[PATCH] fix VmSize and VmData after mremap
[linux-2.6.22.y-op.git] / kernel / signal.c
blobca1186eef9380cd5e633f644a0891d1dacc5bd16
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <linux/audit.h>
28 #include <asm/param.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/siginfo.h>
34 * SLAB caches for signal bits.
37 static kmem_cache_t *sigqueue_cachep;
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
113 #ifdef SIGEMT
114 #define M_SIGEMT M(SIGEMT)
115 #else
116 #define M_SIGEMT 0
117 #endif
119 #if SIGRTMIN > BITS_PER_LONG
120 #define M(sig) (1ULL << ((sig)-1))
121 #else
122 #define M(sig) (1UL << ((sig)-1))
123 #endif
124 #define T(sig, mask) (M(sig) & (mask))
126 #define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
129 #define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
132 #define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
137 #define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
140 #define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142 #define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144 #define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146 #define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
149 #define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153 #define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157 static int sig_ignored(struct task_struct *t, int sig)
159 void __user * handler;
162 * Tracers always want to know about signals..
164 if (t->ptrace & PT_PTRACED)
165 return 0;
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
172 if (sigismember(&t->blocked, sig))
173 return 0;
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
185 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
187 unsigned long ready;
188 long i;
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
208 return ready != 0;
211 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 if (t->signal->group_stop_count > 0 ||
216 (freezing(t)) ||
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 void recalc_sigpending(void)
226 recalc_sigpending_tsk(current);
229 /* Given the mask, find the first available signal that should be serviced. */
231 static int
232 next_signal(struct sigpending *pending, sigset_t *mask)
234 unsigned long i, *s, *m, x;
235 int sig = 0;
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
246 break;
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
262 return sig;
265 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
266 int override_rlimit)
268 struct sigqueue *q = NULL;
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
280 q->lock = NULL;
281 q->user = get_uid(t->user);
283 return(q);
286 static inline void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
295 static void flush_sigqueue(struct sigpending *queue)
297 struct sigqueue *q;
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
308 * Flush all pending signals for a task.
311 void
312 flush_signals(struct task_struct *t)
314 unsigned long flags;
316 spin_lock_irqsave(&t->sighand->siglock, flags);
317 clear_tsk_thread_flag(t,TIF_SIGPENDING);
318 flush_sigqueue(&t->pending);
319 flush_sigqueue(&t->signal->shared_pending);
320 spin_unlock_irqrestore(&t->sighand->siglock, flags);
324 * This function expects the tasklist_lock write-locked.
326 void __exit_sighand(struct task_struct *tsk)
328 struct sighand_struct * sighand = tsk->sighand;
330 /* Ok, we're done with the signal handlers */
331 tsk->sighand = NULL;
332 if (atomic_dec_and_test(&sighand->count))
333 kmem_cache_free(sighand_cachep, sighand);
336 void exit_sighand(struct task_struct *tsk)
338 write_lock_irq(&tasklist_lock);
339 __exit_sighand(tsk);
340 write_unlock_irq(&tasklist_lock);
344 * This function expects the tasklist_lock write-locked.
346 void __exit_signal(struct task_struct *tsk)
348 struct signal_struct * sig = tsk->signal;
349 struct sighand_struct * sighand = tsk->sighand;
351 if (!sig)
352 BUG();
353 if (!atomic_read(&sig->count))
354 BUG();
355 spin_lock(&sighand->siglock);
356 posix_cpu_timers_exit(tsk);
357 if (atomic_dec_and_test(&sig->count)) {
358 posix_cpu_timers_exit_group(tsk);
359 if (tsk == sig->curr_target)
360 sig->curr_target = next_thread(tsk);
361 tsk->signal = NULL;
362 spin_unlock(&sighand->siglock);
363 flush_sigqueue(&sig->shared_pending);
364 } else {
366 * If there is any task waiting for the group exit
367 * then notify it:
369 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
370 wake_up_process(sig->group_exit_task);
371 sig->group_exit_task = NULL;
373 if (tsk == sig->curr_target)
374 sig->curr_target = next_thread(tsk);
375 tsk->signal = NULL;
377 * Accumulate here the counters for all threads but the
378 * group leader as they die, so they can be added into
379 * the process-wide totals when those are taken.
380 * The group leader stays around as a zombie as long
381 * as there are other threads. When it gets reaped,
382 * the exit.c code will add its counts into these totals.
383 * We won't ever get here for the group leader, since it
384 * will have been the last reference on the signal_struct.
386 sig->utime = cputime_add(sig->utime, tsk->utime);
387 sig->stime = cputime_add(sig->stime, tsk->stime);
388 sig->min_flt += tsk->min_flt;
389 sig->maj_flt += tsk->maj_flt;
390 sig->nvcsw += tsk->nvcsw;
391 sig->nivcsw += tsk->nivcsw;
392 sig->sched_time += tsk->sched_time;
393 spin_unlock(&sighand->siglock);
394 sig = NULL; /* Marker for below. */
396 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
397 flush_sigqueue(&tsk->pending);
398 if (sig) {
400 * We are cleaning up the signal_struct here. We delayed
401 * calling exit_itimers until after flush_sigqueue, just in
402 * case our thread-local pending queue contained a queued
403 * timer signal that would have been cleared in
404 * exit_itimers. When that called sigqueue_free, it would
405 * attempt to re-take the tasklist_lock and deadlock. This
406 * can never happen if we ensure that all queues the
407 * timer's signal might be queued on have been flushed
408 * first. The shared_pending queue, and our own pending
409 * queue are the only queues the timer could be on, since
410 * there are no other threads left in the group and timer
411 * signals are constrained to threads inside the group.
413 exit_itimers(sig);
414 exit_thread_group_keys(sig);
415 kmem_cache_free(signal_cachep, sig);
419 void exit_signal(struct task_struct *tsk)
421 write_lock_irq(&tasklist_lock);
422 __exit_signal(tsk);
423 write_unlock_irq(&tasklist_lock);
427 * Flush all handlers for a task.
430 void
431 flush_signal_handlers(struct task_struct *t, int force_default)
433 int i;
434 struct k_sigaction *ka = &t->sighand->action[0];
435 for (i = _NSIG ; i != 0 ; i--) {
436 if (force_default || ka->sa.sa_handler != SIG_IGN)
437 ka->sa.sa_handler = SIG_DFL;
438 ka->sa.sa_flags = 0;
439 sigemptyset(&ka->sa.sa_mask);
440 ka++;
445 /* Notify the system that a driver wants to block all signals for this
446 * process, and wants to be notified if any signals at all were to be
447 * sent/acted upon. If the notifier routine returns non-zero, then the
448 * signal will be acted upon after all. If the notifier routine returns 0,
449 * then then signal will be blocked. Only one block per process is
450 * allowed. priv is a pointer to private data that the notifier routine
451 * can use to determine if the signal should be blocked or not. */
453 void
454 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
456 unsigned long flags;
458 spin_lock_irqsave(&current->sighand->siglock, flags);
459 current->notifier_mask = mask;
460 current->notifier_data = priv;
461 current->notifier = notifier;
462 spin_unlock_irqrestore(&current->sighand->siglock, flags);
465 /* Notify the system that blocking has ended. */
467 void
468 unblock_all_signals(void)
470 unsigned long flags;
472 spin_lock_irqsave(&current->sighand->siglock, flags);
473 current->notifier = NULL;
474 current->notifier_data = NULL;
475 recalc_sigpending();
476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
479 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
481 struct sigqueue *q, *first = NULL;
482 int still_pending = 0;
484 if (unlikely(!sigismember(&list->signal, sig)))
485 return 0;
488 * Collect the siginfo appropriate to this signal. Check if
489 * there is another siginfo for the same signal.
491 list_for_each_entry(q, &list->list, list) {
492 if (q->info.si_signo == sig) {
493 if (first) {
494 still_pending = 1;
495 break;
497 first = q;
500 if (first) {
501 list_del_init(&first->list);
502 copy_siginfo(info, &first->info);
503 __sigqueue_free(first);
504 if (!still_pending)
505 sigdelset(&list->signal, sig);
506 } else {
508 /* Ok, it wasn't in the queue. This must be
509 a fast-pathed signal or we must have been
510 out of queue space. So zero out the info.
512 sigdelset(&list->signal, sig);
513 info->si_signo = sig;
514 info->si_errno = 0;
515 info->si_code = 0;
516 info->si_pid = 0;
517 info->si_uid = 0;
519 return 1;
522 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
523 siginfo_t *info)
525 int sig = 0;
527 /* SIGKILL must have priority, otherwise it is quite easy
528 * to create an unkillable process, sending sig < SIGKILL
529 * to self */
530 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
531 if (!sigismember(mask, SIGKILL))
532 sig = SIGKILL;
535 if (likely(!sig))
536 sig = next_signal(pending, mask);
537 if (sig) {
538 if (current->notifier) {
539 if (sigismember(current->notifier_mask, sig)) {
540 if (!(current->notifier)(current->notifier_data)) {
541 clear_thread_flag(TIF_SIGPENDING);
542 return 0;
547 if (!collect_signal(sig, pending, info))
548 sig = 0;
551 recalc_sigpending();
553 return sig;
557 * Dequeue a signal and return the element to the caller, which is
558 * expected to free it.
560 * All callers have to hold the siglock.
562 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
564 int signr = __dequeue_signal(&tsk->pending, mask, info);
565 if (!signr)
566 signr = __dequeue_signal(&tsk->signal->shared_pending,
567 mask, info);
568 if (signr && unlikely(sig_kernel_stop(signr))) {
570 * Set a marker that we have dequeued a stop signal. Our
571 * caller might release the siglock and then the pending
572 * stop signal it is about to process is no longer in the
573 * pending bitmasks, but must still be cleared by a SIGCONT
574 * (and overruled by a SIGKILL). So those cases clear this
575 * shared flag after we've set it. Note that this flag may
576 * remain set after the signal we return is ignored or
577 * handled. That doesn't matter because its only purpose
578 * is to alert stop-signal processing code when another
579 * processor has come along and cleared the flag.
581 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
583 if ( signr &&
584 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
585 info->si_sys_private){
587 * Release the siglock to ensure proper locking order
588 * of timer locks outside of siglocks. Note, we leave
589 * irqs disabled here, since the posix-timers code is
590 * about to disable them again anyway.
592 spin_unlock(&tsk->sighand->siglock);
593 do_schedule_next_timer(info);
594 spin_lock(&tsk->sighand->siglock);
596 return signr;
600 * Tell a process that it has a new active signal..
602 * NOTE! we rely on the previous spin_lock to
603 * lock interrupts for us! We can only be called with
604 * "siglock" held, and the local interrupt must
605 * have been disabled when that got acquired!
607 * No need to set need_resched since signal event passing
608 * goes through ->blocked
610 void signal_wake_up(struct task_struct *t, int resume)
612 unsigned int mask;
614 set_tsk_thread_flag(t, TIF_SIGPENDING);
617 * For SIGKILL, we want to wake it up in the stopped/traced case.
618 * We don't check t->state here because there is a race with it
619 * executing another processor and just now entering stopped state.
620 * By using wake_up_state, we ensure the process will wake up and
621 * handle its death signal.
623 mask = TASK_INTERRUPTIBLE;
624 if (resume)
625 mask |= TASK_STOPPED | TASK_TRACED;
626 if (!wake_up_state(t, mask))
627 kick_process(t);
631 * Remove signals in mask from the pending set and queue.
632 * Returns 1 if any signals were found.
634 * All callers must be holding the siglock.
636 static int rm_from_queue(unsigned long mask, struct sigpending *s)
638 struct sigqueue *q, *n;
640 if (!sigtestsetmask(&s->signal, mask))
641 return 0;
643 sigdelsetmask(&s->signal, mask);
644 list_for_each_entry_safe(q, n, &s->list, list) {
645 if (q->info.si_signo < SIGRTMIN &&
646 (mask & sigmask(q->info.si_signo))) {
647 list_del_init(&q->list);
648 __sigqueue_free(q);
651 return 1;
655 * Bad permissions for sending the signal
657 static int check_kill_permission(int sig, struct siginfo *info,
658 struct task_struct *t)
660 int error = -EINVAL;
661 if (!valid_signal(sig))
662 return error;
663 error = -EPERM;
664 if ((!info || ((unsigned long)info != 1 &&
665 (unsigned long)info != 2 && SI_FROMUSER(info)))
666 && ((sig != SIGCONT) ||
667 (current->signal->session != t->signal->session))
668 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
669 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
670 && !capable(CAP_KILL))
671 return error;
673 error = security_task_kill(t, info, sig);
674 if (!error)
675 audit_signal_info(sig, t); /* Let audit system see the signal */
676 return error;
679 /* forward decl */
680 static void do_notify_parent_cldstop(struct task_struct *tsk,
681 struct task_struct *parent,
682 int why);
685 * Handle magic process-wide effects of stop/continue signals.
686 * Unlike the signal actions, these happen immediately at signal-generation
687 * time regardless of blocking, ignoring, or handling. This does the
688 * actual continuing for SIGCONT, but not the actual stopping for stop
689 * signals. The process stop is done as a signal action for SIG_DFL.
691 static void handle_stop_signal(int sig, struct task_struct *p)
693 struct task_struct *t;
695 if (p->flags & SIGNAL_GROUP_EXIT)
697 * The process is in the middle of dying already.
699 return;
701 if (sig_kernel_stop(sig)) {
703 * This is a stop signal. Remove SIGCONT from all queues.
705 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
706 t = p;
707 do {
708 rm_from_queue(sigmask(SIGCONT), &t->pending);
709 t = next_thread(t);
710 } while (t != p);
711 } else if (sig == SIGCONT) {
713 * Remove all stop signals from all queues,
714 * and wake all threads.
716 if (unlikely(p->signal->group_stop_count > 0)) {
718 * There was a group stop in progress. We'll
719 * pretend it finished before we got here. We are
720 * obliged to report it to the parent: if the
721 * SIGSTOP happened "after" this SIGCONT, then it
722 * would have cleared this pending SIGCONT. If it
723 * happened "before" this SIGCONT, then the parent
724 * got the SIGCHLD about the stop finishing before
725 * the continue happened. We do the notification
726 * now, and it's as if the stop had finished and
727 * the SIGCHLD was pending on entry to this kill.
729 p->signal->group_stop_count = 0;
730 p->signal->flags = SIGNAL_STOP_CONTINUED;
731 spin_unlock(&p->sighand->siglock);
732 if (p->ptrace & PT_PTRACED)
733 do_notify_parent_cldstop(p, p->parent,
734 CLD_STOPPED);
735 else
736 do_notify_parent_cldstop(
737 p->group_leader,
738 p->group_leader->real_parent,
739 CLD_STOPPED);
740 spin_lock(&p->sighand->siglock);
742 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
743 t = p;
744 do {
745 unsigned int state;
746 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
749 * If there is a handler for SIGCONT, we must make
750 * sure that no thread returns to user mode before
751 * we post the signal, in case it was the only
752 * thread eligible to run the signal handler--then
753 * it must not do anything between resuming and
754 * running the handler. With the TIF_SIGPENDING
755 * flag set, the thread will pause and acquire the
756 * siglock that we hold now and until we've queued
757 * the pending signal.
759 * Wake up the stopped thread _after_ setting
760 * TIF_SIGPENDING
762 state = TASK_STOPPED;
763 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
764 set_tsk_thread_flag(t, TIF_SIGPENDING);
765 state |= TASK_INTERRUPTIBLE;
767 wake_up_state(t, state);
769 t = next_thread(t);
770 } while (t != p);
772 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
774 * We were in fact stopped, and are now continued.
775 * Notify the parent with CLD_CONTINUED.
777 p->signal->flags = SIGNAL_STOP_CONTINUED;
778 p->signal->group_exit_code = 0;
779 spin_unlock(&p->sighand->siglock);
780 if (p->ptrace & PT_PTRACED)
781 do_notify_parent_cldstop(p, p->parent,
782 CLD_CONTINUED);
783 else
784 do_notify_parent_cldstop(
785 p->group_leader,
786 p->group_leader->real_parent,
787 CLD_CONTINUED);
788 spin_lock(&p->sighand->siglock);
789 } else {
791 * We are not stopped, but there could be a stop
792 * signal in the middle of being processed after
793 * being removed from the queue. Clear that too.
795 p->signal->flags = 0;
797 } else if (sig == SIGKILL) {
799 * Make sure that any pending stop signal already dequeued
800 * is undone by the wakeup for SIGKILL.
802 p->signal->flags = 0;
806 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
807 struct sigpending *signals)
809 struct sigqueue * q = NULL;
810 int ret = 0;
813 * fast-pathed signals for kernel-internal things like SIGSTOP
814 * or SIGKILL.
816 if ((unsigned long)info == 2)
817 goto out_set;
819 /* Real-time signals must be queued if sent by sigqueue, or
820 some other real-time mechanism. It is implementation
821 defined whether kill() does so. We attempt to do so, on
822 the principle of least surprise, but since kill is not
823 allowed to fail with EAGAIN when low on memory we just
824 make sure at least one signal gets delivered and don't
825 pass on the info struct. */
827 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
828 ((unsigned long) info < 2 ||
829 info->si_code >= 0)));
830 if (q) {
831 list_add_tail(&q->list, &signals->list);
832 switch ((unsigned long) info) {
833 case 0:
834 q->info.si_signo = sig;
835 q->info.si_errno = 0;
836 q->info.si_code = SI_USER;
837 q->info.si_pid = current->pid;
838 q->info.si_uid = current->uid;
839 break;
840 case 1:
841 q->info.si_signo = sig;
842 q->info.si_errno = 0;
843 q->info.si_code = SI_KERNEL;
844 q->info.si_pid = 0;
845 q->info.si_uid = 0;
846 break;
847 default:
848 copy_siginfo(&q->info, info);
849 break;
851 } else {
852 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
853 && info->si_code != SI_USER)
855 * Queue overflow, abort. We may abort if the signal was rt
856 * and sent by user using something other than kill().
858 return -EAGAIN;
859 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
861 * Set up a return to indicate that we dropped
862 * the signal.
864 ret = info->si_sys_private;
867 out_set:
868 sigaddset(&signals->signal, sig);
869 return ret;
872 #define LEGACY_QUEUE(sigptr, sig) \
873 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
876 static int
877 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
879 int ret = 0;
881 if (!irqs_disabled())
882 BUG();
883 assert_spin_locked(&t->sighand->siglock);
885 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
887 * Set up a return to indicate that we dropped the signal.
889 ret = info->si_sys_private;
891 /* Short-circuit ignored signals. */
892 if (sig_ignored(t, sig))
893 goto out;
895 /* Support queueing exactly one non-rt signal, so that we
896 can get more detailed information about the cause of
897 the signal. */
898 if (LEGACY_QUEUE(&t->pending, sig))
899 goto out;
901 ret = send_signal(sig, info, t, &t->pending);
902 if (!ret && !sigismember(&t->blocked, sig))
903 signal_wake_up(t, sig == SIGKILL);
904 out:
905 return ret;
909 * Force a signal that the process can't ignore: if necessary
910 * we unblock the signal and change any SIG_IGN to SIG_DFL.
914 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
916 unsigned long int flags;
917 int ret;
919 spin_lock_irqsave(&t->sighand->siglock, flags);
920 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
921 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
922 sigdelset(&t->blocked, sig);
923 recalc_sigpending_tsk(t);
925 ret = specific_send_sig_info(sig, info, t);
926 spin_unlock_irqrestore(&t->sighand->siglock, flags);
928 return ret;
931 void
932 force_sig_specific(int sig, struct task_struct *t)
934 unsigned long int flags;
936 spin_lock_irqsave(&t->sighand->siglock, flags);
937 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
938 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
939 sigdelset(&t->blocked, sig);
940 recalc_sigpending_tsk(t);
941 specific_send_sig_info(sig, (void *)2, t);
942 spin_unlock_irqrestore(&t->sighand->siglock, flags);
946 * Test if P wants to take SIG. After we've checked all threads with this,
947 * it's equivalent to finding no threads not blocking SIG. Any threads not
948 * blocking SIG were ruled out because they are not running and already
949 * have pending signals. Such threads will dequeue from the shared queue
950 * as soon as they're available, so putting the signal on the shared queue
951 * will be equivalent to sending it to one such thread.
953 #define wants_signal(sig, p, mask) \
954 (!sigismember(&(p)->blocked, sig) \
955 && !((p)->state & mask) \
956 && !((p)->flags & PF_EXITING) \
957 && (task_curr(p) || !signal_pending(p)))
960 static void
961 __group_complete_signal(int sig, struct task_struct *p)
963 unsigned int mask;
964 struct task_struct *t;
967 * Don't bother traced and stopped tasks (but
968 * SIGKILL will punch through that).
970 mask = TASK_STOPPED | TASK_TRACED;
971 if (sig == SIGKILL)
972 mask = 0;
975 * Now find a thread we can wake up to take the signal off the queue.
977 * If the main thread wants the signal, it gets first crack.
978 * Probably the least surprising to the average bear.
980 if (wants_signal(sig, p, mask))
981 t = p;
982 else if (thread_group_empty(p))
984 * There is just one thread and it does not need to be woken.
985 * It will dequeue unblocked signals before it runs again.
987 return;
988 else {
990 * Otherwise try to find a suitable thread.
992 t = p->signal->curr_target;
993 if (t == NULL)
994 /* restart balancing at this thread */
995 t = p->signal->curr_target = p;
996 BUG_ON(t->tgid != p->tgid);
998 while (!wants_signal(sig, t, mask)) {
999 t = next_thread(t);
1000 if (t == p->signal->curr_target)
1002 * No thread needs to be woken.
1003 * Any eligible threads will see
1004 * the signal in the queue soon.
1006 return;
1008 p->signal->curr_target = t;
1012 * Found a killable thread. If the signal will be fatal,
1013 * then start taking the whole group down immediately.
1015 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1016 !sigismember(&t->real_blocked, sig) &&
1017 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1019 * This signal will be fatal to the whole group.
1021 if (!sig_kernel_coredump(sig)) {
1023 * Start a group exit and wake everybody up.
1024 * This way we don't have other threads
1025 * running and doing things after a slower
1026 * thread has the fatal signal pending.
1028 p->signal->flags = SIGNAL_GROUP_EXIT;
1029 p->signal->group_exit_code = sig;
1030 p->signal->group_stop_count = 0;
1031 t = p;
1032 do {
1033 sigaddset(&t->pending.signal, SIGKILL);
1034 signal_wake_up(t, 1);
1035 t = next_thread(t);
1036 } while (t != p);
1037 return;
1041 * There will be a core dump. We make all threads other
1042 * than the chosen one go into a group stop so that nothing
1043 * happens until it gets scheduled, takes the signal off
1044 * the shared queue, and does the core dump. This is a
1045 * little more complicated than strictly necessary, but it
1046 * keeps the signal state that winds up in the core dump
1047 * unchanged from the death state, e.g. which thread had
1048 * the core-dump signal unblocked.
1050 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1051 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1052 p->signal->group_stop_count = 0;
1053 p->signal->group_exit_task = t;
1054 t = p;
1055 do {
1056 p->signal->group_stop_count++;
1057 signal_wake_up(t, 0);
1058 t = next_thread(t);
1059 } while (t != p);
1060 wake_up_process(p->signal->group_exit_task);
1061 return;
1065 * The signal is already in the shared-pending queue.
1066 * Tell the chosen thread to wake up and dequeue it.
1068 signal_wake_up(t, sig == SIGKILL);
1069 return;
1073 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1075 int ret = 0;
1077 assert_spin_locked(&p->sighand->siglock);
1078 handle_stop_signal(sig, p);
1080 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1082 * Set up a return to indicate that we dropped the signal.
1084 ret = info->si_sys_private;
1086 /* Short-circuit ignored signals. */
1087 if (sig_ignored(p, sig))
1088 return ret;
1090 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1091 /* This is a non-RT signal and we already have one queued. */
1092 return ret;
1095 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1096 * We always use the shared queue for process-wide signals,
1097 * to avoid several races.
1099 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1100 if (unlikely(ret))
1101 return ret;
1103 __group_complete_signal(sig, p);
1104 return 0;
1108 * Nuke all other threads in the group.
1110 void zap_other_threads(struct task_struct *p)
1112 struct task_struct *t;
1114 p->signal->flags = SIGNAL_GROUP_EXIT;
1115 p->signal->group_stop_count = 0;
1117 if (thread_group_empty(p))
1118 return;
1120 for (t = next_thread(p); t != p; t = next_thread(t)) {
1122 * Don't bother with already dead threads
1124 if (t->exit_state)
1125 continue;
1128 * We don't want to notify the parent, since we are
1129 * killed as part of a thread group due to another
1130 * thread doing an execve() or similar. So set the
1131 * exit signal to -1 to allow immediate reaping of
1132 * the process. But don't detach the thread group
1133 * leader.
1135 if (t != p->group_leader)
1136 t->exit_signal = -1;
1138 sigaddset(&t->pending.signal, SIGKILL);
1139 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1140 signal_wake_up(t, 1);
1145 * Must be called with the tasklist_lock held for reading!
1147 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1149 unsigned long flags;
1150 int ret;
1152 ret = check_kill_permission(sig, info, p);
1153 if (!ret && sig && p->sighand) {
1154 spin_lock_irqsave(&p->sighand->siglock, flags);
1155 ret = __group_send_sig_info(sig, info, p);
1156 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1159 return ret;
1163 * kill_pg_info() sends a signal to a process group: this is what the tty
1164 * control characters do (^C, ^Z etc)
1167 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1169 struct task_struct *p = NULL;
1170 int retval, success;
1172 if (pgrp <= 0)
1173 return -EINVAL;
1175 success = 0;
1176 retval = -ESRCH;
1177 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1178 int err = group_send_sig_info(sig, info, p);
1179 success |= !err;
1180 retval = err;
1181 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1182 return success ? 0 : retval;
1186 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1188 int retval;
1190 read_lock(&tasklist_lock);
1191 retval = __kill_pg_info(sig, info, pgrp);
1192 read_unlock(&tasklist_lock);
1194 return retval;
1198 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1200 int error;
1201 struct task_struct *p;
1203 read_lock(&tasklist_lock);
1204 p = find_task_by_pid(pid);
1205 error = -ESRCH;
1206 if (p)
1207 error = group_send_sig_info(sig, info, p);
1208 read_unlock(&tasklist_lock);
1209 return error;
1214 * kill_something_info() interprets pid in interesting ways just like kill(2).
1216 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1217 * is probably wrong. Should make it like BSD or SYSV.
1220 static int kill_something_info(int sig, struct siginfo *info, int pid)
1222 if (!pid) {
1223 return kill_pg_info(sig, info, process_group(current));
1224 } else if (pid == -1) {
1225 int retval = 0, count = 0;
1226 struct task_struct * p;
1228 read_lock(&tasklist_lock);
1229 for_each_process(p) {
1230 if (p->pid > 1 && p->tgid != current->tgid) {
1231 int err = group_send_sig_info(sig, info, p);
1232 ++count;
1233 if (err != -EPERM)
1234 retval = err;
1237 read_unlock(&tasklist_lock);
1238 return count ? retval : -ESRCH;
1239 } else if (pid < 0) {
1240 return kill_pg_info(sig, info, -pid);
1241 } else {
1242 return kill_proc_info(sig, info, pid);
1247 * These are for backward compatibility with the rest of the kernel source.
1251 * These two are the most common entry points. They send a signal
1252 * just to the specific thread.
1255 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1257 int ret;
1258 unsigned long flags;
1261 * Make sure legacy kernel users don't send in bad values
1262 * (normal paths check this in check_kill_permission).
1264 if (!valid_signal(sig))
1265 return -EINVAL;
1268 * We need the tasklist lock even for the specific
1269 * thread case (when we don't need to follow the group
1270 * lists) in order to avoid races with "p->sighand"
1271 * going away or changing from under us.
1273 read_lock(&tasklist_lock);
1274 spin_lock_irqsave(&p->sighand->siglock, flags);
1275 ret = specific_send_sig_info(sig, info, p);
1276 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1277 read_unlock(&tasklist_lock);
1278 return ret;
1282 send_sig(int sig, struct task_struct *p, int priv)
1284 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1288 * This is the entry point for "process-wide" signals.
1289 * They will go to an appropriate thread in the thread group.
1292 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1294 int ret;
1295 read_lock(&tasklist_lock);
1296 ret = group_send_sig_info(sig, info, p);
1297 read_unlock(&tasklist_lock);
1298 return ret;
1301 void
1302 force_sig(int sig, struct task_struct *p)
1304 force_sig_info(sig, (void*)1L, p);
1308 * When things go south during signal handling, we
1309 * will force a SIGSEGV. And if the signal that caused
1310 * the problem was already a SIGSEGV, we'll want to
1311 * make sure we don't even try to deliver the signal..
1314 force_sigsegv(int sig, struct task_struct *p)
1316 if (sig == SIGSEGV) {
1317 unsigned long flags;
1318 spin_lock_irqsave(&p->sighand->siglock, flags);
1319 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1320 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1322 force_sig(SIGSEGV, p);
1323 return 0;
1327 kill_pg(pid_t pgrp, int sig, int priv)
1329 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1333 kill_proc(pid_t pid, int sig, int priv)
1335 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1339 * These functions support sending signals using preallocated sigqueue
1340 * structures. This is needed "because realtime applications cannot
1341 * afford to lose notifications of asynchronous events, like timer
1342 * expirations or I/O completions". In the case of Posix Timers
1343 * we allocate the sigqueue structure from the timer_create. If this
1344 * allocation fails we are able to report the failure to the application
1345 * with an EAGAIN error.
1348 struct sigqueue *sigqueue_alloc(void)
1350 struct sigqueue *q;
1352 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1353 q->flags |= SIGQUEUE_PREALLOC;
1354 return(q);
1357 void sigqueue_free(struct sigqueue *q)
1359 unsigned long flags;
1360 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1362 * If the signal is still pending remove it from the
1363 * pending queue.
1365 if (unlikely(!list_empty(&q->list))) {
1366 read_lock(&tasklist_lock);
1367 spin_lock_irqsave(q->lock, flags);
1368 if (!list_empty(&q->list))
1369 list_del_init(&q->list);
1370 spin_unlock_irqrestore(q->lock, flags);
1371 read_unlock(&tasklist_lock);
1373 q->flags &= ~SIGQUEUE_PREALLOC;
1374 __sigqueue_free(q);
1378 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1380 unsigned long flags;
1381 int ret = 0;
1384 * We need the tasklist lock even for the specific
1385 * thread case (when we don't need to follow the group
1386 * lists) in order to avoid races with "p->sighand"
1387 * going away or changing from under us.
1389 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1390 read_lock(&tasklist_lock);
1391 spin_lock_irqsave(&p->sighand->siglock, flags);
1393 if (unlikely(!list_empty(&q->list))) {
1395 * If an SI_TIMER entry is already queue just increment
1396 * the overrun count.
1398 if (q->info.si_code != SI_TIMER)
1399 BUG();
1400 q->info.si_overrun++;
1401 goto out;
1403 /* Short-circuit ignored signals. */
1404 if (sig_ignored(p, sig)) {
1405 ret = 1;
1406 goto out;
1409 q->lock = &p->sighand->siglock;
1410 list_add_tail(&q->list, &p->pending.list);
1411 sigaddset(&p->pending.signal, sig);
1412 if (!sigismember(&p->blocked, sig))
1413 signal_wake_up(p, sig == SIGKILL);
1415 out:
1416 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1417 read_unlock(&tasklist_lock);
1418 return(ret);
1422 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1424 unsigned long flags;
1425 int ret = 0;
1427 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1428 read_lock(&tasklist_lock);
1429 spin_lock_irqsave(&p->sighand->siglock, flags);
1430 handle_stop_signal(sig, p);
1432 /* Short-circuit ignored signals. */
1433 if (sig_ignored(p, sig)) {
1434 ret = 1;
1435 goto out;
1438 if (unlikely(!list_empty(&q->list))) {
1440 * If an SI_TIMER entry is already queue just increment
1441 * the overrun count. Other uses should not try to
1442 * send the signal multiple times.
1444 if (q->info.si_code != SI_TIMER)
1445 BUG();
1446 q->info.si_overrun++;
1447 goto out;
1451 * Put this signal on the shared-pending queue.
1452 * We always use the shared queue for process-wide signals,
1453 * to avoid several races.
1455 q->lock = &p->sighand->siglock;
1456 list_add_tail(&q->list, &p->signal->shared_pending.list);
1457 sigaddset(&p->signal->shared_pending.signal, sig);
1459 __group_complete_signal(sig, p);
1460 out:
1461 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1462 read_unlock(&tasklist_lock);
1463 return(ret);
1467 * Wake up any threads in the parent blocked in wait* syscalls.
1469 static inline void __wake_up_parent(struct task_struct *p,
1470 struct task_struct *parent)
1472 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1476 * Let a parent know about the death of a child.
1477 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1480 void do_notify_parent(struct task_struct *tsk, int sig)
1482 struct siginfo info;
1483 unsigned long flags;
1484 struct sighand_struct *psig;
1486 BUG_ON(sig == -1);
1488 /* do_notify_parent_cldstop should have been called instead. */
1489 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1491 BUG_ON(!tsk->ptrace &&
1492 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1494 info.si_signo = sig;
1495 info.si_errno = 0;
1496 info.si_pid = tsk->pid;
1497 info.si_uid = tsk->uid;
1499 /* FIXME: find out whether or not this is supposed to be c*time. */
1500 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1501 tsk->signal->utime));
1502 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1503 tsk->signal->stime));
1505 info.si_status = tsk->exit_code & 0x7f;
1506 if (tsk->exit_code & 0x80)
1507 info.si_code = CLD_DUMPED;
1508 else if (tsk->exit_code & 0x7f)
1509 info.si_code = CLD_KILLED;
1510 else {
1511 info.si_code = CLD_EXITED;
1512 info.si_status = tsk->exit_code >> 8;
1515 psig = tsk->parent->sighand;
1516 spin_lock_irqsave(&psig->siglock, flags);
1517 if (sig == SIGCHLD &&
1518 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1519 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1521 * We are exiting and our parent doesn't care. POSIX.1
1522 * defines special semantics for setting SIGCHLD to SIG_IGN
1523 * or setting the SA_NOCLDWAIT flag: we should be reaped
1524 * automatically and not left for our parent's wait4 call.
1525 * Rather than having the parent do it as a magic kind of
1526 * signal handler, we just set this to tell do_exit that we
1527 * can be cleaned up without becoming a zombie. Note that
1528 * we still call __wake_up_parent in this case, because a
1529 * blocked sys_wait4 might now return -ECHILD.
1531 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1532 * is implementation-defined: we do (if you don't want
1533 * it, just use SIG_IGN instead).
1535 tsk->exit_signal = -1;
1536 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1537 sig = 0;
1539 if (valid_signal(sig) && sig > 0)
1540 __group_send_sig_info(sig, &info, tsk->parent);
1541 __wake_up_parent(tsk, tsk->parent);
1542 spin_unlock_irqrestore(&psig->siglock, flags);
1545 static void
1546 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1547 int why)
1549 struct siginfo info;
1550 unsigned long flags;
1551 struct sighand_struct *sighand;
1553 info.si_signo = SIGCHLD;
1554 info.si_errno = 0;
1555 info.si_pid = tsk->pid;
1556 info.si_uid = tsk->uid;
1558 /* FIXME: find out whether or not this is supposed to be c*time. */
1559 info.si_utime = cputime_to_jiffies(tsk->utime);
1560 info.si_stime = cputime_to_jiffies(tsk->stime);
1562 info.si_code = why;
1563 switch (why) {
1564 case CLD_CONTINUED:
1565 info.si_status = SIGCONT;
1566 break;
1567 case CLD_STOPPED:
1568 info.si_status = tsk->signal->group_exit_code & 0x7f;
1569 break;
1570 case CLD_TRAPPED:
1571 info.si_status = tsk->exit_code & 0x7f;
1572 break;
1573 default:
1574 BUG();
1577 sighand = parent->sighand;
1578 spin_lock_irqsave(&sighand->siglock, flags);
1579 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1580 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1581 __group_send_sig_info(SIGCHLD, &info, parent);
1583 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1585 __wake_up_parent(tsk, parent);
1586 spin_unlock_irqrestore(&sighand->siglock, flags);
1590 * This must be called with current->sighand->siglock held.
1592 * This should be the path for all ptrace stops.
1593 * We always set current->last_siginfo while stopped here.
1594 * That makes it a way to test a stopped process for
1595 * being ptrace-stopped vs being job-control-stopped.
1597 * If we actually decide not to stop at all because the tracer is gone,
1598 * we leave nostop_code in current->exit_code.
1600 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1603 * If there is a group stop in progress,
1604 * we must participate in the bookkeeping.
1606 if (current->signal->group_stop_count > 0)
1607 --current->signal->group_stop_count;
1609 current->last_siginfo = info;
1610 current->exit_code = exit_code;
1612 /* Let the debugger run. */
1613 set_current_state(TASK_TRACED);
1614 spin_unlock_irq(&current->sighand->siglock);
1615 read_lock(&tasklist_lock);
1616 if (likely(current->ptrace & PT_PTRACED) &&
1617 likely(current->parent != current->real_parent ||
1618 !(current->ptrace & PT_ATTACHED)) &&
1619 (likely(current->parent->signal != current->signal) ||
1620 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1621 do_notify_parent_cldstop(current, current->parent,
1622 CLD_TRAPPED);
1623 read_unlock(&tasklist_lock);
1624 schedule();
1625 } else {
1627 * By the time we got the lock, our tracer went away.
1628 * Don't stop here.
1630 read_unlock(&tasklist_lock);
1631 set_current_state(TASK_RUNNING);
1632 current->exit_code = nostop_code;
1636 * We are back. Now reacquire the siglock before touching
1637 * last_siginfo, so that we are sure to have synchronized with
1638 * any signal-sending on another CPU that wants to examine it.
1640 spin_lock_irq(&current->sighand->siglock);
1641 current->last_siginfo = NULL;
1644 * Queued signals ignored us while we were stopped for tracing.
1645 * So check for any that we should take before resuming user mode.
1647 recalc_sigpending();
1650 void ptrace_notify(int exit_code)
1652 siginfo_t info;
1654 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1656 memset(&info, 0, sizeof info);
1657 info.si_signo = SIGTRAP;
1658 info.si_code = exit_code;
1659 info.si_pid = current->pid;
1660 info.si_uid = current->uid;
1662 /* Let the debugger run. */
1663 spin_lock_irq(&current->sighand->siglock);
1664 ptrace_stop(exit_code, 0, &info);
1665 spin_unlock_irq(&current->sighand->siglock);
1668 static void
1669 finish_stop(int stop_count)
1672 * If there are no other threads in the group, or if there is
1673 * a group stop in progress and we are the last to stop,
1674 * report to the parent. When ptraced, every thread reports itself.
1676 if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1677 read_lock(&tasklist_lock);
1678 do_notify_parent_cldstop(current, current->parent,
1679 CLD_STOPPED);
1680 read_unlock(&tasklist_lock);
1682 else if (stop_count == 0) {
1683 read_lock(&tasklist_lock);
1684 do_notify_parent_cldstop(current->group_leader,
1685 current->group_leader->real_parent,
1686 CLD_STOPPED);
1687 read_unlock(&tasklist_lock);
1690 schedule();
1692 * Now we don't run again until continued.
1694 current->exit_code = 0;
1698 * This performs the stopping for SIGSTOP and other stop signals.
1699 * We have to stop all threads in the thread group.
1700 * Returns nonzero if we've actually stopped and released the siglock.
1701 * Returns zero if we didn't stop and still hold the siglock.
1703 static int
1704 do_signal_stop(int signr)
1706 struct signal_struct *sig = current->signal;
1707 struct sighand_struct *sighand = current->sighand;
1708 int stop_count = -1;
1710 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1711 return 0;
1713 if (sig->group_stop_count > 0) {
1715 * There is a group stop in progress. We don't need to
1716 * start another one.
1718 signr = sig->group_exit_code;
1719 stop_count = --sig->group_stop_count;
1720 current->exit_code = signr;
1721 set_current_state(TASK_STOPPED);
1722 if (stop_count == 0)
1723 sig->flags = SIGNAL_STOP_STOPPED;
1724 spin_unlock_irq(&sighand->siglock);
1726 else if (thread_group_empty(current)) {
1728 * Lock must be held through transition to stopped state.
1730 current->exit_code = current->signal->group_exit_code = signr;
1731 set_current_state(TASK_STOPPED);
1732 sig->flags = SIGNAL_STOP_STOPPED;
1733 spin_unlock_irq(&sighand->siglock);
1735 else {
1737 * There is no group stop already in progress.
1738 * We must initiate one now, but that requires
1739 * dropping siglock to get both the tasklist lock
1740 * and siglock again in the proper order. Note that
1741 * this allows an intervening SIGCONT to be posted.
1742 * We need to check for that and bail out if necessary.
1744 struct task_struct *t;
1746 spin_unlock_irq(&sighand->siglock);
1748 /* signals can be posted during this window */
1750 read_lock(&tasklist_lock);
1751 spin_lock_irq(&sighand->siglock);
1753 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1755 * Another stop or continue happened while we
1756 * didn't have the lock. We can just swallow this
1757 * signal now. If we raced with a SIGCONT, that
1758 * should have just cleared it now. If we raced
1759 * with another processor delivering a stop signal,
1760 * then the SIGCONT that wakes us up should clear it.
1762 read_unlock(&tasklist_lock);
1763 return 0;
1766 if (sig->group_stop_count == 0) {
1767 sig->group_exit_code = signr;
1768 stop_count = 0;
1769 for (t = next_thread(current); t != current;
1770 t = next_thread(t))
1772 * Setting state to TASK_STOPPED for a group
1773 * stop is always done with the siglock held,
1774 * so this check has no races.
1776 if (t->state < TASK_STOPPED) {
1777 stop_count++;
1778 signal_wake_up(t, 0);
1780 sig->group_stop_count = stop_count;
1782 else {
1783 /* A race with another thread while unlocked. */
1784 signr = sig->group_exit_code;
1785 stop_count = --sig->group_stop_count;
1788 current->exit_code = signr;
1789 set_current_state(TASK_STOPPED);
1790 if (stop_count == 0)
1791 sig->flags = SIGNAL_STOP_STOPPED;
1793 spin_unlock_irq(&sighand->siglock);
1794 read_unlock(&tasklist_lock);
1797 finish_stop(stop_count);
1798 return 1;
1802 * Do appropriate magic when group_stop_count > 0.
1803 * We return nonzero if we stopped, after releasing the siglock.
1804 * We return zero if we still hold the siglock and should look
1805 * for another signal without checking group_stop_count again.
1807 static inline int handle_group_stop(void)
1809 int stop_count;
1811 if (current->signal->group_exit_task == current) {
1813 * Group stop is so we can do a core dump,
1814 * We are the initiating thread, so get on with it.
1816 current->signal->group_exit_task = NULL;
1817 return 0;
1820 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1822 * Group stop is so another thread can do a core dump,
1823 * or else we are racing against a death signal.
1824 * Just punt the stop so we can get the next signal.
1826 return 0;
1829 * There is a group stop in progress. We stop
1830 * without any associated signal being in our queue.
1832 stop_count = --current->signal->group_stop_count;
1833 if (stop_count == 0)
1834 current->signal->flags = SIGNAL_STOP_STOPPED;
1835 current->exit_code = current->signal->group_exit_code;
1836 set_current_state(TASK_STOPPED);
1837 spin_unlock_irq(&current->sighand->siglock);
1838 finish_stop(stop_count);
1839 return 1;
1842 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1843 struct pt_regs *regs, void *cookie)
1845 sigset_t *mask = &current->blocked;
1846 int signr = 0;
1848 relock:
1849 spin_lock_irq(&current->sighand->siglock);
1850 for (;;) {
1851 struct k_sigaction *ka;
1853 if (unlikely(current->signal->group_stop_count > 0) &&
1854 handle_group_stop())
1855 goto relock;
1857 signr = dequeue_signal(current, mask, info);
1859 if (!signr)
1860 break; /* will return 0 */
1862 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1863 ptrace_signal_deliver(regs, cookie);
1865 /* Let the debugger run. */
1866 ptrace_stop(signr, signr, info);
1868 /* We're back. Did the debugger cancel the sig? */
1869 signr = current->exit_code;
1870 if (signr == 0)
1871 continue;
1873 current->exit_code = 0;
1875 /* Update the siginfo structure if the signal has
1876 changed. If the debugger wanted something
1877 specific in the siginfo structure then it should
1878 have updated *info via PTRACE_SETSIGINFO. */
1879 if (signr != info->si_signo) {
1880 info->si_signo = signr;
1881 info->si_errno = 0;
1882 info->si_code = SI_USER;
1883 info->si_pid = current->parent->pid;
1884 info->si_uid = current->parent->uid;
1887 /* If the (new) signal is now blocked, requeue it. */
1888 if (sigismember(&current->blocked, signr)) {
1889 specific_send_sig_info(signr, info, current);
1890 continue;
1894 ka = &current->sighand->action[signr-1];
1895 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1896 continue;
1897 if (ka->sa.sa_handler != SIG_DFL) {
1898 /* Run the handler. */
1899 *return_ka = *ka;
1901 if (ka->sa.sa_flags & SA_ONESHOT)
1902 ka->sa.sa_handler = SIG_DFL;
1904 break; /* will return non-zero "signr" value */
1908 * Now we are doing the default action for this signal.
1910 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1911 continue;
1913 /* Init gets no signals it doesn't want. */
1914 if (current->pid == 1)
1915 continue;
1917 if (sig_kernel_stop(signr)) {
1919 * The default action is to stop all threads in
1920 * the thread group. The job control signals
1921 * do nothing in an orphaned pgrp, but SIGSTOP
1922 * always works. Note that siglock needs to be
1923 * dropped during the call to is_orphaned_pgrp()
1924 * because of lock ordering with tasklist_lock.
1925 * This allows an intervening SIGCONT to be posted.
1926 * We need to check for that and bail out if necessary.
1928 if (signr != SIGSTOP) {
1929 spin_unlock_irq(&current->sighand->siglock);
1931 /* signals can be posted during this window */
1933 if (is_orphaned_pgrp(process_group(current)))
1934 goto relock;
1936 spin_lock_irq(&current->sighand->siglock);
1939 if (likely(do_signal_stop(signr))) {
1940 /* It released the siglock. */
1941 goto relock;
1945 * We didn't actually stop, due to a race
1946 * with SIGCONT or something like that.
1948 continue;
1951 spin_unlock_irq(&current->sighand->siglock);
1954 * Anything else is fatal, maybe with a core dump.
1956 current->flags |= PF_SIGNALED;
1957 if (sig_kernel_coredump(signr)) {
1959 * If it was able to dump core, this kills all
1960 * other threads in the group and synchronizes with
1961 * their demise. If we lost the race with another
1962 * thread getting here, it set group_exit_code
1963 * first and our do_group_exit call below will use
1964 * that value and ignore the one we pass it.
1966 do_coredump((long)signr, signr, regs);
1970 * Death signals, no core dump.
1972 do_group_exit(signr);
1973 /* NOTREACHED */
1975 spin_unlock_irq(&current->sighand->siglock);
1976 return signr;
1979 EXPORT_SYMBOL(recalc_sigpending);
1980 EXPORT_SYMBOL_GPL(dequeue_signal);
1981 EXPORT_SYMBOL(flush_signals);
1982 EXPORT_SYMBOL(force_sig);
1983 EXPORT_SYMBOL(kill_pg);
1984 EXPORT_SYMBOL(kill_proc);
1985 EXPORT_SYMBOL(ptrace_notify);
1986 EXPORT_SYMBOL(send_sig);
1987 EXPORT_SYMBOL(send_sig_info);
1988 EXPORT_SYMBOL(sigprocmask);
1989 EXPORT_SYMBOL(block_all_signals);
1990 EXPORT_SYMBOL(unblock_all_signals);
1994 * System call entry points.
1997 asmlinkage long sys_restart_syscall(void)
1999 struct restart_block *restart = &current_thread_info()->restart_block;
2000 return restart->fn(restart);
2003 long do_no_restart_syscall(struct restart_block *param)
2005 return -EINTR;
2009 * We don't need to get the kernel lock - this is all local to this
2010 * particular thread.. (and that's good, because this is _heavily_
2011 * used by various programs)
2015 * This is also useful for kernel threads that want to temporarily
2016 * (or permanently) block certain signals.
2018 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2019 * interface happily blocks "unblockable" signals like SIGKILL
2020 * and friends.
2022 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2024 int error;
2025 sigset_t old_block;
2027 spin_lock_irq(&current->sighand->siglock);
2028 old_block = current->blocked;
2029 error = 0;
2030 switch (how) {
2031 case SIG_BLOCK:
2032 sigorsets(&current->blocked, &current->blocked, set);
2033 break;
2034 case SIG_UNBLOCK:
2035 signandsets(&current->blocked, &current->blocked, set);
2036 break;
2037 case SIG_SETMASK:
2038 current->blocked = *set;
2039 break;
2040 default:
2041 error = -EINVAL;
2043 recalc_sigpending();
2044 spin_unlock_irq(&current->sighand->siglock);
2045 if (oldset)
2046 *oldset = old_block;
2047 return error;
2050 asmlinkage long
2051 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2053 int error = -EINVAL;
2054 sigset_t old_set, new_set;
2056 /* XXX: Don't preclude handling different sized sigset_t's. */
2057 if (sigsetsize != sizeof(sigset_t))
2058 goto out;
2060 if (set) {
2061 error = -EFAULT;
2062 if (copy_from_user(&new_set, set, sizeof(*set)))
2063 goto out;
2064 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2066 error = sigprocmask(how, &new_set, &old_set);
2067 if (error)
2068 goto out;
2069 if (oset)
2070 goto set_old;
2071 } else if (oset) {
2072 spin_lock_irq(&current->sighand->siglock);
2073 old_set = current->blocked;
2074 spin_unlock_irq(&current->sighand->siglock);
2076 set_old:
2077 error = -EFAULT;
2078 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2079 goto out;
2081 error = 0;
2082 out:
2083 return error;
2086 long do_sigpending(void __user *set, unsigned long sigsetsize)
2088 long error = -EINVAL;
2089 sigset_t pending;
2091 if (sigsetsize > sizeof(sigset_t))
2092 goto out;
2094 spin_lock_irq(&current->sighand->siglock);
2095 sigorsets(&pending, &current->pending.signal,
2096 &current->signal->shared_pending.signal);
2097 spin_unlock_irq(&current->sighand->siglock);
2099 /* Outside the lock because only this thread touches it. */
2100 sigandsets(&pending, &current->blocked, &pending);
2102 error = -EFAULT;
2103 if (!copy_to_user(set, &pending, sigsetsize))
2104 error = 0;
2106 out:
2107 return error;
2110 asmlinkage long
2111 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2113 return do_sigpending(set, sigsetsize);
2116 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2118 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2120 int err;
2122 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2123 return -EFAULT;
2124 if (from->si_code < 0)
2125 return __copy_to_user(to, from, sizeof(siginfo_t))
2126 ? -EFAULT : 0;
2128 * If you change siginfo_t structure, please be sure
2129 * this code is fixed accordingly.
2130 * It should never copy any pad contained in the structure
2131 * to avoid security leaks, but must copy the generic
2132 * 3 ints plus the relevant union member.
2134 err = __put_user(from->si_signo, &to->si_signo);
2135 err |= __put_user(from->si_errno, &to->si_errno);
2136 err |= __put_user((short)from->si_code, &to->si_code);
2137 switch (from->si_code & __SI_MASK) {
2138 case __SI_KILL:
2139 err |= __put_user(from->si_pid, &to->si_pid);
2140 err |= __put_user(from->si_uid, &to->si_uid);
2141 break;
2142 case __SI_TIMER:
2143 err |= __put_user(from->si_tid, &to->si_tid);
2144 err |= __put_user(from->si_overrun, &to->si_overrun);
2145 err |= __put_user(from->si_ptr, &to->si_ptr);
2146 break;
2147 case __SI_POLL:
2148 err |= __put_user(from->si_band, &to->si_band);
2149 err |= __put_user(from->si_fd, &to->si_fd);
2150 break;
2151 case __SI_FAULT:
2152 err |= __put_user(from->si_addr, &to->si_addr);
2153 #ifdef __ARCH_SI_TRAPNO
2154 err |= __put_user(from->si_trapno, &to->si_trapno);
2155 #endif
2156 break;
2157 case __SI_CHLD:
2158 err |= __put_user(from->si_pid, &to->si_pid);
2159 err |= __put_user(from->si_uid, &to->si_uid);
2160 err |= __put_user(from->si_status, &to->si_status);
2161 err |= __put_user(from->si_utime, &to->si_utime);
2162 err |= __put_user(from->si_stime, &to->si_stime);
2163 break;
2164 case __SI_RT: /* This is not generated by the kernel as of now. */
2165 case __SI_MESGQ: /* But this is */
2166 err |= __put_user(from->si_pid, &to->si_pid);
2167 err |= __put_user(from->si_uid, &to->si_uid);
2168 err |= __put_user(from->si_ptr, &to->si_ptr);
2169 break;
2170 default: /* this is just in case for now ... */
2171 err |= __put_user(from->si_pid, &to->si_pid);
2172 err |= __put_user(from->si_uid, &to->si_uid);
2173 break;
2175 return err;
2178 #endif
2180 asmlinkage long
2181 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2182 siginfo_t __user *uinfo,
2183 const struct timespec __user *uts,
2184 size_t sigsetsize)
2186 int ret, sig;
2187 sigset_t these;
2188 struct timespec ts;
2189 siginfo_t info;
2190 long timeout = 0;
2192 /* XXX: Don't preclude handling different sized sigset_t's. */
2193 if (sigsetsize != sizeof(sigset_t))
2194 return -EINVAL;
2196 if (copy_from_user(&these, uthese, sizeof(these)))
2197 return -EFAULT;
2200 * Invert the set of allowed signals to get those we
2201 * want to block.
2203 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2204 signotset(&these);
2206 if (uts) {
2207 if (copy_from_user(&ts, uts, sizeof(ts)))
2208 return -EFAULT;
2209 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2210 || ts.tv_sec < 0)
2211 return -EINVAL;
2214 spin_lock_irq(&current->sighand->siglock);
2215 sig = dequeue_signal(current, &these, &info);
2216 if (!sig) {
2217 timeout = MAX_SCHEDULE_TIMEOUT;
2218 if (uts)
2219 timeout = (timespec_to_jiffies(&ts)
2220 + (ts.tv_sec || ts.tv_nsec));
2222 if (timeout) {
2223 /* None ready -- temporarily unblock those we're
2224 * interested while we are sleeping in so that we'll
2225 * be awakened when they arrive. */
2226 current->real_blocked = current->blocked;
2227 sigandsets(&current->blocked, &current->blocked, &these);
2228 recalc_sigpending();
2229 spin_unlock_irq(&current->sighand->siglock);
2231 current->state = TASK_INTERRUPTIBLE;
2232 timeout = schedule_timeout(timeout);
2234 try_to_freeze();
2235 spin_lock_irq(&current->sighand->siglock);
2236 sig = dequeue_signal(current, &these, &info);
2237 current->blocked = current->real_blocked;
2238 siginitset(&current->real_blocked, 0);
2239 recalc_sigpending();
2242 spin_unlock_irq(&current->sighand->siglock);
2244 if (sig) {
2245 ret = sig;
2246 if (uinfo) {
2247 if (copy_siginfo_to_user(uinfo, &info))
2248 ret = -EFAULT;
2250 } else {
2251 ret = -EAGAIN;
2252 if (timeout)
2253 ret = -EINTR;
2256 return ret;
2259 asmlinkage long
2260 sys_kill(int pid, int sig)
2262 struct siginfo info;
2264 info.si_signo = sig;
2265 info.si_errno = 0;
2266 info.si_code = SI_USER;
2267 info.si_pid = current->tgid;
2268 info.si_uid = current->uid;
2270 return kill_something_info(sig, &info, pid);
2274 * sys_tgkill - send signal to one specific thread
2275 * @tgid: the thread group ID of the thread
2276 * @pid: the PID of the thread
2277 * @sig: signal to be sent
2279 * This syscall also checks the tgid and returns -ESRCH even if the PID
2280 * exists but it's not belonging to the target process anymore. This
2281 * method solves the problem of threads exiting and PIDs getting reused.
2283 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2285 struct siginfo info;
2286 int error;
2287 struct task_struct *p;
2289 /* This is only valid for single tasks */
2290 if (pid <= 0 || tgid <= 0)
2291 return -EINVAL;
2293 info.si_signo = sig;
2294 info.si_errno = 0;
2295 info.si_code = SI_TKILL;
2296 info.si_pid = current->tgid;
2297 info.si_uid = current->uid;
2299 read_lock(&tasklist_lock);
2300 p = find_task_by_pid(pid);
2301 error = -ESRCH;
2302 if (p && (p->tgid == tgid)) {
2303 error = check_kill_permission(sig, &info, p);
2305 * The null signal is a permissions and process existence
2306 * probe. No signal is actually delivered.
2308 if (!error && sig && p->sighand) {
2309 spin_lock_irq(&p->sighand->siglock);
2310 handle_stop_signal(sig, p);
2311 error = specific_send_sig_info(sig, &info, p);
2312 spin_unlock_irq(&p->sighand->siglock);
2315 read_unlock(&tasklist_lock);
2316 return error;
2320 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2322 asmlinkage long
2323 sys_tkill(int pid, int sig)
2325 struct siginfo info;
2326 int error;
2327 struct task_struct *p;
2329 /* This is only valid for single tasks */
2330 if (pid <= 0)
2331 return -EINVAL;
2333 info.si_signo = sig;
2334 info.si_errno = 0;
2335 info.si_code = SI_TKILL;
2336 info.si_pid = current->tgid;
2337 info.si_uid = current->uid;
2339 read_lock(&tasklist_lock);
2340 p = find_task_by_pid(pid);
2341 error = -ESRCH;
2342 if (p) {
2343 error = check_kill_permission(sig, &info, p);
2345 * The null signal is a permissions and process existence
2346 * probe. No signal is actually delivered.
2348 if (!error && sig && p->sighand) {
2349 spin_lock_irq(&p->sighand->siglock);
2350 handle_stop_signal(sig, p);
2351 error = specific_send_sig_info(sig, &info, p);
2352 spin_unlock_irq(&p->sighand->siglock);
2355 read_unlock(&tasklist_lock);
2356 return error;
2359 asmlinkage long
2360 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2362 siginfo_t info;
2364 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2365 return -EFAULT;
2367 /* Not even root can pretend to send signals from the kernel.
2368 Nor can they impersonate a kill(), which adds source info. */
2369 if (info.si_code >= 0)
2370 return -EPERM;
2371 info.si_signo = sig;
2373 /* POSIX.1b doesn't mention process groups. */
2374 return kill_proc_info(sig, &info, pid);
2378 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2380 struct k_sigaction *k;
2382 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2383 return -EINVAL;
2385 k = &current->sighand->action[sig-1];
2387 spin_lock_irq(&current->sighand->siglock);
2388 if (signal_pending(current)) {
2390 * If there might be a fatal signal pending on multiple
2391 * threads, make sure we take it before changing the action.
2393 spin_unlock_irq(&current->sighand->siglock);
2394 return -ERESTARTNOINTR;
2397 if (oact)
2398 *oact = *k;
2400 if (act) {
2402 * POSIX 3.3.1.3:
2403 * "Setting a signal action to SIG_IGN for a signal that is
2404 * pending shall cause the pending signal to be discarded,
2405 * whether or not it is blocked."
2407 * "Setting a signal action to SIG_DFL for a signal that is
2408 * pending and whose default action is to ignore the signal
2409 * (for example, SIGCHLD), shall cause the pending signal to
2410 * be discarded, whether or not it is blocked"
2412 if (act->sa.sa_handler == SIG_IGN ||
2413 (act->sa.sa_handler == SIG_DFL &&
2414 sig_kernel_ignore(sig))) {
2416 * This is a fairly rare case, so we only take the
2417 * tasklist_lock once we're sure we'll need it.
2418 * Now we must do this little unlock and relock
2419 * dance to maintain the lock hierarchy.
2421 struct task_struct *t = current;
2422 spin_unlock_irq(&t->sighand->siglock);
2423 read_lock(&tasklist_lock);
2424 spin_lock_irq(&t->sighand->siglock);
2425 *k = *act;
2426 sigdelsetmask(&k->sa.sa_mask,
2427 sigmask(SIGKILL) | sigmask(SIGSTOP));
2428 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2429 do {
2430 rm_from_queue(sigmask(sig), &t->pending);
2431 recalc_sigpending_tsk(t);
2432 t = next_thread(t);
2433 } while (t != current);
2434 spin_unlock_irq(&current->sighand->siglock);
2435 read_unlock(&tasklist_lock);
2436 return 0;
2439 *k = *act;
2440 sigdelsetmask(&k->sa.sa_mask,
2441 sigmask(SIGKILL) | sigmask(SIGSTOP));
2444 spin_unlock_irq(&current->sighand->siglock);
2445 return 0;
2448 int
2449 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2451 stack_t oss;
2452 int error;
2454 if (uoss) {
2455 oss.ss_sp = (void __user *) current->sas_ss_sp;
2456 oss.ss_size = current->sas_ss_size;
2457 oss.ss_flags = sas_ss_flags(sp);
2460 if (uss) {
2461 void __user *ss_sp;
2462 size_t ss_size;
2463 int ss_flags;
2465 error = -EFAULT;
2466 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2467 || __get_user(ss_sp, &uss->ss_sp)
2468 || __get_user(ss_flags, &uss->ss_flags)
2469 || __get_user(ss_size, &uss->ss_size))
2470 goto out;
2472 error = -EPERM;
2473 if (on_sig_stack(sp))
2474 goto out;
2476 error = -EINVAL;
2479 * Note - this code used to test ss_flags incorrectly
2480 * old code may have been written using ss_flags==0
2481 * to mean ss_flags==SS_ONSTACK (as this was the only
2482 * way that worked) - this fix preserves that older
2483 * mechanism
2485 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2486 goto out;
2488 if (ss_flags == SS_DISABLE) {
2489 ss_size = 0;
2490 ss_sp = NULL;
2491 } else {
2492 error = -ENOMEM;
2493 if (ss_size < MINSIGSTKSZ)
2494 goto out;
2497 current->sas_ss_sp = (unsigned long) ss_sp;
2498 current->sas_ss_size = ss_size;
2501 if (uoss) {
2502 error = -EFAULT;
2503 if (copy_to_user(uoss, &oss, sizeof(oss)))
2504 goto out;
2507 error = 0;
2508 out:
2509 return error;
2512 #ifdef __ARCH_WANT_SYS_SIGPENDING
2514 asmlinkage long
2515 sys_sigpending(old_sigset_t __user *set)
2517 return do_sigpending(set, sizeof(*set));
2520 #endif
2522 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2523 /* Some platforms have their own version with special arguments others
2524 support only sys_rt_sigprocmask. */
2526 asmlinkage long
2527 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2529 int error;
2530 old_sigset_t old_set, new_set;
2532 if (set) {
2533 error = -EFAULT;
2534 if (copy_from_user(&new_set, set, sizeof(*set)))
2535 goto out;
2536 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2538 spin_lock_irq(&current->sighand->siglock);
2539 old_set = current->blocked.sig[0];
2541 error = 0;
2542 switch (how) {
2543 default:
2544 error = -EINVAL;
2545 break;
2546 case SIG_BLOCK:
2547 sigaddsetmask(&current->blocked, new_set);
2548 break;
2549 case SIG_UNBLOCK:
2550 sigdelsetmask(&current->blocked, new_set);
2551 break;
2552 case SIG_SETMASK:
2553 current->blocked.sig[0] = new_set;
2554 break;
2557 recalc_sigpending();
2558 spin_unlock_irq(&current->sighand->siglock);
2559 if (error)
2560 goto out;
2561 if (oset)
2562 goto set_old;
2563 } else if (oset) {
2564 old_set = current->blocked.sig[0];
2565 set_old:
2566 error = -EFAULT;
2567 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2568 goto out;
2570 error = 0;
2571 out:
2572 return error;
2574 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2576 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2577 asmlinkage long
2578 sys_rt_sigaction(int sig,
2579 const struct sigaction __user *act,
2580 struct sigaction __user *oact,
2581 size_t sigsetsize)
2583 struct k_sigaction new_sa, old_sa;
2584 int ret = -EINVAL;
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 goto out;
2590 if (act) {
2591 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2592 return -EFAULT;
2595 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2597 if (!ret && oact) {
2598 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2599 return -EFAULT;
2601 out:
2602 return ret;
2604 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2606 #ifdef __ARCH_WANT_SYS_SGETMASK
2609 * For backwards compatibility. Functionality superseded by sigprocmask.
2611 asmlinkage long
2612 sys_sgetmask(void)
2614 /* SMP safe */
2615 return current->blocked.sig[0];
2618 asmlinkage long
2619 sys_ssetmask(int newmask)
2621 int old;
2623 spin_lock_irq(&current->sighand->siglock);
2624 old = current->blocked.sig[0];
2626 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2627 sigmask(SIGSTOP)));
2628 recalc_sigpending();
2629 spin_unlock_irq(&current->sighand->siglock);
2631 return old;
2633 #endif /* __ARCH_WANT_SGETMASK */
2635 #ifdef __ARCH_WANT_SYS_SIGNAL
2637 * For backwards compatibility. Functionality superseded by sigaction.
2639 asmlinkage unsigned long
2640 sys_signal(int sig, __sighandler_t handler)
2642 struct k_sigaction new_sa, old_sa;
2643 int ret;
2645 new_sa.sa.sa_handler = handler;
2646 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2648 ret = do_sigaction(sig, &new_sa, &old_sa);
2650 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2652 #endif /* __ARCH_WANT_SYS_SIGNAL */
2654 #ifdef __ARCH_WANT_SYS_PAUSE
2656 asmlinkage long
2657 sys_pause(void)
2659 current->state = TASK_INTERRUPTIBLE;
2660 schedule();
2661 return -ERESTARTNOHAND;
2664 #endif
2666 void __init signals_init(void)
2668 sigqueue_cachep =
2669 kmem_cache_create("sigqueue",
2670 sizeof(struct sigqueue),
2671 __alignof__(struct sigqueue),
2672 SLAB_PANIC, NULL, NULL);