BUG_ON(page_idx
& (order_size
- 1));
313 BUG_ON(bad_range(zone
, page
));
315 zone
->free_pages
+= order_size
;
316 while (order
< MAX_ORDER
-1) {
317 unsigned long combined_idx
;
318 struct free_area
*area
;
321 combined_idx
= __find_combined_index(page_idx
, order
);
322 buddy
= __page_find_buddy(page
, page_idx
, order
);
324 if (bad_range(zone
, buddy
))
326 if (!page_is_buddy(buddy
, order
))
327 break; /* Move the buddy up one level. */
328 list_del(&buddy
->lru
);
329 area
= zone
->free_area
+ order
;
331 rmv_page_order(buddy
);
332 page
= page
+ (combined_idx
- page_idx
);
333 page_idx
= combined_idx
;
336 set_page_order(page
, order
);
337 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
);
338 zone
->free_area
[order
].nr_free
++;
341 static inline void free_pages_check(const char *function
, struct page
*page
)
343 if ( page_mapcount(page
) ||
344 page
->mapping
!= NULL
||
345 page_count(page
) != 0 ||
356 bad_page(function
, page
);
358 __ClearPageDirty(page
);
362 * Frees a list of pages.
363 * Assumes all pages on list are in same zone, and of same order.
364 * count is the number of pages to free.
366 * If the zone was previously in an "all pages pinned" state then look to
367 * see if this freeing clears that state.
369 * And clear the zone's pages_scanned counter, to hold off the "all pages are
370 * pinned" detection logic.
373 free_pages_bulk(struct zone
*zone
, int count
,
374 struct list_head
*list
, unsigned int order
)
377 struct page
*page
= NULL
;
380 spin_lock_irqsave(&zone
->lock
, flags
);
381 zone
->all_unreclaimable
= 0;
382 zone
->pages_scanned
= 0;
383 while (!list_empty(list
) && count
--) {
384 page
= list_entry(list
->prev
, struct page
, lru
);
385 /* have to delete it as __free_pages_bulk list manipulates */
386 list_del(&page
->lru
);
387 __free_pages_bulk(page
, zone
, order
);
390 spin_unlock_irqrestore(&zone
->lock
, flags
);
394 void __free_pages_ok(struct page
*page
, unsigned int order
)
399 arch_free_page(page
, order
);
401 mod_page_state(pgfree
, 1 << order
);
405 for (i
= 1 ; i
< (1 << order
) ; ++i
)
406 __put_page(page
+ i
);
409 for (i
= 0 ; i
< (1 << order
) ; ++i
)
410 free_pages_check(__FUNCTION__
, page
+ i
);
411 list_add(&page
->lru
, &list
);
412 kernel_map_pages(page
, 1<<order
, 0);
413 free_pages_bulk(page_zone(page
), 1, &list
, order
);
418 * The order of subdivision here is critical for the IO subsystem.
419 * Please do not alter this order without good reasons and regression
420 * testing. Specifically, as large blocks of memory are subdivided,
421 * the order in which smaller blocks are delivered depends on the order
422 * they're subdivided in this function. This is the primary factor
423 * influencing the order in which pages are delivered to the IO
424 * subsystem according to empirical testing, and this is also justified
425 * by considering the behavior of a buddy system containing a single
426 * large block of memory acted on by a series of small allocations.
427 * This behavior is a critical factor in sglist merging's success.
431 static inline struct page
*
432 expand(struct zone
*zone
, struct page
*page
,
433 int low
, int high
, struct free_area
*area
)
435 unsigned long size
= 1 << high
;
441 BUG_ON(bad_range(zone
, &page
[size
]));
442 list_add(&page
[size
].lru
, &area
->free_list
);
444 set_page_order(&page
[size
], high
);
449 void set_page_refs(struct page
*page
, int order
)
452 set_page_count(page
, 1);
457 * We need to reference all the pages for this order, otherwise if
458 * anyone accesses one of the pages with (get/put) it will be freed.
459 * - eg: access_process_vm()
461 for (i
= 0; i
< (1 << order
); i
++)
462 set_page_count(page
+ i
, 1);
463 #endif /* CONFIG_MMU */
467 * This page is about to be returned from the page allocator
469 static void prep_new_page(struct page
*page
, int order
)
471 if ( page_mapcount(page
) ||
472 page
->mapping
!= NULL
||
473 page_count(page
) != 0 ||
485 bad_page(__FUNCTION__
, page
);
487 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
|
488 1 << PG_referenced
| 1 << PG_arch_1
|
489 1 << PG_checked
| 1 << PG_mappedtodisk
);
490 set_page_private(page
, 0);
491 set_page_refs(page
, order
);
492 kernel_map_pages(page
, 1 << order
, 1);
496 * Do the hard work of removing an element from the buddy allocator.
497 * Call me with the zone->lock already held.
499 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
)
501 struct free_area
* area
;
502 unsigned int current_order
;
505 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
506 area
= zone
->free_area
+ current_order
;
507 if (list_empty(&area
->free_list
))
510 page
= list_entry(area
->free_list
.next
, struct page
, lru
);
511 list_del(&page
->lru
);
512 rmv_page_order(page
);
514 zone
->free_pages
-= 1UL << order
;
515 return expand(zone
, page
, order
, current_order
, area
);
522 * Obtain a specified number of elements from the buddy allocator, all under
523 * a single hold of the lock, for efficiency. Add them to the supplied list.
524 * Returns the number of new pages which were placed at *list.
526 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
527 unsigned long count
, struct list_head
*list
)
534 spin_lock_irqsave(&zone
->lock
, flags
);
535 for (i
= 0; i
< count
; ++i
) {
536 page
= __rmqueue(zone
, order
);
540 list_add_tail(&page
->lru
, list
);
542 spin_unlock_irqrestore(&zone
->lock
, flags
);
547 /* Called from the slab reaper to drain remote pagesets */
548 void drain_remote_pages(void)
554 local_irq_save(flags
);
555 for_each_zone(zone
) {
556 struct per_cpu_pageset
*pset
;
558 /* Do not drain local pagesets */
559 if (zone
->zone_pgdat
->node_id
== numa_node_id())
562 pset
= zone
->pageset
[smp_processor_id()];
563 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
564 struct per_cpu_pages
*pcp
;
568 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
572 local_irq_restore(flags
);
576 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
577 static void __drain_pages(unsigned int cpu
)
582 for_each_zone(zone
) {
583 struct per_cpu_pageset
*pset
;
585 pset
= zone_pcp(zone
, cpu
);
586 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
587 struct per_cpu_pages
*pcp
;
590 pcp
->count
-= free_pages_bulk(zone
, pcp
->count
,
595 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
599 void mark_free_pages(struct zone
*zone
)
601 unsigned long zone_pfn
, flags
;
603 struct list_head
*curr
;
605 if (!zone
->spanned_pages
)
608 spin_lock_irqsave(&zone
->lock
, flags
);
609 for (zone_pfn
= 0; zone_pfn
< zone
->spanned_pages
; ++zone_pfn
)
610 ClearPageNosaveFree(pfn_to_page(zone_pfn
+ zone
->zone_start_pfn
));
612 for (order
= MAX_ORDER
- 1; order
>= 0; --order
)
613 list_for_each(curr
, &zone
->free_area
[order
].free_list
) {
614 unsigned long start_pfn
, i
;
616 start_pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
618 for (i
=0; i
< (1<<order
); i
++)
619 SetPageNosaveFree(pfn_to_page(start_pfn
+i
));
621 spin_unlock_irqrestore(&zone
->lock
, flags
);
625 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
627 void drain_local_pages(void)
631 local_irq_save(flags
);
632 __drain_pages(smp_processor_id());
633 local_irq_restore(flags
);
635 #endif /* CONFIG_PM */
637 static void zone_statistics(struct zonelist
*zonelist
, struct zone
*z
)
642 pg_data_t
*pg
= z
->zone_pgdat
;
643 pg_data_t
*orig
= zonelist
->zones
[0]->zone_pgdat
;
644 struct per_cpu_pageset
*p
;
646 local_irq_save(flags
);
647 cpu
= smp_processor_id();
653 zone_pcp(zonelist
->zones
[0], cpu
)->numa_foreign
++;
655 if (pg
== NODE_DATA(numa_node_id()))
659 local_irq_restore(flags
);
664 * Free a 0-order page
666 static void FASTCALL(free_hot_cold_page(struct page
*page
, int cold
));
667 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
669 struct zone
*zone
= page_zone(page
);
670 struct per_cpu_pages
*pcp
;
673 arch_free_page(page
, 0);
675 kernel_map_pages(page
, 1, 0);
676 inc_page_state(pgfree
);
678 page
->mapping
= NULL
;
679 free_pages_check(__FUNCTION__
, page
);
680 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
681 local_irq_save(flags
);
682 list_add(&page
->lru
, &pcp
->list
);
684 if (pcp
->count
>= pcp
->high
)
685 pcp
->count
-= free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
686 local_irq_restore(flags
);
690 void fastcall
free_hot_page(struct page
*page
)
692 free_hot_cold_page(page
, 0);
695 void fastcall
free_cold_page(struct page
*page
)
697 free_hot_cold_page(page
, 1);
700 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
704 BUG_ON((gfp_flags
& (__GFP_WAIT
| __GFP_HIGHMEM
)) == __GFP_HIGHMEM
);
705 for(i
= 0; i
< (1 << order
); i
++)
706 clear_highpage(page
+ i
);
710 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
711 * we cheat by calling it from here, in the order > 0 path. Saves a branch
715 buffered_rmqueue(struct zone
*zone
, int order
, gfp_t gfp_flags
)
718 struct page
*page
= NULL
;
719 int cold
= !!(gfp_flags
& __GFP_COLD
);
722 struct per_cpu_pages
*pcp
;
724 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
725 local_irq_save(flags
);
726 if (pcp
->count
<= pcp
->low
)
727 pcp
->count
+= rmqueue_bulk(zone
, 0,
728 pcp
->batch
, &pcp
->list
);
730 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
731 list_del(&page
->lru
);
734 local_irq_restore(flags
);
739 spin_lock_irqsave(&zone
->lock
, flags
);
740 page
= __rmqueue(zone
, order
);
741 spin_unlock_irqrestore(&zone
->lock
, flags
);
745 BUG_ON(bad_range(zone
, page
));
746 mod_page_state_zone(zone
, pgalloc
, 1 << order
);
747 prep_new_page(page
, order
);
749 if (gfp_flags
& __GFP_ZERO
)
750 prep_zero_page(page
, order
, gfp_flags
);
752 if (order
&& (gfp_flags
& __GFP_COMP
))
753 prep_compound_page(page
, order
);
759 * Return 1 if free pages are above 'mark'. This takes into account the order
762 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
763 int classzone_idx
, int can_try_harder
, gfp_t gfp_high
)
765 /* free_pages my go negative - that's OK */
766 long min
= mark
, free_pages
= z
->free_pages
- (1 << order
) + 1;
774 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
776 for (o
= 0; o
< order
; o
++) {
777 /* At the next order, this order's pages become unavailable */
778 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
780 /* Require fewer higher order pages to be free */
783 if (free_pages
<= min
)
790 should_reclaim_zone(struct zone
*z
, gfp_t gfp_mask
)
792 if (!z
->reclaim_pages
)
794 if (gfp_mask
& __GFP_NORECLAIM
)
800 * This is the 'heart' of the zoned buddy allocator.
802 struct page
* fastcall
803 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
804 struct zonelist
*zonelist
)
806 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
807 struct zone
**zones
, *z
;
809 struct reclaim_state reclaim_state
;
810 struct task_struct
*p
= current
;
815 int did_some_progress
;
817 might_sleep_if(wait
);
820 * The caller may dip into page reserves a bit more if the caller
821 * cannot run direct reclaim, or is the caller has realtime scheduling
824 can_try_harder
= (unlikely(rt_task(p
)) && !in_interrupt()) || !wait
;
826 zones
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
828 if (unlikely(zones
[0] == NULL
)) {
829 /* Should this ever happen?? */
833 classzone_idx
= zone_idx(zones
[0]);
837 * Go through the zonelist once, looking for a zone with enough free.
838 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
840 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
841 int do_reclaim
= should_reclaim_zone(z
, gfp_mask
);
843 if (!cpuset_zone_allowed(z
, __GFP_HARDWALL
))
847 * If the zone is to attempt early page reclaim then this loop
848 * will try to reclaim pages and check the watermark a second
849 * time before giving up and falling back to the next zone.
852 if (!zone_watermark_ok(z
, order
, z
->pages_low
,
853 classzone_idx
, 0, 0)) {
857 zone_reclaim(z
, gfp_mask
, order
);
858 /* Only try reclaim once */
860 goto zone_reclaim_retry
;
864 page
= buffered_rmqueue(z
, order
, gfp_mask
);
869 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++)
870 wakeup_kswapd(z
, order
);
873 * Go through the zonelist again. Let __GFP_HIGH and allocations
874 * coming from realtime tasks to go deeper into reserves
876 * This is the last chance, in general, before the goto nopage.
877 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
878 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
880 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
881 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
882 classzone_idx
, can_try_harder
,
883 gfp_mask
& __GFP_HIGH
))
886 if (wait
&& !cpuset_zone_allowed(z
, gfp_mask
))
889 page
= buffered_rmqueue(z
, order
, gfp_mask
);
894 /* This allocation should allow future memory freeing. */
896 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
897 && !in_interrupt()) {
898 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
899 /* go through the zonelist yet again, ignoring mins */
900 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
901 if (!cpuset_zone_allowed(z
, gfp_mask
))
903 page
= buffered_rmqueue(z
, order
, gfp_mask
);
911 /* Atomic allocations - we can't balance anything */
918 /* We now go into synchronous reclaim */
919 p
->flags
|= PF_MEMALLOC
;
920 reclaim_state
.reclaimed_slab
= 0;
921 p
->reclaim_state
= &reclaim_state
;
923 did_some_progress
= try_to_free_pages(zones
, gfp_mask
);
925 p
->reclaim_state
= NULL
;
926 p
->flags
&= ~PF_MEMALLOC
;
930 if (likely(did_some_progress
)) {
931 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
932 if (!zone_watermark_ok(z
, order
, z
->pages_min
,
933 classzone_idx
, can_try_harder
,
934 gfp_mask
& __GFP_HIGH
))
937 if (!cpuset_zone_allowed(z
, gfp_mask
))
940 page
= buffered_rmqueue(z
, order
, gfp_mask
);
944 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
946 * Go through the zonelist yet one more time, keep
947 * very high watermark here, this is only to catch
948 * a parallel oom killing, we must fail if we're still
949 * under heavy pressure.
951 for (i
= 0; (z
= zones
[i
]) != NULL
; i
++) {
952 if (!zone_watermark_ok(z
, order
, z
->pages_high
,
953 classzone_idx
, 0, 0))
956 if (!cpuset_zone_allowed(z
, __GFP_HARDWALL
))
959 page
= buffered_rmqueue(z
, order
, gfp_mask
);
964 out_of_memory(gfp_mask
, order
);
969 * Don't let big-order allocations loop unless the caller explicitly
970 * requests that. Wait for some write requests to complete then retry.
972 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
973 * <= 3, but that may not be true in other implementations.
976 if (!(gfp_mask
& __GFP_NORETRY
)) {
977 if ((order
<= 3) || (gfp_mask
& __GFP_REPEAT
))
979 if (gfp_mask
& __GFP_NOFAIL
)
983 blk_congestion_wait(WRITE
, HZ
/50);
988 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
989 printk(KERN_WARNING
"%s: page allocation failure."
990 " order:%d, mode:0x%x\n",
991 p
->comm
, order
, gfp_mask
);
997 zone_statistics(zonelist
, z
);
1001 EXPORT_SYMBOL(__alloc_pages
);
1004 * Common helper functions.
1006 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1009 page
= alloc_pages(gfp_mask
, order
);
1012 return (unsigned long) page_address(page
);
1015 EXPORT_SYMBOL(__get_free_pages
);
1017 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1022 * get_zeroed_page() returns a 32-bit address, which cannot represent
1025 BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1027 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1029 return (unsigned long) page_address(page
);
1033 EXPORT_SYMBOL(get_zeroed_page
);
1035 void __pagevec_free(struct pagevec
*pvec
)
1037 int i
= pagevec_count(pvec
);
1040 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1043 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1045 if (put_page_testzero(page
)) {
1047 free_hot_page(page
);
1049 __free_pages_ok(page
, order
);
1053 EXPORT_SYMBOL(__free_pages
);
1055 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1058 BUG_ON(!virt_addr_valid((void *)addr
));
1059 __free_pages(virt_to_page((void *)addr
), order
);
1063 EXPORT_SYMBOL(free_pages
);
1066 * Total amount of free (allocatable) RAM:
1068 unsigned int nr_free_pages(void)
1070 unsigned int sum
= 0;
1074 sum
+= zone
->free_pages
;
1079 EXPORT_SYMBOL(nr_free_pages
);
1082 unsigned int nr_free_pages_pgdat(pg_data_t
*pgdat
)
1084 unsigned int i
, sum
= 0;
1086 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1087 sum
+= pgdat
->node_zones
[i
].free_pages
;
1093 static unsigned int nr_free_zone_pages(int offset
)
1095 /* Just pick one node, since fallback list is circular */
1096 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1097 unsigned int sum
= 0;
1099 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1100 struct zone
**zonep
= zonelist
->zones
;
1103 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1104 unsigned long size
= zone
->present_pages
;
1105 unsigned long high
= zone
->pages_high
;
1114 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1116 unsigned int nr_free_buffer_pages(void)
1118 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1122 * Amount of free RAM allocatable within all zones
1124 unsigned int nr_free_pagecache_pages(void)
1126 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER
));
1129 #ifdef CONFIG_HIGHMEM
1130 unsigned int nr_free_highpages (void)
1133 unsigned int pages
= 0;
1135 for_each_pgdat(pgdat
)
1136 pages
+= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1143 static void show_node(struct zone
*zone
)
1145 printk("Node %d ", zone
->zone_pgdat
->node_id
);
1148 #define show_node(zone) do { } while (0)
1152 * Accumulate the page_state information across all CPUs.
1153 * The result is unavoidably approximate - it can change
1154 * during and after execution of this function.
1156 static DEFINE_PER_CPU(struct page_state
, page_states
) = {0};
1158 atomic_t nr_pagecache
= ATOMIC_INIT(0);
1159 EXPORT_SYMBOL(nr_pagecache
);
1161 DEFINE_PER_CPU(long, nr_pagecache_local
) = 0;
1164 void __get_page_state(struct page_state
*ret
, int nr
, cpumask_t
*cpumask
)
1168 memset(ret
, 0, sizeof(*ret
));
1169 cpus_and(*cpumask
, *cpumask
, cpu_online_map
);
1171 cpu
= first_cpu(*cpumask
);
1172 while (cpu
< NR_CPUS
) {
1173 unsigned long *in
, *out
, off
;
1175 in
= (unsigned long *)&per_cpu(page_states
, cpu
);
1177 cpu
= next_cpu(cpu
, *cpumask
);
1180 prefetch(&per_cpu(page_states
, cpu
));
1182 out
= (unsigned long *)ret
;
1183 for (off
= 0; off
< nr
; off
++)
1188 void get_page_state_node(struct page_state
*ret
, int node
)
1191 cpumask_t mask
= node_to_cpumask(node
);
1193 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1194 nr
/= sizeof(unsigned long);
1196 __get_page_state(ret
, nr
+1, &mask
);
1199 void get_page_state(struct page_state
*ret
)
1202 cpumask_t mask
= CPU_MASK_ALL
;
1204 nr
= offsetof(struct page_state
, GET_PAGE_STATE_LAST
);
1205 nr
/= sizeof(unsigned long);
1207 __get_page_state(ret
, nr
+ 1, &mask
);
1210 void get_full_page_state(struct page_state
*ret
)
1212 cpumask_t mask
= CPU_MASK_ALL
;
1214 __get_page_state(ret
, sizeof(*ret
) / sizeof(unsigned long), &mask
);
1217 unsigned long __read_page_state(unsigned long offset
)
1219 unsigned long ret
= 0;
1222 for_each_online_cpu(cpu
) {
1225 in
= (unsigned long)&per_cpu(page_states
, cpu
) + offset
;
1226 ret
+= *((unsigned long *)in
);
1231 void __mod_page_state(unsigned long offset
, unsigned long delta
)
1233 unsigned long flags
;
1236 local_irq_save(flags
);
1237 ptr
= &__get_cpu_var(page_states
);
1238 *(unsigned long*)(ptr
+ offset
) += delta
;
1239 local_irq_restore(flags
);
1242 EXPORT_SYMBOL(__mod_page_state
);
1244 void __get_zone_counts(unsigned long *active
, unsigned long *inactive
,
1245 unsigned long *free
, struct pglist_data
*pgdat
)
1247 struct zone
*zones
= pgdat
->node_zones
;
1253 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
1254 *active
+= zones
[i
].nr_active
;
1255 *inactive
+= zones
[i
].nr_inactive
;
1256 *free
+= zones
[i
].free_pages
;
1260 void get_zone_counts(unsigned long *active
,
1261 unsigned long *inactive
, unsigned long *free
)
1263 struct pglist_data
*pgdat
;
1268 for_each_pgdat(pgdat
) {
1269 unsigned long l
, m
, n
;
1270 __get_zone_counts(&l
, &m
, &n
, pgdat
);
1277 void si_meminfo(struct sysinfo
*val
)
1279 val
->totalram
= totalram_pages
;
1281 val
->freeram
= nr_free_pages();
1282 val
->bufferram
= nr_blockdev_pages();
1283 #ifdef CONFIG_HIGHMEM
1284 val
->totalhigh
= totalhigh_pages
;
1285 val
->freehigh
= nr_free_highpages();
1290 val
->mem_unit
= PAGE_SIZE
;
1293 EXPORT_SYMBOL(si_meminfo
);
1296 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1298 pg_data_t
*pgdat
= NODE_DATA(nid
);
1300 val
->totalram
= pgdat
->node_present_pages
;
1301 val
->freeram
= nr_free_pages_pgdat(pgdat
);
1302 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1303 val
->freehigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].free_pages
;
1304 val
->mem_unit
= PAGE_SIZE
;
1308 #define K(x) ((x) << (PAGE_SHIFT-10))
1311 * Show free area list (used inside shift_scroll-lock stuff)
1312 * We also calculate the percentage fragmentation. We do this by counting the
1313 * memory on each free list with the exception of the first item on the list.
1315 void show_free_areas(void)
1317 struct page_state ps
;
1318 int cpu
, temperature
;
1319 unsigned long active
;
1320 unsigned long inactive
;
1324 for_each_zone(zone
) {
1326 printk("%s per-cpu:", zone
->name
);
1328 if (!zone
->present_pages
) {
1335 struct per_cpu_pageset
*pageset
;
1337 pageset
= zone_pcp(zone
, cpu
);
1339 for (temperature
= 0; temperature
< 2; temperature
++)
1340 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1342 temperature
? "cold" : "hot",
1343 pageset
->pcp
[temperature
].low
,
1344 pageset
->pcp
[temperature
].high
,
1345 pageset
->pcp
[temperature
].batch
,
1346 pageset
->pcp
[temperature
].count
);
1350 get_page_state(&ps
);
1351 get_zone_counts(&active
, &inactive
, &free
);
1353 printk("Free pages: %11ukB (%ukB HighMem)\n",
1355 K(nr_free_highpages()));
1357 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1358 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1367 ps
.nr_page_table_pages
);
1369 for_each_zone(zone
) {
1381 " pages_scanned:%lu"
1382 " all_unreclaimable? %s"
1385 K(zone
->free_pages
),
1388 K(zone
->pages_high
),
1390 K(zone
->nr_inactive
),
1391 K(zone
->present_pages
),
1392 zone
->pages_scanned
,
1393 (zone
->all_unreclaimable
? "yes" : "no")
1395 printk("lowmem_reserve[]:");
1396 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1397 printk(" %lu", zone
->lowmem_reserve
[i
]);
1401 for_each_zone(zone
) {
1402 unsigned long nr
, flags
, order
, total
= 0;
1405 printk("%s: ", zone
->name
);
1406 if (!zone
->present_pages
) {
1411 spin_lock_irqsave(&zone
->lock
, flags
);
1412 for (order
= 0; order
< MAX_ORDER
; order
++) {
1413 nr
= zone
->free_area
[order
].nr_free
;
1414 total
+= nr
<< order
;
1415 printk("%lu*%lukB ", nr
, K(1UL) << order
);
1417 spin_unlock_irqrestore(&zone
->lock
, flags
);
1418 printk("= %lukB\n", K(total
));
1421 show_swap_cache_info();
1425 * Builds allocation fallback zone lists.
1427 static int __init
build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
, int j
, int k
)
1434 zone
= pgdat
->node_zones
+ ZONE_HIGHMEM
;
1435 if (zone
->present_pages
) {
1436 #ifndef CONFIG_HIGHMEM
1439 zonelist
->zones
[j
++] = zone
;
1442 zone
= pgdat
->node_zones
+ ZONE_NORMAL
;
1443 if (zone
->present_pages
)
1444 zonelist
->zones
[j
++] = zone
;
1446 zone
= pgdat
->node_zones
+ ZONE_DMA
;
1447 if (zone
->present_pages
)
1448 zonelist
->zones
[j
++] = zone
;
1454 static inline int highest_zone(int zone_bits
)
1456 int res
= ZONE_NORMAL
;
1457 if (zone_bits
& (__force
int)__GFP_HIGHMEM
)
1459 if (zone_bits
& (__force
int)__GFP_DMA
)
1465 #define MAX_NODE_LOAD (num_online_nodes())
1466 static int __initdata node_load
[MAX_NUMNODES
];
1468 * find_next_best_node - find the next node that should appear in a given node's fallback list
1469 * @node: node whose fallback list we're appending
1470 * @used_node_mask: nodemask_t of already used nodes
1472 * We use a number of factors to determine which is the next node that should
1473 * appear on a given node's fallback list. The node should not have appeared
1474 * already in @node's fallback list, and it should be the next closest node
1475 * according to the distance array (which contains arbitrary distance values
1476 * from each node to each node in the system), and should also prefer nodes
1477 * with no CPUs, since presumably they'll have very little allocation pressure
1478 * on them otherwise.
1479 * It returns -1 if no node is found.
1481 static int __init
find_next_best_node(int node
, nodemask_t
*used_node_mask
)
1484 int min_val
= INT_MAX
;
1487 for_each_online_node(i
) {
1490 /* Start from local node */
1491 n
= (node
+i
) % num_online_nodes();
1493 /* Don't want a node to appear more than once */
1494 if (node_isset(n
, *used_node_mask
))
1497 /* Use the local node if we haven't already */
1498 if (!node_isset(node
, *used_node_mask
)) {
1503 /* Use the distance array to find the distance */
1504 val
= node_distance(node
, n
);
1506 /* Give preference to headless and unused nodes */
1507 tmp
= node_to_cpumask(n
);
1508 if (!cpus_empty(tmp
))
1509 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
1511 /* Slight preference for less loaded node */
1512 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
1513 val
+= node_load
[n
];
1515 if (val
< min_val
) {
1522 node_set(best_node
, *used_node_mask
);
1527 static void __init
build_zonelists(pg_data_t
*pgdat
)
1529 int i
, j
, k
, node
, local_node
;
1530 int prev_node
, load
;
1531 struct zonelist
*zonelist
;
1532 nodemask_t used_mask
;
1534 /* initialize zonelists */
1535 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1536 zonelist
= pgdat
->node_zonelists
+ i
;
1537 zonelist
->zones
[0] = NULL
;
1540 /* NUMA-aware ordering of nodes */
1541 local_node
= pgdat
->node_id
;
1542 load
= num_online_nodes();
1543 prev_node
= local_node
;
1544 nodes_clear(used_mask
);
1545 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
1547 * We don't want to pressure a particular node.
1548 * So adding penalty to the first node in same
1549 * distance group to make it round-robin.
1551 if (node_distance(local_node
, node
) !=
1552 node_distance(local_node
, prev_node
))
1553 node_load
[node
] += load
;
1556 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1557 zonelist
= pgdat
->node_zonelists
+ i
;
1558 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++);
1560 k
= highest_zone(i
);
1562 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1563 zonelist
->zones
[j
] = NULL
;
1568 #else /* CONFIG_NUMA */
1570 static void __init
build_zonelists(pg_data_t
*pgdat
)
1572 int i
, j
, k
, node
, local_node
;
1574 local_node
= pgdat
->node_id
;
1575 for (i
= 0; i
< GFP_ZONETYPES
; i
++) {
1576 struct zonelist
*zonelist
;
1578 zonelist
= pgdat
->node_zonelists
+ i
;
1581 k
= highest_zone(i
);
1582 j
= build_zonelists_node(pgdat
, zonelist
, j
, k
);
1584 * Now we build the zonelist so that it contains the zones
1585 * of all the other nodes.
1586 * We don't want to pressure a particular node, so when
1587 * building the zones for node N, we make sure that the
1588 * zones coming right after the local ones are those from
1589 * node N+1 (modulo N)
1591 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
1592 if (!node_online(node
))
1594 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1596 for (node
= 0; node
< local_node
; node
++) {
1597 if (!node_online(node
))
1599 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, k
);
1602 zonelist
->zones
[j
] = NULL
;
1606 #endif /* CONFIG_NUMA */
1608 void __init
build_all_zonelists(void)
1612 for_each_online_node(i
)
1613 build_zonelists(NODE_DATA(i
));
1614 printk("Built %i zonelists\n", num_online_nodes());
1615 cpuset_init_current_mems_allowed();
1619 * Helper functions to size the waitqueue hash table.
1620 * Essentially these want to choose hash table sizes sufficiently
1621 * large so that collisions trying to wait on pages are rare.
1622 * But in fact, the number of active page waitqueues on typical
1623 * systems is ridiculously low, less than 200. So this is even
1624 * conservative, even though it seems large.
1626 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1627 * waitqueues, i.e. the size of the waitq table given the number of pages.
1629 #define PAGES_PER_WAITQUEUE 256
1631 static inline unsigned long wait_table_size(unsigned long pages
)
1633 unsigned long size
= 1;
1635 pages
/= PAGES_PER_WAITQUEUE
;
1637 while (size
< pages
)
1641 * Once we have dozens or even hundreds of threads sleeping
1642 * on IO we've got bigger problems than wait queue collision.
1643 * Limit the size of the wait table to a reasonable size.
1645 size
= min(size
, 4096UL);
1647 return max(size
, 4UL);
1651 * This is an integer logarithm so that shifts can be used later
1652 * to extract the more random high bits from the multiplicative
1653 * hash function before the remainder is taken.
1655 static inline unsigned long wait_table_bits(unsigned long size
)
1660 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1662 static void __init
calculate_zone_totalpages(struct pglist_data
*pgdat
,
1663 unsigned long *zones_size
, unsigned long *zholes_size
)
1665 unsigned long realtotalpages
, totalpages
= 0;
1668 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1669 totalpages
+= zones_size
[i
];
1670 pgdat
->node_spanned_pages
= totalpages
;
1672 realtotalpages
= totalpages
;
1674 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1675 realtotalpages
-= zholes_size
[i
];
1676 pgdat
->node_present_pages
= realtotalpages
;
1677 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
, realtotalpages
);
1682 * Initially all pages are reserved - free ones are freed
1683 * up by free_all_bootmem() once the early boot process is
1684 * done. Non-atomic initialization, single-pass.
1686 void __devinit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
1687 unsigned long start_pfn
)
1690 unsigned long end_pfn
= start_pfn
+ size
;
1693 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++, page
++) {
1694 if (!early_pfn_valid(pfn
))
1696 if (!early_pfn_in_nid(pfn
, nid
))
1698 page
= pfn_to_page(pfn
);
1699 set_page_links(page
, zone
, nid
, pfn
);
1700 set_page_count(page
, 1);
1701 reset_page_mapcount(page
);
1702 SetPageReserved(page
);
1703 INIT_LIST_HEAD(&page
->lru
);
1704 #ifdef WANT_PAGE_VIRTUAL
1705 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1706 if (!is_highmem_idx(zone
))
1707 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1712 void zone_init_free_lists(struct pglist_data
*pgdat
, struct zone
*zone
,
1716 for (order
= 0; order
< MAX_ORDER
; order
++) {
1717 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
);
1718 zone
->free_area
[order
].nr_free
= 0;
1722 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1723 void zonetable_add(struct zone
*zone
, int nid
, int zid
, unsigned long pfn
,
1726 unsigned long snum
= pfn_to_section_nr(pfn
);
1727 unsigned long end
= pfn_to_section_nr(pfn
+ size
);
1730 zone_table
[ZONETABLE_INDEX(nid
, zid
)] = zone
;
1732 for (; snum
<= end
; snum
++)
1733 zone_table
[ZONETABLE_INDEX(snum
, zid
)] = zone
;
1736 #ifndef __HAVE_ARCH_MEMMAP_INIT
1737 #define memmap_init(size, nid, zone, start_pfn) \
1738 memmap_init_zone((size), (nid), (zone), (start_pfn))
1741 static int __devinit
zone_batchsize(struct zone
*zone
)
1746 * The per-cpu-pages pools are set to around 1000th of the
1747 * size of the zone. But no more than 1/2 of a meg.
1749 * OK, so we don't know how big the cache is. So guess.
1751 batch
= zone
->present_pages
/ 1024;
1752 if (batch
* PAGE_SIZE
> 512 * 1024)
1753 batch
= (512 * 1024) / PAGE_SIZE
;
1754 batch
/= 4; /* We effectively *= 4 below */
1759 * We will be trying to allcoate bigger chunks of contiguous
1760 * memory of the order of fls(batch). This should result in
1761 * better cache coloring.
1763 * A sanity check also to ensure that batch is still in limits.
1765 batch
= (1 << fls(batch
+ batch
/2));
1767 if (fls(batch
) >= (PAGE_SHIFT
+ MAX_ORDER
- 2))
1768 batch
= PAGE_SHIFT
+ ((MAX_ORDER
- 1 - PAGE_SHIFT
)/2);
1773 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
1775 struct per_cpu_pages
*pcp
;
1777 memset(p
, 0, sizeof(*p
));
1779 pcp
= &p
->pcp
[0]; /* hot */
1782 pcp
->high
= 6 * batch
;
1783 pcp
->batch
= max(1UL, 1 * batch
);
1784 INIT_LIST_HEAD(&pcp
->list
);
1786 pcp
= &p
->pcp
[1]; /* cold*/
1789 pcp
->high
= 2 * batch
;
1790 pcp
->batch
= max(1UL, batch
/2);
1791 INIT_LIST_HEAD(&pcp
->list
);
1796 * Boot pageset table. One per cpu which is going to be used for all
1797 * zones and all nodes. The parameters will be set in such a way
1798 * that an item put on a list will immediately be handed over to
1799 * the buddy list. This is safe since pageset manipulation is done
1800 * with interrupts disabled.
1802 * Some NUMA counter updates may also be caught by the boot pagesets.
1804 * The boot_pagesets must be kept even after bootup is complete for
1805 * unused processors and/or zones. They do play a role for bootstrapping
1806 * hotplugged processors.
1808 * zoneinfo_show() and maybe other functions do
1809 * not check if the processor is online before following the pageset pointer.
1810 * Other parts of the kernel may not check if the zone is available.
1812 static struct per_cpu_pageset
1813 boot_pageset
[NR_CPUS
];
1816 * Dynamically allocate memory for the
1817 * per cpu pageset array in struct zone.
1819 static int __devinit
process_zones(int cpu
)
1821 struct zone
*zone
, *dzone
;
1823 for_each_zone(zone
) {
1825 zone
->pageset
[cpu
] = kmalloc_node(sizeof(struct per_cpu_pageset
),
1826 GFP_KERNEL
, cpu_to_node(cpu
));
1827 if (!zone
->pageset
[cpu
])
1830 setup_pageset(zone
->pageset
[cpu
], zone_batchsize(zone
));
1835 for_each_zone(dzone
) {
1838 kfree(dzone
->pageset
[cpu
]);
1839 dzone
->pageset
[cpu
] = NULL
;
1844 static inline void free_zone_pagesets(int cpu
)
1849 for_each_zone(zone
) {
1850 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
1852 zone_pcp(zone
, cpu
) = NULL
;
1858 static int __devinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
1859 unsigned long action
,
1862 int cpu
= (long)hcpu
;
1863 int ret
= NOTIFY_OK
;
1866 case CPU_UP_PREPARE
:
1867 if (process_zones(cpu
))
1870 #ifdef CONFIG_HOTPLUG_CPU
1872 free_zone_pagesets(cpu
);
1881 static struct notifier_block pageset_notifier
=
1882 { &pageset_cpuup_callback
, NULL
, 0 };
1884 void __init
setup_per_cpu_pageset()
1888 /* Initialize per_cpu_pageset for cpu 0.
1889 * A cpuup callback will do this for every cpu
1890 * as it comes online
1892 err
= process_zones(smp_processor_id());
1894 register_cpu_notifier(&pageset_notifier
);
1900 void zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
1903 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1906 * The per-page waitqueue mechanism uses hashed waitqueues
1909 zone
->wait_table_size
= wait_table_size(zone_size_pages
);
1910 zone
->wait_table_bits
= wait_table_bits(zone
->wait_table_size
);
1911 zone
->wait_table
= (wait_queue_head_t
*)
1912 alloc_bootmem_node(pgdat
, zone
->wait_table_size
1913 * sizeof(wait_queue_head_t
));
1915 for(i
= 0; i
< zone
->wait_table_size
; ++i
)
1916 init_waitqueue_head(zone
->wait_table
+ i
);
1919 static __devinit
void zone_pcp_init(struct zone
*zone
)
1922 unsigned long batch
= zone_batchsize(zone
);
1924 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
1926 /* Early boot. Slab allocator not functional yet */
1927 zone
->pageset
[cpu
] = &boot_pageset
[cpu
];
1928 setup_pageset(&boot_pageset
[cpu
],0);
1930 setup_pageset(zone_pcp(zone
,cpu
), batch
);
1933 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
1934 zone
->name
, zone
->present_pages
, batch
);
1937 static __devinit
void init_currently_empty_zone(struct zone
*zone
,
1938 unsigned long zone_start_pfn
, unsigned long size
)
1940 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
1942 zone_wait_table_init(zone
, size
);
1943 pgdat
->nr_zones
= zone_idx(zone
) + 1;
1945 zone
->zone_mem_map
= pfn_to_page(zone_start_pfn
);
1946 zone
->zone_start_pfn
= zone_start_pfn
;
1948 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
1950 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
1954 * Set up the zone data structures:
1955 * - mark all pages reserved
1956 * - mark all memory queues empty
1957 * - clear the memory bitmaps
1959 static void __init
free_area_init_core(struct pglist_data
*pgdat
,
1960 unsigned long *zones_size
, unsigned long *zholes_size
)
1963 int nid
= pgdat
->node_id
;
1964 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
1966 pgdat_resize_init(pgdat
);
1967 pgdat
->nr_zones
= 0;
1968 init_waitqueue_head(&pgdat
->kswapd_wait
);
1969 pgdat
->kswapd_max_order
= 0;
1971 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
1972 struct zone
*zone
= pgdat
->node_zones
+ j
;
1973 unsigned long size
, realsize
;
1975 realsize
= size
= zones_size
[j
];
1977 realsize
-= zholes_size
[j
];
1979 if (j
== ZONE_DMA
|| j
== ZONE_NORMAL
)
1980 nr_kernel_pages
+= realsize
;
1981 nr_all_pages
+= realsize
;
1983 zone
->spanned_pages
= size
;
1984 zone
->present_pages
= realsize
;
1985 zone
->name
= zone_names
[j
];
1986 spin_lock_init(&zone
->lock
);
1987 spin_lock_init(&zone
->lru_lock
);
1988 zone_seqlock_init(zone
);
1989 zone
->zone_pgdat
= pgdat
;
1990 zone
->free_pages
= 0;
1992 zone
->temp_priority
= zone
->prev_priority
= DEF_PRIORITY
;
1994 zone_pcp_init(zone
);
1995 INIT_LIST_HEAD(&zone
->active_list
);
1996 INIT_LIST_HEAD(&zone
->inactive_list
);
1997 zone
->nr_scan_active
= 0;
1998 zone
->nr_scan_inactive
= 0;
1999 zone
->nr_active
= 0;
2000 zone
->nr_inactive
= 0;
2001 atomic_set(&zone
->reclaim_in_progress
, 0);
2005 zonetable_add(zone
, nid
, j
, zone_start_pfn
, size
);
2006 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
2007 zone_start_pfn
+= size
;
2011 static void __init
alloc_node_mem_map(struct pglist_data
*pgdat
)
2013 /* Skip empty nodes */
2014 if (!pgdat
->node_spanned_pages
)
2017 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2018 /* ia64 gets its own node_mem_map, before this, without bootmem */
2019 if (!pgdat
->node_mem_map
) {
2023 size
= (pgdat
->node_spanned_pages
+ 1) * sizeof(struct page
);
2024 map
= alloc_remap(pgdat
->node_id
, size
);
2026 map
= alloc_bootmem_node(pgdat
, size
);
2027 pgdat
->node_mem_map
= map
;
2029 #ifdef CONFIG_FLATMEM
2031 * With no DISCONTIG, the global mem_map is just set as node 0's
2033 if (pgdat
== NODE_DATA(0))
2034 mem_map
= NODE_DATA(0)->node_mem_map
;
2036 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2039 void __init
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
2040 unsigned long *zones_size
, unsigned long node_start_pfn
,
2041 unsigned long *zholes_size
)
2043 pgdat
->node_id
= nid
;
2044 pgdat
->node_start_pfn
= node_start_pfn
;
2045 calculate_zone_totalpages(pgdat
, zones_size
, zholes_size
);
2047 alloc_node_mem_map(pgdat
);
2049 free_area_init_core(pgdat
, zones_size
, zholes_size
);
2052 #ifndef CONFIG_NEED_MULTIPLE_NODES
2053 static bootmem_data_t contig_bootmem_data
;
2054 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
2056 EXPORT_SYMBOL(contig_page_data
);
2059 void __init
free_area_init(unsigned long *zones_size
)
2061 free_area_init_node(0, NODE_DATA(0), zones_size
,
2062 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
2065 #ifdef CONFIG_PROC_FS
2067 #include <linux/seq_file.h>
2069 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
2074 for (pgdat
= pgdat_list
; pgdat
&& node
; pgdat
= pgdat
->pgdat_next
)
2080 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2082 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2085 return pgdat
->pgdat_next
;
2088 static void frag_stop(struct seq_file
*m
, void *arg
)
2093 * This walks the free areas for each zone.
2095 static int frag_show(struct seq_file
*m
, void *arg
)
2097 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2099 struct zone
*node_zones
= pgdat
->node_zones
;
2100 unsigned long flags
;
2103 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2104 if (!zone
->present_pages
)
2107 spin_lock_irqsave(&zone
->lock
, flags
);
2108 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
2109 for (order
= 0; order
< MAX_ORDER
; ++order
)
2110 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
2111 spin_unlock_irqrestore(&zone
->lock
, flags
);
2117 struct seq_operations fragmentation_op
= {
2118 .start
= frag_start
,
2125 * Output information about zones in @pgdat.
2127 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
2129 pg_data_t
*pgdat
= arg
;
2131 struct zone
*node_zones
= pgdat
->node_zones
;
2132 unsigned long flags
;
2134 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; zone
++) {
2137 if (!zone
->present_pages
)
2140 spin_lock_irqsave(&zone
->lock
, flags
);
2141 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
2149 "\n scanned %lu (a: %lu i: %lu)"
2158 zone
->pages_scanned
,
2159 zone
->nr_scan_active
, zone
->nr_scan_inactive
,
2160 zone
->spanned_pages
,
2161 zone
->present_pages
);
2163 "\n protection: (%lu",
2164 zone
->lowmem_reserve
[0]);
2165 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
2166 seq_printf(m
, ", %lu", zone
->lowmem_reserve
[i
]);
2170 for (i
= 0; i
< ARRAY_SIZE(zone
->pageset
); i
++) {
2171 struct per_cpu_pageset
*pageset
;
2174 pageset
= zone_pcp(zone
, i
);
2175 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2176 if (pageset
->pcp
[j
].count
)
2179 if (j
== ARRAY_SIZE(pageset
->pcp
))
2181 for (j
= 0; j
< ARRAY_SIZE(pageset
->pcp
); j
++) {
2183 "\n cpu: %i pcp: %i"
2189 pageset
->pcp
[j
].count
,
2190 pageset
->pcp
[j
].low
,
2191 pageset
->pcp
[j
].high
,
2192 pageset
->pcp
[j
].batch
);
2198 "\n numa_foreign: %lu"
2199 "\n interleave_hit: %lu"
2200 "\n local_node: %lu"
2201 "\n other_node: %lu",
2204 pageset
->numa_foreign
,
2205 pageset
->interleave_hit
,
2206 pageset
->local_node
,
2207 pageset
->other_node
);
2211 "\n all_unreclaimable: %u"
2212 "\n prev_priority: %i"
2213 "\n temp_priority: %i"
2214 "\n start_pfn: %lu",
2215 zone
->all_unreclaimable
,
2216 zone
->prev_priority
,
2217 zone
->temp_priority
,
2218 zone
->zone_start_pfn
);
2219 spin_unlock_irqrestore(&zone
->lock
, flags
);
2225 struct seq_operations zoneinfo_op
= {
2226 .start
= frag_start
, /* iterate over all zones. The same as in
2230 .show
= zoneinfo_show
,
2233 static char *vmstat_text
[] = {
2237 "nr_page_table_pages",
2262 "pgscan_kswapd_high",
2263 "pgscan_kswapd_normal",
2265 "pgscan_kswapd_dma",
2266 "pgscan_direct_high",
2267 "pgscan_direct_normal",
2268 "pgscan_direct_dma",
2273 "kswapd_inodesteal",
2281 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
2283 struct page_state
*ps
;
2285 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2288 ps
= kmalloc(sizeof(*ps
), GFP_KERNEL
);
2291 return ERR_PTR(-ENOMEM
);
2292 get_full_page_state(ps
);
2293 ps
->pgpgin
/= 2; /* sectors -> kbytes */
2295 return (unsigned long *)ps
+ *pos
;
2298 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
2301 if (*pos
>= ARRAY_SIZE(vmstat_text
))
2303 return (unsigned long *)m
->private + *pos
;
2306 static int vmstat_show(struct seq_file
*m
, void *arg
)
2308 unsigned long *l
= arg
;
2309 unsigned long off
= l
- (unsigned long *)m
->private;
2311 seq_printf(m
, "%s %lu\n", vmstat_text
[off
], *l
);
2315 static void vmstat_stop(struct seq_file
*m
, void *arg
)
2321 struct seq_operations vmstat_op
= {
2322 .start
= vmstat_start
,
2323 .next
= vmstat_next
,
2324 .stop
= vmstat_stop
,
2325 .show
= vmstat_show
,
2328 #endif /* CONFIG_PROC_FS */
2330 #ifdef CONFIG_HOTPLUG_CPU
2331 static int page_alloc_cpu_notify(struct notifier_block
*self
,
2332 unsigned long action
, void *hcpu
)
2334 int cpu
= (unsigned long)hcpu
;
2336 unsigned long *src
, *dest
;
2338 if (action
== CPU_DEAD
) {
2341 /* Drain local pagecache count. */
2342 count
= &per_cpu(nr_pagecache_local
, cpu
);
2343 atomic_add(*count
, &nr_pagecache
);
2345 local_irq_disable();
2348 /* Add dead cpu's page_states to our own. */
2349 dest
= (unsigned long *)&__get_cpu_var(page_states
);
2350 src
= (unsigned long *)&per_cpu(page_states
, cpu
);
2352 for (i
= 0; i
< sizeof(struct page_state
)/sizeof(unsigned long);
2362 #endif /* CONFIG_HOTPLUG_CPU */
2364 void __init
page_alloc_init(void)
2366 hotcpu_notifier(page_alloc_cpu_notify
, 0);
2370 * setup_per_zone_lowmem_reserve - called whenever
2371 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2372 * has a correct pages reserved value, so an adequate number of
2373 * pages are left in the zone after a successful __alloc_pages().
2375 static void setup_per_zone_lowmem_reserve(void)
2377 struct pglist_data
*pgdat
;
2380 for_each_pgdat(pgdat
) {
2381 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
2382 struct zone
*zone
= pgdat
->node_zones
+ j
;
2383 unsigned long present_pages
= zone
->present_pages
;
2385 zone
->lowmem_reserve
[j
] = 0;
2387 for (idx
= j
-1; idx
>= 0; idx
--) {
2388 struct zone
*lower_zone
;
2390 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
2391 sysctl_lowmem_reserve_ratio
[idx
] = 1;
2393 lower_zone
= pgdat
->node_zones
+ idx
;
2394 lower_zone
->lowmem_reserve
[j
] = present_pages
/
2395 sysctl_lowmem_reserve_ratio
[idx
];
2396 present_pages
+= lower_zone
->present_pages
;
2403 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2404 * that the pages_{min,low,high} values for each zone are set correctly
2405 * with respect to min_free_kbytes.
2407 void setup_per_zone_pages_min(void)
2409 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
2410 unsigned long lowmem_pages
= 0;
2412 unsigned long flags
;
2414 /* Calculate total number of !ZONE_HIGHMEM pages */
2415 for_each_zone(zone
) {
2416 if (!is_highmem(zone
))
2417 lowmem_pages
+= zone
->present_pages
;
2420 for_each_zone(zone
) {
2421 spin_lock_irqsave(&zone
->lru_lock
, flags
);
2422 if (is_highmem(zone
)) {
2424 * Often, highmem doesn't need to reserve any pages.
2425 * But the pages_min/low/high values are also used for
2426 * batching up page reclaim activity so we need a
2427 * decent value here.
2431 min_pages
= zone
->present_pages
/ 1024;
2432 if (min_pages
< SWAP_CLUSTER_MAX
)
2433 min_pages
= SWAP_CLUSTER_MAX
;
2434 if (min_pages
> 128)
2436 zone
->pages_min
= min_pages
;
2438 /* if it's a lowmem zone, reserve a number of pages
2439 * proportionate to the zone's size.
2441 zone
->pages_min
= (pages_min
* zone
->present_pages
) /
2446 * When interpreting these watermarks, just keep in mind that:
2447 * zone->pages_min == (zone->pages_min * 4) / 4;
2449 zone
->pages_low
= (zone
->pages_min
* 5) / 4;
2450 zone
->pages_high
= (zone
->pages_min
* 6) / 4;
2451 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
2456 * Initialise min_free_kbytes.
2458 * For small machines we want it small (128k min). For large machines
2459 * we want it large (64MB max). But it is not linear, because network
2460 * bandwidth does not increase linearly with machine size. We use
2462 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2463 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2479 static int __init
init_per_zone_pages_min(void)
2481 unsigned long lowmem_kbytes
;
2483 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
2485 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
2486 if (min_free_kbytes
< 128)
2487 min_free_kbytes
= 128;
2488 if (min_free_kbytes
> 65536)
2489 min_free_kbytes
= 65536;
2490 setup_per_zone_pages_min();
2491 setup_per_zone_lowmem_reserve();
2494 module_init(init_per_zone_pages_min
)
2497 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2498 * that we can call two helper functions whenever min_free_kbytes
2501 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
2502 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2504 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
2505 setup_per_zone_pages_min();
2510 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2511 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2512 * whenever sysctl_lowmem_reserve_ratio changes.
2514 * The reserve ratio obviously has absolutely no relation with the
2515 * pages_min watermarks. The lowmem reserve ratio can only make sense
2516 * if in function of the boot time zone sizes.
2518 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
2519 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2521 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2522 setup_per_zone_lowmem_reserve();
2526 __initdata
int hashdist
= HASHDIST_DEFAULT
;
2529 static int __init
set_hashdist(char *str
)
2533 hashdist
= simple_strtoul(str
, &str
, 0);
2536 __setup("hashdist=", set_hashdist
);
2540 * allocate a large system hash table from bootmem
2541 * - it is assumed that the hash table must contain an exact power-of-2
2542 * quantity of entries
2543 * - limit is the number of hash buckets, not the total allocation size
2545 void *__init
alloc_large_system_hash(const char *tablename
,
2546 unsigned long bucketsize
,
2547 unsigned long numentries
,
2550 unsigned int *_hash_shift
,
2551 unsigned int *_hash_mask
,
2552 unsigned long limit
)
2554 unsigned long long max
= limit
;
2555 unsigned long log2qty
, size
;
2558 /* allow the kernel cmdline to have a say */
2560 /* round applicable memory size up to nearest megabyte */
2561 numentries
= (flags
& HASH_HIGHMEM
) ? nr_all_pages
: nr_kernel_pages
;
2562 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
2563 numentries
>>= 20 - PAGE_SHIFT
;
2564 numentries
<<= 20 - PAGE_SHIFT
;
2566 /* limit to 1 bucket per 2^scale bytes of low memory */
2567 if (scale
> PAGE_SHIFT
)
2568 numentries
>>= (scale
- PAGE_SHIFT
);
2570 numentries
<<= (PAGE_SHIFT
- scale
);
2572 /* rounded up to nearest power of 2 in size */
2573 numentries
= 1UL << (long_log2(numentries
) + 1);
2575 /* limit allocation size to 1/16 total memory by default */
2577 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
2578 do_div(max
, bucketsize
);
2581 if (numentries
> max
)
2584 log2qty
= long_log2(numentries
);
2587 size
= bucketsize
<< log2qty
;
2588 if (flags
& HASH_EARLY
)
2589 table
= alloc_bootmem(size
);
2591 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
2593 unsigned long order
;
2594 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
2596 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
2598 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
2601 panic("Failed to allocate %s hash table\n", tablename
);
2603 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2606 long_log2(size
) - PAGE_SHIFT
,
2610 *_hash_shift
= log2qty
;
2612 *_hash_mask
= (1 << log2qty
) - 1;