[PATCH] chardev: GPIO for SCx200 & PC-8736x: display pin values in/out in gpio_dump
[linux-2.6.22.y-op.git] / drivers / net / 3c59x.c
blobe27778926eba502acb78e7fb63c19a27a154cf60
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Linux Kernel Additions:
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
198 #define DRV_NAME "3c59x"
202 /* A few values that may be tweaked. */
203 /* Keep the ring sizes a power of two for efficiency. */
204 #define TX_RING_SIZE 16
205 #define RX_RING_SIZE 32
206 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
208 /* "Knobs" that adjust features and parameters. */
209 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
210 Setting to > 1512 effectively disables this feature. */
211 #ifndef __arm__
212 static int rx_copybreak = 200;
213 #else
214 /* ARM systems perform better by disregarding the bus-master
215 transfer capability of these cards. -- rmk */
216 static int rx_copybreak = 1513;
217 #endif
218 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
219 static const int mtu = 1500;
220 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
221 static int max_interrupt_work = 32;
222 /* Tx timeout interval (millisecs) */
223 static int watchdog = 5000;
225 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
226 * of possible Tx stalls if the system is blocking interrupts
227 * somewhere else. Undefine this to disable.
229 #define tx_interrupt_mitigation 1
231 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
232 #define vortex_debug debug
233 #ifdef VORTEX_DEBUG
234 static int vortex_debug = VORTEX_DEBUG;
235 #else
236 static int vortex_debug = 1;
237 #endif
239 #include <linux/config.h>
240 #include <linux/module.h>
241 #include <linux/kernel.h>
242 #include <linux/string.h>
243 #include <linux/timer.h>
244 #include <linux/errno.h>
245 #include <linux/in.h>
246 #include <linux/ioport.h>
247 #include <linux/slab.h>
248 #include <linux/interrupt.h>
249 #include <linux/pci.h>
250 #include <linux/mii.h>
251 #include <linux/init.h>
252 #include <linux/netdevice.h>
253 #include <linux/etherdevice.h>
254 #include <linux/skbuff.h>
255 #include <linux/ethtool.h>
256 #include <linux/highmem.h>
257 #include <linux/eisa.h>
258 #include <linux/bitops.h>
259 #include <linux/jiffies.h>
260 #include <asm/irq.h> /* For NR_IRQS only. */
261 #include <asm/io.h>
262 #include <asm/uaccess.h>
264 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
265 This is only in the support-all-kernels source code. */
267 #define RUN_AT(x) (jiffies + (x))
269 #include <linux/delay.h>
272 static char version[] __devinitdata =
273 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
275 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
276 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
277 MODULE_LICENSE("GPL");
280 /* Operational parameter that usually are not changed. */
282 /* The Vortex size is twice that of the original EtherLinkIII series: the
283 runtime register window, window 1, is now always mapped in.
284 The Boomerang size is twice as large as the Vortex -- it has additional
285 bus master control registers. */
286 #define VORTEX_TOTAL_SIZE 0x20
287 #define BOOMERANG_TOTAL_SIZE 0x40
289 /* Set iff a MII transceiver on any interface requires mdio preamble.
290 This only set with the original DP83840 on older 3c905 boards, so the extra
291 code size of a per-interface flag is not worthwhile. */
292 static char mii_preamble_required;
294 #define PFX DRV_NAME ": "
299 Theory of Operation
301 I. Board Compatibility
303 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
304 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
305 versions of the FastEtherLink cards. The supported product IDs are
306 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
308 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
309 with the kernel source or available from
310 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
312 II. Board-specific settings
314 PCI bus devices are configured by the system at boot time, so no jumpers
315 need to be set on the board. The system BIOS should be set to assign the
316 PCI INTA signal to an otherwise unused system IRQ line.
318 The EEPROM settings for media type and forced-full-duplex are observed.
319 The EEPROM media type should be left at the default "autoselect" unless using
320 10base2 or AUI connections which cannot be reliably detected.
322 III. Driver operation
324 The 3c59x series use an interface that's very similar to the previous 3c5x9
325 series. The primary interface is two programmed-I/O FIFOs, with an
326 alternate single-contiguous-region bus-master transfer (see next).
328 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
329 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
330 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
331 programmed-I/O interface that has been removed in 'B' and subsequent board
332 revisions.
334 One extension that is advertised in a very large font is that the adapters
335 are capable of being bus masters. On the Vortex chip this capability was
336 only for a single contiguous region making it far less useful than the full
337 bus master capability. There is a significant performance impact of taking
338 an extra interrupt or polling for the completion of each transfer, as well
339 as difficulty sharing the single transfer engine between the transmit and
340 receive threads. Using DMA transfers is a win only with large blocks or
341 with the flawed versions of the Intel Orion motherboard PCI controller.
343 The Boomerang chip's full-bus-master interface is useful, and has the
344 currently-unused advantages over other similar chips that queued transmit
345 packets may be reordered and receive buffer groups are associated with a
346 single frame.
348 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
349 Rather than a fixed intermediate receive buffer, this scheme allocates
350 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
351 the copying breakpoint: it is chosen to trade-off the memory wasted by
352 passing the full-sized skbuff to the queue layer for all frames vs. the
353 copying cost of copying a frame to a correctly-sized skbuff.
355 IIIC. Synchronization
356 The driver runs as two independent, single-threaded flows of control. One
357 is the send-packet routine, which enforces single-threaded use by the
358 dev->tbusy flag. The other thread is the interrupt handler, which is single
359 threaded by the hardware and other software.
361 IV. Notes
363 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
364 3c590, 3c595, and 3c900 boards.
365 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
366 the EISA version is called "Demon". According to Terry these names come
367 from rides at the local amusement park.
369 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
370 This driver only supports ethernet packets because of the skbuff allocation
371 limit of 4K.
374 /* This table drives the PCI probe routines. It's mostly boilerplate in all
375 of the drivers, and will likely be provided by some future kernel.
377 enum pci_flags_bit {
378 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
379 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
382 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
383 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
384 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
385 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
386 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
387 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
389 enum vortex_chips {
390 CH_3C590 = 0,
391 CH_3C592,
392 CH_3C597,
393 CH_3C595_1,
394 CH_3C595_2,
396 CH_3C595_3,
397 CH_3C900_1,
398 CH_3C900_2,
399 CH_3C900_3,
400 CH_3C900_4,
402 CH_3C900_5,
403 CH_3C900B_FL,
404 CH_3C905_1,
405 CH_3C905_2,
406 CH_3C905B_1,
408 CH_3C905B_2,
409 CH_3C905B_FX,
410 CH_3C905C,
411 CH_3C9202,
412 CH_3C980,
413 CH_3C9805,
415 CH_3CSOHO100_TX,
416 CH_3C555,
417 CH_3C556,
418 CH_3C556B,
419 CH_3C575,
421 CH_3C575_1,
422 CH_3CCFE575,
423 CH_3CCFE575CT,
424 CH_3CCFE656,
425 CH_3CCFEM656,
427 CH_3CCFEM656_1,
428 CH_3C450,
429 CH_3C920,
430 CH_3C982A,
431 CH_3C982B,
433 CH_905BT4,
434 CH_920B_EMB_WNM,
438 /* note: this array directly indexed by above enums, and MUST
439 * be kept in sync with both the enums above, and the PCI device
440 * table below
442 static struct vortex_chip_info {
443 const char *name;
444 int flags;
445 int drv_flags;
446 int io_size;
447 } vortex_info_tbl[] __devinitdata = {
448 {"3c590 Vortex 10Mbps",
449 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
450 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
451 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
452 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
453 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
454 {"3c595 Vortex 100baseTx",
455 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
456 {"3c595 Vortex 100baseT4",
457 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
459 {"3c595 Vortex 100base-MII",
460 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
461 {"3c900 Boomerang 10baseT",
462 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
463 {"3c900 Boomerang 10Mbps Combo",
464 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
465 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
466 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
467 {"3c900 Cyclone 10Mbps Combo",
468 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
470 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
471 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
472 {"3c900B-FL Cyclone 10base-FL",
473 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
474 {"3c905 Boomerang 100baseTx",
475 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
476 {"3c905 Boomerang 100baseT4",
477 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
478 {"3c905B Cyclone 100baseTx",
479 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
481 {"3c905B Cyclone 10/100/BNC",
482 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
483 {"3c905B-FX Cyclone 100baseFx",
484 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
485 {"3c905C Tornado",
486 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
487 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
488 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
489 {"3c980 Cyclone",
490 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
492 {"3c980C Python-T",
493 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
494 {"3cSOHO100-TX Hurricane",
495 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
496 {"3c555 Laptop Hurricane",
497 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
498 {"3c556 Laptop Tornado",
499 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
500 HAS_HWCKSM, 128, },
501 {"3c556B Laptop Hurricane",
502 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
503 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
505 {"3c575 [Megahertz] 10/100 LAN CardBus",
506 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
507 {"3c575 Boomerang CardBus",
508 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
509 {"3CCFE575BT Cyclone CardBus",
510 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
511 INVERT_LED_PWR|HAS_HWCKSM, 128, },
512 {"3CCFE575CT Tornado CardBus",
513 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
514 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
515 {"3CCFE656 Cyclone CardBus",
516 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
517 INVERT_LED_PWR|HAS_HWCKSM, 128, },
519 {"3CCFEM656B Cyclone+Winmodem CardBus",
520 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
521 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
523 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
524 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
525 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
526 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
527 {"3c920 Tornado",
528 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
529 {"3c982 Hydra Dual Port A",
530 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
532 {"3c982 Hydra Dual Port B",
533 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
534 {"3c905B-T4",
535 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
536 {"3c920B-EMB-WNM Tornado",
537 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
539 {NULL,}, /* NULL terminated list. */
543 static struct pci_device_id vortex_pci_tbl[] = {
544 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
545 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
546 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
547 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
548 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
550 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
551 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
552 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
553 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
554 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
556 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
557 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
558 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
559 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
560 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
562 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
563 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
564 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
565 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
566 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
567 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
569 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
570 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
571 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
572 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
573 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
575 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
576 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
577 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
578 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
579 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
581 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
582 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
583 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
584 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
585 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
587 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
588 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
590 {0,} /* 0 terminated list. */
592 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
595 /* Operational definitions.
596 These are not used by other compilation units and thus are not
597 exported in a ".h" file.
599 First the windows. There are eight register windows, with the command
600 and status registers available in each.
602 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
603 #define EL3_CMD 0x0e
604 #define EL3_STATUS 0x0e
606 /* The top five bits written to EL3_CMD are a command, the lower
607 11 bits are the parameter, if applicable.
608 Note that 11 parameters bits was fine for ethernet, but the new chip
609 can handle FDDI length frames (~4500 octets) and now parameters count
610 32-bit 'Dwords' rather than octets. */
612 enum vortex_cmd {
613 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
614 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
615 UpStall = 6<<11, UpUnstall = (6<<11)+1,
616 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
617 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
618 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
619 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
620 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
621 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
622 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
624 /* The SetRxFilter command accepts the following classes: */
625 enum RxFilter {
626 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
628 /* Bits in the general status register. */
629 enum vortex_status {
630 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
631 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
632 IntReq = 0x0040, StatsFull = 0x0080,
633 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
634 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
635 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
638 /* Register window 1 offsets, the window used in normal operation.
639 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
640 enum Window1 {
641 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
642 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
643 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
645 enum Window0 {
646 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
647 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
648 IntrStatus=0x0E, /* Valid in all windows. */
650 enum Win0_EEPROM_bits {
651 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
652 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
653 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
655 /* EEPROM locations. */
656 enum eeprom_offset {
657 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
658 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
659 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
660 DriverTune=13, Checksum=15};
662 enum Window2 { /* Window 2. */
663 Wn2_ResetOptions=12,
665 enum Window3 { /* Window 3: MAC/config bits. */
666 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
669 #define BFEXT(value, offset, bitcount) \
670 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
672 #define BFINS(lhs, rhs, offset, bitcount) \
673 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
674 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
676 #define RAM_SIZE(v) BFEXT(v, 0, 3)
677 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
678 #define RAM_SPEED(v) BFEXT(v, 4, 2)
679 #define ROM_SIZE(v) BFEXT(v, 6, 2)
680 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
681 #define XCVR(v) BFEXT(v, 20, 4)
682 #define AUTOSELECT(v) BFEXT(v, 24, 1)
684 enum Window4 { /* Window 4: Xcvr/media bits. */
685 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
687 enum Win4_Media_bits {
688 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
689 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
690 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
691 Media_LnkBeat = 0x0800,
693 enum Window7 { /* Window 7: Bus Master control. */
694 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
695 Wn7_MasterStatus = 12,
697 /* Boomerang bus master control registers. */
698 enum MasterCtrl {
699 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
700 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
703 /* The Rx and Tx descriptor lists.
704 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
705 alignment contraint on tx_ring[] and rx_ring[]. */
706 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
707 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
708 struct boom_rx_desc {
709 u32 next; /* Last entry points to 0. */
710 s32 status;
711 u32 addr; /* Up to 63 addr/len pairs possible. */
712 s32 length; /* Set LAST_FRAG to indicate last pair. */
714 /* Values for the Rx status entry. */
715 enum rx_desc_status {
716 RxDComplete=0x00008000, RxDError=0x4000,
717 /* See boomerang_rx() for actual error bits */
718 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
719 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
722 #ifdef MAX_SKB_FRAGS
723 #define DO_ZEROCOPY 1
724 #else
725 #define DO_ZEROCOPY 0
726 #endif
728 struct boom_tx_desc {
729 u32 next; /* Last entry points to 0. */
730 s32 status; /* bits 0:12 length, others see below. */
731 #if DO_ZEROCOPY
732 struct {
733 u32 addr;
734 s32 length;
735 } frag[1+MAX_SKB_FRAGS];
736 #else
737 u32 addr;
738 s32 length;
739 #endif
742 /* Values for the Tx status entry. */
743 enum tx_desc_status {
744 CRCDisable=0x2000, TxDComplete=0x8000,
745 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
746 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
749 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
750 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
752 struct vortex_extra_stats {
753 unsigned long tx_deferred;
754 unsigned long tx_max_collisions;
755 unsigned long tx_multiple_collisions;
756 unsigned long tx_single_collisions;
757 unsigned long rx_bad_ssd;
760 struct vortex_private {
761 /* The Rx and Tx rings should be quad-word-aligned. */
762 struct boom_rx_desc* rx_ring;
763 struct boom_tx_desc* tx_ring;
764 dma_addr_t rx_ring_dma;
765 dma_addr_t tx_ring_dma;
766 /* The addresses of transmit- and receive-in-place skbuffs. */
767 struct sk_buff* rx_skbuff[RX_RING_SIZE];
768 struct sk_buff* tx_skbuff[TX_RING_SIZE];
769 unsigned int cur_rx, cur_tx; /* The next free ring entry */
770 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
771 struct net_device_stats stats; /* Generic stats */
772 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
773 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
774 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
776 /* PCI configuration space information. */
777 struct device *gendev;
778 void __iomem *ioaddr; /* IO address space */
779 void __iomem *cb_fn_base; /* CardBus function status addr space. */
781 /* Some values here only for performance evaluation and path-coverage */
782 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
783 int card_idx;
785 /* The remainder are related to chip state, mostly media selection. */
786 struct timer_list timer; /* Media selection timer. */
787 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
788 int options; /* User-settable misc. driver options. */
789 unsigned int media_override:4, /* Passed-in media type. */
790 default_media:4, /* Read from the EEPROM/Wn3_Config. */
791 full_duplex:1, autoselect:1,
792 bus_master:1, /* Vortex can only do a fragment bus-m. */
793 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
794 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
795 partner_flow_ctrl:1, /* Partner supports flow control */
796 has_nway:1,
797 enable_wol:1, /* Wake-on-LAN is enabled */
798 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
799 open:1,
800 medialock:1,
801 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
802 large_frames:1; /* accept large frames */
803 int drv_flags;
804 u16 status_enable;
805 u16 intr_enable;
806 u16 available_media; /* From Wn3_Options. */
807 u16 capabilities, info1, info2; /* Various, from EEPROM. */
808 u16 advertising; /* NWay media advertisement */
809 unsigned char phys[2]; /* MII device addresses. */
810 u16 deferred; /* Resend these interrupts when we
811 * bale from the ISR */
812 u16 io_size; /* Size of PCI region (for release_region) */
813 spinlock_t lock; /* Serialise access to device & its vortex_private */
814 struct mii_if_info mii; /* MII lib hooks/info */
817 #ifdef CONFIG_PCI
818 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
819 #else
820 #define DEVICE_PCI(dev) NULL
821 #endif
823 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
825 #ifdef CONFIG_EISA
826 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
827 #else
828 #define DEVICE_EISA(dev) NULL
829 #endif
831 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
833 /* The action to take with a media selection timer tick.
834 Note that we deviate from the 3Com order by checking 10base2 before AUI.
836 enum xcvr_types {
837 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
838 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
841 static const struct media_table {
842 char *name;
843 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
844 mask:8, /* The transceiver-present bit in Wn3_Config.*/
845 next:8; /* The media type to try next. */
846 int wait; /* Time before we check media status. */
847 } media_tbl[] = {
848 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
849 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
850 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
851 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
852 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
853 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
854 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
855 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
856 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
857 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
858 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
861 static struct {
862 const char str[ETH_GSTRING_LEN];
863 } ethtool_stats_keys[] = {
864 { "tx_deferred" },
865 { "tx_max_collisions" },
866 { "tx_multiple_collisions" },
867 { "tx_single_collisions" },
868 { "rx_bad_ssd" },
871 /* number of ETHTOOL_GSTATS u64's */
872 #define VORTEX_NUM_STATS 5
874 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
875 int chip_idx, int card_idx);
876 static void vortex_up(struct net_device *dev);
877 static void vortex_down(struct net_device *dev, int final);
878 static int vortex_open(struct net_device *dev);
879 static void mdio_sync(void __iomem *ioaddr, int bits);
880 static int mdio_read(struct net_device *dev, int phy_id, int location);
881 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
882 static void vortex_timer(unsigned long arg);
883 static void rx_oom_timer(unsigned long arg);
884 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
885 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
886 static int vortex_rx(struct net_device *dev);
887 static int boomerang_rx(struct net_device *dev);
888 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
889 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
890 static int vortex_close(struct net_device *dev);
891 static void dump_tx_ring(struct net_device *dev);
892 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
893 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
894 static void set_rx_mode(struct net_device *dev);
895 #ifdef CONFIG_PCI
896 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
897 #endif
898 static void vortex_tx_timeout(struct net_device *dev);
899 static void acpi_set_WOL(struct net_device *dev);
900 static struct ethtool_ops vortex_ethtool_ops;
901 static void set_8021q_mode(struct net_device *dev, int enable);
903 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
904 /* Option count limit only -- unlimited interfaces are supported. */
905 #define MAX_UNITS 8
906 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
907 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
908 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
909 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
910 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
911 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
912 static int global_options = -1;
913 static int global_full_duplex = -1;
914 static int global_enable_wol = -1;
915 static int global_use_mmio = -1;
917 /* Variables to work-around the Compaq PCI BIOS32 problem. */
918 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
919 static struct net_device *compaq_net_device;
921 static int vortex_cards_found;
923 module_param(debug, int, 0);
924 module_param(global_options, int, 0);
925 module_param_array(options, int, NULL, 0);
926 module_param(global_full_duplex, int, 0);
927 module_param_array(full_duplex, int, NULL, 0);
928 module_param_array(hw_checksums, int, NULL, 0);
929 module_param_array(flow_ctrl, int, NULL, 0);
930 module_param(global_enable_wol, int, 0);
931 module_param_array(enable_wol, int, NULL, 0);
932 module_param(rx_copybreak, int, 0);
933 module_param(max_interrupt_work, int, 0);
934 module_param(compaq_ioaddr, int, 0);
935 module_param(compaq_irq, int, 0);
936 module_param(compaq_device_id, int, 0);
937 module_param(watchdog, int, 0);
938 module_param(global_use_mmio, int, 0);
939 module_param_array(use_mmio, int, NULL, 0);
940 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
941 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
942 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
943 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
944 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
945 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
946 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
947 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
948 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
949 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
950 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
951 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
952 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
953 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
954 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
955 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
956 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
958 #ifdef CONFIG_NET_POLL_CONTROLLER
959 static void poll_vortex(struct net_device *dev)
961 struct vortex_private *vp = netdev_priv(dev);
962 unsigned long flags;
963 local_save_flags(flags);
964 local_irq_disable();
965 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
966 local_irq_restore(flags);
968 #endif
970 #ifdef CONFIG_PM
972 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
974 struct net_device *dev = pci_get_drvdata(pdev);
976 if (dev && dev->priv) {
977 if (netif_running(dev)) {
978 netif_device_detach(dev);
979 vortex_down(dev, 1);
981 pci_save_state(pdev);
982 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
983 free_irq(dev->irq, dev);
984 pci_disable_device(pdev);
985 pci_set_power_state(pdev, pci_choose_state(pdev, state));
987 return 0;
990 static int vortex_resume(struct pci_dev *pdev)
992 struct net_device *dev = pci_get_drvdata(pdev);
993 struct vortex_private *vp = netdev_priv(dev);
995 if (dev && vp) {
996 pci_set_power_state(pdev, PCI_D0);
997 pci_restore_state(pdev);
998 pci_enable_device(pdev);
999 pci_set_master(pdev);
1000 if (request_irq(dev->irq, vp->full_bus_master_rx ?
1001 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
1002 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1003 pci_disable_device(pdev);
1004 return -EBUSY;
1006 if (netif_running(dev)) {
1007 vortex_up(dev);
1008 netif_device_attach(dev);
1011 return 0;
1014 #endif /* CONFIG_PM */
1016 #ifdef CONFIG_EISA
1017 static struct eisa_device_id vortex_eisa_ids[] = {
1018 { "TCM5920", CH_3C592 },
1019 { "TCM5970", CH_3C597 },
1020 { "" }
1023 static int vortex_eisa_probe(struct device *device);
1024 static int vortex_eisa_remove(struct device *device);
1026 static struct eisa_driver vortex_eisa_driver = {
1027 .id_table = vortex_eisa_ids,
1028 .driver = {
1029 .name = "3c59x",
1030 .probe = vortex_eisa_probe,
1031 .remove = vortex_eisa_remove
1035 static int vortex_eisa_probe(struct device *device)
1037 void __iomem *ioaddr;
1038 struct eisa_device *edev;
1040 edev = to_eisa_device(device);
1042 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
1043 return -EBUSY;
1045 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
1047 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
1048 edev->id.driver_data, vortex_cards_found)) {
1049 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
1050 return -ENODEV;
1053 vortex_cards_found++;
1055 return 0;
1058 static int vortex_eisa_remove(struct device *device)
1060 struct eisa_device *edev;
1061 struct net_device *dev;
1062 struct vortex_private *vp;
1063 void __iomem *ioaddr;
1065 edev = to_eisa_device(device);
1066 dev = eisa_get_drvdata(edev);
1068 if (!dev) {
1069 printk("vortex_eisa_remove called for Compaq device!\n");
1070 BUG();
1073 vp = netdev_priv(dev);
1074 ioaddr = vp->ioaddr;
1076 unregister_netdev(dev);
1077 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
1078 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
1080 free_netdev(dev);
1081 return 0;
1083 #endif
1085 /* returns count found (>= 0), or negative on error */
1086 static int __init vortex_eisa_init(void)
1088 int eisa_found = 0;
1089 int orig_cards_found = vortex_cards_found;
1091 #ifdef CONFIG_EISA
1092 int err;
1094 err = eisa_driver_register (&vortex_eisa_driver);
1095 if (!err) {
1097 * Because of the way EISA bus is probed, we cannot assume
1098 * any device have been found when we exit from
1099 * eisa_driver_register (the bus root driver may not be
1100 * initialized yet). So we blindly assume something was
1101 * found, and let the sysfs magic happend...
1103 eisa_found = 1;
1105 #endif
1107 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1108 if (compaq_ioaddr) {
1109 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
1110 compaq_irq, compaq_device_id, vortex_cards_found++);
1113 return vortex_cards_found - orig_cards_found + eisa_found;
1116 /* returns count (>= 0), or negative on error */
1117 static int __devinit vortex_init_one(struct pci_dev *pdev,
1118 const struct pci_device_id *ent)
1120 int rc, unit, pci_bar;
1121 struct vortex_chip_info *vci;
1122 void __iomem *ioaddr;
1124 /* wake up and enable device */
1125 rc = pci_enable_device(pdev);
1126 if (rc < 0)
1127 goto out;
1129 unit = vortex_cards_found;
1131 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1132 /* Determine the default if the user didn't override us */
1133 vci = &vortex_info_tbl[ent->driver_data];
1134 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1135 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1136 pci_bar = use_mmio[unit] ? 1 : 0;
1137 else
1138 pci_bar = global_use_mmio ? 1 : 0;
1140 ioaddr = pci_iomap(pdev, pci_bar, 0);
1141 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1142 ioaddr = pci_iomap(pdev, 0, 0);
1144 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1145 ent->driver_data, unit);
1146 if (rc < 0) {
1147 pci_disable_device(pdev);
1148 goto out;
1151 vortex_cards_found++;
1153 out:
1154 return rc;
1158 * Start up the PCI/EISA device which is described by *gendev.
1159 * Return 0 on success.
1161 * NOTE: pdev can be NULL, for the case of a Compaq device
1163 static int __devinit vortex_probe1(struct device *gendev,
1164 void __iomem *ioaddr, int irq,
1165 int chip_idx, int card_idx)
1167 struct vortex_private *vp;
1168 int option;
1169 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1170 int i, step;
1171 struct net_device *dev;
1172 static int printed_version;
1173 int retval, print_info;
1174 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1175 char *print_name = "3c59x";
1176 struct pci_dev *pdev = NULL;
1177 struct eisa_device *edev = NULL;
1179 if (!printed_version) {
1180 printk (version);
1181 printed_version = 1;
1184 if (gendev) {
1185 if ((pdev = DEVICE_PCI(gendev))) {
1186 print_name = pci_name(pdev);
1189 if ((edev = DEVICE_EISA(gendev))) {
1190 print_name = edev->dev.bus_id;
1194 dev = alloc_etherdev(sizeof(*vp));
1195 retval = -ENOMEM;
1196 if (!dev) {
1197 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1198 goto out;
1200 SET_MODULE_OWNER(dev);
1201 SET_NETDEV_DEV(dev, gendev);
1202 vp = netdev_priv(dev);
1204 option = global_options;
1206 /* The lower four bits are the media type. */
1207 if (dev->mem_start) {
1209 * The 'options' param is passed in as the third arg to the
1210 * LILO 'ether=' argument for non-modular use
1212 option = dev->mem_start;
1214 else if (card_idx < MAX_UNITS) {
1215 if (options[card_idx] >= 0)
1216 option = options[card_idx];
1219 if (option > 0) {
1220 if (option & 0x8000)
1221 vortex_debug = 7;
1222 if (option & 0x4000)
1223 vortex_debug = 2;
1224 if (option & 0x0400)
1225 vp->enable_wol = 1;
1228 print_info = (vortex_debug > 1);
1229 if (print_info)
1230 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1232 printk(KERN_INFO "%s: 3Com %s %s at %p.\n",
1233 print_name,
1234 pdev ? "PCI" : "EISA",
1235 vci->name,
1236 ioaddr);
1238 dev->base_addr = (unsigned long)ioaddr;
1239 dev->irq = irq;
1240 dev->mtu = mtu;
1241 vp->ioaddr = ioaddr;
1242 vp->large_frames = mtu > 1500;
1243 vp->drv_flags = vci->drv_flags;
1244 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1245 vp->io_size = vci->io_size;
1246 vp->card_idx = card_idx;
1248 /* module list only for Compaq device */
1249 if (gendev == NULL) {
1250 compaq_net_device = dev;
1253 /* PCI-only startup logic */
1254 if (pdev) {
1255 /* EISA resources already marked, so only PCI needs to do this here */
1256 /* Ignore return value, because Cardbus drivers already allocate for us */
1257 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1258 vp->must_free_region = 1;
1260 /* enable bus-mastering if necessary */
1261 if (vci->flags & PCI_USES_MASTER)
1262 pci_set_master(pdev);
1264 if (vci->drv_flags & IS_VORTEX) {
1265 u8 pci_latency;
1266 u8 new_latency = 248;
1268 /* Check the PCI latency value. On the 3c590 series the latency timer
1269 must be set to the maximum value to avoid data corruption that occurs
1270 when the timer expires during a transfer. This bug exists the Vortex
1271 chip only. */
1272 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1273 if (pci_latency < new_latency) {
1274 printk(KERN_INFO "%s: Overriding PCI latency"
1275 " timer (CFLT) setting of %d, new value is %d.\n",
1276 print_name, pci_latency, new_latency);
1277 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1282 spin_lock_init(&vp->lock);
1283 vp->gendev = gendev;
1284 vp->mii.dev = dev;
1285 vp->mii.mdio_read = mdio_read;
1286 vp->mii.mdio_write = mdio_write;
1287 vp->mii.phy_id_mask = 0x1f;
1288 vp->mii.reg_num_mask = 0x1f;
1290 /* Makes sure rings are at least 16 byte aligned. */
1291 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1292 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1293 &vp->rx_ring_dma);
1294 retval = -ENOMEM;
1295 if (vp->rx_ring == 0)
1296 goto free_region;
1298 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1299 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1301 /* if we are a PCI driver, we store info in pdev->driver_data
1302 * instead of a module list */
1303 if (pdev)
1304 pci_set_drvdata(pdev, dev);
1305 if (edev)
1306 eisa_set_drvdata(edev, dev);
1308 vp->media_override = 7;
1309 if (option >= 0) {
1310 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1311 if (vp->media_override != 7)
1312 vp->medialock = 1;
1313 vp->full_duplex = (option & 0x200) ? 1 : 0;
1314 vp->bus_master = (option & 16) ? 1 : 0;
1317 if (global_full_duplex > 0)
1318 vp->full_duplex = 1;
1319 if (global_enable_wol > 0)
1320 vp->enable_wol = 1;
1322 if (card_idx < MAX_UNITS) {
1323 if (full_duplex[card_idx] > 0)
1324 vp->full_duplex = 1;
1325 if (flow_ctrl[card_idx] > 0)
1326 vp->flow_ctrl = 1;
1327 if (enable_wol[card_idx] > 0)
1328 vp->enable_wol = 1;
1331 vp->mii.force_media = vp->full_duplex;
1332 vp->options = option;
1333 /* Read the station address from the EEPROM. */
1334 EL3WINDOW(0);
1336 int base;
1338 if (vci->drv_flags & EEPROM_8BIT)
1339 base = 0x230;
1340 else if (vci->drv_flags & EEPROM_OFFSET)
1341 base = EEPROM_Read + 0x30;
1342 else
1343 base = EEPROM_Read;
1345 for (i = 0; i < 0x40; i++) {
1346 int timer;
1347 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1348 /* Pause for at least 162 us. for the read to take place. */
1349 for (timer = 10; timer >= 0; timer--) {
1350 udelay(162);
1351 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1352 break;
1354 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1357 for (i = 0; i < 0x18; i++)
1358 checksum ^= eeprom[i];
1359 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1360 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1361 while (i < 0x21)
1362 checksum ^= eeprom[i++];
1363 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1365 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1366 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1367 for (i = 0; i < 3; i++)
1368 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1369 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1370 if (print_info) {
1371 for (i = 0; i < 6; i++)
1372 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1374 /* Unfortunately an all zero eeprom passes the checksum and this
1375 gets found in the wild in failure cases. Crypto is hard 8) */
1376 if (!is_valid_ether_addr(dev->dev_addr)) {
1377 retval = -EINVAL;
1378 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1379 goto free_ring; /* With every pack */
1381 EL3WINDOW(2);
1382 for (i = 0; i < 6; i++)
1383 iowrite8(dev->dev_addr[i], ioaddr + i);
1385 if (print_info)
1386 printk(", IRQ %d\n", dev->irq);
1387 /* Tell them about an invalid IRQ. */
1388 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1389 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1390 dev->irq);
1392 EL3WINDOW(4);
1393 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1394 if (print_info) {
1395 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1396 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1397 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1401 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1402 unsigned short n;
1404 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1405 if (!vp->cb_fn_base) {
1406 retval = -ENOMEM;
1407 goto free_ring;
1410 if (print_info) {
1411 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1412 print_name, pci_resource_start(pdev, 2),
1413 vp->cb_fn_base);
1415 EL3WINDOW(2);
1417 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1418 if (vp->drv_flags & INVERT_LED_PWR)
1419 n |= 0x10;
1420 if (vp->drv_flags & INVERT_MII_PWR)
1421 n |= 0x4000;
1422 iowrite16(n, ioaddr + Wn2_ResetOptions);
1423 if (vp->drv_flags & WNO_XCVR_PWR) {
1424 EL3WINDOW(0);
1425 iowrite16(0x0800, ioaddr);
1429 /* Extract our information from the EEPROM data. */
1430 vp->info1 = eeprom[13];
1431 vp->info2 = eeprom[15];
1432 vp->capabilities = eeprom[16];
1434 if (vp->info1 & 0x8000) {
1435 vp->full_duplex = 1;
1436 if (print_info)
1437 printk(KERN_INFO "Full duplex capable\n");
1441 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1442 unsigned int config;
1443 EL3WINDOW(3);
1444 vp->available_media = ioread16(ioaddr + Wn3_Options);
1445 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1446 vp->available_media = 0x40;
1447 config = ioread32(ioaddr + Wn3_Config);
1448 if (print_info) {
1449 printk(KERN_DEBUG " Internal config register is %4.4x, "
1450 "transceivers %#x.\n", config, ioread16(ioaddr + Wn3_Options));
1451 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1452 8 << RAM_SIZE(config),
1453 RAM_WIDTH(config) ? "word" : "byte",
1454 ram_split[RAM_SPLIT(config)],
1455 AUTOSELECT(config) ? "autoselect/" : "",
1456 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1457 media_tbl[XCVR(config)].name);
1459 vp->default_media = XCVR(config);
1460 if (vp->default_media == XCVR_NWAY)
1461 vp->has_nway = 1;
1462 vp->autoselect = AUTOSELECT(config);
1465 if (vp->media_override != 7) {
1466 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1467 print_name, vp->media_override,
1468 media_tbl[vp->media_override].name);
1469 dev->if_port = vp->media_override;
1470 } else
1471 dev->if_port = vp->default_media;
1473 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1474 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1475 int phy, phy_idx = 0;
1476 EL3WINDOW(4);
1477 mii_preamble_required++;
1478 if (vp->drv_flags & EXTRA_PREAMBLE)
1479 mii_preamble_required++;
1480 mdio_sync(ioaddr, 32);
1481 mdio_read(dev, 24, MII_BMSR);
1482 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1483 int mii_status, phyx;
1486 * For the 3c905CX we look at index 24 first, because it bogusly
1487 * reports an external PHY at all indices
1489 if (phy == 0)
1490 phyx = 24;
1491 else if (phy <= 24)
1492 phyx = phy - 1;
1493 else
1494 phyx = phy;
1495 mii_status = mdio_read(dev, phyx, MII_BMSR);
1496 if (mii_status && mii_status != 0xffff) {
1497 vp->phys[phy_idx++] = phyx;
1498 if (print_info) {
1499 printk(KERN_INFO " MII transceiver found at address %d,"
1500 " status %4x.\n", phyx, mii_status);
1502 if ((mii_status & 0x0040) == 0)
1503 mii_preamble_required++;
1506 mii_preamble_required--;
1507 if (phy_idx == 0) {
1508 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1509 vp->phys[0] = 24;
1510 } else {
1511 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1512 if (vp->full_duplex) {
1513 /* Only advertise the FD media types. */
1514 vp->advertising &= ~0x02A0;
1515 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1518 vp->mii.phy_id = vp->phys[0];
1521 if (vp->capabilities & CapBusMaster) {
1522 vp->full_bus_master_tx = 1;
1523 if (print_info) {
1524 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1525 (vp->info2 & 1) ? "early" : "whole-frame" );
1527 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1528 vp->bus_master = 0; /* AKPM: vortex only */
1531 /* The 3c59x-specific entries in the device structure. */
1532 dev->open = vortex_open;
1533 if (vp->full_bus_master_tx) {
1534 dev->hard_start_xmit = boomerang_start_xmit;
1535 /* Actually, it still should work with iommu. */
1536 if (card_idx < MAX_UNITS &&
1537 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1538 hw_checksums[card_idx] == 1)) {
1539 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1541 } else {
1542 dev->hard_start_xmit = vortex_start_xmit;
1545 if (print_info) {
1546 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1547 print_name,
1548 (dev->features & NETIF_F_SG) ? "en":"dis",
1549 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1552 dev->stop = vortex_close;
1553 dev->get_stats = vortex_get_stats;
1554 #ifdef CONFIG_PCI
1555 dev->do_ioctl = vortex_ioctl;
1556 #endif
1557 dev->ethtool_ops = &vortex_ethtool_ops;
1558 dev->set_multicast_list = set_rx_mode;
1559 dev->tx_timeout = vortex_tx_timeout;
1560 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1561 #ifdef CONFIG_NET_POLL_CONTROLLER
1562 dev->poll_controller = poll_vortex;
1563 #endif
1564 if (pdev) {
1565 vp->pm_state_valid = 1;
1566 pci_save_state(VORTEX_PCI(vp));
1567 acpi_set_WOL(dev);
1569 retval = register_netdev(dev);
1570 if (retval == 0)
1571 return 0;
1573 free_ring:
1574 pci_free_consistent(pdev,
1575 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1576 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1577 vp->rx_ring,
1578 vp->rx_ring_dma);
1579 free_region:
1580 if (vp->must_free_region)
1581 release_region(dev->base_addr, vci->io_size);
1582 free_netdev(dev);
1583 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1584 out:
1585 return retval;
1588 static void
1589 issue_and_wait(struct net_device *dev, int cmd)
1591 struct vortex_private *vp = netdev_priv(dev);
1592 void __iomem *ioaddr = vp->ioaddr;
1593 int i;
1595 iowrite16(cmd, ioaddr + EL3_CMD);
1596 for (i = 0; i < 2000; i++) {
1597 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1598 return;
1601 /* OK, that didn't work. Do it the slow way. One second */
1602 for (i = 0; i < 100000; i++) {
1603 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1604 if (vortex_debug > 1)
1605 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1606 dev->name, cmd, i * 10);
1607 return;
1609 udelay(10);
1611 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1612 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1615 static void
1616 vortex_set_duplex(struct net_device *dev)
1618 struct vortex_private *vp = netdev_priv(dev);
1619 void __iomem *ioaddr = vp->ioaddr;
1621 printk(KERN_INFO "%s: setting %s-duplex.\n",
1622 dev->name, (vp->full_duplex) ? "full" : "half");
1624 EL3WINDOW(3);
1625 /* Set the full-duplex bit. */
1626 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1627 (vp->large_frames ? 0x40 : 0) |
1628 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1629 0x100 : 0),
1630 ioaddr + Wn3_MAC_Ctrl);
1633 static void vortex_check_media(struct net_device *dev, unsigned int init)
1635 struct vortex_private *vp = netdev_priv(dev);
1636 unsigned int ok_to_print = 0;
1638 if (vortex_debug > 3)
1639 ok_to_print = 1;
1641 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1642 vp->full_duplex = vp->mii.full_duplex;
1643 vortex_set_duplex(dev);
1644 } else if (init) {
1645 vortex_set_duplex(dev);
1649 static void
1650 vortex_up(struct net_device *dev)
1652 struct vortex_private *vp = netdev_priv(dev);
1653 void __iomem *ioaddr = vp->ioaddr;
1654 unsigned int config;
1655 int i, mii_reg1, mii_reg5;
1657 if (VORTEX_PCI(vp)) {
1658 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1659 if (vp->pm_state_valid)
1660 pci_restore_state(VORTEX_PCI(vp));
1661 pci_enable_device(VORTEX_PCI(vp));
1664 /* Before initializing select the active media port. */
1665 EL3WINDOW(3);
1666 config = ioread32(ioaddr + Wn3_Config);
1668 if (vp->media_override != 7) {
1669 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1670 dev->name, vp->media_override,
1671 media_tbl[vp->media_override].name);
1672 dev->if_port = vp->media_override;
1673 } else if (vp->autoselect) {
1674 if (vp->has_nway) {
1675 if (vortex_debug > 1)
1676 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1677 dev->name, dev->if_port);
1678 dev->if_port = XCVR_NWAY;
1679 } else {
1680 /* Find first available media type, starting with 100baseTx. */
1681 dev->if_port = XCVR_100baseTx;
1682 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1683 dev->if_port = media_tbl[dev->if_port].next;
1684 if (vortex_debug > 1)
1685 printk(KERN_INFO "%s: first available media type: %s\n",
1686 dev->name, media_tbl[dev->if_port].name);
1688 } else {
1689 dev->if_port = vp->default_media;
1690 if (vortex_debug > 1)
1691 printk(KERN_INFO "%s: using default media %s\n",
1692 dev->name, media_tbl[dev->if_port].name);
1695 init_timer(&vp->timer);
1696 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1697 vp->timer.data = (unsigned long)dev;
1698 vp->timer.function = vortex_timer; /* timer handler */
1699 add_timer(&vp->timer);
1701 init_timer(&vp->rx_oom_timer);
1702 vp->rx_oom_timer.data = (unsigned long)dev;
1703 vp->rx_oom_timer.function = rx_oom_timer;
1705 if (vortex_debug > 1)
1706 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1707 dev->name, media_tbl[dev->if_port].name);
1709 vp->full_duplex = vp->mii.force_media;
1710 config = BFINS(config, dev->if_port, 20, 4);
1711 if (vortex_debug > 6)
1712 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1713 iowrite32(config, ioaddr + Wn3_Config);
1715 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1716 EL3WINDOW(4);
1717 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1718 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1719 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1721 vortex_check_media(dev, 1);
1723 else
1724 vortex_set_duplex(dev);
1726 issue_and_wait(dev, TxReset);
1728 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1730 issue_and_wait(dev, RxReset|0x04);
1733 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1735 if (vortex_debug > 1) {
1736 EL3WINDOW(4);
1737 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1738 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1741 /* Set the station address and mask in window 2 each time opened. */
1742 EL3WINDOW(2);
1743 for (i = 0; i < 6; i++)
1744 iowrite8(dev->dev_addr[i], ioaddr + i);
1745 for (; i < 12; i+=2)
1746 iowrite16(0, ioaddr + i);
1748 if (vp->cb_fn_base) {
1749 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1750 if (vp->drv_flags & INVERT_LED_PWR)
1751 n |= 0x10;
1752 if (vp->drv_flags & INVERT_MII_PWR)
1753 n |= 0x4000;
1754 iowrite16(n, ioaddr + Wn2_ResetOptions);
1757 if (dev->if_port == XCVR_10base2)
1758 /* Start the thinnet transceiver. We should really wait 50ms...*/
1759 iowrite16(StartCoax, ioaddr + EL3_CMD);
1760 if (dev->if_port != XCVR_NWAY) {
1761 EL3WINDOW(4);
1762 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1763 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1766 /* Switch to the stats window, and clear all stats by reading. */
1767 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1768 EL3WINDOW(6);
1769 for (i = 0; i < 10; i++)
1770 ioread8(ioaddr + i);
1771 ioread16(ioaddr + 10);
1772 ioread16(ioaddr + 12);
1773 /* New: On the Vortex we must also clear the BadSSD counter. */
1774 EL3WINDOW(4);
1775 ioread8(ioaddr + 12);
1776 /* ..and on the Boomerang we enable the extra statistics bits. */
1777 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1779 /* Switch to register set 7 for normal use. */
1780 EL3WINDOW(7);
1782 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1783 vp->cur_rx = vp->dirty_rx = 0;
1784 /* Initialize the RxEarly register as recommended. */
1785 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1786 iowrite32(0x0020, ioaddr + PktStatus);
1787 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1789 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1790 vp->cur_tx = vp->dirty_tx = 0;
1791 if (vp->drv_flags & IS_BOOMERANG)
1792 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1793 /* Clear the Rx, Tx rings. */
1794 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1795 vp->rx_ring[i].status = 0;
1796 for (i = 0; i < TX_RING_SIZE; i++)
1797 vp->tx_skbuff[i] = NULL;
1798 iowrite32(0, ioaddr + DownListPtr);
1800 /* Set receiver mode: presumably accept b-case and phys addr only. */
1801 set_rx_mode(dev);
1802 /* enable 802.1q tagged frames */
1803 set_8021q_mode(dev, 1);
1804 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1806 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1807 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1808 /* Allow status bits to be seen. */
1809 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1810 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1811 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1812 (vp->bus_master ? DMADone : 0);
1813 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1814 (vp->full_bus_master_rx ? 0 : RxComplete) |
1815 StatsFull | HostError | TxComplete | IntReq
1816 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1817 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1818 /* Ack all pending events, and set active indicator mask. */
1819 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1820 ioaddr + EL3_CMD);
1821 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1822 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1823 iowrite32(0x8000, vp->cb_fn_base + 4);
1824 netif_start_queue (dev);
1827 static int
1828 vortex_open(struct net_device *dev)
1830 struct vortex_private *vp = netdev_priv(dev);
1831 int i;
1832 int retval;
1834 /* Use the now-standard shared IRQ implementation. */
1835 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1836 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1837 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1838 goto out;
1841 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1842 if (vortex_debug > 2)
1843 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1844 for (i = 0; i < RX_RING_SIZE; i++) {
1845 struct sk_buff *skb;
1846 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1847 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1848 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1849 skb = dev_alloc_skb(PKT_BUF_SZ);
1850 vp->rx_skbuff[i] = skb;
1851 if (skb == NULL)
1852 break; /* Bad news! */
1853 skb->dev = dev; /* Mark as being used by this device. */
1854 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1855 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1857 if (i != RX_RING_SIZE) {
1858 int j;
1859 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1860 for (j = 0; j < i; j++) {
1861 if (vp->rx_skbuff[j]) {
1862 dev_kfree_skb(vp->rx_skbuff[j]);
1863 vp->rx_skbuff[j] = NULL;
1866 retval = -ENOMEM;
1867 goto out_free_irq;
1869 /* Wrap the ring. */
1870 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1873 vortex_up(dev);
1874 return 0;
1876 out_free_irq:
1877 free_irq(dev->irq, dev);
1878 out:
1879 if (vortex_debug > 1)
1880 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1881 return retval;
1884 static void
1885 vortex_timer(unsigned long data)
1887 struct net_device *dev = (struct net_device *)data;
1888 struct vortex_private *vp = netdev_priv(dev);
1889 void __iomem *ioaddr = vp->ioaddr;
1890 int next_tick = 60*HZ;
1891 int ok = 0;
1892 int media_status, old_window;
1894 if (vortex_debug > 2) {
1895 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1896 dev->name, media_tbl[dev->if_port].name);
1897 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1900 disable_irq(dev->irq);
1901 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1902 EL3WINDOW(4);
1903 media_status = ioread16(ioaddr + Wn4_Media);
1904 switch (dev->if_port) {
1905 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1906 if (media_status & Media_LnkBeat) {
1907 netif_carrier_on(dev);
1908 ok = 1;
1909 if (vortex_debug > 1)
1910 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1911 dev->name, media_tbl[dev->if_port].name, media_status);
1912 } else {
1913 netif_carrier_off(dev);
1914 if (vortex_debug > 1) {
1915 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1916 dev->name, media_tbl[dev->if_port].name, media_status);
1919 break;
1920 case XCVR_MII: case XCVR_NWAY:
1922 ok = 1;
1923 spin_lock_bh(&vp->lock);
1924 vortex_check_media(dev, 0);
1925 spin_unlock_bh(&vp->lock);
1927 break;
1928 default: /* Other media types handled by Tx timeouts. */
1929 if (vortex_debug > 1)
1930 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1931 dev->name, media_tbl[dev->if_port].name, media_status);
1932 ok = 1;
1935 if (!netif_carrier_ok(dev))
1936 next_tick = 5*HZ;
1938 if (vp->medialock)
1939 goto leave_media_alone;
1941 if (!ok) {
1942 unsigned int config;
1944 do {
1945 dev->if_port = media_tbl[dev->if_port].next;
1946 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1947 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1948 dev->if_port = vp->default_media;
1949 if (vortex_debug > 1)
1950 printk(KERN_DEBUG "%s: Media selection failing, using default "
1951 "%s port.\n",
1952 dev->name, media_tbl[dev->if_port].name);
1953 } else {
1954 if (vortex_debug > 1)
1955 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1956 "%s port.\n",
1957 dev->name, media_tbl[dev->if_port].name);
1958 next_tick = media_tbl[dev->if_port].wait;
1960 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1961 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1963 EL3WINDOW(3);
1964 config = ioread32(ioaddr + Wn3_Config);
1965 config = BFINS(config, dev->if_port, 20, 4);
1966 iowrite32(config, ioaddr + Wn3_Config);
1968 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1969 ioaddr + EL3_CMD);
1970 if (vortex_debug > 1)
1971 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1972 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1975 leave_media_alone:
1976 if (vortex_debug > 2)
1977 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1978 dev->name, media_tbl[dev->if_port].name);
1980 EL3WINDOW(old_window);
1981 enable_irq(dev->irq);
1982 mod_timer(&vp->timer, RUN_AT(next_tick));
1983 if (vp->deferred)
1984 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1985 return;
1988 static void vortex_tx_timeout(struct net_device *dev)
1990 struct vortex_private *vp = netdev_priv(dev);
1991 void __iomem *ioaddr = vp->ioaddr;
1993 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1994 dev->name, ioread8(ioaddr + TxStatus),
1995 ioread16(ioaddr + EL3_STATUS));
1996 EL3WINDOW(4);
1997 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1998 ioread16(ioaddr + Wn4_NetDiag),
1999 ioread16(ioaddr + Wn4_Media),
2000 ioread32(ioaddr + PktStatus),
2001 ioread16(ioaddr + Wn4_FIFODiag));
2002 /* Slight code bloat to be user friendly. */
2003 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
2004 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
2005 " network cable problem?\n", dev->name);
2006 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
2007 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2008 " IRQ blocked by another device?\n", dev->name);
2009 /* Bad idea here.. but we might as well handle a few events. */
2012 * Block interrupts because vortex_interrupt does a bare spin_lock()
2014 unsigned long flags;
2015 local_irq_save(flags);
2016 if (vp->full_bus_master_tx)
2017 boomerang_interrupt(dev->irq, dev, NULL);
2018 else
2019 vortex_interrupt(dev->irq, dev, NULL);
2020 local_irq_restore(flags);
2024 if (vortex_debug > 0)
2025 dump_tx_ring(dev);
2027 issue_and_wait(dev, TxReset);
2029 vp->stats.tx_errors++;
2030 if (vp->full_bus_master_tx) {
2031 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2032 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
2033 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2034 ioaddr + DownListPtr);
2035 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2036 netif_wake_queue (dev);
2037 if (vp->drv_flags & IS_BOOMERANG)
2038 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2039 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2040 } else {
2041 vp->stats.tx_dropped++;
2042 netif_wake_queue(dev);
2045 /* Issue Tx Enable */
2046 iowrite16(TxEnable, ioaddr + EL3_CMD);
2047 dev->trans_start = jiffies;
2049 /* Switch to register set 7 for normal use. */
2050 EL3WINDOW(7);
2054 * Handle uncommon interrupt sources. This is a separate routine to minimize
2055 * the cache impact.
2057 static void
2058 vortex_error(struct net_device *dev, int status)
2060 struct vortex_private *vp = netdev_priv(dev);
2061 void __iomem *ioaddr = vp->ioaddr;
2062 int do_tx_reset = 0, reset_mask = 0;
2063 unsigned char tx_status = 0;
2065 if (vortex_debug > 2) {
2066 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2069 if (status & TxComplete) { /* Really "TxError" for us. */
2070 tx_status = ioread8(ioaddr + TxStatus);
2071 /* Presumably a tx-timeout. We must merely re-enable. */
2072 if (vortex_debug > 2
2073 || (tx_status != 0x88 && vortex_debug > 0)) {
2074 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2075 dev->name, tx_status);
2076 if (tx_status == 0x82) {
2077 printk(KERN_ERR "Probably a duplex mismatch. See "
2078 "Documentation/networking/vortex.txt\n");
2080 dump_tx_ring(dev);
2082 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2083 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2084 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
2085 iowrite8(0, ioaddr + TxStatus);
2086 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2087 do_tx_reset = 1;
2088 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
2089 do_tx_reset = 1;
2090 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2091 } else { /* Merely re-enable the transmitter. */
2092 iowrite16(TxEnable, ioaddr + EL3_CMD);
2096 if (status & RxEarly) { /* Rx early is unused. */
2097 vortex_rx(dev);
2098 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2100 if (status & StatsFull) { /* Empty statistics. */
2101 static int DoneDidThat;
2102 if (vortex_debug > 4)
2103 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2104 update_stats(ioaddr, dev);
2105 /* HACK: Disable statistics as an interrupt source. */
2106 /* This occurs when we have the wrong media type! */
2107 if (DoneDidThat == 0 &&
2108 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2109 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2110 "stats as an interrupt source.\n", dev->name);
2111 EL3WINDOW(5);
2112 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2113 vp->intr_enable &= ~StatsFull;
2114 EL3WINDOW(7);
2115 DoneDidThat++;
2118 if (status & IntReq) { /* Restore all interrupt sources. */
2119 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2120 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2122 if (status & HostError) {
2123 u16 fifo_diag;
2124 EL3WINDOW(4);
2125 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2126 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2127 dev->name, fifo_diag);
2128 /* Adapter failure requires Tx/Rx reset and reinit. */
2129 if (vp->full_bus_master_tx) {
2130 int bus_status = ioread32(ioaddr + PktStatus);
2131 /* 0x80000000 PCI master abort. */
2132 /* 0x40000000 PCI target abort. */
2133 if (vortex_debug)
2134 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2136 /* In this case, blow the card away */
2137 /* Must not enter D3 or we can't legally issue the reset! */
2138 vortex_down(dev, 0);
2139 issue_and_wait(dev, TotalReset | 0xff);
2140 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2141 } else if (fifo_diag & 0x0400)
2142 do_tx_reset = 1;
2143 if (fifo_diag & 0x3000) {
2144 /* Reset Rx fifo and upload logic */
2145 issue_and_wait(dev, RxReset|0x07);
2146 /* Set the Rx filter to the current state. */
2147 set_rx_mode(dev);
2148 /* enable 802.1q VLAN tagged frames */
2149 set_8021q_mode(dev, 1);
2150 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2151 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2155 if (do_tx_reset) {
2156 issue_and_wait(dev, TxReset|reset_mask);
2157 iowrite16(TxEnable, ioaddr + EL3_CMD);
2158 if (!vp->full_bus_master_tx)
2159 netif_wake_queue(dev);
2163 static int
2164 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2166 struct vortex_private *vp = netdev_priv(dev);
2167 void __iomem *ioaddr = vp->ioaddr;
2169 /* Put out the doubleword header... */
2170 iowrite32(skb->len, ioaddr + TX_FIFO);
2171 if (vp->bus_master) {
2172 /* Set the bus-master controller to transfer the packet. */
2173 int len = (skb->len + 3) & ~3;
2174 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2175 ioaddr + Wn7_MasterAddr);
2176 iowrite16(len, ioaddr + Wn7_MasterLen);
2177 vp->tx_skb = skb;
2178 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2179 /* netif_wake_queue() will be called at the DMADone interrupt. */
2180 } else {
2181 /* ... and the packet rounded to a doubleword. */
2182 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2183 dev_kfree_skb (skb);
2184 if (ioread16(ioaddr + TxFree) > 1536) {
2185 netif_start_queue (dev); /* AKPM: redundant? */
2186 } else {
2187 /* Interrupt us when the FIFO has room for max-sized packet. */
2188 netif_stop_queue(dev);
2189 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2193 dev->trans_start = jiffies;
2195 /* Clear the Tx status stack. */
2197 int tx_status;
2198 int i = 32;
2200 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2201 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2202 if (vortex_debug > 2)
2203 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2204 dev->name, tx_status);
2205 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2206 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2207 if (tx_status & 0x30) {
2208 issue_and_wait(dev, TxReset);
2210 iowrite16(TxEnable, ioaddr + EL3_CMD);
2212 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2215 return 0;
2218 static int
2219 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2221 struct vortex_private *vp = netdev_priv(dev);
2222 void __iomem *ioaddr = vp->ioaddr;
2223 /* Calculate the next Tx descriptor entry. */
2224 int entry = vp->cur_tx % TX_RING_SIZE;
2225 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2226 unsigned long flags;
2228 if (vortex_debug > 6) {
2229 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2230 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2231 dev->name, vp->cur_tx);
2234 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2235 if (vortex_debug > 0)
2236 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2237 dev->name);
2238 netif_stop_queue(dev);
2239 return 1;
2242 vp->tx_skbuff[entry] = skb;
2244 vp->tx_ring[entry].next = 0;
2245 #if DO_ZEROCOPY
2246 if (skb->ip_summed != CHECKSUM_HW)
2247 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2248 else
2249 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2251 if (!skb_shinfo(skb)->nr_frags) {
2252 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2253 skb->len, PCI_DMA_TODEVICE));
2254 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2255 } else {
2256 int i;
2258 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2259 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2260 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2262 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2263 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2265 vp->tx_ring[entry].frag[i+1].addr =
2266 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2267 (void*)page_address(frag->page) + frag->page_offset,
2268 frag->size, PCI_DMA_TODEVICE));
2270 if (i == skb_shinfo(skb)->nr_frags-1)
2271 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2272 else
2273 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2276 #else
2277 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2278 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2279 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2280 #endif
2282 spin_lock_irqsave(&vp->lock, flags);
2283 /* Wait for the stall to complete. */
2284 issue_and_wait(dev, DownStall);
2285 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2286 if (ioread32(ioaddr + DownListPtr) == 0) {
2287 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2288 vp->queued_packet++;
2291 vp->cur_tx++;
2292 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2293 netif_stop_queue (dev);
2294 } else { /* Clear previous interrupt enable. */
2295 #if defined(tx_interrupt_mitigation)
2296 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2297 * were selected, this would corrupt DN_COMPLETE. No?
2299 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2300 #endif
2302 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2303 spin_unlock_irqrestore(&vp->lock, flags);
2304 dev->trans_start = jiffies;
2305 return 0;
2308 /* The interrupt handler does all of the Rx thread work and cleans up
2309 after the Tx thread. */
2312 * This is the ISR for the vortex series chips.
2313 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2316 static irqreturn_t
2317 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2319 struct net_device *dev = dev_id;
2320 struct vortex_private *vp = netdev_priv(dev);
2321 void __iomem *ioaddr;
2322 int status;
2323 int work_done = max_interrupt_work;
2324 int handled = 0;
2326 ioaddr = vp->ioaddr;
2327 spin_lock(&vp->lock);
2329 status = ioread16(ioaddr + EL3_STATUS);
2331 if (vortex_debug > 6)
2332 printk("vortex_interrupt(). status=0x%4x\n", status);
2334 if ((status & IntLatch) == 0)
2335 goto handler_exit; /* No interrupt: shared IRQs cause this */
2336 handled = 1;
2338 if (status & IntReq) {
2339 status |= vp->deferred;
2340 vp->deferred = 0;
2343 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2344 goto handler_exit;
2346 if (vortex_debug > 4)
2347 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2348 dev->name, status, ioread8(ioaddr + Timer));
2350 do {
2351 if (vortex_debug > 5)
2352 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2353 dev->name, status);
2354 if (status & RxComplete)
2355 vortex_rx(dev);
2357 if (status & TxAvailable) {
2358 if (vortex_debug > 5)
2359 printk(KERN_DEBUG " TX room bit was handled.\n");
2360 /* There's room in the FIFO for a full-sized packet. */
2361 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2362 netif_wake_queue (dev);
2365 if (status & DMADone) {
2366 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2367 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2368 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2369 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2370 if (ioread16(ioaddr + TxFree) > 1536) {
2372 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2373 * insufficient FIFO room, the TxAvailable test will succeed and call
2374 * netif_wake_queue()
2376 netif_wake_queue(dev);
2377 } else { /* Interrupt when FIFO has room for max-sized packet. */
2378 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2379 netif_stop_queue(dev);
2383 /* Check for all uncommon interrupts at once. */
2384 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2385 if (status == 0xffff)
2386 break;
2387 vortex_error(dev, status);
2390 if (--work_done < 0) {
2391 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2392 "%4.4x.\n", dev->name, status);
2393 /* Disable all pending interrupts. */
2394 do {
2395 vp->deferred |= status;
2396 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2397 ioaddr + EL3_CMD);
2398 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2399 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2400 /* The timer will reenable interrupts. */
2401 mod_timer(&vp->timer, jiffies + 1*HZ);
2402 break;
2404 /* Acknowledge the IRQ. */
2405 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2406 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2408 if (vortex_debug > 4)
2409 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2410 dev->name, status);
2411 handler_exit:
2412 spin_unlock(&vp->lock);
2413 return IRQ_RETVAL(handled);
2417 * This is the ISR for the boomerang series chips.
2418 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2421 static irqreturn_t
2422 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2424 struct net_device *dev = dev_id;
2425 struct vortex_private *vp = netdev_priv(dev);
2426 void __iomem *ioaddr;
2427 int status;
2428 int work_done = max_interrupt_work;
2430 ioaddr = vp->ioaddr;
2433 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2434 * and boomerang_start_xmit
2436 spin_lock(&vp->lock);
2438 status = ioread16(ioaddr + EL3_STATUS);
2440 if (vortex_debug > 6)
2441 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2443 if ((status & IntLatch) == 0)
2444 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2446 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2447 if (vortex_debug > 1)
2448 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2449 goto handler_exit;
2452 if (status & IntReq) {
2453 status |= vp->deferred;
2454 vp->deferred = 0;
2457 if (vortex_debug > 4)
2458 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2459 dev->name, status, ioread8(ioaddr + Timer));
2460 do {
2461 if (vortex_debug > 5)
2462 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2463 dev->name, status);
2464 if (status & UpComplete) {
2465 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2466 if (vortex_debug > 5)
2467 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2468 boomerang_rx(dev);
2471 if (status & DownComplete) {
2472 unsigned int dirty_tx = vp->dirty_tx;
2474 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2475 while (vp->cur_tx - dirty_tx > 0) {
2476 int entry = dirty_tx % TX_RING_SIZE;
2477 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2478 if (ioread32(ioaddr + DownListPtr) ==
2479 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2480 break; /* It still hasn't been processed. */
2481 #else
2482 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2483 break; /* It still hasn't been processed. */
2484 #endif
2486 if (vp->tx_skbuff[entry]) {
2487 struct sk_buff *skb = vp->tx_skbuff[entry];
2488 #if DO_ZEROCOPY
2489 int i;
2490 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2491 pci_unmap_single(VORTEX_PCI(vp),
2492 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2493 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2494 PCI_DMA_TODEVICE);
2495 #else
2496 pci_unmap_single(VORTEX_PCI(vp),
2497 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2498 #endif
2499 dev_kfree_skb_irq(skb);
2500 vp->tx_skbuff[entry] = NULL;
2501 } else {
2502 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2504 /* vp->stats.tx_packets++; Counted below. */
2505 dirty_tx++;
2507 vp->dirty_tx = dirty_tx;
2508 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2509 if (vortex_debug > 6)
2510 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2511 netif_wake_queue (dev);
2515 /* Check for all uncommon interrupts at once. */
2516 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2517 vortex_error(dev, status);
2519 if (--work_done < 0) {
2520 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2521 "%4.4x.\n", dev->name, status);
2522 /* Disable all pending interrupts. */
2523 do {
2524 vp->deferred |= status;
2525 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2526 ioaddr + EL3_CMD);
2527 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2528 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2529 /* The timer will reenable interrupts. */
2530 mod_timer(&vp->timer, jiffies + 1*HZ);
2531 break;
2533 /* Acknowledge the IRQ. */
2534 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2535 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2536 iowrite32(0x8000, vp->cb_fn_base + 4);
2538 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2540 if (vortex_debug > 4)
2541 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2542 dev->name, status);
2543 handler_exit:
2544 spin_unlock(&vp->lock);
2545 return IRQ_HANDLED;
2548 static int vortex_rx(struct net_device *dev)
2550 struct vortex_private *vp = netdev_priv(dev);
2551 void __iomem *ioaddr = vp->ioaddr;
2552 int i;
2553 short rx_status;
2555 if (vortex_debug > 5)
2556 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2557 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2558 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2559 if (rx_status & 0x4000) { /* Error, update stats. */
2560 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2561 if (vortex_debug > 2)
2562 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2563 vp->stats.rx_errors++;
2564 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2565 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2566 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2567 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2568 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2569 } else {
2570 /* The packet length: up to 4.5K!. */
2571 int pkt_len = rx_status & 0x1fff;
2572 struct sk_buff *skb;
2574 skb = dev_alloc_skb(pkt_len + 5);
2575 if (vortex_debug > 4)
2576 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2577 pkt_len, rx_status);
2578 if (skb != NULL) {
2579 skb->dev = dev;
2580 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2581 /* 'skb_put()' points to the start of sk_buff data area. */
2582 if (vp->bus_master &&
2583 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2584 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2585 pkt_len, PCI_DMA_FROMDEVICE);
2586 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2587 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2588 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2589 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2591 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2592 } else {
2593 ioread32_rep(ioaddr + RX_FIFO,
2594 skb_put(skb, pkt_len),
2595 (pkt_len + 3) >> 2);
2597 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2598 skb->protocol = eth_type_trans(skb, dev);
2599 netif_rx(skb);
2600 dev->last_rx = jiffies;
2601 vp->stats.rx_packets++;
2602 /* Wait a limited time to go to next packet. */
2603 for (i = 200; i >= 0; i--)
2604 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2605 break;
2606 continue;
2607 } else if (vortex_debug > 0)
2608 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2609 "size %d.\n", dev->name, pkt_len);
2610 vp->stats.rx_dropped++;
2612 issue_and_wait(dev, RxDiscard);
2615 return 0;
2618 static int
2619 boomerang_rx(struct net_device *dev)
2621 struct vortex_private *vp = netdev_priv(dev);
2622 int entry = vp->cur_rx % RX_RING_SIZE;
2623 void __iomem *ioaddr = vp->ioaddr;
2624 int rx_status;
2625 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2627 if (vortex_debug > 5)
2628 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2630 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2631 if (--rx_work_limit < 0)
2632 break;
2633 if (rx_status & RxDError) { /* Error, update stats. */
2634 unsigned char rx_error = rx_status >> 16;
2635 if (vortex_debug > 2)
2636 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2637 vp->stats.rx_errors++;
2638 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2639 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2640 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2641 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2642 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2643 } else {
2644 /* The packet length: up to 4.5K!. */
2645 int pkt_len = rx_status & 0x1fff;
2646 struct sk_buff *skb;
2647 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2649 if (vortex_debug > 4)
2650 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2651 pkt_len, rx_status);
2653 /* Check if the packet is long enough to just accept without
2654 copying to a properly sized skbuff. */
2655 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2656 skb->dev = dev;
2657 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2658 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2659 /* 'skb_put()' points to the start of sk_buff data area. */
2660 memcpy(skb_put(skb, pkt_len),
2661 vp->rx_skbuff[entry]->data,
2662 pkt_len);
2663 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2664 vp->rx_copy++;
2665 } else {
2666 /* Pass up the skbuff already on the Rx ring. */
2667 skb = vp->rx_skbuff[entry];
2668 vp->rx_skbuff[entry] = NULL;
2669 skb_put(skb, pkt_len);
2670 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2671 vp->rx_nocopy++;
2673 skb->protocol = eth_type_trans(skb, dev);
2674 { /* Use hardware checksum info. */
2675 int csum_bits = rx_status & 0xee000000;
2676 if (csum_bits &&
2677 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2678 csum_bits == (IPChksumValid | UDPChksumValid))) {
2679 skb->ip_summed = CHECKSUM_UNNECESSARY;
2680 vp->rx_csumhits++;
2683 netif_rx(skb);
2684 dev->last_rx = jiffies;
2685 vp->stats.rx_packets++;
2687 entry = (++vp->cur_rx) % RX_RING_SIZE;
2689 /* Refill the Rx ring buffers. */
2690 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2691 struct sk_buff *skb;
2692 entry = vp->dirty_rx % RX_RING_SIZE;
2693 if (vp->rx_skbuff[entry] == NULL) {
2694 skb = dev_alloc_skb(PKT_BUF_SZ);
2695 if (skb == NULL) {
2696 static unsigned long last_jif;
2697 if (time_after(jiffies, last_jif + 10 * HZ)) {
2698 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2699 last_jif = jiffies;
2701 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2702 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2703 break; /* Bad news! */
2705 skb->dev = dev; /* Mark as being used by this device. */
2706 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2707 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2708 vp->rx_skbuff[entry] = skb;
2710 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2711 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2713 return 0;
2717 * If we've hit a total OOM refilling the Rx ring we poll once a second
2718 * for some memory. Otherwise there is no way to restart the rx process.
2720 static void
2721 rx_oom_timer(unsigned long arg)
2723 struct net_device *dev = (struct net_device *)arg;
2724 struct vortex_private *vp = netdev_priv(dev);
2726 spin_lock_irq(&vp->lock);
2727 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2728 boomerang_rx(dev);
2729 if (vortex_debug > 1) {
2730 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2731 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2733 spin_unlock_irq(&vp->lock);
2736 static void
2737 vortex_down(struct net_device *dev, int final_down)
2739 struct vortex_private *vp = netdev_priv(dev);
2740 void __iomem *ioaddr = vp->ioaddr;
2742 netif_stop_queue (dev);
2744 del_timer_sync(&vp->rx_oom_timer);
2745 del_timer_sync(&vp->timer);
2747 /* Turn off statistics ASAP. We update vp->stats below. */
2748 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2750 /* Disable the receiver and transmitter. */
2751 iowrite16(RxDisable, ioaddr + EL3_CMD);
2752 iowrite16(TxDisable, ioaddr + EL3_CMD);
2754 /* Disable receiving 802.1q tagged frames */
2755 set_8021q_mode(dev, 0);
2757 if (dev->if_port == XCVR_10base2)
2758 /* Turn off thinnet power. Green! */
2759 iowrite16(StopCoax, ioaddr + EL3_CMD);
2761 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2763 update_stats(ioaddr, dev);
2764 if (vp->full_bus_master_rx)
2765 iowrite32(0, ioaddr + UpListPtr);
2766 if (vp->full_bus_master_tx)
2767 iowrite32(0, ioaddr + DownListPtr);
2769 if (final_down && VORTEX_PCI(vp)) {
2770 vp->pm_state_valid = 1;
2771 pci_save_state(VORTEX_PCI(vp));
2772 acpi_set_WOL(dev);
2776 static int
2777 vortex_close(struct net_device *dev)
2779 struct vortex_private *vp = netdev_priv(dev);
2780 void __iomem *ioaddr = vp->ioaddr;
2781 int i;
2783 if (netif_device_present(dev))
2784 vortex_down(dev, 1);
2786 if (vortex_debug > 1) {
2787 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2788 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2789 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2790 " tx_queued %d Rx pre-checksummed %d.\n",
2791 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2794 #if DO_ZEROCOPY
2795 if (vp->rx_csumhits &&
2796 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2797 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2798 printk(KERN_WARNING "%s supports hardware checksums, and we're "
2799 "not using them!\n", dev->name);
2801 #endif
2803 free_irq(dev->irq, dev);
2805 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2806 for (i = 0; i < RX_RING_SIZE; i++)
2807 if (vp->rx_skbuff[i]) {
2808 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2809 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2810 dev_kfree_skb(vp->rx_skbuff[i]);
2811 vp->rx_skbuff[i] = NULL;
2814 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2815 for (i = 0; i < TX_RING_SIZE; i++) {
2816 if (vp->tx_skbuff[i]) {
2817 struct sk_buff *skb = vp->tx_skbuff[i];
2818 #if DO_ZEROCOPY
2819 int k;
2821 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2822 pci_unmap_single(VORTEX_PCI(vp),
2823 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2824 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2825 PCI_DMA_TODEVICE);
2826 #else
2827 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2828 #endif
2829 dev_kfree_skb(skb);
2830 vp->tx_skbuff[i] = NULL;
2835 return 0;
2838 static void
2839 dump_tx_ring(struct net_device *dev)
2841 if (vortex_debug > 0) {
2842 struct vortex_private *vp = netdev_priv(dev);
2843 void __iomem *ioaddr = vp->ioaddr;
2845 if (vp->full_bus_master_tx) {
2846 int i;
2847 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2849 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2850 vp->full_bus_master_tx,
2851 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2852 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2853 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2854 ioread32(ioaddr + DownListPtr),
2855 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2856 issue_and_wait(dev, DownStall);
2857 for (i = 0; i < TX_RING_SIZE; i++) {
2858 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2859 &vp->tx_ring[i],
2860 #if DO_ZEROCOPY
2861 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2862 #else
2863 le32_to_cpu(vp->tx_ring[i].length),
2864 #endif
2865 le32_to_cpu(vp->tx_ring[i].status));
2867 if (!stalled)
2868 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2873 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2875 struct vortex_private *vp = netdev_priv(dev);
2876 void __iomem *ioaddr = vp->ioaddr;
2877 unsigned long flags;
2879 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2880 spin_lock_irqsave (&vp->lock, flags);
2881 update_stats(ioaddr, dev);
2882 spin_unlock_irqrestore (&vp->lock, flags);
2884 return &vp->stats;
2887 /* Update statistics.
2888 Unlike with the EL3 we need not worry about interrupts changing
2889 the window setting from underneath us, but we must still guard
2890 against a race condition with a StatsUpdate interrupt updating the
2891 table. This is done by checking that the ASM (!) code generated uses
2892 atomic updates with '+='.
2894 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2896 struct vortex_private *vp = netdev_priv(dev);
2897 int old_window = ioread16(ioaddr + EL3_CMD);
2899 if (old_window == 0xffff) /* Chip suspended or ejected. */
2900 return;
2901 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2902 /* Switch to the stats window, and read everything. */
2903 EL3WINDOW(6);
2904 vp->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2905 vp->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2906 vp->stats.tx_window_errors += ioread8(ioaddr + 4);
2907 vp->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2908 vp->stats.tx_packets += ioread8(ioaddr + 6);
2909 vp->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2910 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2911 /* Don't bother with register 9, an extension of registers 6&7.
2912 If we do use the 6&7 values the atomic update assumption above
2913 is invalid. */
2914 vp->stats.rx_bytes += ioread16(ioaddr + 10);
2915 vp->stats.tx_bytes += ioread16(ioaddr + 12);
2916 /* Extra stats for get_ethtool_stats() */
2917 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2918 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2919 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2920 EL3WINDOW(4);
2921 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2923 vp->stats.collisions = vp->xstats.tx_multiple_collisions
2924 + vp->xstats.tx_single_collisions
2925 + vp->xstats.tx_max_collisions;
2928 u8 up = ioread8(ioaddr + 13);
2929 vp->stats.rx_bytes += (up & 0x0f) << 16;
2930 vp->stats.tx_bytes += (up & 0xf0) << 12;
2933 EL3WINDOW(old_window >> 13);
2934 return;
2937 static int vortex_nway_reset(struct net_device *dev)
2939 struct vortex_private *vp = netdev_priv(dev);
2940 void __iomem *ioaddr = vp->ioaddr;
2941 unsigned long flags;
2942 int rc;
2944 spin_lock_irqsave(&vp->lock, flags);
2945 EL3WINDOW(4);
2946 rc = mii_nway_restart(&vp->mii);
2947 spin_unlock_irqrestore(&vp->lock, flags);
2948 return rc;
2951 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2953 struct vortex_private *vp = netdev_priv(dev);
2954 void __iomem *ioaddr = vp->ioaddr;
2955 unsigned long flags;
2956 int rc;
2958 spin_lock_irqsave(&vp->lock, flags);
2959 EL3WINDOW(4);
2960 rc = mii_ethtool_gset(&vp->mii, cmd);
2961 spin_unlock_irqrestore(&vp->lock, flags);
2962 return rc;
2965 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2967 struct vortex_private *vp = netdev_priv(dev);
2968 void __iomem *ioaddr = vp->ioaddr;
2969 unsigned long flags;
2970 int rc;
2972 spin_lock_irqsave(&vp->lock, flags);
2973 EL3WINDOW(4);
2974 rc = mii_ethtool_sset(&vp->mii, cmd);
2975 spin_unlock_irqrestore(&vp->lock, flags);
2976 return rc;
2979 static u32 vortex_get_msglevel(struct net_device *dev)
2981 return vortex_debug;
2984 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2986 vortex_debug = dbg;
2989 static int vortex_get_stats_count(struct net_device *dev)
2991 return VORTEX_NUM_STATS;
2994 static void vortex_get_ethtool_stats(struct net_device *dev,
2995 struct ethtool_stats *stats, u64 *data)
2997 struct vortex_private *vp = netdev_priv(dev);
2998 void __iomem *ioaddr = vp->ioaddr;
2999 unsigned long flags;
3001 spin_lock_irqsave(&vp->lock, flags);
3002 update_stats(ioaddr, dev);
3003 spin_unlock_irqrestore(&vp->lock, flags);
3005 data[0] = vp->xstats.tx_deferred;
3006 data[1] = vp->xstats.tx_max_collisions;
3007 data[2] = vp->xstats.tx_multiple_collisions;
3008 data[3] = vp->xstats.tx_single_collisions;
3009 data[4] = vp->xstats.rx_bad_ssd;
3013 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3015 switch (stringset) {
3016 case ETH_SS_STATS:
3017 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3018 break;
3019 default:
3020 WARN_ON(1);
3021 break;
3025 static void vortex_get_drvinfo(struct net_device *dev,
3026 struct ethtool_drvinfo *info)
3028 struct vortex_private *vp = netdev_priv(dev);
3030 strcpy(info->driver, DRV_NAME);
3031 if (VORTEX_PCI(vp)) {
3032 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3033 } else {
3034 if (VORTEX_EISA(vp))
3035 sprintf(info->bus_info, vp->gendev->bus_id);
3036 else
3037 sprintf(info->bus_info, "EISA 0x%lx %d",
3038 dev->base_addr, dev->irq);
3042 static struct ethtool_ops vortex_ethtool_ops = {
3043 .get_drvinfo = vortex_get_drvinfo,
3044 .get_strings = vortex_get_strings,
3045 .get_msglevel = vortex_get_msglevel,
3046 .set_msglevel = vortex_set_msglevel,
3047 .get_ethtool_stats = vortex_get_ethtool_stats,
3048 .get_stats_count = vortex_get_stats_count,
3049 .get_settings = vortex_get_settings,
3050 .set_settings = vortex_set_settings,
3051 .get_link = ethtool_op_get_link,
3052 .nway_reset = vortex_nway_reset,
3053 .get_perm_addr = ethtool_op_get_perm_addr,
3056 #ifdef CONFIG_PCI
3058 * Must power the device up to do MDIO operations
3060 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3062 int err;
3063 struct vortex_private *vp = netdev_priv(dev);
3064 void __iomem *ioaddr = vp->ioaddr;
3065 unsigned long flags;
3066 int state = 0;
3068 if(VORTEX_PCI(vp))
3069 state = VORTEX_PCI(vp)->current_state;
3071 /* The kernel core really should have pci_get_power_state() */
3073 if(state != 0)
3074 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3075 spin_lock_irqsave(&vp->lock, flags);
3076 EL3WINDOW(4);
3077 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3078 spin_unlock_irqrestore(&vp->lock, flags);
3079 if(state != 0)
3080 pci_set_power_state(VORTEX_PCI(vp), state);
3082 return err;
3084 #endif
3087 /* Pre-Cyclone chips have no documented multicast filter, so the only
3088 multicast setting is to receive all multicast frames. At least
3089 the chip has a very clean way to set the mode, unlike many others. */
3090 static void set_rx_mode(struct net_device *dev)
3092 struct vortex_private *vp = netdev_priv(dev);
3093 void __iomem *ioaddr = vp->ioaddr;
3094 int new_mode;
3096 if (dev->flags & IFF_PROMISC) {
3097 if (vortex_debug > 0)
3098 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3099 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3100 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3101 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3102 } else
3103 new_mode = SetRxFilter | RxStation | RxBroadcast;
3105 iowrite16(new_mode, ioaddr + EL3_CMD);
3108 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3109 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3110 Note that this must be done after each RxReset due to some backwards
3111 compatibility logic in the Cyclone and Tornado ASICs */
3113 /* The Ethernet Type used for 802.1q tagged frames */
3114 #define VLAN_ETHER_TYPE 0x8100
3116 static void set_8021q_mode(struct net_device *dev, int enable)
3118 struct vortex_private *vp = netdev_priv(dev);
3119 void __iomem *ioaddr = vp->ioaddr;
3120 int old_window = ioread16(ioaddr + EL3_CMD);
3121 int mac_ctrl;
3123 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3124 /* cyclone and tornado chipsets can recognize 802.1q
3125 * tagged frames and treat them correctly */
3127 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3128 if (enable)
3129 max_pkt_size += 4; /* 802.1Q VLAN tag */
3131 EL3WINDOW(3);
3132 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3134 /* set VlanEtherType to let the hardware checksumming
3135 treat tagged frames correctly */
3136 EL3WINDOW(7);
3137 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3138 } else {
3139 /* on older cards we have to enable large frames */
3141 vp->large_frames = dev->mtu > 1500 || enable;
3143 EL3WINDOW(3);
3144 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3145 if (vp->large_frames)
3146 mac_ctrl |= 0x40;
3147 else
3148 mac_ctrl &= ~0x40;
3149 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3152 EL3WINDOW(old_window);
3154 #else
3156 static void set_8021q_mode(struct net_device *dev, int enable)
3161 #endif
3163 /* MII transceiver control section.
3164 Read and write the MII registers using software-generated serial
3165 MDIO protocol. See the MII specifications or DP83840A data sheet
3166 for details. */
3168 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3169 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3170 "overclocking" issues. */
3171 #define mdio_delay() ioread32(mdio_addr)
3173 #define MDIO_SHIFT_CLK 0x01
3174 #define MDIO_DIR_WRITE 0x04
3175 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3176 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3177 #define MDIO_DATA_READ 0x02
3178 #define MDIO_ENB_IN 0x00
3180 /* Generate the preamble required for initial synchronization and
3181 a few older transceivers. */
3182 static void mdio_sync(void __iomem *ioaddr, int bits)
3184 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3186 /* Establish sync by sending at least 32 logic ones. */
3187 while (-- bits >= 0) {
3188 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3189 mdio_delay();
3190 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3191 mdio_delay();
3195 static int mdio_read(struct net_device *dev, int phy_id, int location)
3197 int i;
3198 struct vortex_private *vp = netdev_priv(dev);
3199 void __iomem *ioaddr = vp->ioaddr;
3200 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3201 unsigned int retval = 0;
3202 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3204 if (mii_preamble_required)
3205 mdio_sync(ioaddr, 32);
3207 /* Shift the read command bits out. */
3208 for (i = 14; i >= 0; i--) {
3209 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3210 iowrite16(dataval, mdio_addr);
3211 mdio_delay();
3212 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3213 mdio_delay();
3215 /* Read the two transition, 16 data, and wire-idle bits. */
3216 for (i = 19; i > 0; i--) {
3217 iowrite16(MDIO_ENB_IN, mdio_addr);
3218 mdio_delay();
3219 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3220 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3221 mdio_delay();
3223 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3226 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3228 struct vortex_private *vp = netdev_priv(dev);
3229 void __iomem *ioaddr = vp->ioaddr;
3230 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3231 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3232 int i;
3234 if (mii_preamble_required)
3235 mdio_sync(ioaddr, 32);
3237 /* Shift the command bits out. */
3238 for (i = 31; i >= 0; i--) {
3239 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3240 iowrite16(dataval, mdio_addr);
3241 mdio_delay();
3242 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3243 mdio_delay();
3245 /* Leave the interface idle. */
3246 for (i = 1; i >= 0; i--) {
3247 iowrite16(MDIO_ENB_IN, mdio_addr);
3248 mdio_delay();
3249 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3250 mdio_delay();
3252 return;
3255 /* ACPI: Advanced Configuration and Power Interface. */
3256 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3257 static void acpi_set_WOL(struct net_device *dev)
3259 struct vortex_private *vp = netdev_priv(dev);
3260 void __iomem *ioaddr = vp->ioaddr;
3262 if (vp->enable_wol) {
3263 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3264 EL3WINDOW(7);
3265 iowrite16(2, ioaddr + 0x0c);
3266 /* The RxFilter must accept the WOL frames. */
3267 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3268 iowrite16(RxEnable, ioaddr + EL3_CMD);
3270 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3272 /* Change the power state to D3; RxEnable doesn't take effect. */
3273 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3278 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3280 struct net_device *dev = pci_get_drvdata(pdev);
3281 struct vortex_private *vp;
3283 if (!dev) {
3284 printk("vortex_remove_one called for Compaq device!\n");
3285 BUG();
3288 vp = netdev_priv(dev);
3290 if (vp->cb_fn_base)
3291 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3293 unregister_netdev(dev);
3295 if (VORTEX_PCI(vp)) {
3296 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3297 if (vp->pm_state_valid)
3298 pci_restore_state(VORTEX_PCI(vp));
3299 pci_disable_device(VORTEX_PCI(vp));
3301 /* Should really use issue_and_wait() here */
3302 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3303 vp->ioaddr + EL3_CMD);
3305 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3307 pci_free_consistent(pdev,
3308 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3309 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3310 vp->rx_ring,
3311 vp->rx_ring_dma);
3312 if (vp->must_free_region)
3313 release_region(dev->base_addr, vp->io_size);
3314 free_netdev(dev);
3318 static struct pci_driver vortex_driver = {
3319 .name = "3c59x",
3320 .probe = vortex_init_one,
3321 .remove = __devexit_p(vortex_remove_one),
3322 .id_table = vortex_pci_tbl,
3323 #ifdef CONFIG_PM
3324 .suspend = vortex_suspend,
3325 .resume = vortex_resume,
3326 #endif
3330 static int vortex_have_pci;
3331 static int vortex_have_eisa;
3334 static int __init vortex_init(void)
3336 int pci_rc, eisa_rc;
3338 pci_rc = pci_module_init(&vortex_driver);
3339 eisa_rc = vortex_eisa_init();
3341 if (pci_rc == 0)
3342 vortex_have_pci = 1;
3343 if (eisa_rc > 0)
3344 vortex_have_eisa = 1;
3346 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3350 static void __exit vortex_eisa_cleanup(void)
3352 struct vortex_private *vp;
3353 void __iomem *ioaddr;
3355 #ifdef CONFIG_EISA
3356 /* Take care of the EISA devices */
3357 eisa_driver_unregister(&vortex_eisa_driver);
3358 #endif
3360 if (compaq_net_device) {
3361 vp = compaq_net_device->priv;
3362 ioaddr = ioport_map(compaq_net_device->base_addr,
3363 VORTEX_TOTAL_SIZE);
3365 unregister_netdev(compaq_net_device);
3366 iowrite16(TotalReset, ioaddr + EL3_CMD);
3367 release_region(compaq_net_device->base_addr,
3368 VORTEX_TOTAL_SIZE);
3370 free_netdev(compaq_net_device);
3375 static void __exit vortex_cleanup(void)
3377 if (vortex_have_pci)
3378 pci_unregister_driver(&vortex_driver);
3379 if (vortex_have_eisa)
3380 vortex_eisa_cleanup();
3384 module_init(vortex_init);
3385 module_exit(vortex_cleanup);