[PATCH] revert "retries in ext3_prepare_write() violate ordering requirements"
[linux-2.6.22.y-op.git] / mm / rmap.c
blob22ed3f71a67421831f12b0deffa915eacf5d1db7
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
52 #include <asm/tlbflush.h>
54 struct kmem_cache *anon_vma_cachep;
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
58 #ifdef CONFIG_DEBUG_VM
59 struct anon_vma *anon_vma = find_vma->anon_vma;
60 struct vm_area_struct *vma;
61 unsigned int mapcount = 0;
62 int found = 0;
64 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 mapcount++;
66 BUG_ON(mapcount > 100000);
67 if (vma == find_vma)
68 found = 1;
70 BUG_ON(!found);
71 #endif
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
77 struct anon_vma *anon_vma = vma->anon_vma;
79 might_sleep();
80 if (unlikely(!anon_vma)) {
81 struct mm_struct *mm = vma->vm_mm;
82 struct anon_vma *allocated, *locked;
84 anon_vma = find_mergeable_anon_vma(vma);
85 if (anon_vma) {
86 allocated = NULL;
87 locked = anon_vma;
88 spin_lock(&locked->lock);
89 } else {
90 anon_vma = anon_vma_alloc();
91 if (unlikely(!anon_vma))
92 return -ENOMEM;
93 allocated = anon_vma;
94 locked = NULL;
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm->page_table_lock);
99 if (likely(!vma->anon_vma)) {
100 vma->anon_vma = anon_vma;
101 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 allocated = NULL;
104 spin_unlock(&mm->page_table_lock);
106 if (locked)
107 spin_unlock(&locked->lock);
108 if (unlikely(allocated))
109 anon_vma_free(allocated);
111 return 0;
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
116 BUG_ON(vma->anon_vma != next->anon_vma);
117 list_del(&next->anon_vma_node);
120 void __anon_vma_link(struct vm_area_struct *vma)
122 struct anon_vma *anon_vma = vma->anon_vma;
124 if (anon_vma) {
125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 validate_anon_vma(vma);
130 void anon_vma_link(struct vm_area_struct *vma)
132 struct anon_vma *anon_vma = vma->anon_vma;
134 if (anon_vma) {
135 spin_lock(&anon_vma->lock);
136 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 validate_anon_vma(vma);
138 spin_unlock(&anon_vma->lock);
142 void anon_vma_unlink(struct vm_area_struct *vma)
144 struct anon_vma *anon_vma = vma->anon_vma;
145 int empty;
147 if (!anon_vma)
148 return;
150 spin_lock(&anon_vma->lock);
151 validate_anon_vma(vma);
152 list_del(&vma->anon_vma_node);
154 /* We must garbage collect the anon_vma if it's empty */
155 empty = list_empty(&anon_vma->head);
156 spin_unlock(&anon_vma->lock);
158 if (empty)
159 anon_vma_free(anon_vma);
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags)
165 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166 SLAB_CTOR_CONSTRUCTOR) {
167 struct anon_vma *anon_vma = data;
169 spin_lock_init(&anon_vma->lock);
170 INIT_LIST_HEAD(&anon_vma->head);
174 void __init anon_vma_init(void)
176 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
184 static struct anon_vma *page_lock_anon_vma(struct page *page)
186 struct anon_vma *anon_vma;
187 unsigned long anon_mapping;
189 rcu_read_lock();
190 anon_mapping = (unsigned long) page->mapping;
191 if (!(anon_mapping & PAGE_MAPPING_ANON))
192 goto out;
193 if (!page_mapped(page))
194 goto out;
196 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197 spin_lock(&anon_vma->lock);
198 return anon_vma;
199 out:
200 rcu_read_unlock();
201 return NULL;
204 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
206 spin_unlock(&anon_vma->lock);
207 rcu_read_unlock();
211 * At what user virtual address is page expected in vma?
213 static inline unsigned long
214 vma_address(struct page *page, struct vm_area_struct *vma)
216 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
217 unsigned long address;
219 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
220 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
221 /* page should be within any vma from prio_tree_next */
222 BUG_ON(!PageAnon(page));
223 return -EFAULT;
225 return address;
229 * At what user virtual address is page expected in vma? checking that the
230 * page matches the vma: currently only used on anon pages, by unuse_vma;
232 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
234 if (PageAnon(page)) {
235 if ((void *)vma->anon_vma !=
236 (void *)page->mapping - PAGE_MAPPING_ANON)
237 return -EFAULT;
238 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
239 if (!vma->vm_file ||
240 vma->vm_file->f_mapping != page->mapping)
241 return -EFAULT;
242 } else
243 return -EFAULT;
244 return vma_address(page, vma);
248 * Check that @page is mapped at @address into @mm.
250 * On success returns with pte mapped and locked.
252 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
253 unsigned long address, spinlock_t **ptlp)
255 pgd_t *pgd;
256 pud_t *pud;
257 pmd_t *pmd;
258 pte_t *pte;
259 spinlock_t *ptl;
261 pgd = pgd_offset(mm, address);
262 if (!pgd_present(*pgd))
263 return NULL;
265 pud = pud_offset(pgd, address);
266 if (!pud_present(*pud))
267 return NULL;
269 pmd = pmd_offset(pud, address);
270 if (!pmd_present(*pmd))
271 return NULL;
273 pte = pte_offset_map(pmd, address);
274 /* Make a quick check before getting the lock */
275 if (!pte_present(*pte)) {
276 pte_unmap(pte);
277 return NULL;
280 ptl = pte_lockptr(mm, pmd);
281 spin_lock(ptl);
282 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
283 *ptlp = ptl;
284 return pte;
286 pte_unmap_unlock(pte, ptl);
287 return NULL;
291 * Subfunctions of page_referenced: page_referenced_one called
292 * repeatedly from either page_referenced_anon or page_referenced_file.
294 static int page_referenced_one(struct page *page,
295 struct vm_area_struct *vma, unsigned int *mapcount)
297 struct mm_struct *mm = vma->vm_mm;
298 unsigned long address;
299 pte_t *pte;
300 spinlock_t *ptl;
301 int referenced = 0;
303 address = vma_address(page, vma);
304 if (address == -EFAULT)
305 goto out;
307 pte = page_check_address(page, mm, address, &ptl);
308 if (!pte)
309 goto out;
311 if (ptep_clear_flush_young(vma, address, pte))
312 referenced++;
314 /* Pretend the page is referenced if the task has the
315 swap token and is in the middle of a page fault. */
316 if (mm != current->mm && has_swap_token(mm) &&
317 rwsem_is_locked(&mm->mmap_sem))
318 referenced++;
320 (*mapcount)--;
321 pte_unmap_unlock(pte, ptl);
322 out:
323 return referenced;
326 static int page_referenced_anon(struct page *page)
328 unsigned int mapcount;
329 struct anon_vma *anon_vma;
330 struct vm_area_struct *vma;
331 int referenced = 0;
333 anon_vma = page_lock_anon_vma(page);
334 if (!anon_vma)
335 return referenced;
337 mapcount = page_mapcount(page);
338 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
339 referenced += page_referenced_one(page, vma, &mapcount);
340 if (!mapcount)
341 break;
344 page_unlock_anon_vma(anon_vma);
345 return referenced;
349 * page_referenced_file - referenced check for object-based rmap
350 * @page: the page we're checking references on.
352 * For an object-based mapped page, find all the places it is mapped and
353 * check/clear the referenced flag. This is done by following the page->mapping
354 * pointer, then walking the chain of vmas it holds. It returns the number
355 * of references it found.
357 * This function is only called from page_referenced for object-based pages.
359 static int page_referenced_file(struct page *page)
361 unsigned int mapcount;
362 struct address_space *mapping = page->mapping;
363 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
364 struct vm_area_struct *vma;
365 struct prio_tree_iter iter;
366 int referenced = 0;
369 * The caller's checks on page->mapping and !PageAnon have made
370 * sure that this is a file page: the check for page->mapping
371 * excludes the case just before it gets set on an anon page.
373 BUG_ON(PageAnon(page));
376 * The page lock not only makes sure that page->mapping cannot
377 * suddenly be NULLified by truncation, it makes sure that the
378 * structure at mapping cannot be freed and reused yet,
379 * so we can safely take mapping->i_mmap_lock.
381 BUG_ON(!PageLocked(page));
383 spin_lock(&mapping->i_mmap_lock);
386 * i_mmap_lock does not stabilize mapcount at all, but mapcount
387 * is more likely to be accurate if we note it after spinning.
389 mapcount = page_mapcount(page);
391 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
392 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
393 == (VM_LOCKED|VM_MAYSHARE)) {
394 referenced++;
395 break;
397 referenced += page_referenced_one(page, vma, &mapcount);
398 if (!mapcount)
399 break;
402 spin_unlock(&mapping->i_mmap_lock);
403 return referenced;
407 * page_referenced - test if the page was referenced
408 * @page: the page to test
409 * @is_locked: caller holds lock on the page
411 * Quick test_and_clear_referenced for all mappings to a page,
412 * returns the number of ptes which referenced the page.
414 int page_referenced(struct page *page, int is_locked)
416 int referenced = 0;
418 if (page_test_and_clear_young(page))
419 referenced++;
421 if (TestClearPageReferenced(page))
422 referenced++;
424 if (page_mapped(page) && page->mapping) {
425 if (PageAnon(page))
426 referenced += page_referenced_anon(page);
427 else if (is_locked)
428 referenced += page_referenced_file(page);
429 else if (TestSetPageLocked(page))
430 referenced++;
431 else {
432 if (page->mapping)
433 referenced += page_referenced_file(page);
434 unlock_page(page);
437 return referenced;
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
442 struct mm_struct *mm = vma->vm_mm;
443 unsigned long address;
444 pte_t *pte;
445 spinlock_t *ptl;
446 int ret = 0;
448 address = vma_address(page, vma);
449 if (address == -EFAULT)
450 goto out;
452 pte = page_check_address(page, mm, address, &ptl);
453 if (!pte)
454 goto out;
456 if (pte_dirty(*pte) || pte_write(*pte)) {
457 pte_t entry;
459 flush_cache_page(vma, address, pte_pfn(*pte));
460 entry = ptep_clear_flush(vma, address, pte);
461 entry = pte_wrprotect(entry);
462 entry = pte_mkclean(entry);
463 set_pte_at(mm, address, pte, entry);
464 lazy_mmu_prot_update(entry);
465 ret = 1;
468 pte_unmap_unlock(pte, ptl);
469 out:
470 return ret;
473 static int page_mkclean_file(struct address_space *mapping, struct page *page)
475 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 struct vm_area_struct *vma;
477 struct prio_tree_iter iter;
478 int ret = 0;
480 BUG_ON(PageAnon(page));
482 spin_lock(&mapping->i_mmap_lock);
483 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 if (vma->vm_flags & VM_SHARED)
485 ret += page_mkclean_one(page, vma);
487 spin_unlock(&mapping->i_mmap_lock);
488 return ret;
491 int page_mkclean(struct page *page)
493 int ret = 0;
495 BUG_ON(!PageLocked(page));
497 if (page_mapped(page)) {
498 struct address_space *mapping = page_mapping(page);
499 if (mapping)
500 ret = page_mkclean_file(mapping, page);
502 if (page_test_and_clear_dirty(page))
503 ret = 1;
505 return ret;
509 * page_set_anon_rmap - setup new anonymous rmap
510 * @page: the page to add the mapping to
511 * @vma: the vm area in which the mapping is added
512 * @address: the user virtual address mapped
514 static void __page_set_anon_rmap(struct page *page,
515 struct vm_area_struct *vma, unsigned long address)
517 struct anon_vma *anon_vma = vma->anon_vma;
519 BUG_ON(!anon_vma);
520 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
521 page->mapping = (struct address_space *) anon_vma;
523 page->index = linear_page_index(vma, address);
526 * nr_mapped state can be updated without turning off
527 * interrupts because it is not modified via interrupt.
529 __inc_zone_page_state(page, NR_ANON_PAGES);
533 * page_add_anon_rmap - add pte mapping to an anonymous page
534 * @page: the page to add the mapping to
535 * @vma: the vm area in which the mapping is added
536 * @address: the user virtual address mapped
538 * The caller needs to hold the pte lock.
540 void page_add_anon_rmap(struct page *page,
541 struct vm_area_struct *vma, unsigned long address)
543 if (atomic_inc_and_test(&page->_mapcount))
544 __page_set_anon_rmap(page, vma, address);
545 /* else checking page index and mapping is racy */
549 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
550 * @page: the page to add the mapping to
551 * @vma: the vm area in which the mapping is added
552 * @address: the user virtual address mapped
554 * Same as page_add_anon_rmap but must only be called on *new* pages.
555 * This means the inc-and-test can be bypassed.
557 void page_add_new_anon_rmap(struct page *page,
558 struct vm_area_struct *vma, unsigned long address)
560 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
561 __page_set_anon_rmap(page, vma, address);
565 * page_add_file_rmap - add pte mapping to a file page
566 * @page: the page to add the mapping to
568 * The caller needs to hold the pte lock.
570 void page_add_file_rmap(struct page *page)
572 if (atomic_inc_and_test(&page->_mapcount))
573 __inc_zone_page_state(page, NR_FILE_MAPPED);
577 * page_remove_rmap - take down pte mapping from a page
578 * @page: page to remove mapping from
580 * The caller needs to hold the pte lock.
582 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
584 if (atomic_add_negative(-1, &page->_mapcount)) {
585 if (unlikely(page_mapcount(page) < 0)) {
586 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
587 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
588 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
589 printk (KERN_EMERG " page->count = %x\n", page_count(page));
590 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
591 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
592 if (vma->vm_ops)
593 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
594 if (vma->vm_file && vma->vm_file->f_op)
595 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
596 BUG();
600 * It would be tidy to reset the PageAnon mapping here,
601 * but that might overwrite a racing page_add_anon_rmap
602 * which increments mapcount after us but sets mapping
603 * before us: so leave the reset to free_hot_cold_page,
604 * and remember that it's only reliable while mapped.
605 * Leaving it set also helps swapoff to reinstate ptes
606 * faster for those pages still in swapcache.
608 if (page_test_and_clear_dirty(page))
609 set_page_dirty(page);
610 __dec_zone_page_state(page,
611 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
616 * Subfunctions of try_to_unmap: try_to_unmap_one called
617 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
619 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
620 int migration)
622 struct mm_struct *mm = vma->vm_mm;
623 unsigned long address;
624 pte_t *pte;
625 pte_t pteval;
626 spinlock_t *ptl;
627 int ret = SWAP_AGAIN;
629 address = vma_address(page, vma);
630 if (address == -EFAULT)
631 goto out;
633 pte = page_check_address(page, mm, address, &ptl);
634 if (!pte)
635 goto out;
638 * If the page is mlock()d, we cannot swap it out.
639 * If it's recently referenced (perhaps page_referenced
640 * skipped over this mm) then we should reactivate it.
642 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
643 (ptep_clear_flush_young(vma, address, pte)))) {
644 ret = SWAP_FAIL;
645 goto out_unmap;
648 /* Nuke the page table entry. */
649 flush_cache_page(vma, address, page_to_pfn(page));
650 pteval = ptep_clear_flush(vma, address, pte);
652 /* Move the dirty bit to the physical page now the pte is gone. */
653 if (pte_dirty(pteval))
654 set_page_dirty(page);
656 /* Update high watermark before we lower rss */
657 update_hiwater_rss(mm);
659 if (PageAnon(page)) {
660 swp_entry_t entry = { .val = page_private(page) };
662 if (PageSwapCache(page)) {
664 * Store the swap location in the pte.
665 * See handle_pte_fault() ...
667 swap_duplicate(entry);
668 if (list_empty(&mm->mmlist)) {
669 spin_lock(&mmlist_lock);
670 if (list_empty(&mm->mmlist))
671 list_add(&mm->mmlist, &init_mm.mmlist);
672 spin_unlock(&mmlist_lock);
674 dec_mm_counter(mm, anon_rss);
675 #ifdef CONFIG_MIGRATION
676 } else {
678 * Store the pfn of the page in a special migration
679 * pte. do_swap_page() will wait until the migration
680 * pte is removed and then restart fault handling.
682 BUG_ON(!migration);
683 entry = make_migration_entry(page, pte_write(pteval));
684 #endif
686 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
687 BUG_ON(pte_file(*pte));
688 } else
689 #ifdef CONFIG_MIGRATION
690 if (migration) {
691 /* Establish migration entry for a file page */
692 swp_entry_t entry;
693 entry = make_migration_entry(page, pte_write(pteval));
694 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
695 } else
696 #endif
697 dec_mm_counter(mm, file_rss);
700 page_remove_rmap(page, vma);
701 page_cache_release(page);
703 out_unmap:
704 pte_unmap_unlock(pte, ptl);
705 out:
706 return ret;
710 * objrmap doesn't work for nonlinear VMAs because the assumption that
711 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
712 * Consequently, given a particular page and its ->index, we cannot locate the
713 * ptes which are mapping that page without an exhaustive linear search.
715 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
716 * maps the file to which the target page belongs. The ->vm_private_data field
717 * holds the current cursor into that scan. Successive searches will circulate
718 * around the vma's virtual address space.
720 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
721 * more scanning pressure is placed against them as well. Eventually pages
722 * will become fully unmapped and are eligible for eviction.
724 * For very sparsely populated VMAs this is a little inefficient - chances are
725 * there there won't be many ptes located within the scan cluster. In this case
726 * maybe we could scan further - to the end of the pte page, perhaps.
728 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
729 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
731 static void try_to_unmap_cluster(unsigned long cursor,
732 unsigned int *mapcount, struct vm_area_struct *vma)
734 struct mm_struct *mm = vma->vm_mm;
735 pgd_t *pgd;
736 pud_t *pud;
737 pmd_t *pmd;
738 pte_t *pte;
739 pte_t pteval;
740 spinlock_t *ptl;
741 struct page *page;
742 unsigned long address;
743 unsigned long end;
745 address = (vma->vm_start + cursor) & CLUSTER_MASK;
746 end = address + CLUSTER_SIZE;
747 if (address < vma->vm_start)
748 address = vma->vm_start;
749 if (end > vma->vm_end)
750 end = vma->vm_end;
752 pgd = pgd_offset(mm, address);
753 if (!pgd_present(*pgd))
754 return;
756 pud = pud_offset(pgd, address);
757 if (!pud_present(*pud))
758 return;
760 pmd = pmd_offset(pud, address);
761 if (!pmd_present(*pmd))
762 return;
764 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
766 /* Update high watermark before we lower rss */
767 update_hiwater_rss(mm);
769 for (; address < end; pte++, address += PAGE_SIZE) {
770 if (!pte_present(*pte))
771 continue;
772 page = vm_normal_page(vma, address, *pte);
773 BUG_ON(!page || PageAnon(page));
775 if (ptep_clear_flush_young(vma, address, pte))
776 continue;
778 /* Nuke the page table entry. */
779 flush_cache_page(vma, address, pte_pfn(*pte));
780 pteval = ptep_clear_flush(vma, address, pte);
782 /* If nonlinear, store the file page offset in the pte. */
783 if (page->index != linear_page_index(vma, address))
784 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
786 /* Move the dirty bit to the physical page now the pte is gone. */
787 if (pte_dirty(pteval))
788 set_page_dirty(page);
790 page_remove_rmap(page, vma);
791 page_cache_release(page);
792 dec_mm_counter(mm, file_rss);
793 (*mapcount)--;
795 pte_unmap_unlock(pte - 1, ptl);
798 static int try_to_unmap_anon(struct page *page, int migration)
800 struct anon_vma *anon_vma;
801 struct vm_area_struct *vma;
802 int ret = SWAP_AGAIN;
804 anon_vma = page_lock_anon_vma(page);
805 if (!anon_vma)
806 return ret;
808 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
809 ret = try_to_unmap_one(page, vma, migration);
810 if (ret == SWAP_FAIL || !page_mapped(page))
811 break;
814 page_unlock_anon_vma(anon_vma);
815 return ret;
819 * try_to_unmap_file - unmap file page using the object-based rmap method
820 * @page: the page to unmap
822 * Find all the mappings of a page using the mapping pointer and the vma chains
823 * contained in the address_space struct it points to.
825 * This function is only called from try_to_unmap for object-based pages.
827 static int try_to_unmap_file(struct page *page, int migration)
829 struct address_space *mapping = page->mapping;
830 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
831 struct vm_area_struct *vma;
832 struct prio_tree_iter iter;
833 int ret = SWAP_AGAIN;
834 unsigned long cursor;
835 unsigned long max_nl_cursor = 0;
836 unsigned long max_nl_size = 0;
837 unsigned int mapcount;
839 spin_lock(&mapping->i_mmap_lock);
840 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
841 ret = try_to_unmap_one(page, vma, migration);
842 if (ret == SWAP_FAIL || !page_mapped(page))
843 goto out;
846 if (list_empty(&mapping->i_mmap_nonlinear))
847 goto out;
849 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
850 shared.vm_set.list) {
851 if ((vma->vm_flags & VM_LOCKED) && !migration)
852 continue;
853 cursor = (unsigned long) vma->vm_private_data;
854 if (cursor > max_nl_cursor)
855 max_nl_cursor = cursor;
856 cursor = vma->vm_end - vma->vm_start;
857 if (cursor > max_nl_size)
858 max_nl_size = cursor;
861 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
862 ret = SWAP_FAIL;
863 goto out;
867 * We don't try to search for this page in the nonlinear vmas,
868 * and page_referenced wouldn't have found it anyway. Instead
869 * just walk the nonlinear vmas trying to age and unmap some.
870 * The mapcount of the page we came in with is irrelevant,
871 * but even so use it as a guide to how hard we should try?
873 mapcount = page_mapcount(page);
874 if (!mapcount)
875 goto out;
876 cond_resched_lock(&mapping->i_mmap_lock);
878 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
879 if (max_nl_cursor == 0)
880 max_nl_cursor = CLUSTER_SIZE;
882 do {
883 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
884 shared.vm_set.list) {
885 if ((vma->vm_flags & VM_LOCKED) && !migration)
886 continue;
887 cursor = (unsigned long) vma->vm_private_data;
888 while ( cursor < max_nl_cursor &&
889 cursor < vma->vm_end - vma->vm_start) {
890 try_to_unmap_cluster(cursor, &mapcount, vma);
891 cursor += CLUSTER_SIZE;
892 vma->vm_private_data = (void *) cursor;
893 if ((int)mapcount <= 0)
894 goto out;
896 vma->vm_private_data = (void *) max_nl_cursor;
898 cond_resched_lock(&mapping->i_mmap_lock);
899 max_nl_cursor += CLUSTER_SIZE;
900 } while (max_nl_cursor <= max_nl_size);
903 * Don't loop forever (perhaps all the remaining pages are
904 * in locked vmas). Reset cursor on all unreserved nonlinear
905 * vmas, now forgetting on which ones it had fallen behind.
907 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
908 vma->vm_private_data = NULL;
909 out:
910 spin_unlock(&mapping->i_mmap_lock);
911 return ret;
915 * try_to_unmap - try to remove all page table mappings to a page
916 * @page: the page to get unmapped
918 * Tries to remove all the page table entries which are mapping this
919 * page, used in the pageout path. Caller must hold the page lock.
920 * Return values are:
922 * SWAP_SUCCESS - we succeeded in removing all mappings
923 * SWAP_AGAIN - we missed a mapping, try again later
924 * SWAP_FAIL - the page is unswappable
926 int try_to_unmap(struct page *page, int migration)
928 int ret;
930 BUG_ON(!PageLocked(page));
932 if (PageAnon(page))
933 ret = try_to_unmap_anon(page, migration);
934 else
935 ret = try_to_unmap_file(page, migration);
937 if (!page_mapped(page))
938 ret = SWAP_SUCCESS;
939 return ret;