MCA when shutting down tulip quad-NIC
[linux-2.6.22.y-op.git] / drivers / char / tty_io.c
bloba96f26a63fa2e6e54b98ed898dcda2488ac64d25
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 static void initialize_tty_struct(struct tty_struct *tty);
146 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
147 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
148 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
149 static unsigned int tty_poll(struct file *, poll_table *);
150 static int tty_open(struct inode *, struct file *);
151 static int tty_release(struct inode *, struct file *);
152 int tty_ioctl(struct inode * inode, struct file * file,
153 unsigned int cmd, unsigned long arg);
154 #ifdef CONFIG_COMPAT
155 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
156 unsigned long arg);
157 #else
158 #define tty_compat_ioctl NULL
159 #endif
160 static int tty_fasync(int fd, struct file * filp, int on);
161 static void release_tty(struct tty_struct *tty, int idx);
162 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
163 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
166 * alloc_tty_struct - allocate a tty object
168 * Return a new empty tty structure. The data fields have not
169 * been initialized in any way but has been zeroed
171 * Locking: none
174 static struct tty_struct *alloc_tty_struct(void)
176 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
179 static void tty_buffer_free_all(struct tty_struct *);
182 * free_tty_struct - free a disused tty
183 * @tty: tty struct to free
185 * Free the write buffers, tty queue and tty memory itself.
187 * Locking: none. Must be called after tty is definitely unused
190 static inline void free_tty_struct(struct tty_struct *tty)
192 kfree(tty->write_buf);
193 tty_buffer_free_all(tty);
194 kfree(tty);
197 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
200 * tty_name - return tty naming
201 * @tty: tty structure
202 * @buf: buffer for output
204 * Convert a tty structure into a name. The name reflects the kernel
205 * naming policy and if udev is in use may not reflect user space
207 * Locking: none
210 char *tty_name(struct tty_struct *tty, char *buf)
212 if (!tty) /* Hmm. NULL pointer. That's fun. */
213 strcpy(buf, "NULL tty");
214 else
215 strcpy(buf, tty->name);
216 return buf;
219 EXPORT_SYMBOL(tty_name);
221 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
222 const char *routine)
224 #ifdef TTY_PARANOIA_CHECK
225 if (!tty) {
226 printk(KERN_WARNING
227 "null TTY for (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 if (tty->magic != TTY_MAGIC) {
232 printk(KERN_WARNING
233 "bad magic number for tty struct (%d:%d) in %s\n",
234 imajor(inode), iminor(inode), routine);
235 return 1;
237 #endif
238 return 0;
241 static int check_tty_count(struct tty_struct *tty, const char *routine)
243 #ifdef CHECK_TTY_COUNT
244 struct list_head *p;
245 int count = 0;
247 file_list_lock();
248 list_for_each(p, &tty->tty_files) {
249 count++;
251 file_list_unlock();
252 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
253 tty->driver->subtype == PTY_TYPE_SLAVE &&
254 tty->link && tty->link->count)
255 count++;
256 if (tty->count != count) {
257 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
258 "!= #fd's(%d) in %s\n",
259 tty->name, tty->count, count, routine);
260 return count;
262 #endif
263 return 0;
267 * Tty buffer allocation management
271 * tty_buffer_free_all - free buffers used by a tty
272 * @tty: tty to free from
274 * Remove all the buffers pending on a tty whether queued with data
275 * or in the free ring. Must be called when the tty is no longer in use
277 * Locking: none
280 static void tty_buffer_free_all(struct tty_struct *tty)
282 struct tty_buffer *thead;
283 while((thead = tty->buf.head) != NULL) {
284 tty->buf.head = thead->next;
285 kfree(thead);
287 while((thead = tty->buf.free) != NULL) {
288 tty->buf.free = thead->next;
289 kfree(thead);
291 tty->buf.tail = NULL;
292 tty->buf.memory_used = 0;
296 * tty_buffer_init - prepare a tty buffer structure
297 * @tty: tty to initialise
299 * Set up the initial state of the buffer management for a tty device.
300 * Must be called before the other tty buffer functions are used.
302 * Locking: none
305 static void tty_buffer_init(struct tty_struct *tty)
307 spin_lock_init(&tty->buf.lock);
308 tty->buf.head = NULL;
309 tty->buf.tail = NULL;
310 tty->buf.free = NULL;
311 tty->buf.memory_used = 0;
315 * tty_buffer_alloc - allocate a tty buffer
316 * @tty: tty device
317 * @size: desired size (characters)
319 * Allocate a new tty buffer to hold the desired number of characters.
320 * Return NULL if out of memory or the allocation would exceed the
321 * per device queue
323 * Locking: Caller must hold tty->buf.lock
326 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
328 struct tty_buffer *p;
330 if (tty->buf.memory_used + size > 65536)
331 return NULL;
332 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
333 if(p == NULL)
334 return NULL;
335 p->used = 0;
336 p->size = size;
337 p->next = NULL;
338 p->commit = 0;
339 p->read = 0;
340 p->char_buf_ptr = (char *)(p->data);
341 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
342 tty->buf.memory_used += size;
343 return p;
347 * tty_buffer_free - free a tty buffer
348 * @tty: tty owning the buffer
349 * @b: the buffer to free
351 * Free a tty buffer, or add it to the free list according to our
352 * internal strategy
354 * Locking: Caller must hold tty->buf.lock
357 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
359 /* Dumb strategy for now - should keep some stats */
360 tty->buf.memory_used -= b->size;
361 WARN_ON(tty->buf.memory_used < 0);
363 if(b->size >= 512)
364 kfree(b);
365 else {
366 b->next = tty->buf.free;
367 tty->buf.free = b;
372 * tty_buffer_flush - flush full tty buffers
373 * @tty: tty to flush
375 * flush all the buffers containing receive data
377 * Locking: none
380 static void tty_buffer_flush(struct tty_struct *tty)
382 struct tty_buffer *thead;
383 unsigned long flags;
385 spin_lock_irqsave(&tty->buf.lock, flags);
386 while((thead = tty->buf.head) != NULL) {
387 tty->buf.head = thead->next;
388 tty_buffer_free(tty, thead);
390 tty->buf.tail = NULL;
391 spin_unlock_irqrestore(&tty->buf.lock, flags);
395 * tty_buffer_find - find a free tty buffer
396 * @tty: tty owning the buffer
397 * @size: characters wanted
399 * Locate an existing suitable tty buffer or if we are lacking one then
400 * allocate a new one. We round our buffers off in 256 character chunks
401 * to get better allocation behaviour.
403 * Locking: Caller must hold tty->buf.lock
406 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
408 struct tty_buffer **tbh = &tty->buf.free;
409 while((*tbh) != NULL) {
410 struct tty_buffer *t = *tbh;
411 if(t->size >= size) {
412 *tbh = t->next;
413 t->next = NULL;
414 t->used = 0;
415 t->commit = 0;
416 t->read = 0;
417 tty->buf.memory_used += t->size;
418 return t;
420 tbh = &((*tbh)->next);
422 /* Round the buffer size out */
423 size = (size + 0xFF) & ~ 0xFF;
424 return tty_buffer_alloc(tty, size);
425 /* Should possibly check if this fails for the largest buffer we
426 have queued and recycle that ? */
430 * tty_buffer_request_room - grow tty buffer if needed
431 * @tty: tty structure
432 * @size: size desired
434 * Make at least size bytes of linear space available for the tty
435 * buffer. If we fail return the size we managed to find.
437 * Locking: Takes tty->buf.lock
439 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
441 struct tty_buffer *b, *n;
442 int left;
443 unsigned long flags;
445 spin_lock_irqsave(&tty->buf.lock, flags);
447 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
448 remove this conditional if its worth it. This would be invisible
449 to the callers */
450 if ((b = tty->buf.tail) != NULL)
451 left = b->size - b->used;
452 else
453 left = 0;
455 if (left < size) {
456 /* This is the slow path - looking for new buffers to use */
457 if ((n = tty_buffer_find(tty, size)) != NULL) {
458 if (b != NULL) {
459 b->next = n;
460 b->commit = b->used;
461 } else
462 tty->buf.head = n;
463 tty->buf.tail = n;
464 } else
465 size = left;
468 spin_unlock_irqrestore(&tty->buf.lock, flags);
469 return size;
471 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
474 * tty_insert_flip_string - Add characters to the tty buffer
475 * @tty: tty structure
476 * @chars: characters
477 * @size: size
479 * Queue a series of bytes to the tty buffering. All the characters
480 * passed are marked as without error. Returns the number added.
482 * Locking: Called functions may take tty->buf.lock
485 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
486 size_t size)
488 int copied = 0;
489 do {
490 int space = tty_buffer_request_room(tty, size - copied);
491 struct tty_buffer *tb = tty->buf.tail;
492 /* If there is no space then tb may be NULL */
493 if(unlikely(space == 0))
494 break;
495 memcpy(tb->char_buf_ptr + tb->used, chars, space);
496 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
497 tb->used += space;
498 copied += space;
499 chars += space;
500 /* There is a small chance that we need to split the data over
501 several buffers. If this is the case we must loop */
502 } while (unlikely(size > copied));
503 return copied;
505 EXPORT_SYMBOL(tty_insert_flip_string);
508 * tty_insert_flip_string_flags - Add characters to the tty buffer
509 * @tty: tty structure
510 * @chars: characters
511 * @flags: flag bytes
512 * @size: size
514 * Queue a series of bytes to the tty buffering. For each character
515 * the flags array indicates the status of the character. Returns the
516 * number added.
518 * Locking: Called functions may take tty->buf.lock
521 int tty_insert_flip_string_flags(struct tty_struct *tty,
522 const unsigned char *chars, const char *flags, size_t size)
524 int copied = 0;
525 do {
526 int space = tty_buffer_request_room(tty, size - copied);
527 struct tty_buffer *tb = tty->buf.tail;
528 /* If there is no space then tb may be NULL */
529 if(unlikely(space == 0))
530 break;
531 memcpy(tb->char_buf_ptr + tb->used, chars, space);
532 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
533 tb->used += space;
534 copied += space;
535 chars += space;
536 flags += space;
537 /* There is a small chance that we need to split the data over
538 several buffers. If this is the case we must loop */
539 } while (unlikely(size > copied));
540 return copied;
542 EXPORT_SYMBOL(tty_insert_flip_string_flags);
545 * tty_schedule_flip - push characters to ldisc
546 * @tty: tty to push from
548 * Takes any pending buffers and transfers their ownership to the
549 * ldisc side of the queue. It then schedules those characters for
550 * processing by the line discipline.
552 * Locking: Takes tty->buf.lock
555 void tty_schedule_flip(struct tty_struct *tty)
557 unsigned long flags;
558 spin_lock_irqsave(&tty->buf.lock, flags);
559 if (tty->buf.tail != NULL)
560 tty->buf.tail->commit = tty->buf.tail->used;
561 spin_unlock_irqrestore(&tty->buf.lock, flags);
562 schedule_delayed_work(&tty->buf.work, 1);
564 EXPORT_SYMBOL(tty_schedule_flip);
567 * tty_prepare_flip_string - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @size: desired size
572 * Prepare a block of space in the buffer for data. Returns the length
573 * available and buffer pointer to the space which is now allocated and
574 * accounted for as ready for normal characters. This is used for drivers
575 * that need their own block copy routines into the buffer. There is no
576 * guarantee the buffer is a DMA target!
578 * Locking: May call functions taking tty->buf.lock
581 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
583 int space = tty_buffer_request_room(tty, size);
584 if (likely(space)) {
585 struct tty_buffer *tb = tty->buf.tail;
586 *chars = tb->char_buf_ptr + tb->used;
587 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
588 tb->used += space;
590 return space;
593 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
596 * tty_prepare_flip_string_flags - make room for characters
597 * @tty: tty
598 * @chars: return pointer for character write area
599 * @flags: return pointer for status flag write area
600 * @size: desired size
602 * Prepare a block of space in the buffer for data. Returns the length
603 * available and buffer pointer to the space which is now allocated and
604 * accounted for as ready for characters. This is used for drivers
605 * that need their own block copy routines into the buffer. There is no
606 * guarantee the buffer is a DMA target!
608 * Locking: May call functions taking tty->buf.lock
611 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
613 int space = tty_buffer_request_room(tty, size);
614 if (likely(space)) {
615 struct tty_buffer *tb = tty->buf.tail;
616 *chars = tb->char_buf_ptr + tb->used;
617 *flags = tb->flag_buf_ptr + tb->used;
618 tb->used += space;
620 return space;
623 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
628 * tty_set_termios_ldisc - set ldisc field
629 * @tty: tty structure
630 * @num: line discipline number
632 * This is probably overkill for real world processors but
633 * they are not on hot paths so a little discipline won't do
634 * any harm.
636 * Locking: takes termios_mutex
639 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
641 mutex_lock(&tty->termios_mutex);
642 tty->termios->c_line = num;
643 mutex_unlock(&tty->termios_mutex);
647 * This guards the refcounted line discipline lists. The lock
648 * must be taken with irqs off because there are hangup path
649 * callers who will do ldisc lookups and cannot sleep.
652 static DEFINE_SPINLOCK(tty_ldisc_lock);
653 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
654 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
657 * tty_register_ldisc - install a line discipline
658 * @disc: ldisc number
659 * @new_ldisc: pointer to the ldisc object
661 * Installs a new line discipline into the kernel. The discipline
662 * is set up as unreferenced and then made available to the kernel
663 * from this point onwards.
665 * Locking:
666 * takes tty_ldisc_lock to guard against ldisc races
669 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
671 unsigned long flags;
672 int ret = 0;
674 if (disc < N_TTY || disc >= NR_LDISCS)
675 return -EINVAL;
677 spin_lock_irqsave(&tty_ldisc_lock, flags);
678 tty_ldiscs[disc] = *new_ldisc;
679 tty_ldiscs[disc].num = disc;
680 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
681 tty_ldiscs[disc].refcount = 0;
682 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
684 return ret;
686 EXPORT_SYMBOL(tty_register_ldisc);
689 * tty_unregister_ldisc - unload a line discipline
690 * @disc: ldisc number
691 * @new_ldisc: pointer to the ldisc object
693 * Remove a line discipline from the kernel providing it is not
694 * currently in use.
696 * Locking:
697 * takes tty_ldisc_lock to guard against ldisc races
700 int tty_unregister_ldisc(int disc)
702 unsigned long flags;
703 int ret = 0;
705 if (disc < N_TTY || disc >= NR_LDISCS)
706 return -EINVAL;
708 spin_lock_irqsave(&tty_ldisc_lock, flags);
709 if (tty_ldiscs[disc].refcount)
710 ret = -EBUSY;
711 else
712 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
713 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
715 return ret;
717 EXPORT_SYMBOL(tty_unregister_ldisc);
720 * tty_ldisc_get - take a reference to an ldisc
721 * @disc: ldisc number
723 * Takes a reference to a line discipline. Deals with refcounts and
724 * module locking counts. Returns NULL if the discipline is not available.
725 * Returns a pointer to the discipline and bumps the ref count if it is
726 * available
728 * Locking:
729 * takes tty_ldisc_lock to guard against ldisc races
732 struct tty_ldisc *tty_ldisc_get(int disc)
734 unsigned long flags;
735 struct tty_ldisc *ld;
737 if (disc < N_TTY || disc >= NR_LDISCS)
738 return NULL;
740 spin_lock_irqsave(&tty_ldisc_lock, flags);
742 ld = &tty_ldiscs[disc];
743 /* Check the entry is defined */
744 if(ld->flags & LDISC_FLAG_DEFINED)
746 /* If the module is being unloaded we can't use it */
747 if (!try_module_get(ld->owner))
748 ld = NULL;
749 else /* lock it */
750 ld->refcount++;
752 else
753 ld = NULL;
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
755 return ld;
758 EXPORT_SYMBOL_GPL(tty_ldisc_get);
761 * tty_ldisc_put - drop ldisc reference
762 * @disc: ldisc number
764 * Drop a reference to a line discipline. Manage refcounts and
765 * module usage counts
767 * Locking:
768 * takes tty_ldisc_lock to guard against ldisc races
771 void tty_ldisc_put(int disc)
773 struct tty_ldisc *ld;
774 unsigned long flags;
776 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
778 spin_lock_irqsave(&tty_ldisc_lock, flags);
779 ld = &tty_ldiscs[disc];
780 BUG_ON(ld->refcount == 0);
781 ld->refcount--;
782 module_put(ld->owner);
783 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
786 EXPORT_SYMBOL_GPL(tty_ldisc_put);
789 * tty_ldisc_assign - set ldisc on a tty
790 * @tty: tty to assign
791 * @ld: line discipline
793 * Install an instance of a line discipline into a tty structure. The
794 * ldisc must have a reference count above zero to ensure it remains/
795 * The tty instance refcount starts at zero.
797 * Locking:
798 * Caller must hold references
801 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
803 tty->ldisc = *ld;
804 tty->ldisc.refcount = 0;
808 * tty_ldisc_try - internal helper
809 * @tty: the tty
811 * Make a single attempt to grab and bump the refcount on
812 * the tty ldisc. Return 0 on failure or 1 on success. This is
813 * used to implement both the waiting and non waiting versions
814 * of tty_ldisc_ref
816 * Locking: takes tty_ldisc_lock
819 static int tty_ldisc_try(struct tty_struct *tty)
821 unsigned long flags;
822 struct tty_ldisc *ld;
823 int ret = 0;
825 spin_lock_irqsave(&tty_ldisc_lock, flags);
826 ld = &tty->ldisc;
827 if(test_bit(TTY_LDISC, &tty->flags))
829 ld->refcount++;
830 ret = 1;
832 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
833 return ret;
837 * tty_ldisc_ref_wait - wait for the tty ldisc
838 * @tty: tty device
840 * Dereference the line discipline for the terminal and take a
841 * reference to it. If the line discipline is in flux then
842 * wait patiently until it changes.
844 * Note: Must not be called from an IRQ/timer context. The caller
845 * must also be careful not to hold other locks that will deadlock
846 * against a discipline change, such as an existing ldisc reference
847 * (which we check for)
849 * Locking: call functions take tty_ldisc_lock
852 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
854 /* wait_event is a macro */
855 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
856 if(tty->ldisc.refcount == 0)
857 printk(KERN_ERR "tty_ldisc_ref_wait\n");
858 return &tty->ldisc;
861 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
864 * tty_ldisc_ref - get the tty ldisc
865 * @tty: tty device
867 * Dereference the line discipline for the terminal and take a
868 * reference to it. If the line discipline is in flux then
869 * return NULL. Can be called from IRQ and timer functions.
871 * Locking: called functions take tty_ldisc_lock
874 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
876 if(tty_ldisc_try(tty))
877 return &tty->ldisc;
878 return NULL;
881 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
884 * tty_ldisc_deref - free a tty ldisc reference
885 * @ld: reference to free up
887 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
888 * be called in IRQ context.
890 * Locking: takes tty_ldisc_lock
893 void tty_ldisc_deref(struct tty_ldisc *ld)
895 unsigned long flags;
897 BUG_ON(ld == NULL);
899 spin_lock_irqsave(&tty_ldisc_lock, flags);
900 if(ld->refcount == 0)
901 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
902 else
903 ld->refcount--;
904 if(ld->refcount == 0)
905 wake_up(&tty_ldisc_wait);
906 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
909 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
912 * tty_ldisc_enable - allow ldisc use
913 * @tty: terminal to activate ldisc on
915 * Set the TTY_LDISC flag when the line discipline can be called
916 * again. Do neccessary wakeups for existing sleepers.
918 * Note: nobody should set this bit except via this function. Clearing
919 * directly is allowed.
922 static void tty_ldisc_enable(struct tty_struct *tty)
924 set_bit(TTY_LDISC, &tty->flags);
925 wake_up(&tty_ldisc_wait);
929 * tty_set_ldisc - set line discipline
930 * @tty: the terminal to set
931 * @ldisc: the line discipline
933 * Set the discipline of a tty line. Must be called from a process
934 * context.
936 * Locking: takes tty_ldisc_lock.
937 * called functions take termios_mutex
940 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
942 int retval = 0;
943 struct tty_ldisc o_ldisc;
944 char buf[64];
945 int work;
946 unsigned long flags;
947 struct tty_ldisc *ld;
948 struct tty_struct *o_tty;
950 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
951 return -EINVAL;
953 restart:
955 ld = tty_ldisc_get(ldisc);
956 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
957 /* Cyrus Durgin <cider@speakeasy.org> */
958 if (ld == NULL) {
959 request_module("tty-ldisc-%d", ldisc);
960 ld = tty_ldisc_get(ldisc);
962 if (ld == NULL)
963 return -EINVAL;
966 * Problem: What do we do if this blocks ?
969 tty_wait_until_sent(tty, 0);
971 if (tty->ldisc.num == ldisc) {
972 tty_ldisc_put(ldisc);
973 return 0;
977 * No more input please, we are switching. The new ldisc
978 * will update this value in the ldisc open function
981 tty->receive_room = 0;
983 o_ldisc = tty->ldisc;
984 o_tty = tty->link;
987 * Make sure we don't change while someone holds a
988 * reference to the line discipline. The TTY_LDISC bit
989 * prevents anyone taking a reference once it is clear.
990 * We need the lock to avoid racing reference takers.
993 spin_lock_irqsave(&tty_ldisc_lock, flags);
994 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
995 if(tty->ldisc.refcount) {
996 /* Free the new ldisc we grabbed. Must drop the lock
997 first. */
998 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
999 tty_ldisc_put(ldisc);
1001 * There are several reasons we may be busy, including
1002 * random momentary I/O traffic. We must therefore
1003 * retry. We could distinguish between blocking ops
1004 * and retries if we made tty_ldisc_wait() smarter. That
1005 * is up for discussion.
1007 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
1008 return -ERESTARTSYS;
1009 goto restart;
1011 if(o_tty && o_tty->ldisc.refcount) {
1012 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1013 tty_ldisc_put(ldisc);
1014 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
1015 return -ERESTARTSYS;
1016 goto restart;
1020 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
1022 if (!test_bit(TTY_LDISC, &tty->flags)) {
1023 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1024 tty_ldisc_put(ldisc);
1025 ld = tty_ldisc_ref_wait(tty);
1026 tty_ldisc_deref(ld);
1027 goto restart;
1030 clear_bit(TTY_LDISC, &tty->flags);
1031 if (o_tty)
1032 clear_bit(TTY_LDISC, &o_tty->flags);
1033 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1036 * From this point on we know nobody has an ldisc
1037 * usage reference, nor can they obtain one until
1038 * we say so later on.
1041 work = cancel_delayed_work(&tty->buf.work);
1043 * Wait for ->hangup_work and ->buf.work handlers to terminate
1046 flush_scheduled_work();
1047 /* Shutdown the current discipline. */
1048 if (tty->ldisc.close)
1049 (tty->ldisc.close)(tty);
1051 /* Now set up the new line discipline. */
1052 tty_ldisc_assign(tty, ld);
1053 tty_set_termios_ldisc(tty, ldisc);
1054 if (tty->ldisc.open)
1055 retval = (tty->ldisc.open)(tty);
1056 if (retval < 0) {
1057 tty_ldisc_put(ldisc);
1058 /* There is an outstanding reference here so this is safe */
1059 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1060 tty_set_termios_ldisc(tty, tty->ldisc.num);
1061 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1062 tty_ldisc_put(o_ldisc.num);
1063 /* This driver is always present */
1064 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1065 tty_set_termios_ldisc(tty, N_TTY);
1066 if (tty->ldisc.open) {
1067 int r = tty->ldisc.open(tty);
1069 if (r < 0)
1070 panic("Couldn't open N_TTY ldisc for "
1071 "%s --- error %d.",
1072 tty_name(tty, buf), r);
1076 /* At this point we hold a reference to the new ldisc and a
1077 a reference to the old ldisc. If we ended up flipping back
1078 to the existing ldisc we have two references to it */
1080 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1081 tty->driver->set_ldisc(tty);
1083 tty_ldisc_put(o_ldisc.num);
1086 * Allow ldisc referencing to occur as soon as the driver
1087 * ldisc callback completes.
1090 tty_ldisc_enable(tty);
1091 if (o_tty)
1092 tty_ldisc_enable(o_tty);
1094 /* Restart it in case no characters kick it off. Safe if
1095 already running */
1096 if (work)
1097 schedule_delayed_work(&tty->buf.work, 1);
1098 return retval;
1102 * get_tty_driver - find device of a tty
1103 * @dev_t: device identifier
1104 * @index: returns the index of the tty
1106 * This routine returns a tty driver structure, given a device number
1107 * and also passes back the index number.
1109 * Locking: caller must hold tty_mutex
1112 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1114 struct tty_driver *p;
1116 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1117 dev_t base = MKDEV(p->major, p->minor_start);
1118 if (device < base || device >= base + p->num)
1119 continue;
1120 *index = device - base;
1121 return p;
1123 return NULL;
1127 * tty_check_change - check for POSIX terminal changes
1128 * @tty: tty to check
1130 * If we try to write to, or set the state of, a terminal and we're
1131 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1132 * ignored, go ahead and perform the operation. (POSIX 7.2)
1134 * Locking: none
1137 int tty_check_change(struct tty_struct * tty)
1139 if (current->signal->tty != tty)
1140 return 0;
1141 if (!tty->pgrp) {
1142 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
1143 return 0;
1145 if (task_pgrp(current) == tty->pgrp)
1146 return 0;
1147 if (is_ignored(SIGTTOU))
1148 return 0;
1149 if (is_current_pgrp_orphaned())
1150 return -EIO;
1151 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
1152 set_thread_flag(TIF_SIGPENDING);
1153 return -ERESTARTSYS;
1156 EXPORT_SYMBOL(tty_check_change);
1158 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1159 size_t count, loff_t *ppos)
1161 return 0;
1164 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1165 size_t count, loff_t *ppos)
1167 return -EIO;
1170 /* No kernel lock held - none needed ;) */
1171 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1173 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1176 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1177 unsigned int cmd, unsigned long arg)
1179 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1182 static long hung_up_tty_compat_ioctl(struct file * file,
1183 unsigned int cmd, unsigned long arg)
1185 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1188 static const struct file_operations tty_fops = {
1189 .llseek = no_llseek,
1190 .read = tty_read,
1191 .write = tty_write,
1192 .poll = tty_poll,
1193 .ioctl = tty_ioctl,
1194 .compat_ioctl = tty_compat_ioctl,
1195 .open = tty_open,
1196 .release = tty_release,
1197 .fasync = tty_fasync,
1200 #ifdef CONFIG_UNIX98_PTYS
1201 static const struct file_operations ptmx_fops = {
1202 .llseek = no_llseek,
1203 .read = tty_read,
1204 .write = tty_write,
1205 .poll = tty_poll,
1206 .ioctl = tty_ioctl,
1207 .compat_ioctl = tty_compat_ioctl,
1208 .open = ptmx_open,
1209 .release = tty_release,
1210 .fasync = tty_fasync,
1212 #endif
1214 static const struct file_operations console_fops = {
1215 .llseek = no_llseek,
1216 .read = tty_read,
1217 .write = redirected_tty_write,
1218 .poll = tty_poll,
1219 .ioctl = tty_ioctl,
1220 .compat_ioctl = tty_compat_ioctl,
1221 .open = tty_open,
1222 .release = tty_release,
1223 .fasync = tty_fasync,
1226 static const struct file_operations hung_up_tty_fops = {
1227 .llseek = no_llseek,
1228 .read = hung_up_tty_read,
1229 .write = hung_up_tty_write,
1230 .poll = hung_up_tty_poll,
1231 .ioctl = hung_up_tty_ioctl,
1232 .compat_ioctl = hung_up_tty_compat_ioctl,
1233 .release = tty_release,
1236 static DEFINE_SPINLOCK(redirect_lock);
1237 static struct file *redirect;
1240 * tty_wakeup - request more data
1241 * @tty: terminal
1243 * Internal and external helper for wakeups of tty. This function
1244 * informs the line discipline if present that the driver is ready
1245 * to receive more output data.
1248 void tty_wakeup(struct tty_struct *tty)
1250 struct tty_ldisc *ld;
1252 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1253 ld = tty_ldisc_ref(tty);
1254 if(ld) {
1255 if(ld->write_wakeup)
1256 ld->write_wakeup(tty);
1257 tty_ldisc_deref(ld);
1260 wake_up_interruptible(&tty->write_wait);
1263 EXPORT_SYMBOL_GPL(tty_wakeup);
1266 * tty_ldisc_flush - flush line discipline queue
1267 * @tty: tty
1269 * Flush the line discipline queue (if any) for this tty. If there
1270 * is no line discipline active this is a no-op.
1273 void tty_ldisc_flush(struct tty_struct *tty)
1275 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1276 if(ld) {
1277 if(ld->flush_buffer)
1278 ld->flush_buffer(tty);
1279 tty_ldisc_deref(ld);
1281 tty_buffer_flush(tty);
1284 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1287 * tty_reset_termios - reset terminal state
1288 * @tty: tty to reset
1290 * Restore a terminal to the driver default state
1293 static void tty_reset_termios(struct tty_struct *tty)
1295 mutex_lock(&tty->termios_mutex);
1296 *tty->termios = tty->driver->init_termios;
1297 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1298 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1299 mutex_unlock(&tty->termios_mutex);
1303 * do_tty_hangup - actual handler for hangup events
1304 * @work: tty device
1306 * This can be called by the "eventd" kernel thread. That is process
1307 * synchronous but doesn't hold any locks, so we need to make sure we
1308 * have the appropriate locks for what we're doing.
1310 * The hangup event clears any pending redirections onto the hung up
1311 * device. It ensures future writes will error and it does the needed
1312 * line discipline hangup and signal delivery. The tty object itself
1313 * remains intact.
1315 * Locking:
1316 * BKL
1317 * redirect lock for undoing redirection
1318 * file list lock for manipulating list of ttys
1319 * tty_ldisc_lock from called functions
1320 * termios_mutex resetting termios data
1321 * tasklist_lock to walk task list for hangup event
1322 * ->siglock to protect ->signal/->sighand
1324 static void do_tty_hangup(struct work_struct *work)
1326 struct tty_struct *tty =
1327 container_of(work, struct tty_struct, hangup_work);
1328 struct file * cons_filp = NULL;
1329 struct file *filp, *f = NULL;
1330 struct task_struct *p;
1331 struct tty_ldisc *ld;
1332 int closecount = 0, n;
1334 if (!tty)
1335 return;
1337 /* inuse_filps is protected by the single kernel lock */
1338 lock_kernel();
1340 spin_lock(&redirect_lock);
1341 if (redirect && redirect->private_data == tty) {
1342 f = redirect;
1343 redirect = NULL;
1345 spin_unlock(&redirect_lock);
1347 check_tty_count(tty, "do_tty_hangup");
1348 file_list_lock();
1349 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1350 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1351 if (filp->f_op->write == redirected_tty_write)
1352 cons_filp = filp;
1353 if (filp->f_op->write != tty_write)
1354 continue;
1355 closecount++;
1356 tty_fasync(-1, filp, 0); /* can't block */
1357 filp->f_op = &hung_up_tty_fops;
1359 file_list_unlock();
1361 /* FIXME! What are the locking issues here? This may me overdoing things..
1362 * this question is especially important now that we've removed the irqlock. */
1364 ld = tty_ldisc_ref(tty);
1365 if(ld != NULL) /* We may have no line discipline at this point */
1367 if (ld->flush_buffer)
1368 ld->flush_buffer(tty);
1369 if (tty->driver->flush_buffer)
1370 tty->driver->flush_buffer(tty);
1371 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1372 ld->write_wakeup)
1373 ld->write_wakeup(tty);
1374 if (ld->hangup)
1375 ld->hangup(tty);
1378 /* FIXME: Once we trust the LDISC code better we can wait here for
1379 ldisc completion and fix the driver call race */
1381 wake_up_interruptible(&tty->write_wait);
1382 wake_up_interruptible(&tty->read_wait);
1385 * Shutdown the current line discipline, and reset it to
1386 * N_TTY.
1388 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1389 tty_reset_termios(tty);
1391 /* Defer ldisc switch */
1392 /* tty_deferred_ldisc_switch(N_TTY);
1394 This should get done automatically when the port closes and
1395 tty_release is called */
1397 read_lock(&tasklist_lock);
1398 if (tty->session) {
1399 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
1400 spin_lock_irq(&p->sighand->siglock);
1401 if (p->signal->tty == tty)
1402 p->signal->tty = NULL;
1403 if (!p->signal->leader) {
1404 spin_unlock_irq(&p->sighand->siglock);
1405 continue;
1407 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1408 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1409 put_pid(p->signal->tty_old_pgrp); /* A noop */
1410 if (tty->pgrp)
1411 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
1412 spin_unlock_irq(&p->sighand->siglock);
1413 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
1415 read_unlock(&tasklist_lock);
1417 tty->flags = 0;
1418 put_pid(tty->session);
1419 put_pid(tty->pgrp);
1420 tty->session = NULL;
1421 tty->pgrp = NULL;
1422 tty->ctrl_status = 0;
1424 * If one of the devices matches a console pointer, we
1425 * cannot just call hangup() because that will cause
1426 * tty->count and state->count to go out of sync.
1427 * So we just call close() the right number of times.
1429 if (cons_filp) {
1430 if (tty->driver->close)
1431 for (n = 0; n < closecount; n++)
1432 tty->driver->close(tty, cons_filp);
1433 } else if (tty->driver->hangup)
1434 (tty->driver->hangup)(tty);
1436 /* We don't want to have driver/ldisc interactions beyond
1437 the ones we did here. The driver layer expects no
1438 calls after ->hangup() from the ldisc side. However we
1439 can't yet guarantee all that */
1441 set_bit(TTY_HUPPED, &tty->flags);
1442 if (ld) {
1443 tty_ldisc_enable(tty);
1444 tty_ldisc_deref(ld);
1446 unlock_kernel();
1447 if (f)
1448 fput(f);
1452 * tty_hangup - trigger a hangup event
1453 * @tty: tty to hangup
1455 * A carrier loss (virtual or otherwise) has occurred on this like
1456 * schedule a hangup sequence to run after this event.
1459 void tty_hangup(struct tty_struct * tty)
1461 #ifdef TTY_DEBUG_HANGUP
1462 char buf[64];
1464 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1465 #endif
1466 schedule_work(&tty->hangup_work);
1469 EXPORT_SYMBOL(tty_hangup);
1472 * tty_vhangup - process vhangup
1473 * @tty: tty to hangup
1475 * The user has asked via system call for the terminal to be hung up.
1476 * We do this synchronously so that when the syscall returns the process
1477 * is complete. That guarantee is neccessary for security reasons.
1480 void tty_vhangup(struct tty_struct * tty)
1482 #ifdef TTY_DEBUG_HANGUP
1483 char buf[64];
1485 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1486 #endif
1487 do_tty_hangup(&tty->hangup_work);
1489 EXPORT_SYMBOL(tty_vhangup);
1492 * tty_hung_up_p - was tty hung up
1493 * @filp: file pointer of tty
1495 * Return true if the tty has been subject to a vhangup or a carrier
1496 * loss
1499 int tty_hung_up_p(struct file * filp)
1501 return (filp->f_op == &hung_up_tty_fops);
1504 EXPORT_SYMBOL(tty_hung_up_p);
1506 static void session_clear_tty(struct pid *session)
1508 struct task_struct *p;
1509 do_each_pid_task(session, PIDTYPE_SID, p) {
1510 proc_clear_tty(p);
1511 } while_each_pid_task(session, PIDTYPE_SID, p);
1515 * disassociate_ctty - disconnect controlling tty
1516 * @on_exit: true if exiting so need to "hang up" the session
1518 * This function is typically called only by the session leader, when
1519 * it wants to disassociate itself from its controlling tty.
1521 * It performs the following functions:
1522 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1523 * (2) Clears the tty from being controlling the session
1524 * (3) Clears the controlling tty for all processes in the
1525 * session group.
1527 * The argument on_exit is set to 1 if called when a process is
1528 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1530 * Locking:
1531 * BKL is taken for hysterical raisins
1532 * tty_mutex is taken to protect tty
1533 * ->siglock is taken to protect ->signal/->sighand
1534 * tasklist_lock is taken to walk process list for sessions
1535 * ->siglock is taken to protect ->signal/->sighand
1538 void disassociate_ctty(int on_exit)
1540 struct tty_struct *tty;
1541 struct pid *tty_pgrp = NULL;
1543 lock_kernel();
1545 mutex_lock(&tty_mutex);
1546 tty = get_current_tty();
1547 if (tty) {
1548 tty_pgrp = get_pid(tty->pgrp);
1549 mutex_unlock(&tty_mutex);
1550 /* XXX: here we race, there is nothing protecting tty */
1551 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1552 tty_vhangup(tty);
1553 } else if (on_exit) {
1554 struct pid *old_pgrp;
1555 spin_lock_irq(&current->sighand->siglock);
1556 old_pgrp = current->signal->tty_old_pgrp;
1557 current->signal->tty_old_pgrp = NULL;
1558 spin_unlock_irq(&current->sighand->siglock);
1559 if (old_pgrp) {
1560 kill_pgrp(old_pgrp, SIGHUP, on_exit);
1561 kill_pgrp(old_pgrp, SIGCONT, on_exit);
1562 put_pid(old_pgrp);
1564 mutex_unlock(&tty_mutex);
1565 unlock_kernel();
1566 return;
1568 if (tty_pgrp) {
1569 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
1570 if (!on_exit)
1571 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
1572 put_pid(tty_pgrp);
1575 spin_lock_irq(&current->sighand->siglock);
1576 put_pid(current->signal->tty_old_pgrp);
1577 current->signal->tty_old_pgrp = NULL;
1578 spin_unlock_irq(&current->sighand->siglock);
1580 mutex_lock(&tty_mutex);
1581 /* It is possible that do_tty_hangup has free'd this tty */
1582 tty = get_current_tty();
1583 if (tty) {
1584 put_pid(tty->session);
1585 put_pid(tty->pgrp);
1586 tty->session = NULL;
1587 tty->pgrp = NULL;
1588 } else {
1589 #ifdef TTY_DEBUG_HANGUP
1590 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1591 " = NULL", tty);
1592 #endif
1594 mutex_unlock(&tty_mutex);
1596 /* Now clear signal->tty under the lock */
1597 read_lock(&tasklist_lock);
1598 session_clear_tty(task_session(current));
1599 read_unlock(&tasklist_lock);
1600 unlock_kernel();
1605 * no_tty - Ensure the current process does not have a controlling tty
1607 void no_tty(void)
1609 struct task_struct *tsk = current;
1610 if (tsk->signal->leader)
1611 disassociate_ctty(0);
1612 proc_clear_tty(tsk);
1617 * stop_tty - propagate flow control
1618 * @tty: tty to stop
1620 * Perform flow control to the driver. For PTY/TTY pairs we
1621 * must also propagate the TIOCKPKT status. May be called
1622 * on an already stopped device and will not re-call the driver
1623 * method.
1625 * This functionality is used by both the line disciplines for
1626 * halting incoming flow and by the driver. It may therefore be
1627 * called from any context, may be under the tty atomic_write_lock
1628 * but not always.
1630 * Locking:
1631 * Broken. Relies on BKL which is unsafe here.
1634 void stop_tty(struct tty_struct *tty)
1636 if (tty->stopped)
1637 return;
1638 tty->stopped = 1;
1639 if (tty->link && tty->link->packet) {
1640 tty->ctrl_status &= ~TIOCPKT_START;
1641 tty->ctrl_status |= TIOCPKT_STOP;
1642 wake_up_interruptible(&tty->link->read_wait);
1644 if (tty->driver->stop)
1645 (tty->driver->stop)(tty);
1648 EXPORT_SYMBOL(stop_tty);
1651 * start_tty - propagate flow control
1652 * @tty: tty to start
1654 * Start a tty that has been stopped if at all possible. Perform
1655 * any neccessary wakeups and propagate the TIOCPKT status. If this
1656 * is the tty was previous stopped and is being started then the
1657 * driver start method is invoked and the line discipline woken.
1659 * Locking:
1660 * Broken. Relies on BKL which is unsafe here.
1663 void start_tty(struct tty_struct *tty)
1665 if (!tty->stopped || tty->flow_stopped)
1666 return;
1667 tty->stopped = 0;
1668 if (tty->link && tty->link->packet) {
1669 tty->ctrl_status &= ~TIOCPKT_STOP;
1670 tty->ctrl_status |= TIOCPKT_START;
1671 wake_up_interruptible(&tty->link->read_wait);
1673 if (tty->driver->start)
1674 (tty->driver->start)(tty);
1676 /* If we have a running line discipline it may need kicking */
1677 tty_wakeup(tty);
1680 EXPORT_SYMBOL(start_tty);
1683 * tty_read - read method for tty device files
1684 * @file: pointer to tty file
1685 * @buf: user buffer
1686 * @count: size of user buffer
1687 * @ppos: unused
1689 * Perform the read system call function on this terminal device. Checks
1690 * for hung up devices before calling the line discipline method.
1692 * Locking:
1693 * Locks the line discipline internally while needed
1694 * For historical reasons the line discipline read method is
1695 * invoked under the BKL. This will go away in time so do not rely on it
1696 * in new code. Multiple read calls may be outstanding in parallel.
1699 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1700 loff_t *ppos)
1702 int i;
1703 struct tty_struct * tty;
1704 struct inode *inode;
1705 struct tty_ldisc *ld;
1707 tty = (struct tty_struct *)file->private_data;
1708 inode = file->f_path.dentry->d_inode;
1709 if (tty_paranoia_check(tty, inode, "tty_read"))
1710 return -EIO;
1711 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1712 return -EIO;
1714 /* We want to wait for the line discipline to sort out in this
1715 situation */
1716 ld = tty_ldisc_ref_wait(tty);
1717 lock_kernel();
1718 if (ld->read)
1719 i = (ld->read)(tty,file,buf,count);
1720 else
1721 i = -EIO;
1722 tty_ldisc_deref(ld);
1723 unlock_kernel();
1724 if (i > 0)
1725 inode->i_atime = current_fs_time(inode->i_sb);
1726 return i;
1730 * Split writes up in sane blocksizes to avoid
1731 * denial-of-service type attacks
1733 static inline ssize_t do_tty_write(
1734 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1735 struct tty_struct *tty,
1736 struct file *file,
1737 const char __user *buf,
1738 size_t count)
1740 ssize_t ret = 0, written = 0;
1741 unsigned int chunk;
1743 /* FIXME: O_NDELAY ... */
1744 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1745 return -ERESTARTSYS;
1749 * We chunk up writes into a temporary buffer. This
1750 * simplifies low-level drivers immensely, since they
1751 * don't have locking issues and user mode accesses.
1753 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1754 * big chunk-size..
1756 * The default chunk-size is 2kB, because the NTTY
1757 * layer has problems with bigger chunks. It will
1758 * claim to be able to handle more characters than
1759 * it actually does.
1761 * FIXME: This can probably go away now except that 64K chunks
1762 * are too likely to fail unless switched to vmalloc...
1764 chunk = 2048;
1765 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1766 chunk = 65536;
1767 if (count < chunk)
1768 chunk = count;
1770 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1771 if (tty->write_cnt < chunk) {
1772 unsigned char *buf;
1774 if (chunk < 1024)
1775 chunk = 1024;
1777 buf = kmalloc(chunk, GFP_KERNEL);
1778 if (!buf) {
1779 mutex_unlock(&tty->atomic_write_lock);
1780 return -ENOMEM;
1782 kfree(tty->write_buf);
1783 tty->write_cnt = chunk;
1784 tty->write_buf = buf;
1787 /* Do the write .. */
1788 for (;;) {
1789 size_t size = count;
1790 if (size > chunk)
1791 size = chunk;
1792 ret = -EFAULT;
1793 if (copy_from_user(tty->write_buf, buf, size))
1794 break;
1795 lock_kernel();
1796 ret = write(tty, file, tty->write_buf, size);
1797 unlock_kernel();
1798 if (ret <= 0)
1799 break;
1800 written += ret;
1801 buf += ret;
1802 count -= ret;
1803 if (!count)
1804 break;
1805 ret = -ERESTARTSYS;
1806 if (signal_pending(current))
1807 break;
1808 cond_resched();
1810 if (written) {
1811 struct inode *inode = file->f_path.dentry->d_inode;
1812 inode->i_mtime = current_fs_time(inode->i_sb);
1813 ret = written;
1815 mutex_unlock(&tty->atomic_write_lock);
1816 return ret;
1821 * tty_write - write method for tty device file
1822 * @file: tty file pointer
1823 * @buf: user data to write
1824 * @count: bytes to write
1825 * @ppos: unused
1827 * Write data to a tty device via the line discipline.
1829 * Locking:
1830 * Locks the line discipline as required
1831 * Writes to the tty driver are serialized by the atomic_write_lock
1832 * and are then processed in chunks to the device. The line discipline
1833 * write method will not be involked in parallel for each device
1834 * The line discipline write method is called under the big
1835 * kernel lock for historical reasons. New code should not rely on this.
1838 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1839 loff_t *ppos)
1841 struct tty_struct * tty;
1842 struct inode *inode = file->f_path.dentry->d_inode;
1843 ssize_t ret;
1844 struct tty_ldisc *ld;
1846 tty = (struct tty_struct *)file->private_data;
1847 if (tty_paranoia_check(tty, inode, "tty_write"))
1848 return -EIO;
1849 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1850 return -EIO;
1852 ld = tty_ldisc_ref_wait(tty);
1853 if (!ld->write)
1854 ret = -EIO;
1855 else
1856 ret = do_tty_write(ld->write, tty, file, buf, count);
1857 tty_ldisc_deref(ld);
1858 return ret;
1861 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1862 loff_t *ppos)
1864 struct file *p = NULL;
1866 spin_lock(&redirect_lock);
1867 if (redirect) {
1868 get_file(redirect);
1869 p = redirect;
1871 spin_unlock(&redirect_lock);
1873 if (p) {
1874 ssize_t res;
1875 res = vfs_write(p, buf, count, &p->f_pos);
1876 fput(p);
1877 return res;
1880 return tty_write(file, buf, count, ppos);
1883 static char ptychar[] = "pqrstuvwxyzabcde";
1886 * pty_line_name - generate name for a pty
1887 * @driver: the tty driver in use
1888 * @index: the minor number
1889 * @p: output buffer of at least 6 bytes
1891 * Generate a name from a driver reference and write it to the output
1892 * buffer.
1894 * Locking: None
1896 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1898 int i = index + driver->name_base;
1899 /* ->name is initialized to "ttyp", but "tty" is expected */
1900 sprintf(p, "%s%c%x",
1901 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1902 ptychar[i >> 4 & 0xf], i & 0xf);
1906 * pty_line_name - generate name for a tty
1907 * @driver: the tty driver in use
1908 * @index: the minor number
1909 * @p: output buffer of at least 7 bytes
1911 * Generate a name from a driver reference and write it to the output
1912 * buffer.
1914 * Locking: None
1916 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1918 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1922 * init_dev - initialise a tty device
1923 * @driver: tty driver we are opening a device on
1924 * @idx: device index
1925 * @tty: returned tty structure
1927 * Prepare a tty device. This may not be a "new" clean device but
1928 * could also be an active device. The pty drivers require special
1929 * handling because of this.
1931 * Locking:
1932 * The function is called under the tty_mutex, which
1933 * protects us from the tty struct or driver itself going away.
1935 * On exit the tty device has the line discipline attached and
1936 * a reference count of 1. If a pair was created for pty/tty use
1937 * and the other was a pty master then it too has a reference count of 1.
1939 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1940 * failed open. The new code protects the open with a mutex, so it's
1941 * really quite straightforward. The mutex locking can probably be
1942 * relaxed for the (most common) case of reopening a tty.
1945 static int init_dev(struct tty_driver *driver, int idx,
1946 struct tty_struct **ret_tty)
1948 struct tty_struct *tty, *o_tty;
1949 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1950 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1951 int retval = 0;
1953 /* check whether we're reopening an existing tty */
1954 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1955 tty = devpts_get_tty(idx);
1957 * If we don't have a tty here on a slave open, it's because
1958 * the master already started the close process and there's
1959 * no relation between devpts file and tty anymore.
1961 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1962 retval = -EIO;
1963 goto end_init;
1966 * It's safe from now on because init_dev() is called with
1967 * tty_mutex held and release_dev() won't change tty->count
1968 * or tty->flags without having to grab tty_mutex
1970 if (tty && driver->subtype == PTY_TYPE_MASTER)
1971 tty = tty->link;
1972 } else {
1973 tty = driver->ttys[idx];
1975 if (tty) goto fast_track;
1978 * First time open is complex, especially for PTY devices.
1979 * This code guarantees that either everything succeeds and the
1980 * TTY is ready for operation, or else the table slots are vacated
1981 * and the allocated memory released. (Except that the termios
1982 * and locked termios may be retained.)
1985 if (!try_module_get(driver->owner)) {
1986 retval = -ENODEV;
1987 goto end_init;
1990 o_tty = NULL;
1991 tp = o_tp = NULL;
1992 ltp = o_ltp = NULL;
1994 tty = alloc_tty_struct();
1995 if(!tty)
1996 goto fail_no_mem;
1997 initialize_tty_struct(tty);
1998 tty->driver = driver;
1999 tty->index = idx;
2000 tty_line_name(driver, idx, tty->name);
2002 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2003 tp_loc = &tty->termios;
2004 ltp_loc = &tty->termios_locked;
2005 } else {
2006 tp_loc = &driver->termios[idx];
2007 ltp_loc = &driver->termios_locked[idx];
2010 if (!*tp_loc) {
2011 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2012 GFP_KERNEL);
2013 if (!tp)
2014 goto free_mem_out;
2015 *tp = driver->init_termios;
2018 if (!*ltp_loc) {
2019 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
2020 GFP_KERNEL);
2021 if (!ltp)
2022 goto free_mem_out;
2023 memset(ltp, 0, sizeof(struct ktermios));
2026 if (driver->type == TTY_DRIVER_TYPE_PTY) {
2027 o_tty = alloc_tty_struct();
2028 if (!o_tty)
2029 goto free_mem_out;
2030 initialize_tty_struct(o_tty);
2031 o_tty->driver = driver->other;
2032 o_tty->index = idx;
2033 tty_line_name(driver->other, idx, o_tty->name);
2035 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
2036 o_tp_loc = &o_tty->termios;
2037 o_ltp_loc = &o_tty->termios_locked;
2038 } else {
2039 o_tp_loc = &driver->other->termios[idx];
2040 o_ltp_loc = &driver->other->termios_locked[idx];
2043 if (!*o_tp_loc) {
2044 o_tp = (struct ktermios *)
2045 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2046 if (!o_tp)
2047 goto free_mem_out;
2048 *o_tp = driver->other->init_termios;
2051 if (!*o_ltp_loc) {
2052 o_ltp = (struct ktermios *)
2053 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
2054 if (!o_ltp)
2055 goto free_mem_out;
2056 memset(o_ltp, 0, sizeof(struct ktermios));
2060 * Everything allocated ... set up the o_tty structure.
2062 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2063 driver->other->ttys[idx] = o_tty;
2065 if (!*o_tp_loc)
2066 *o_tp_loc = o_tp;
2067 if (!*o_ltp_loc)
2068 *o_ltp_loc = o_ltp;
2069 o_tty->termios = *o_tp_loc;
2070 o_tty->termios_locked = *o_ltp_loc;
2071 driver->other->refcount++;
2072 if (driver->subtype == PTY_TYPE_MASTER)
2073 o_tty->count++;
2075 /* Establish the links in both directions */
2076 tty->link = o_tty;
2077 o_tty->link = tty;
2081 * All structures have been allocated, so now we install them.
2082 * Failures after this point use release_tty to clean up, so
2083 * there's no need to null out the local pointers.
2085 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2086 driver->ttys[idx] = tty;
2089 if (!*tp_loc)
2090 *tp_loc = tp;
2091 if (!*ltp_loc)
2092 *ltp_loc = ltp;
2093 tty->termios = *tp_loc;
2094 tty->termios_locked = *ltp_loc;
2095 /* Compatibility until drivers always set this */
2096 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2097 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2098 driver->refcount++;
2099 tty->count++;
2102 * Structures all installed ... call the ldisc open routines.
2103 * If we fail here just call release_tty to clean up. No need
2104 * to decrement the use counts, as release_tty doesn't care.
2107 if (tty->ldisc.open) {
2108 retval = (tty->ldisc.open)(tty);
2109 if (retval)
2110 goto release_mem_out;
2112 if (o_tty && o_tty->ldisc.open) {
2113 retval = (o_tty->ldisc.open)(o_tty);
2114 if (retval) {
2115 if (tty->ldisc.close)
2116 (tty->ldisc.close)(tty);
2117 goto release_mem_out;
2119 tty_ldisc_enable(o_tty);
2121 tty_ldisc_enable(tty);
2122 goto success;
2125 * This fast open can be used if the tty is already open.
2126 * No memory is allocated, and the only failures are from
2127 * attempting to open a closing tty or attempting multiple
2128 * opens on a pty master.
2130 fast_track:
2131 if (test_bit(TTY_CLOSING, &tty->flags)) {
2132 retval = -EIO;
2133 goto end_init;
2135 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2136 driver->subtype == PTY_TYPE_MASTER) {
2138 * special case for PTY masters: only one open permitted,
2139 * and the slave side open count is incremented as well.
2141 if (tty->count) {
2142 retval = -EIO;
2143 goto end_init;
2145 tty->link->count++;
2147 tty->count++;
2148 tty->driver = driver; /* N.B. why do this every time?? */
2150 /* FIXME */
2151 if(!test_bit(TTY_LDISC, &tty->flags))
2152 printk(KERN_ERR "init_dev but no ldisc\n");
2153 success:
2154 *ret_tty = tty;
2156 /* All paths come through here to release the mutex */
2157 end_init:
2158 return retval;
2160 /* Release locally allocated memory ... nothing placed in slots */
2161 free_mem_out:
2162 kfree(o_tp);
2163 if (o_tty)
2164 free_tty_struct(o_tty);
2165 kfree(ltp);
2166 kfree(tp);
2167 free_tty_struct(tty);
2169 fail_no_mem:
2170 module_put(driver->owner);
2171 retval = -ENOMEM;
2172 goto end_init;
2174 /* call the tty release_tty routine to clean out this slot */
2175 release_mem_out:
2176 if (printk_ratelimit())
2177 printk(KERN_INFO "init_dev: ldisc open failed, "
2178 "clearing slot %d\n", idx);
2179 release_tty(tty, idx);
2180 goto end_init;
2184 * release_one_tty - release tty structure memory
2186 * Releases memory associated with a tty structure, and clears out the
2187 * driver table slots. This function is called when a device is no longer
2188 * in use. It also gets called when setup of a device fails.
2190 * Locking:
2191 * tty_mutex - sometimes only
2192 * takes the file list lock internally when working on the list
2193 * of ttys that the driver keeps.
2194 * FIXME: should we require tty_mutex is held here ??
2196 static void release_one_tty(struct tty_struct *tty, int idx)
2198 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2199 struct ktermios *tp;
2201 if (!devpts)
2202 tty->driver->ttys[idx] = NULL;
2204 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2205 tp = tty->termios;
2206 if (!devpts)
2207 tty->driver->termios[idx] = NULL;
2208 kfree(tp);
2210 tp = tty->termios_locked;
2211 if (!devpts)
2212 tty->driver->termios_locked[idx] = NULL;
2213 kfree(tp);
2217 tty->magic = 0;
2218 tty->driver->refcount--;
2220 file_list_lock();
2221 list_del_init(&tty->tty_files);
2222 file_list_unlock();
2224 free_tty_struct(tty);
2228 * release_tty - release tty structure memory
2230 * Release both @tty and a possible linked partner (think pty pair),
2231 * and decrement the refcount of the backing module.
2233 * Locking:
2234 * tty_mutex - sometimes only
2235 * takes the file list lock internally when working on the list
2236 * of ttys that the driver keeps.
2237 * FIXME: should we require tty_mutex is held here ??
2239 static void release_tty(struct tty_struct *tty, int idx)
2241 struct tty_driver *driver = tty->driver;
2243 if (tty->link)
2244 release_one_tty(tty->link, idx);
2245 release_one_tty(tty, idx);
2246 module_put(driver->owner);
2250 * Even releasing the tty structures is a tricky business.. We have
2251 * to be very careful that the structures are all released at the
2252 * same time, as interrupts might otherwise get the wrong pointers.
2254 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2255 * lead to double frees or releasing memory still in use.
2257 static void release_dev(struct file * filp)
2259 struct tty_struct *tty, *o_tty;
2260 int pty_master, tty_closing, o_tty_closing, do_sleep;
2261 int devpts;
2262 int idx;
2263 char buf[64];
2264 unsigned long flags;
2266 tty = (struct tty_struct *)filp->private_data;
2267 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2268 return;
2270 check_tty_count(tty, "release_dev");
2272 tty_fasync(-1, filp, 0);
2274 idx = tty->index;
2275 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2276 tty->driver->subtype == PTY_TYPE_MASTER);
2277 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2278 o_tty = tty->link;
2280 #ifdef TTY_PARANOIA_CHECK
2281 if (idx < 0 || idx >= tty->driver->num) {
2282 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2283 "free (%s)\n", tty->name);
2284 return;
2286 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2287 if (tty != tty->driver->ttys[idx]) {
2288 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2289 "for (%s)\n", idx, tty->name);
2290 return;
2292 if (tty->termios != tty->driver->termios[idx]) {
2293 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2294 "for (%s)\n",
2295 idx, tty->name);
2296 return;
2298 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2299 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2300 "termios_locked for (%s)\n",
2301 idx, tty->name);
2302 return;
2305 #endif
2307 #ifdef TTY_DEBUG_HANGUP
2308 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2309 tty_name(tty, buf), tty->count);
2310 #endif
2312 #ifdef TTY_PARANOIA_CHECK
2313 if (tty->driver->other &&
2314 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2315 if (o_tty != tty->driver->other->ttys[idx]) {
2316 printk(KERN_DEBUG "release_dev: other->table[%d] "
2317 "not o_tty for (%s)\n",
2318 idx, tty->name);
2319 return;
2321 if (o_tty->termios != tty->driver->other->termios[idx]) {
2322 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2323 "not o_termios for (%s)\n",
2324 idx, tty->name);
2325 return;
2327 if (o_tty->termios_locked !=
2328 tty->driver->other->termios_locked[idx]) {
2329 printk(KERN_DEBUG "release_dev: other->termios_locked["
2330 "%d] not o_termios_locked for (%s)\n",
2331 idx, tty->name);
2332 return;
2334 if (o_tty->link != tty) {
2335 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2336 return;
2339 #endif
2340 if (tty->driver->close)
2341 tty->driver->close(tty, filp);
2344 * Sanity check: if tty->count is going to zero, there shouldn't be
2345 * any waiters on tty->read_wait or tty->write_wait. We test the
2346 * wait queues and kick everyone out _before_ actually starting to
2347 * close. This ensures that we won't block while releasing the tty
2348 * structure.
2350 * The test for the o_tty closing is necessary, since the master and
2351 * slave sides may close in any order. If the slave side closes out
2352 * first, its count will be one, since the master side holds an open.
2353 * Thus this test wouldn't be triggered at the time the slave closes,
2354 * so we do it now.
2356 * Note that it's possible for the tty to be opened again while we're
2357 * flushing out waiters. By recalculating the closing flags before
2358 * each iteration we avoid any problems.
2360 while (1) {
2361 /* Guard against races with tty->count changes elsewhere and
2362 opens on /dev/tty */
2364 mutex_lock(&tty_mutex);
2365 tty_closing = tty->count <= 1;
2366 o_tty_closing = o_tty &&
2367 (o_tty->count <= (pty_master ? 1 : 0));
2368 do_sleep = 0;
2370 if (tty_closing) {
2371 if (waitqueue_active(&tty->read_wait)) {
2372 wake_up(&tty->read_wait);
2373 do_sleep++;
2375 if (waitqueue_active(&tty->write_wait)) {
2376 wake_up(&tty->write_wait);
2377 do_sleep++;
2380 if (o_tty_closing) {
2381 if (waitqueue_active(&o_tty->read_wait)) {
2382 wake_up(&o_tty->read_wait);
2383 do_sleep++;
2385 if (waitqueue_active(&o_tty->write_wait)) {
2386 wake_up(&o_tty->write_wait);
2387 do_sleep++;
2390 if (!do_sleep)
2391 break;
2393 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2394 "active!\n", tty_name(tty, buf));
2395 mutex_unlock(&tty_mutex);
2396 schedule();
2400 * The closing flags are now consistent with the open counts on
2401 * both sides, and we've completed the last operation that could
2402 * block, so it's safe to proceed with closing.
2404 if (pty_master) {
2405 if (--o_tty->count < 0) {
2406 printk(KERN_WARNING "release_dev: bad pty slave count "
2407 "(%d) for %s\n",
2408 o_tty->count, tty_name(o_tty, buf));
2409 o_tty->count = 0;
2412 if (--tty->count < 0) {
2413 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2414 tty->count, tty_name(tty, buf));
2415 tty->count = 0;
2419 * We've decremented tty->count, so we need to remove this file
2420 * descriptor off the tty->tty_files list; this serves two
2421 * purposes:
2422 * - check_tty_count sees the correct number of file descriptors
2423 * associated with this tty.
2424 * - do_tty_hangup no longer sees this file descriptor as
2425 * something that needs to be handled for hangups.
2427 file_kill(filp);
2428 filp->private_data = NULL;
2431 * Perform some housekeeping before deciding whether to return.
2433 * Set the TTY_CLOSING flag if this was the last open. In the
2434 * case of a pty we may have to wait around for the other side
2435 * to close, and TTY_CLOSING makes sure we can't be reopened.
2437 if(tty_closing)
2438 set_bit(TTY_CLOSING, &tty->flags);
2439 if(o_tty_closing)
2440 set_bit(TTY_CLOSING, &o_tty->flags);
2443 * If _either_ side is closing, make sure there aren't any
2444 * processes that still think tty or o_tty is their controlling
2445 * tty.
2447 if (tty_closing || o_tty_closing) {
2448 read_lock(&tasklist_lock);
2449 session_clear_tty(tty->session);
2450 if (o_tty)
2451 session_clear_tty(o_tty->session);
2452 read_unlock(&tasklist_lock);
2455 mutex_unlock(&tty_mutex);
2457 /* check whether both sides are closing ... */
2458 if (!tty_closing || (o_tty && !o_tty_closing))
2459 return;
2461 #ifdef TTY_DEBUG_HANGUP
2462 printk(KERN_DEBUG "freeing tty structure...");
2463 #endif
2465 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2466 * kill any delayed work. As this is the final close it does not
2467 * race with the set_ldisc code path.
2469 clear_bit(TTY_LDISC, &tty->flags);
2470 cancel_delayed_work(&tty->buf.work);
2473 * Wait for ->hangup_work and ->buf.work handlers to terminate
2476 flush_scheduled_work();
2479 * Wait for any short term users (we know they are just driver
2480 * side waiters as the file is closing so user count on the file
2481 * side is zero.
2483 spin_lock_irqsave(&tty_ldisc_lock, flags);
2484 while(tty->ldisc.refcount)
2486 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2487 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2488 spin_lock_irqsave(&tty_ldisc_lock, flags);
2490 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2492 * Shutdown the current line discipline, and reset it to N_TTY.
2493 * N.B. why reset ldisc when we're releasing the memory??
2495 * FIXME: this MUST get fixed for the new reflocking
2497 if (tty->ldisc.close)
2498 (tty->ldisc.close)(tty);
2499 tty_ldisc_put(tty->ldisc.num);
2502 * Switch the line discipline back
2504 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2505 tty_set_termios_ldisc(tty,N_TTY);
2506 if (o_tty) {
2507 /* FIXME: could o_tty be in setldisc here ? */
2508 clear_bit(TTY_LDISC, &o_tty->flags);
2509 if (o_tty->ldisc.close)
2510 (o_tty->ldisc.close)(o_tty);
2511 tty_ldisc_put(o_tty->ldisc.num);
2512 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2513 tty_set_termios_ldisc(o_tty,N_TTY);
2516 * The release_tty function takes care of the details of clearing
2517 * the slots and preserving the termios structure.
2519 release_tty(tty, idx);
2521 #ifdef CONFIG_UNIX98_PTYS
2522 /* Make this pty number available for reallocation */
2523 if (devpts) {
2524 down(&allocated_ptys_lock);
2525 idr_remove(&allocated_ptys, idx);
2526 up(&allocated_ptys_lock);
2528 #endif
2533 * tty_open - open a tty device
2534 * @inode: inode of device file
2535 * @filp: file pointer to tty
2537 * tty_open and tty_release keep up the tty count that contains the
2538 * number of opens done on a tty. We cannot use the inode-count, as
2539 * different inodes might point to the same tty.
2541 * Open-counting is needed for pty masters, as well as for keeping
2542 * track of serial lines: DTR is dropped when the last close happens.
2543 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2545 * The termios state of a pty is reset on first open so that
2546 * settings don't persist across reuse.
2548 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2549 * tty->count should protect the rest.
2550 * ->siglock protects ->signal/->sighand
2553 static int tty_open(struct inode * inode, struct file * filp)
2555 struct tty_struct *tty;
2556 int noctty, retval;
2557 struct tty_driver *driver;
2558 int index;
2559 dev_t device = inode->i_rdev;
2560 unsigned short saved_flags = filp->f_flags;
2562 nonseekable_open(inode, filp);
2564 retry_open:
2565 noctty = filp->f_flags & O_NOCTTY;
2566 index = -1;
2567 retval = 0;
2569 mutex_lock(&tty_mutex);
2571 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2572 tty = get_current_tty();
2573 if (!tty) {
2574 mutex_unlock(&tty_mutex);
2575 return -ENXIO;
2577 driver = tty->driver;
2578 index = tty->index;
2579 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2580 /* noctty = 1; */
2581 goto got_driver;
2583 #ifdef CONFIG_VT
2584 if (device == MKDEV(TTY_MAJOR,0)) {
2585 extern struct tty_driver *console_driver;
2586 driver = console_driver;
2587 index = fg_console;
2588 noctty = 1;
2589 goto got_driver;
2591 #endif
2592 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2593 driver = console_device(&index);
2594 if (driver) {
2595 /* Don't let /dev/console block */
2596 filp->f_flags |= O_NONBLOCK;
2597 noctty = 1;
2598 goto got_driver;
2600 mutex_unlock(&tty_mutex);
2601 return -ENODEV;
2604 driver = get_tty_driver(device, &index);
2605 if (!driver) {
2606 mutex_unlock(&tty_mutex);
2607 return -ENODEV;
2609 got_driver:
2610 retval = init_dev(driver, index, &tty);
2611 mutex_unlock(&tty_mutex);
2612 if (retval)
2613 return retval;
2615 filp->private_data = tty;
2616 file_move(filp, &tty->tty_files);
2617 check_tty_count(tty, "tty_open");
2618 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2619 tty->driver->subtype == PTY_TYPE_MASTER)
2620 noctty = 1;
2621 #ifdef TTY_DEBUG_HANGUP
2622 printk(KERN_DEBUG "opening %s...", tty->name);
2623 #endif
2624 if (!retval) {
2625 if (tty->driver->open)
2626 retval = tty->driver->open(tty, filp);
2627 else
2628 retval = -ENODEV;
2630 filp->f_flags = saved_flags;
2632 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2633 retval = -EBUSY;
2635 if (retval) {
2636 #ifdef TTY_DEBUG_HANGUP
2637 printk(KERN_DEBUG "error %d in opening %s...", retval,
2638 tty->name);
2639 #endif
2640 release_dev(filp);
2641 if (retval != -ERESTARTSYS)
2642 return retval;
2643 if (signal_pending(current))
2644 return retval;
2645 schedule();
2647 * Need to reset f_op in case a hangup happened.
2649 if (filp->f_op == &hung_up_tty_fops)
2650 filp->f_op = &tty_fops;
2651 goto retry_open;
2654 mutex_lock(&tty_mutex);
2655 spin_lock_irq(&current->sighand->siglock);
2656 if (!noctty &&
2657 current->signal->leader &&
2658 !current->signal->tty &&
2659 tty->session == NULL)
2660 __proc_set_tty(current, tty);
2661 spin_unlock_irq(&current->sighand->siglock);
2662 mutex_unlock(&tty_mutex);
2663 return 0;
2666 #ifdef CONFIG_UNIX98_PTYS
2668 * ptmx_open - open a unix 98 pty master
2669 * @inode: inode of device file
2670 * @filp: file pointer to tty
2672 * Allocate a unix98 pty master device from the ptmx driver.
2674 * Locking: tty_mutex protects theinit_dev work. tty->count should
2675 protect the rest.
2676 * allocated_ptys_lock handles the list of free pty numbers
2679 static int ptmx_open(struct inode * inode, struct file * filp)
2681 struct tty_struct *tty;
2682 int retval;
2683 int index;
2684 int idr_ret;
2686 nonseekable_open(inode, filp);
2688 /* find a device that is not in use. */
2689 down(&allocated_ptys_lock);
2690 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2691 up(&allocated_ptys_lock);
2692 return -ENOMEM;
2694 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2695 if (idr_ret < 0) {
2696 up(&allocated_ptys_lock);
2697 if (idr_ret == -EAGAIN)
2698 return -ENOMEM;
2699 return -EIO;
2701 if (index >= pty_limit) {
2702 idr_remove(&allocated_ptys, index);
2703 up(&allocated_ptys_lock);
2704 return -EIO;
2706 up(&allocated_ptys_lock);
2708 mutex_lock(&tty_mutex);
2709 retval = init_dev(ptm_driver, index, &tty);
2710 mutex_unlock(&tty_mutex);
2712 if (retval)
2713 goto out;
2715 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2716 filp->private_data = tty;
2717 file_move(filp, &tty->tty_files);
2719 retval = -ENOMEM;
2720 if (devpts_pty_new(tty->link))
2721 goto out1;
2723 check_tty_count(tty, "tty_open");
2724 retval = ptm_driver->open(tty, filp);
2725 if (!retval)
2726 return 0;
2727 out1:
2728 release_dev(filp);
2729 return retval;
2730 out:
2731 down(&allocated_ptys_lock);
2732 idr_remove(&allocated_ptys, index);
2733 up(&allocated_ptys_lock);
2734 return retval;
2736 #endif
2739 * tty_release - vfs callback for close
2740 * @inode: inode of tty
2741 * @filp: file pointer for handle to tty
2743 * Called the last time each file handle is closed that references
2744 * this tty. There may however be several such references.
2746 * Locking:
2747 * Takes bkl. See release_dev
2750 static int tty_release(struct inode * inode, struct file * filp)
2752 lock_kernel();
2753 release_dev(filp);
2754 unlock_kernel();
2755 return 0;
2759 * tty_poll - check tty status
2760 * @filp: file being polled
2761 * @wait: poll wait structures to update
2763 * Call the line discipline polling method to obtain the poll
2764 * status of the device.
2766 * Locking: locks called line discipline but ldisc poll method
2767 * may be re-entered freely by other callers.
2770 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2772 struct tty_struct * tty;
2773 struct tty_ldisc *ld;
2774 int ret = 0;
2776 tty = (struct tty_struct *)filp->private_data;
2777 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2778 return 0;
2780 ld = tty_ldisc_ref_wait(tty);
2781 if (ld->poll)
2782 ret = (ld->poll)(tty, filp, wait);
2783 tty_ldisc_deref(ld);
2784 return ret;
2787 static int tty_fasync(int fd, struct file * filp, int on)
2789 struct tty_struct * tty;
2790 int retval;
2792 tty = (struct tty_struct *)filp->private_data;
2793 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2794 return 0;
2796 retval = fasync_helper(fd, filp, on, &tty->fasync);
2797 if (retval <= 0)
2798 return retval;
2800 if (on) {
2801 enum pid_type type;
2802 struct pid *pid;
2803 if (!waitqueue_active(&tty->read_wait))
2804 tty->minimum_to_wake = 1;
2805 if (tty->pgrp) {
2806 pid = tty->pgrp;
2807 type = PIDTYPE_PGID;
2808 } else {
2809 pid = task_pid(current);
2810 type = PIDTYPE_PID;
2812 retval = __f_setown(filp, pid, type, 0);
2813 if (retval)
2814 return retval;
2815 } else {
2816 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2817 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2819 return 0;
2823 * tiocsti - fake input character
2824 * @tty: tty to fake input into
2825 * @p: pointer to character
2827 * Fake input to a tty device. Does the neccessary locking and
2828 * input management.
2830 * FIXME: does not honour flow control ??
2832 * Locking:
2833 * Called functions take tty_ldisc_lock
2834 * current->signal->tty check is safe without locks
2836 * FIXME: may race normal receive processing
2839 static int tiocsti(struct tty_struct *tty, char __user *p)
2841 char ch, mbz = 0;
2842 struct tty_ldisc *ld;
2844 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2845 return -EPERM;
2846 if (get_user(ch, p))
2847 return -EFAULT;
2848 ld = tty_ldisc_ref_wait(tty);
2849 ld->receive_buf(tty, &ch, &mbz, 1);
2850 tty_ldisc_deref(ld);
2851 return 0;
2855 * tiocgwinsz - implement window query ioctl
2856 * @tty; tty
2857 * @arg: user buffer for result
2859 * Copies the kernel idea of the window size into the user buffer.
2861 * Locking: tty->termios_mutex is taken to ensure the winsize data
2862 * is consistent.
2865 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2867 int err;
2869 mutex_lock(&tty->termios_mutex);
2870 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2871 mutex_unlock(&tty->termios_mutex);
2873 return err ? -EFAULT: 0;
2877 * tiocswinsz - implement window size set ioctl
2878 * @tty; tty
2879 * @arg: user buffer for result
2881 * Copies the user idea of the window size to the kernel. Traditionally
2882 * this is just advisory information but for the Linux console it
2883 * actually has driver level meaning and triggers a VC resize.
2885 * Locking:
2886 * Called function use the console_sem is used to ensure we do
2887 * not try and resize the console twice at once.
2888 * The tty->termios_mutex is used to ensure we don't double
2889 * resize and get confused. Lock order - tty->termios_mutex before
2890 * console sem
2893 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2894 struct winsize __user * arg)
2896 struct winsize tmp_ws;
2898 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2899 return -EFAULT;
2901 mutex_lock(&tty->termios_mutex);
2902 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2903 goto done;
2905 #ifdef CONFIG_VT
2906 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2907 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2908 tmp_ws.ws_row)) {
2909 mutex_unlock(&tty->termios_mutex);
2910 return -ENXIO;
2913 #endif
2914 if (tty->pgrp)
2915 kill_pgrp(tty->pgrp, SIGWINCH, 1);
2916 if ((real_tty->pgrp != tty->pgrp) && real_tty->pgrp)
2917 kill_pgrp(real_tty->pgrp, SIGWINCH, 1);
2918 tty->winsize = tmp_ws;
2919 real_tty->winsize = tmp_ws;
2920 done:
2921 mutex_unlock(&tty->termios_mutex);
2922 return 0;
2926 * tioccons - allow admin to move logical console
2927 * @file: the file to become console
2929 * Allow the adminstrator to move the redirected console device
2931 * Locking: uses redirect_lock to guard the redirect information
2934 static int tioccons(struct file *file)
2936 if (!capable(CAP_SYS_ADMIN))
2937 return -EPERM;
2938 if (file->f_op->write == redirected_tty_write) {
2939 struct file *f;
2940 spin_lock(&redirect_lock);
2941 f = redirect;
2942 redirect = NULL;
2943 spin_unlock(&redirect_lock);
2944 if (f)
2945 fput(f);
2946 return 0;
2948 spin_lock(&redirect_lock);
2949 if (redirect) {
2950 spin_unlock(&redirect_lock);
2951 return -EBUSY;
2953 get_file(file);
2954 redirect = file;
2955 spin_unlock(&redirect_lock);
2956 return 0;
2960 * fionbio - non blocking ioctl
2961 * @file: file to set blocking value
2962 * @p: user parameter
2964 * Historical tty interfaces had a blocking control ioctl before
2965 * the generic functionality existed. This piece of history is preserved
2966 * in the expected tty API of posix OS's.
2968 * Locking: none, the open fle handle ensures it won't go away.
2971 static int fionbio(struct file *file, int __user *p)
2973 int nonblock;
2975 if (get_user(nonblock, p))
2976 return -EFAULT;
2978 if (nonblock)
2979 file->f_flags |= O_NONBLOCK;
2980 else
2981 file->f_flags &= ~O_NONBLOCK;
2982 return 0;
2986 * tiocsctty - set controlling tty
2987 * @tty: tty structure
2988 * @arg: user argument
2990 * This ioctl is used to manage job control. It permits a session
2991 * leader to set this tty as the controlling tty for the session.
2993 * Locking:
2994 * Takes tty_mutex() to protect tty instance
2995 * Takes tasklist_lock internally to walk sessions
2996 * Takes ->siglock() when updating signal->tty
2999 static int tiocsctty(struct tty_struct *tty, int arg)
3001 int ret = 0;
3002 if (current->signal->leader && (task_session(current) == tty->session))
3003 return ret;
3005 mutex_lock(&tty_mutex);
3007 * The process must be a session leader and
3008 * not have a controlling tty already.
3010 if (!current->signal->leader || current->signal->tty) {
3011 ret = -EPERM;
3012 goto unlock;
3015 if (tty->session) {
3017 * This tty is already the controlling
3018 * tty for another session group!
3020 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
3022 * Steal it away
3024 read_lock(&tasklist_lock);
3025 session_clear_tty(tty->session);
3026 read_unlock(&tasklist_lock);
3027 } else {
3028 ret = -EPERM;
3029 goto unlock;
3032 proc_set_tty(current, tty);
3033 unlock:
3034 mutex_unlock(&tty_mutex);
3035 return ret;
3039 * tiocgpgrp - get process group
3040 * @tty: tty passed by user
3041 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3042 * @p: returned pid
3044 * Obtain the process group of the tty. If there is no process group
3045 * return an error.
3047 * Locking: none. Reference to current->signal->tty is safe.
3050 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3053 * (tty == real_tty) is a cheap way of
3054 * testing if the tty is NOT a master pty.
3056 if (tty == real_tty && current->signal->tty != real_tty)
3057 return -ENOTTY;
3058 return put_user(pid_nr(real_tty->pgrp), p);
3062 * tiocspgrp - attempt to set process group
3063 * @tty: tty passed by user
3064 * @real_tty: tty side device matching tty passed by user
3065 * @p: pid pointer
3067 * Set the process group of the tty to the session passed. Only
3068 * permitted where the tty session is our session.
3070 * Locking: None
3073 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3075 struct pid *pgrp;
3076 pid_t pgrp_nr;
3077 int retval = tty_check_change(real_tty);
3079 if (retval == -EIO)
3080 return -ENOTTY;
3081 if (retval)
3082 return retval;
3083 if (!current->signal->tty ||
3084 (current->signal->tty != real_tty) ||
3085 (real_tty->session != task_session(current)))
3086 return -ENOTTY;
3087 if (get_user(pgrp_nr, p))
3088 return -EFAULT;
3089 if (pgrp_nr < 0)
3090 return -EINVAL;
3091 rcu_read_lock();
3092 pgrp = find_pid(pgrp_nr);
3093 retval = -ESRCH;
3094 if (!pgrp)
3095 goto out_unlock;
3096 retval = -EPERM;
3097 if (session_of_pgrp(pgrp) != task_session(current))
3098 goto out_unlock;
3099 retval = 0;
3100 put_pid(real_tty->pgrp);
3101 real_tty->pgrp = get_pid(pgrp);
3102 out_unlock:
3103 rcu_read_unlock();
3104 return retval;
3108 * tiocgsid - get session id
3109 * @tty: tty passed by user
3110 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3111 * @p: pointer to returned session id
3113 * Obtain the session id of the tty. If there is no session
3114 * return an error.
3116 * Locking: none. Reference to current->signal->tty is safe.
3119 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3122 * (tty == real_tty) is a cheap way of
3123 * testing if the tty is NOT a master pty.
3125 if (tty == real_tty && current->signal->tty != real_tty)
3126 return -ENOTTY;
3127 if (!real_tty->session)
3128 return -ENOTTY;
3129 return put_user(pid_nr(real_tty->session), p);
3133 * tiocsetd - set line discipline
3134 * @tty: tty device
3135 * @p: pointer to user data
3137 * Set the line discipline according to user request.
3139 * Locking: see tty_set_ldisc, this function is just a helper
3142 static int tiocsetd(struct tty_struct *tty, int __user *p)
3144 int ldisc;
3146 if (get_user(ldisc, p))
3147 return -EFAULT;
3148 return tty_set_ldisc(tty, ldisc);
3152 * send_break - performed time break
3153 * @tty: device to break on
3154 * @duration: timeout in mS
3156 * Perform a timed break on hardware that lacks its own driver level
3157 * timed break functionality.
3159 * Locking:
3160 * atomic_write_lock serializes
3164 static int send_break(struct tty_struct *tty, unsigned int duration)
3166 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3167 return -EINTR;
3168 tty->driver->break_ctl(tty, -1);
3169 if (!signal_pending(current)) {
3170 msleep_interruptible(duration);
3172 tty->driver->break_ctl(tty, 0);
3173 mutex_unlock(&tty->atomic_write_lock);
3174 if (signal_pending(current))
3175 return -EINTR;
3176 return 0;
3180 * tiocmget - get modem status
3181 * @tty: tty device
3182 * @file: user file pointer
3183 * @p: pointer to result
3185 * Obtain the modem status bits from the tty driver if the feature
3186 * is supported. Return -EINVAL if it is not available.
3188 * Locking: none (up to the driver)
3191 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3193 int retval = -EINVAL;
3195 if (tty->driver->tiocmget) {
3196 retval = tty->driver->tiocmget(tty, file);
3198 if (retval >= 0)
3199 retval = put_user(retval, p);
3201 return retval;
3205 * tiocmset - set modem status
3206 * @tty: tty device
3207 * @file: user file pointer
3208 * @cmd: command - clear bits, set bits or set all
3209 * @p: pointer to desired bits
3211 * Set the modem status bits from the tty driver if the feature
3212 * is supported. Return -EINVAL if it is not available.
3214 * Locking: none (up to the driver)
3217 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3218 unsigned __user *p)
3220 int retval = -EINVAL;
3222 if (tty->driver->tiocmset) {
3223 unsigned int set, clear, val;
3225 retval = get_user(val, p);
3226 if (retval)
3227 return retval;
3229 set = clear = 0;
3230 switch (cmd) {
3231 case TIOCMBIS:
3232 set = val;
3233 break;
3234 case TIOCMBIC:
3235 clear = val;
3236 break;
3237 case TIOCMSET:
3238 set = val;
3239 clear = ~val;
3240 break;
3243 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3244 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3246 retval = tty->driver->tiocmset(tty, file, set, clear);
3248 return retval;
3252 * Split this up, as gcc can choke on it otherwise..
3254 int tty_ioctl(struct inode * inode, struct file * file,
3255 unsigned int cmd, unsigned long arg)
3257 struct tty_struct *tty, *real_tty;
3258 void __user *p = (void __user *)arg;
3259 int retval;
3260 struct tty_ldisc *ld;
3262 tty = (struct tty_struct *)file->private_data;
3263 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3264 return -EINVAL;
3266 /* CHECKME: is this safe as one end closes ? */
3268 real_tty = tty;
3269 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3270 tty->driver->subtype == PTY_TYPE_MASTER)
3271 real_tty = tty->link;
3274 * Break handling by driver
3276 if (!tty->driver->break_ctl) {
3277 switch(cmd) {
3278 case TIOCSBRK:
3279 case TIOCCBRK:
3280 if (tty->driver->ioctl)
3281 return tty->driver->ioctl(tty, file, cmd, arg);
3282 return -EINVAL;
3284 /* These two ioctl's always return success; even if */
3285 /* the driver doesn't support them. */
3286 case TCSBRK:
3287 case TCSBRKP:
3288 if (!tty->driver->ioctl)
3289 return 0;
3290 retval = tty->driver->ioctl(tty, file, cmd, arg);
3291 if (retval == -ENOIOCTLCMD)
3292 retval = 0;
3293 return retval;
3298 * Factor out some common prep work
3300 switch (cmd) {
3301 case TIOCSETD:
3302 case TIOCSBRK:
3303 case TIOCCBRK:
3304 case TCSBRK:
3305 case TCSBRKP:
3306 retval = tty_check_change(tty);
3307 if (retval)
3308 return retval;
3309 if (cmd != TIOCCBRK) {
3310 tty_wait_until_sent(tty, 0);
3311 if (signal_pending(current))
3312 return -EINTR;
3314 break;
3317 switch (cmd) {
3318 case TIOCSTI:
3319 return tiocsti(tty, p);
3320 case TIOCGWINSZ:
3321 return tiocgwinsz(tty, p);
3322 case TIOCSWINSZ:
3323 return tiocswinsz(tty, real_tty, p);
3324 case TIOCCONS:
3325 return real_tty!=tty ? -EINVAL : tioccons(file);
3326 case FIONBIO:
3327 return fionbio(file, p);
3328 case TIOCEXCL:
3329 set_bit(TTY_EXCLUSIVE, &tty->flags);
3330 return 0;
3331 case TIOCNXCL:
3332 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3333 return 0;
3334 case TIOCNOTTY:
3335 if (current->signal->tty != tty)
3336 return -ENOTTY;
3337 no_tty();
3338 return 0;
3339 case TIOCSCTTY:
3340 return tiocsctty(tty, arg);
3341 case TIOCGPGRP:
3342 return tiocgpgrp(tty, real_tty, p);
3343 case TIOCSPGRP:
3344 return tiocspgrp(tty, real_tty, p);
3345 case TIOCGSID:
3346 return tiocgsid(tty, real_tty, p);
3347 case TIOCGETD:
3348 /* FIXME: check this is ok */
3349 return put_user(tty->ldisc.num, (int __user *)p);
3350 case TIOCSETD:
3351 return tiocsetd(tty, p);
3352 #ifdef CONFIG_VT
3353 case TIOCLINUX:
3354 return tioclinux(tty, arg);
3355 #endif
3357 * Break handling
3359 case TIOCSBRK: /* Turn break on, unconditionally */
3360 tty->driver->break_ctl(tty, -1);
3361 return 0;
3363 case TIOCCBRK: /* Turn break off, unconditionally */
3364 tty->driver->break_ctl(tty, 0);
3365 return 0;
3366 case TCSBRK: /* SVID version: non-zero arg --> no break */
3367 /* non-zero arg means wait for all output data
3368 * to be sent (performed above) but don't send break.
3369 * This is used by the tcdrain() termios function.
3371 if (!arg)
3372 return send_break(tty, 250);
3373 return 0;
3374 case TCSBRKP: /* support for POSIX tcsendbreak() */
3375 return send_break(tty, arg ? arg*100 : 250);
3377 case TIOCMGET:
3378 return tty_tiocmget(tty, file, p);
3380 case TIOCMSET:
3381 case TIOCMBIC:
3382 case TIOCMBIS:
3383 return tty_tiocmset(tty, file, cmd, p);
3384 case TCFLSH:
3385 switch (arg) {
3386 case TCIFLUSH:
3387 case TCIOFLUSH:
3388 /* flush tty buffer and allow ldisc to process ioctl */
3389 tty_buffer_flush(tty);
3390 break;
3392 break;
3394 if (tty->driver->ioctl) {
3395 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3396 if (retval != -ENOIOCTLCMD)
3397 return retval;
3399 ld = tty_ldisc_ref_wait(tty);
3400 retval = -EINVAL;
3401 if (ld->ioctl) {
3402 retval = ld->ioctl(tty, file, cmd, arg);
3403 if (retval == -ENOIOCTLCMD)
3404 retval = -EINVAL;
3406 tty_ldisc_deref(ld);
3407 return retval;
3410 #ifdef CONFIG_COMPAT
3411 static long tty_compat_ioctl(struct file * file, unsigned int cmd,
3412 unsigned long arg)
3414 struct inode *inode = file->f_dentry->d_inode;
3415 struct tty_struct *tty = file->private_data;
3416 struct tty_ldisc *ld;
3417 int retval = -ENOIOCTLCMD;
3419 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3420 return -EINVAL;
3422 if (tty->driver->compat_ioctl) {
3423 retval = (tty->driver->compat_ioctl)(tty, file, cmd, arg);
3424 if (retval != -ENOIOCTLCMD)
3425 return retval;
3428 ld = tty_ldisc_ref_wait(tty);
3429 if (ld->compat_ioctl)
3430 retval = ld->compat_ioctl(tty, file, cmd, arg);
3431 tty_ldisc_deref(ld);
3433 return retval;
3435 #endif
3438 * This implements the "Secure Attention Key" --- the idea is to
3439 * prevent trojan horses by killing all processes associated with this
3440 * tty when the user hits the "Secure Attention Key". Required for
3441 * super-paranoid applications --- see the Orange Book for more details.
3443 * This code could be nicer; ideally it should send a HUP, wait a few
3444 * seconds, then send a INT, and then a KILL signal. But you then
3445 * have to coordinate with the init process, since all processes associated
3446 * with the current tty must be dead before the new getty is allowed
3447 * to spawn.
3449 * Now, if it would be correct ;-/ The current code has a nasty hole -
3450 * it doesn't catch files in flight. We may send the descriptor to ourselves
3451 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3453 * Nasty bug: do_SAK is being called in interrupt context. This can
3454 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3456 void __do_SAK(struct tty_struct *tty)
3458 #ifdef TTY_SOFT_SAK
3459 tty_hangup(tty);
3460 #else
3461 struct task_struct *g, *p;
3462 struct pid *session;
3463 int i;
3464 struct file *filp;
3465 struct fdtable *fdt;
3467 if (!tty)
3468 return;
3469 session = tty->session;
3471 tty_ldisc_flush(tty);
3473 if (tty->driver->flush_buffer)
3474 tty->driver->flush_buffer(tty);
3476 read_lock(&tasklist_lock);
3477 /* Kill the entire session */
3478 do_each_pid_task(session, PIDTYPE_SID, p) {
3479 printk(KERN_NOTICE "SAK: killed process %d"
3480 " (%s): process_session(p)==tty->session\n",
3481 p->pid, p->comm);
3482 send_sig(SIGKILL, p, 1);
3483 } while_each_pid_task(session, PIDTYPE_SID, p);
3484 /* Now kill any processes that happen to have the
3485 * tty open.
3487 do_each_thread(g, p) {
3488 if (p->signal->tty == tty) {
3489 printk(KERN_NOTICE "SAK: killed process %d"
3490 " (%s): process_session(p)==tty->session\n",
3491 p->pid, p->comm);
3492 send_sig(SIGKILL, p, 1);
3493 continue;
3495 task_lock(p);
3496 if (p->files) {
3498 * We don't take a ref to the file, so we must
3499 * hold ->file_lock instead.
3501 spin_lock(&p->files->file_lock);
3502 fdt = files_fdtable(p->files);
3503 for (i=0; i < fdt->max_fds; i++) {
3504 filp = fcheck_files(p->files, i);
3505 if (!filp)
3506 continue;
3507 if (filp->f_op->read == tty_read &&
3508 filp->private_data == tty) {
3509 printk(KERN_NOTICE "SAK: killed process %d"
3510 " (%s): fd#%d opened to the tty\n",
3511 p->pid, p->comm, i);
3512 force_sig(SIGKILL, p);
3513 break;
3516 spin_unlock(&p->files->file_lock);
3518 task_unlock(p);
3519 } while_each_thread(g, p);
3520 read_unlock(&tasklist_lock);
3521 #endif
3524 static void do_SAK_work(struct work_struct *work)
3526 struct tty_struct *tty =
3527 container_of(work, struct tty_struct, SAK_work);
3528 __do_SAK(tty);
3532 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3533 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3534 * the values which we write to it will be identical to the values which it
3535 * already has. --akpm
3537 void do_SAK(struct tty_struct *tty)
3539 if (!tty)
3540 return;
3541 schedule_work(&tty->SAK_work);
3544 EXPORT_SYMBOL(do_SAK);
3547 * flush_to_ldisc
3548 * @work: tty structure passed from work queue.
3550 * This routine is called out of the software interrupt to flush data
3551 * from the buffer chain to the line discipline.
3553 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3554 * while invoking the line discipline receive_buf method. The
3555 * receive_buf method is single threaded for each tty instance.
3558 static void flush_to_ldisc(struct work_struct *work)
3560 struct tty_struct *tty =
3561 container_of(work, struct tty_struct, buf.work.work);
3562 unsigned long flags;
3563 struct tty_ldisc *disc;
3564 struct tty_buffer *tbuf, *head;
3565 char *char_buf;
3566 unsigned char *flag_buf;
3568 disc = tty_ldisc_ref(tty);
3569 if (disc == NULL) /* !TTY_LDISC */
3570 return;
3572 spin_lock_irqsave(&tty->buf.lock, flags);
3573 head = tty->buf.head;
3574 if (head != NULL) {
3575 tty->buf.head = NULL;
3576 for (;;) {
3577 int count = head->commit - head->read;
3578 if (!count) {
3579 if (head->next == NULL)
3580 break;
3581 tbuf = head;
3582 head = head->next;
3583 tty_buffer_free(tty, tbuf);
3584 continue;
3586 if (!tty->receive_room) {
3587 schedule_delayed_work(&tty->buf.work, 1);
3588 break;
3590 if (count > tty->receive_room)
3591 count = tty->receive_room;
3592 char_buf = head->char_buf_ptr + head->read;
3593 flag_buf = head->flag_buf_ptr + head->read;
3594 head->read += count;
3595 spin_unlock_irqrestore(&tty->buf.lock, flags);
3596 disc->receive_buf(tty, char_buf, flag_buf, count);
3597 spin_lock_irqsave(&tty->buf.lock, flags);
3599 tty->buf.head = head;
3601 spin_unlock_irqrestore(&tty->buf.lock, flags);
3603 tty_ldisc_deref(disc);
3607 * tty_flip_buffer_push - terminal
3608 * @tty: tty to push
3610 * Queue a push of the terminal flip buffers to the line discipline. This
3611 * function must not be called from IRQ context if tty->low_latency is set.
3613 * In the event of the queue being busy for flipping the work will be
3614 * held off and retried later.
3616 * Locking: tty buffer lock. Driver locks in low latency mode.
3619 void tty_flip_buffer_push(struct tty_struct *tty)
3621 unsigned long flags;
3622 spin_lock_irqsave(&tty->buf.lock, flags);
3623 if (tty->buf.tail != NULL)
3624 tty->buf.tail->commit = tty->buf.tail->used;
3625 spin_unlock_irqrestore(&tty->buf.lock, flags);
3627 if (tty->low_latency)
3628 flush_to_ldisc(&tty->buf.work.work);
3629 else
3630 schedule_delayed_work(&tty->buf.work, 1);
3633 EXPORT_SYMBOL(tty_flip_buffer_push);
3637 * initialize_tty_struct
3638 * @tty: tty to initialize
3640 * This subroutine initializes a tty structure that has been newly
3641 * allocated.
3643 * Locking: none - tty in question must not be exposed at this point
3646 static void initialize_tty_struct(struct tty_struct *tty)
3648 memset(tty, 0, sizeof(struct tty_struct));
3649 tty->magic = TTY_MAGIC;
3650 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3651 tty->session = NULL;
3652 tty->pgrp = NULL;
3653 tty->overrun_time = jiffies;
3654 tty->buf.head = tty->buf.tail = NULL;
3655 tty_buffer_init(tty);
3656 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3657 init_MUTEX(&tty->buf.pty_sem);
3658 mutex_init(&tty->termios_mutex);
3659 init_waitqueue_head(&tty->write_wait);
3660 init_waitqueue_head(&tty->read_wait);
3661 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3662 mutex_init(&tty->atomic_read_lock);
3663 mutex_init(&tty->atomic_write_lock);
3664 spin_lock_init(&tty->read_lock);
3665 INIT_LIST_HEAD(&tty->tty_files);
3666 INIT_WORK(&tty->SAK_work, do_SAK_work);
3670 * The default put_char routine if the driver did not define one.
3673 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3675 tty->driver->write(tty, &ch, 1);
3678 static struct class *tty_class;
3681 * tty_register_device - register a tty device
3682 * @driver: the tty driver that describes the tty device
3683 * @index: the index in the tty driver for this tty device
3684 * @device: a struct device that is associated with this tty device.
3685 * This field is optional, if there is no known struct device
3686 * for this tty device it can be set to NULL safely.
3688 * Returns a pointer to the struct device for this tty device
3689 * (or ERR_PTR(-EFOO) on error).
3691 * This call is required to be made to register an individual tty device
3692 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3693 * that bit is not set, this function should not be called by a tty
3694 * driver.
3696 * Locking: ??
3699 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3700 struct device *device)
3702 char name[64];
3703 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3705 if (index >= driver->num) {
3706 printk(KERN_ERR "Attempt to register invalid tty line number "
3707 " (%d).\n", index);
3708 return ERR_PTR(-EINVAL);
3711 if (driver->type == TTY_DRIVER_TYPE_PTY)
3712 pty_line_name(driver, index, name);
3713 else
3714 tty_line_name(driver, index, name);
3716 return device_create(tty_class, device, dev, name);
3720 * tty_unregister_device - unregister a tty device
3721 * @driver: the tty driver that describes the tty device
3722 * @index: the index in the tty driver for this tty device
3724 * If a tty device is registered with a call to tty_register_device() then
3725 * this function must be called when the tty device is gone.
3727 * Locking: ??
3730 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3732 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3735 EXPORT_SYMBOL(tty_register_device);
3736 EXPORT_SYMBOL(tty_unregister_device);
3738 struct tty_driver *alloc_tty_driver(int lines)
3740 struct tty_driver *driver;
3742 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3743 if (driver) {
3744 memset(driver, 0, sizeof(struct tty_driver));
3745 driver->magic = TTY_DRIVER_MAGIC;
3746 driver->num = lines;
3747 /* later we'll move allocation of tables here */
3749 return driver;
3752 void put_tty_driver(struct tty_driver *driver)
3754 kfree(driver);
3757 void tty_set_operations(struct tty_driver *driver,
3758 const struct tty_operations *op)
3760 driver->open = op->open;
3761 driver->close = op->close;
3762 driver->write = op->write;
3763 driver->put_char = op->put_char;
3764 driver->flush_chars = op->flush_chars;
3765 driver->write_room = op->write_room;
3766 driver->chars_in_buffer = op->chars_in_buffer;
3767 driver->ioctl = op->ioctl;
3768 driver->compat_ioctl = op->compat_ioctl;
3769 driver->set_termios = op->set_termios;
3770 driver->throttle = op->throttle;
3771 driver->unthrottle = op->unthrottle;
3772 driver->stop = op->stop;
3773 driver->start = op->start;
3774 driver->hangup = op->hangup;
3775 driver->break_ctl = op->break_ctl;
3776 driver->flush_buffer = op->flush_buffer;
3777 driver->set_ldisc = op->set_ldisc;
3778 driver->wait_until_sent = op->wait_until_sent;
3779 driver->send_xchar = op->send_xchar;
3780 driver->read_proc = op->read_proc;
3781 driver->write_proc = op->write_proc;
3782 driver->tiocmget = op->tiocmget;
3783 driver->tiocmset = op->tiocmset;
3787 EXPORT_SYMBOL(alloc_tty_driver);
3788 EXPORT_SYMBOL(put_tty_driver);
3789 EXPORT_SYMBOL(tty_set_operations);
3792 * Called by a tty driver to register itself.
3794 int tty_register_driver(struct tty_driver *driver)
3796 int error;
3797 int i;
3798 dev_t dev;
3799 void **p = NULL;
3801 if (driver->flags & TTY_DRIVER_INSTALLED)
3802 return 0;
3804 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3805 p = kzalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3806 if (!p)
3807 return -ENOMEM;
3810 if (!driver->major) {
3811 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3812 driver->name);
3813 if (!error) {
3814 driver->major = MAJOR(dev);
3815 driver->minor_start = MINOR(dev);
3817 } else {
3818 dev = MKDEV(driver->major, driver->minor_start);
3819 error = register_chrdev_region(dev, driver->num, driver->name);
3821 if (error < 0) {
3822 kfree(p);
3823 return error;
3826 if (p) {
3827 driver->ttys = (struct tty_struct **)p;
3828 driver->termios = (struct ktermios **)(p + driver->num);
3829 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3830 } else {
3831 driver->ttys = NULL;
3832 driver->termios = NULL;
3833 driver->termios_locked = NULL;
3836 cdev_init(&driver->cdev, &tty_fops);
3837 driver->cdev.owner = driver->owner;
3838 error = cdev_add(&driver->cdev, dev, driver->num);
3839 if (error) {
3840 unregister_chrdev_region(dev, driver->num);
3841 driver->ttys = NULL;
3842 driver->termios = driver->termios_locked = NULL;
3843 kfree(p);
3844 return error;
3847 if (!driver->put_char)
3848 driver->put_char = tty_default_put_char;
3850 mutex_lock(&tty_mutex);
3851 list_add(&driver->tty_drivers, &tty_drivers);
3852 mutex_unlock(&tty_mutex);
3854 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3855 for(i = 0; i < driver->num; i++)
3856 tty_register_device(driver, i, NULL);
3858 proc_tty_register_driver(driver);
3859 return 0;
3862 EXPORT_SYMBOL(tty_register_driver);
3865 * Called by a tty driver to unregister itself.
3867 int tty_unregister_driver(struct tty_driver *driver)
3869 int i;
3870 struct ktermios *tp;
3871 void *p;
3873 if (driver->refcount)
3874 return -EBUSY;
3876 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3877 driver->num);
3878 mutex_lock(&tty_mutex);
3879 list_del(&driver->tty_drivers);
3880 mutex_unlock(&tty_mutex);
3883 * Free the termios and termios_locked structures because
3884 * we don't want to get memory leaks when modular tty
3885 * drivers are removed from the kernel.
3887 for (i = 0; i < driver->num; i++) {
3888 tp = driver->termios[i];
3889 if (tp) {
3890 driver->termios[i] = NULL;
3891 kfree(tp);
3893 tp = driver->termios_locked[i];
3894 if (tp) {
3895 driver->termios_locked[i] = NULL;
3896 kfree(tp);
3898 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3899 tty_unregister_device(driver, i);
3901 p = driver->ttys;
3902 proc_tty_unregister_driver(driver);
3903 driver->ttys = NULL;
3904 driver->termios = driver->termios_locked = NULL;
3905 kfree(p);
3906 cdev_del(&driver->cdev);
3907 return 0;
3909 EXPORT_SYMBOL(tty_unregister_driver);
3911 dev_t tty_devnum(struct tty_struct *tty)
3913 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3915 EXPORT_SYMBOL(tty_devnum);
3917 void proc_clear_tty(struct task_struct *p)
3919 spin_lock_irq(&p->sighand->siglock);
3920 p->signal->tty = NULL;
3921 spin_unlock_irq(&p->sighand->siglock);
3923 EXPORT_SYMBOL(proc_clear_tty);
3925 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3927 if (tty) {
3928 /* We should not have a session or pgrp to here but.... */
3929 put_pid(tty->session);
3930 put_pid(tty->pgrp);
3931 tty->session = get_pid(task_session(tsk));
3932 tty->pgrp = get_pid(task_pgrp(tsk));
3934 put_pid(tsk->signal->tty_old_pgrp);
3935 tsk->signal->tty = tty;
3936 tsk->signal->tty_old_pgrp = NULL;
3939 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3941 spin_lock_irq(&tsk->sighand->siglock);
3942 __proc_set_tty(tsk, tty);
3943 spin_unlock_irq(&tsk->sighand->siglock);
3946 struct tty_struct *get_current_tty(void)
3948 struct tty_struct *tty;
3949 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3950 tty = current->signal->tty;
3952 * session->tty can be changed/cleared from under us, make sure we
3953 * issue the load. The obtained pointer, when not NULL, is valid as
3954 * long as we hold tty_mutex.
3956 barrier();
3957 return tty;
3959 EXPORT_SYMBOL_GPL(get_current_tty);
3962 * Initialize the console device. This is called *early*, so
3963 * we can't necessarily depend on lots of kernel help here.
3964 * Just do some early initializations, and do the complex setup
3965 * later.
3967 void __init console_init(void)
3969 initcall_t *call;
3971 /* Setup the default TTY line discipline. */
3972 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3975 * set up the console device so that later boot sequences can
3976 * inform about problems etc..
3978 call = __con_initcall_start;
3979 while (call < __con_initcall_end) {
3980 (*call)();
3981 call++;
3985 #ifdef CONFIG_VT
3986 extern int vty_init(void);
3987 #endif
3989 static int __init tty_class_init(void)
3991 tty_class = class_create(THIS_MODULE, "tty");
3992 if (IS_ERR(tty_class))
3993 return PTR_ERR(tty_class);
3994 return 0;
3997 postcore_initcall(tty_class_init);
3999 /* 3/2004 jmc: why do these devices exist? */
4001 static struct cdev tty_cdev, console_cdev;
4002 #ifdef CONFIG_UNIX98_PTYS
4003 static struct cdev ptmx_cdev;
4004 #endif
4005 #ifdef CONFIG_VT
4006 static struct cdev vc0_cdev;
4007 #endif
4010 * Ok, now we can initialize the rest of the tty devices and can count
4011 * on memory allocations, interrupts etc..
4013 static int __init tty_init(void)
4015 cdev_init(&tty_cdev, &tty_fops);
4016 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
4017 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
4018 panic("Couldn't register /dev/tty driver\n");
4019 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
4021 cdev_init(&console_cdev, &console_fops);
4022 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
4023 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
4024 panic("Couldn't register /dev/console driver\n");
4025 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
4027 #ifdef CONFIG_UNIX98_PTYS
4028 cdev_init(&ptmx_cdev, &ptmx_fops);
4029 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
4030 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
4031 panic("Couldn't register /dev/ptmx driver\n");
4032 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
4033 #endif
4035 #ifdef CONFIG_VT
4036 cdev_init(&vc0_cdev, &console_fops);
4037 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
4038 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
4039 panic("Couldn't register /dev/tty0 driver\n");
4040 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
4042 vty_init();
4043 #endif
4044 return 0;
4046 module_init(tty_init);