[CPUFREQ] Measure transition latency at driver initialization
[linux-2.6.22.y-op.git] / ipc / sem.c
blob19af028a3e380d251d31e4b8ec4cd96ee679a1cb
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfreds@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
66 #include <linux/config.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/init.h>
70 #include <linux/proc_fs.h>
71 #include <linux/time.h>
72 #include <linux/smp_lock.h>
73 #include <linux/security.h>
74 #include <linux/syscalls.h>
75 #include <linux/audit.h>
76 #include <linux/seq_file.h>
77 #include <asm/uaccess.h>
78 #include "util.h"
81 #define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))
82 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
83 #define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))
84 #define sem_checkid(sma, semid) \
85 ipc_checkid(&sem_ids,&sma->sem_perm,semid)
86 #define sem_buildid(id, seq) \
87 ipc_buildid(&sem_ids, id, seq)
88 static struct ipc_ids sem_ids;
90 static int newary (key_t, int, int);
91 static void freeary (struct sem_array *sma, int id);
92 #ifdef CONFIG_PROC_FS
93 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
94 #endif
96 #define SEMMSL_FAST 256 /* 512 bytes on stack */
97 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
100 * linked list protection:
101 * sem_undo.id_next,
102 * sem_array.sem_pending{,last},
103 * sem_array.sem_undo: sem_lock() for read/write
104 * sem_undo.proc_next: only "current" is allowed to read/write that field.
108 int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
109 #define sc_semmsl (sem_ctls[0])
110 #define sc_semmns (sem_ctls[1])
111 #define sc_semopm (sem_ctls[2])
112 #define sc_semmni (sem_ctls[3])
114 static int used_sems;
116 void __init sem_init (void)
118 used_sems = 0;
119 ipc_init_ids(&sem_ids,sc_semmni);
120 ipc_init_proc_interface("sysvipc/sem",
121 " key semid perms nsems uid gid cuid cgid otime ctime\n",
122 &sem_ids,
123 sysvipc_sem_proc_show);
127 * Lockless wakeup algorithm:
128 * Without the check/retry algorithm a lockless wakeup is possible:
129 * - queue.status is initialized to -EINTR before blocking.
130 * - wakeup is performed by
131 * * unlinking the queue entry from sma->sem_pending
132 * * setting queue.status to IN_WAKEUP
133 * This is the notification for the blocked thread that a
134 * result value is imminent.
135 * * call wake_up_process
136 * * set queue.status to the final value.
137 * - the previously blocked thread checks queue.status:
138 * * if it's IN_WAKEUP, then it must wait until the value changes
139 * * if it's not -EINTR, then the operation was completed by
140 * update_queue. semtimedop can return queue.status without
141 * performing any operation on the semaphore array.
142 * * otherwise it must acquire the spinlock and check what's up.
144 * The two-stage algorithm is necessary to protect against the following
145 * races:
146 * - if queue.status is set after wake_up_process, then the woken up idle
147 * thread could race forward and try (and fail) to acquire sma->lock
148 * before update_queue had a chance to set queue.status
149 * - if queue.status is written before wake_up_process and if the
150 * blocked process is woken up by a signal between writing
151 * queue.status and the wake_up_process, then the woken up
152 * process could return from semtimedop and die by calling
153 * sys_exit before wake_up_process is called. Then wake_up_process
154 * will oops, because the task structure is already invalid.
155 * (yes, this happened on s390 with sysv msg).
158 #define IN_WAKEUP 1
160 static int newary (key_t key, int nsems, int semflg)
162 int id;
163 int retval;
164 struct sem_array *sma;
165 int size;
167 if (!nsems)
168 return -EINVAL;
169 if (used_sems + nsems > sc_semmns)
170 return -ENOSPC;
172 size = sizeof (*sma) + nsems * sizeof (struct sem);
173 sma = ipc_rcu_alloc(size);
174 if (!sma) {
175 return -ENOMEM;
177 memset (sma, 0, size);
179 sma->sem_perm.mode = (semflg & S_IRWXUGO);
180 sma->sem_perm.key = key;
182 sma->sem_perm.security = NULL;
183 retval = security_sem_alloc(sma);
184 if (retval) {
185 ipc_rcu_putref(sma);
186 return retval;
189 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
190 if(id == -1) {
191 security_sem_free(sma);
192 ipc_rcu_putref(sma);
193 return -ENOSPC;
195 used_sems += nsems;
197 sma->sem_id = sem_buildid(id, sma->sem_perm.seq);
198 sma->sem_base = (struct sem *) &sma[1];
199 /* sma->sem_pending = NULL; */
200 sma->sem_pending_last = &sma->sem_pending;
201 /* sma->undo = NULL; */
202 sma->sem_nsems = nsems;
203 sma->sem_ctime = get_seconds();
204 sem_unlock(sma);
206 return sma->sem_id;
209 asmlinkage long sys_semget (key_t key, int nsems, int semflg)
211 int id, err = -EINVAL;
212 struct sem_array *sma;
214 if (nsems < 0 || nsems > sc_semmsl)
215 return -EINVAL;
216 down(&sem_ids.sem);
218 if (key == IPC_PRIVATE) {
219 err = newary(key, nsems, semflg);
220 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */
221 if (!(semflg & IPC_CREAT))
222 err = -ENOENT;
223 else
224 err = newary(key, nsems, semflg);
225 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
226 err = -EEXIST;
227 } else {
228 sma = sem_lock(id);
229 if(sma==NULL)
230 BUG();
231 if (nsems > sma->sem_nsems)
232 err = -EINVAL;
233 else if (ipcperms(&sma->sem_perm, semflg))
234 err = -EACCES;
235 else {
236 int semid = sem_buildid(id, sma->sem_perm.seq);
237 err = security_sem_associate(sma, semflg);
238 if (!err)
239 err = semid;
241 sem_unlock(sma);
244 up(&sem_ids.sem);
245 return err;
248 /* Manage the doubly linked list sma->sem_pending as a FIFO:
249 * insert new queue elements at the tail sma->sem_pending_last.
251 static inline void append_to_queue (struct sem_array * sma,
252 struct sem_queue * q)
254 *(q->prev = sma->sem_pending_last) = q;
255 *(sma->sem_pending_last = &q->next) = NULL;
258 static inline void prepend_to_queue (struct sem_array * sma,
259 struct sem_queue * q)
261 q->next = sma->sem_pending;
262 *(q->prev = &sma->sem_pending) = q;
263 if (q->next)
264 q->next->prev = &q->next;
265 else /* sma->sem_pending_last == &sma->sem_pending */
266 sma->sem_pending_last = &q->next;
269 static inline void remove_from_queue (struct sem_array * sma,
270 struct sem_queue * q)
272 *(q->prev) = q->next;
273 if (q->next)
274 q->next->prev = q->prev;
275 else /* sma->sem_pending_last == &q->next */
276 sma->sem_pending_last = q->prev;
277 q->prev = NULL; /* mark as removed */
281 * Determine whether a sequence of semaphore operations would succeed
282 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
285 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
286 int nsops, struct sem_undo *un, int pid)
288 int result, sem_op;
289 struct sembuf *sop;
290 struct sem * curr;
292 for (sop = sops; sop < sops + nsops; sop++) {
293 curr = sma->sem_base + sop->sem_num;
294 sem_op = sop->sem_op;
295 result = curr->semval;
297 if (!sem_op && result)
298 goto would_block;
300 result += sem_op;
301 if (result < 0)
302 goto would_block;
303 if (result > SEMVMX)
304 goto out_of_range;
305 if (sop->sem_flg & SEM_UNDO) {
306 int undo = un->semadj[sop->sem_num] - sem_op;
308 * Exceeding the undo range is an error.
310 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
311 goto out_of_range;
313 curr->semval = result;
316 sop--;
317 while (sop >= sops) {
318 sma->sem_base[sop->sem_num].sempid = pid;
319 if (sop->sem_flg & SEM_UNDO)
320 un->semadj[sop->sem_num] -= sop->sem_op;
321 sop--;
324 sma->sem_otime = get_seconds();
325 return 0;
327 out_of_range:
328 result = -ERANGE;
329 goto undo;
331 would_block:
332 if (sop->sem_flg & IPC_NOWAIT)
333 result = -EAGAIN;
334 else
335 result = 1;
337 undo:
338 sop--;
339 while (sop >= sops) {
340 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
341 sop--;
344 return result;
347 /* Go through the pending queue for the indicated semaphore
348 * looking for tasks that can be completed.
350 static void update_queue (struct sem_array * sma)
352 int error;
353 struct sem_queue * q;
355 q = sma->sem_pending;
356 while(q) {
357 error = try_atomic_semop(sma, q->sops, q->nsops,
358 q->undo, q->pid);
360 /* Does q->sleeper still need to sleep? */
361 if (error <= 0) {
362 struct sem_queue *n;
363 remove_from_queue(sma,q);
364 q->status = IN_WAKEUP;
366 * Continue scanning. The next operation
367 * that must be checked depends on the type of the
368 * completed operation:
369 * - if the operation modified the array, then
370 * restart from the head of the queue and
371 * check for threads that might be waiting
372 * for semaphore values to become 0.
373 * - if the operation didn't modify the array,
374 * then just continue.
376 if (q->alter)
377 n = sma->sem_pending;
378 else
379 n = q->next;
380 wake_up_process(q->sleeper);
381 /* hands-off: q will disappear immediately after
382 * writing q->status.
384 q->status = error;
385 q = n;
386 } else {
387 q = q->next;
392 /* The following counts are associated to each semaphore:
393 * semncnt number of tasks waiting on semval being nonzero
394 * semzcnt number of tasks waiting on semval being zero
395 * This model assumes that a task waits on exactly one semaphore.
396 * Since semaphore operations are to be performed atomically, tasks actually
397 * wait on a whole sequence of semaphores simultaneously.
398 * The counts we return here are a rough approximation, but still
399 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
401 static int count_semncnt (struct sem_array * sma, ushort semnum)
403 int semncnt;
404 struct sem_queue * q;
406 semncnt = 0;
407 for (q = sma->sem_pending; q; q = q->next) {
408 struct sembuf * sops = q->sops;
409 int nsops = q->nsops;
410 int i;
411 for (i = 0; i < nsops; i++)
412 if (sops[i].sem_num == semnum
413 && (sops[i].sem_op < 0)
414 && !(sops[i].sem_flg & IPC_NOWAIT))
415 semncnt++;
417 return semncnt;
419 static int count_semzcnt (struct sem_array * sma, ushort semnum)
421 int semzcnt;
422 struct sem_queue * q;
424 semzcnt = 0;
425 for (q = sma->sem_pending; q; q = q->next) {
426 struct sembuf * sops = q->sops;
427 int nsops = q->nsops;
428 int i;
429 for (i = 0; i < nsops; i++)
430 if (sops[i].sem_num == semnum
431 && (sops[i].sem_op == 0)
432 && !(sops[i].sem_flg & IPC_NOWAIT))
433 semzcnt++;
435 return semzcnt;
438 /* Free a semaphore set. freeary() is called with sem_ids.sem down and
439 * the spinlock for this semaphore set hold. sem_ids.sem remains locked
440 * on exit.
442 static void freeary (struct sem_array *sma, int id)
444 struct sem_undo *un;
445 struct sem_queue *q;
446 int size;
448 /* Invalidate the existing undo structures for this semaphore set.
449 * (They will be freed without any further action in exit_sem()
450 * or during the next semop.)
452 for (un = sma->undo; un; un = un->id_next)
453 un->semid = -1;
455 /* Wake up all pending processes and let them fail with EIDRM. */
456 q = sma->sem_pending;
457 while(q) {
458 struct sem_queue *n;
459 /* lazy remove_from_queue: we are killing the whole queue */
460 q->prev = NULL;
461 n = q->next;
462 q->status = IN_WAKEUP;
463 wake_up_process(q->sleeper); /* doesn't sleep */
464 q->status = -EIDRM; /* hands-off q */
465 q = n;
468 /* Remove the semaphore set from the ID array*/
469 sma = sem_rmid(id);
470 sem_unlock(sma);
472 used_sems -= sma->sem_nsems;
473 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
474 security_sem_free(sma);
475 ipc_rcu_putref(sma);
478 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
480 switch(version) {
481 case IPC_64:
482 return copy_to_user(buf, in, sizeof(*in));
483 case IPC_OLD:
485 struct semid_ds out;
487 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
489 out.sem_otime = in->sem_otime;
490 out.sem_ctime = in->sem_ctime;
491 out.sem_nsems = in->sem_nsems;
493 return copy_to_user(buf, &out, sizeof(out));
495 default:
496 return -EINVAL;
500 static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
502 int err = -EINVAL;
503 struct sem_array *sma;
505 switch(cmd) {
506 case IPC_INFO:
507 case SEM_INFO:
509 struct seminfo seminfo;
510 int max_id;
512 err = security_sem_semctl(NULL, cmd);
513 if (err)
514 return err;
516 memset(&seminfo,0,sizeof(seminfo));
517 seminfo.semmni = sc_semmni;
518 seminfo.semmns = sc_semmns;
519 seminfo.semmsl = sc_semmsl;
520 seminfo.semopm = sc_semopm;
521 seminfo.semvmx = SEMVMX;
522 seminfo.semmnu = SEMMNU;
523 seminfo.semmap = SEMMAP;
524 seminfo.semume = SEMUME;
525 down(&sem_ids.sem);
526 if (cmd == SEM_INFO) {
527 seminfo.semusz = sem_ids.in_use;
528 seminfo.semaem = used_sems;
529 } else {
530 seminfo.semusz = SEMUSZ;
531 seminfo.semaem = SEMAEM;
533 max_id = sem_ids.max_id;
534 up(&sem_ids.sem);
535 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
536 return -EFAULT;
537 return (max_id < 0) ? 0: max_id;
539 case SEM_STAT:
541 struct semid64_ds tbuf;
542 int id;
544 if(semid >= sem_ids.entries->size)
545 return -EINVAL;
547 memset(&tbuf,0,sizeof(tbuf));
549 sma = sem_lock(semid);
550 if(sma == NULL)
551 return -EINVAL;
553 err = -EACCES;
554 if (ipcperms (&sma->sem_perm, S_IRUGO))
555 goto out_unlock;
557 err = security_sem_semctl(sma, cmd);
558 if (err)
559 goto out_unlock;
561 id = sem_buildid(semid, sma->sem_perm.seq);
563 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
564 tbuf.sem_otime = sma->sem_otime;
565 tbuf.sem_ctime = sma->sem_ctime;
566 tbuf.sem_nsems = sma->sem_nsems;
567 sem_unlock(sma);
568 if (copy_semid_to_user (arg.buf, &tbuf, version))
569 return -EFAULT;
570 return id;
572 default:
573 return -EINVAL;
575 return err;
576 out_unlock:
577 sem_unlock(sma);
578 return err;
581 static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
583 struct sem_array *sma;
584 struct sem* curr;
585 int err;
586 ushort fast_sem_io[SEMMSL_FAST];
587 ushort* sem_io = fast_sem_io;
588 int nsems;
590 sma = sem_lock(semid);
591 if(sma==NULL)
592 return -EINVAL;
594 nsems = sma->sem_nsems;
596 err=-EIDRM;
597 if (sem_checkid(sma,semid))
598 goto out_unlock;
600 err = -EACCES;
601 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
602 goto out_unlock;
604 err = security_sem_semctl(sma, cmd);
605 if (err)
606 goto out_unlock;
608 err = -EACCES;
609 switch (cmd) {
610 case GETALL:
612 ushort __user *array = arg.array;
613 int i;
615 if(nsems > SEMMSL_FAST) {
616 ipc_rcu_getref(sma);
617 sem_unlock(sma);
619 sem_io = ipc_alloc(sizeof(ushort)*nsems);
620 if(sem_io == NULL) {
621 ipc_lock_by_ptr(&sma->sem_perm);
622 ipc_rcu_putref(sma);
623 sem_unlock(sma);
624 return -ENOMEM;
627 ipc_lock_by_ptr(&sma->sem_perm);
628 ipc_rcu_putref(sma);
629 if (sma->sem_perm.deleted) {
630 sem_unlock(sma);
631 err = -EIDRM;
632 goto out_free;
636 for (i = 0; i < sma->sem_nsems; i++)
637 sem_io[i] = sma->sem_base[i].semval;
638 sem_unlock(sma);
639 err = 0;
640 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
641 err = -EFAULT;
642 goto out_free;
644 case SETALL:
646 int i;
647 struct sem_undo *un;
649 ipc_rcu_getref(sma);
650 sem_unlock(sma);
652 if(nsems > SEMMSL_FAST) {
653 sem_io = ipc_alloc(sizeof(ushort)*nsems);
654 if(sem_io == NULL) {
655 ipc_lock_by_ptr(&sma->sem_perm);
656 ipc_rcu_putref(sma);
657 sem_unlock(sma);
658 return -ENOMEM;
662 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
663 ipc_lock_by_ptr(&sma->sem_perm);
664 ipc_rcu_putref(sma);
665 sem_unlock(sma);
666 err = -EFAULT;
667 goto out_free;
670 for (i = 0; i < nsems; i++) {
671 if (sem_io[i] > SEMVMX) {
672 ipc_lock_by_ptr(&sma->sem_perm);
673 ipc_rcu_putref(sma);
674 sem_unlock(sma);
675 err = -ERANGE;
676 goto out_free;
679 ipc_lock_by_ptr(&sma->sem_perm);
680 ipc_rcu_putref(sma);
681 if (sma->sem_perm.deleted) {
682 sem_unlock(sma);
683 err = -EIDRM;
684 goto out_free;
687 for (i = 0; i < nsems; i++)
688 sma->sem_base[i].semval = sem_io[i];
689 for (un = sma->undo; un; un = un->id_next)
690 for (i = 0; i < nsems; i++)
691 un->semadj[i] = 0;
692 sma->sem_ctime = get_seconds();
693 /* maybe some queued-up processes were waiting for this */
694 update_queue(sma);
695 err = 0;
696 goto out_unlock;
698 case IPC_STAT:
700 struct semid64_ds tbuf;
701 memset(&tbuf,0,sizeof(tbuf));
702 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
703 tbuf.sem_otime = sma->sem_otime;
704 tbuf.sem_ctime = sma->sem_ctime;
705 tbuf.sem_nsems = sma->sem_nsems;
706 sem_unlock(sma);
707 if (copy_semid_to_user (arg.buf, &tbuf, version))
708 return -EFAULT;
709 return 0;
711 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
713 err = -EINVAL;
714 if(semnum < 0 || semnum >= nsems)
715 goto out_unlock;
717 curr = &sma->sem_base[semnum];
719 switch (cmd) {
720 case GETVAL:
721 err = curr->semval;
722 goto out_unlock;
723 case GETPID:
724 err = curr->sempid;
725 goto out_unlock;
726 case GETNCNT:
727 err = count_semncnt(sma,semnum);
728 goto out_unlock;
729 case GETZCNT:
730 err = count_semzcnt(sma,semnum);
731 goto out_unlock;
732 case SETVAL:
734 int val = arg.val;
735 struct sem_undo *un;
736 err = -ERANGE;
737 if (val > SEMVMX || val < 0)
738 goto out_unlock;
740 for (un = sma->undo; un; un = un->id_next)
741 un->semadj[semnum] = 0;
742 curr->semval = val;
743 curr->sempid = current->tgid;
744 sma->sem_ctime = get_seconds();
745 /* maybe some queued-up processes were waiting for this */
746 update_queue(sma);
747 err = 0;
748 goto out_unlock;
751 out_unlock:
752 sem_unlock(sma);
753 out_free:
754 if(sem_io != fast_sem_io)
755 ipc_free(sem_io, sizeof(ushort)*nsems);
756 return err;
759 struct sem_setbuf {
760 uid_t uid;
761 gid_t gid;
762 mode_t mode;
765 static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
767 switch(version) {
768 case IPC_64:
770 struct semid64_ds tbuf;
772 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
773 return -EFAULT;
775 out->uid = tbuf.sem_perm.uid;
776 out->gid = tbuf.sem_perm.gid;
777 out->mode = tbuf.sem_perm.mode;
779 return 0;
781 case IPC_OLD:
783 struct semid_ds tbuf_old;
785 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
786 return -EFAULT;
788 out->uid = tbuf_old.sem_perm.uid;
789 out->gid = tbuf_old.sem_perm.gid;
790 out->mode = tbuf_old.sem_perm.mode;
792 return 0;
794 default:
795 return -EINVAL;
799 static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
801 struct sem_array *sma;
802 int err;
803 struct sem_setbuf setbuf;
804 struct kern_ipc_perm *ipcp;
806 if(cmd == IPC_SET) {
807 if(copy_semid_from_user (&setbuf, arg.buf, version))
808 return -EFAULT;
809 if ((err = audit_ipc_perms(0, setbuf.uid, setbuf.gid, setbuf.mode)))
810 return err;
812 sma = sem_lock(semid);
813 if(sma==NULL)
814 return -EINVAL;
816 if (sem_checkid(sma,semid)) {
817 err=-EIDRM;
818 goto out_unlock;
820 ipcp = &sma->sem_perm;
822 if (current->euid != ipcp->cuid &&
823 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
824 err=-EPERM;
825 goto out_unlock;
828 err = security_sem_semctl(sma, cmd);
829 if (err)
830 goto out_unlock;
832 switch(cmd){
833 case IPC_RMID:
834 freeary(sma, semid);
835 err = 0;
836 break;
837 case IPC_SET:
838 ipcp->uid = setbuf.uid;
839 ipcp->gid = setbuf.gid;
840 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
841 | (setbuf.mode & S_IRWXUGO);
842 sma->sem_ctime = get_seconds();
843 sem_unlock(sma);
844 err = 0;
845 break;
846 default:
847 sem_unlock(sma);
848 err = -EINVAL;
849 break;
851 return err;
853 out_unlock:
854 sem_unlock(sma);
855 return err;
858 asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
860 int err = -EINVAL;
861 int version;
863 if (semid < 0)
864 return -EINVAL;
866 version = ipc_parse_version(&cmd);
868 switch(cmd) {
869 case IPC_INFO:
870 case SEM_INFO:
871 case SEM_STAT:
872 err = semctl_nolock(semid,semnum,cmd,version,arg);
873 return err;
874 case GETALL:
875 case GETVAL:
876 case GETPID:
877 case GETNCNT:
878 case GETZCNT:
879 case IPC_STAT:
880 case SETVAL:
881 case SETALL:
882 err = semctl_main(semid,semnum,cmd,version,arg);
883 return err;
884 case IPC_RMID:
885 case IPC_SET:
886 down(&sem_ids.sem);
887 err = semctl_down(semid,semnum,cmd,version,arg);
888 up(&sem_ids.sem);
889 return err;
890 default:
891 return -EINVAL;
895 static inline void lock_semundo(void)
897 struct sem_undo_list *undo_list;
899 undo_list = current->sysvsem.undo_list;
900 if (undo_list)
901 spin_lock(&undo_list->lock);
904 /* This code has an interaction with copy_semundo().
905 * Consider; two tasks are sharing the undo_list. task1
906 * acquires the undo_list lock in lock_semundo(). If task2 now
907 * exits before task1 releases the lock (by calling
908 * unlock_semundo()), then task1 will never call spin_unlock().
909 * This leave the sem_undo_list in a locked state. If task1 now creats task3
910 * and once again shares the sem_undo_list, the sem_undo_list will still be
911 * locked, and future SEM_UNDO operations will deadlock. This case is
912 * dealt with in copy_semundo() by having it reinitialize the spin lock when
913 * the refcnt goes from 1 to 2.
915 static inline void unlock_semundo(void)
917 struct sem_undo_list *undo_list;
919 undo_list = current->sysvsem.undo_list;
920 if (undo_list)
921 spin_unlock(&undo_list->lock);
925 /* If the task doesn't already have a undo_list, then allocate one
926 * here. We guarantee there is only one thread using this undo list,
927 * and current is THE ONE
929 * If this allocation and assignment succeeds, but later
930 * portions of this code fail, there is no need to free the sem_undo_list.
931 * Just let it stay associated with the task, and it'll be freed later
932 * at exit time.
934 * This can block, so callers must hold no locks.
936 static inline int get_undo_list(struct sem_undo_list **undo_listp)
938 struct sem_undo_list *undo_list;
939 int size;
941 undo_list = current->sysvsem.undo_list;
942 if (!undo_list) {
943 size = sizeof(struct sem_undo_list);
944 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
945 if (undo_list == NULL)
946 return -ENOMEM;
947 memset(undo_list, 0, size);
948 spin_lock_init(&undo_list->lock);
949 atomic_set(&undo_list->refcnt, 1);
950 current->sysvsem.undo_list = undo_list;
952 *undo_listp = undo_list;
953 return 0;
956 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
958 struct sem_undo **last, *un;
960 last = &ulp->proc_list;
961 un = *last;
962 while(un != NULL) {
963 if(un->semid==semid)
964 break;
965 if(un->semid==-1) {
966 *last=un->proc_next;
967 kfree(un);
968 } else {
969 last=&un->proc_next;
971 un=*last;
973 return un;
976 static struct sem_undo *find_undo(int semid)
978 struct sem_array *sma;
979 struct sem_undo_list *ulp;
980 struct sem_undo *un, *new;
981 int nsems;
982 int error;
984 error = get_undo_list(&ulp);
985 if (error)
986 return ERR_PTR(error);
988 lock_semundo();
989 un = lookup_undo(ulp, semid);
990 unlock_semundo();
991 if (likely(un!=NULL))
992 goto out;
994 /* no undo structure around - allocate one. */
995 sma = sem_lock(semid);
996 un = ERR_PTR(-EINVAL);
997 if(sma==NULL)
998 goto out;
999 un = ERR_PTR(-EIDRM);
1000 if (sem_checkid(sma,semid)) {
1001 sem_unlock(sma);
1002 goto out;
1004 nsems = sma->sem_nsems;
1005 ipc_rcu_getref(sma);
1006 sem_unlock(sma);
1008 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1009 if (!new) {
1010 ipc_lock_by_ptr(&sma->sem_perm);
1011 ipc_rcu_putref(sma);
1012 sem_unlock(sma);
1013 return ERR_PTR(-ENOMEM);
1015 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1016 new->semadj = (short *) &new[1];
1017 new->semid = semid;
1019 lock_semundo();
1020 un = lookup_undo(ulp, semid);
1021 if (un) {
1022 unlock_semundo();
1023 kfree(new);
1024 ipc_lock_by_ptr(&sma->sem_perm);
1025 ipc_rcu_putref(sma);
1026 sem_unlock(sma);
1027 goto out;
1029 ipc_lock_by_ptr(&sma->sem_perm);
1030 ipc_rcu_putref(sma);
1031 if (sma->sem_perm.deleted) {
1032 sem_unlock(sma);
1033 unlock_semundo();
1034 kfree(new);
1035 un = ERR_PTR(-EIDRM);
1036 goto out;
1038 new->proc_next = ulp->proc_list;
1039 ulp->proc_list = new;
1040 new->id_next = sma->undo;
1041 sma->undo = new;
1042 sem_unlock(sma);
1043 un = new;
1044 unlock_semundo();
1045 out:
1046 return un;
1049 asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1050 unsigned nsops, const struct timespec __user *timeout)
1052 int error = -EINVAL;
1053 struct sem_array *sma;
1054 struct sembuf fast_sops[SEMOPM_FAST];
1055 struct sembuf* sops = fast_sops, *sop;
1056 struct sem_undo *un;
1057 int undos = 0, alter = 0, max;
1058 struct sem_queue queue;
1059 unsigned long jiffies_left = 0;
1061 if (nsops < 1 || semid < 0)
1062 return -EINVAL;
1063 if (nsops > sc_semopm)
1064 return -E2BIG;
1065 if(nsops > SEMOPM_FAST) {
1066 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1067 if(sops==NULL)
1068 return -ENOMEM;
1070 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1071 error=-EFAULT;
1072 goto out_free;
1074 if (timeout) {
1075 struct timespec _timeout;
1076 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1077 error = -EFAULT;
1078 goto out_free;
1080 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1081 _timeout.tv_nsec >= 1000000000L) {
1082 error = -EINVAL;
1083 goto out_free;
1085 jiffies_left = timespec_to_jiffies(&_timeout);
1087 max = 0;
1088 for (sop = sops; sop < sops + nsops; sop++) {
1089 if (sop->sem_num >= max)
1090 max = sop->sem_num;
1091 if (sop->sem_flg & SEM_UNDO)
1092 undos = 1;
1093 if (sop->sem_op != 0)
1094 alter = 1;
1097 retry_undos:
1098 if (undos) {
1099 un = find_undo(semid);
1100 if (IS_ERR(un)) {
1101 error = PTR_ERR(un);
1102 goto out_free;
1104 } else
1105 un = NULL;
1107 sma = sem_lock(semid);
1108 error=-EINVAL;
1109 if(sma==NULL)
1110 goto out_free;
1111 error = -EIDRM;
1112 if (sem_checkid(sma,semid))
1113 goto out_unlock_free;
1115 * semid identifies are not unique - find_undo may have
1116 * allocated an undo structure, it was invalidated by an RMID
1117 * and now a new array with received the same id. Check and retry.
1119 if (un && un->semid == -1) {
1120 sem_unlock(sma);
1121 goto retry_undos;
1123 error = -EFBIG;
1124 if (max >= sma->sem_nsems)
1125 goto out_unlock_free;
1127 error = -EACCES;
1128 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1129 goto out_unlock_free;
1131 error = security_sem_semop(sma, sops, nsops, alter);
1132 if (error)
1133 goto out_unlock_free;
1135 error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1136 if (error <= 0) {
1137 if (alter && error == 0)
1138 update_queue (sma);
1139 goto out_unlock_free;
1142 /* We need to sleep on this operation, so we put the current
1143 * task into the pending queue and go to sleep.
1146 queue.sma = sma;
1147 queue.sops = sops;
1148 queue.nsops = nsops;
1149 queue.undo = un;
1150 queue.pid = current->tgid;
1151 queue.id = semid;
1152 queue.alter = alter;
1153 if (alter)
1154 append_to_queue(sma ,&queue);
1155 else
1156 prepend_to_queue(sma ,&queue);
1158 queue.status = -EINTR;
1159 queue.sleeper = current;
1160 current->state = TASK_INTERRUPTIBLE;
1161 sem_unlock(sma);
1163 if (timeout)
1164 jiffies_left = schedule_timeout(jiffies_left);
1165 else
1166 schedule();
1168 error = queue.status;
1169 while(unlikely(error == IN_WAKEUP)) {
1170 cpu_relax();
1171 error = queue.status;
1174 if (error != -EINTR) {
1175 /* fast path: update_queue already obtained all requested
1176 * resources */
1177 goto out_free;
1180 sma = sem_lock(semid);
1181 if(sma==NULL) {
1182 if(queue.prev != NULL)
1183 BUG();
1184 error = -EIDRM;
1185 goto out_free;
1189 * If queue.status != -EINTR we are woken up by another process
1191 error = queue.status;
1192 if (error != -EINTR) {
1193 goto out_unlock_free;
1197 * If an interrupt occurred we have to clean up the queue
1199 if (timeout && jiffies_left == 0)
1200 error = -EAGAIN;
1201 remove_from_queue(sma,&queue);
1202 goto out_unlock_free;
1204 out_unlock_free:
1205 sem_unlock(sma);
1206 out_free:
1207 if(sops != fast_sops)
1208 kfree(sops);
1209 return error;
1212 asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1214 return sys_semtimedop(semid, tsops, nsops, NULL);
1217 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1218 * parent and child tasks.
1220 * See the notes above unlock_semundo() regarding the spin_lock_init()
1221 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1222 * because of the reasoning in the comment above unlock_semundo.
1225 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1227 struct sem_undo_list *undo_list;
1228 int error;
1230 if (clone_flags & CLONE_SYSVSEM) {
1231 error = get_undo_list(&undo_list);
1232 if (error)
1233 return error;
1234 atomic_inc(&undo_list->refcnt);
1235 tsk->sysvsem.undo_list = undo_list;
1236 } else
1237 tsk->sysvsem.undo_list = NULL;
1239 return 0;
1243 * add semadj values to semaphores, free undo structures.
1244 * undo structures are not freed when semaphore arrays are destroyed
1245 * so some of them may be out of date.
1246 * IMPLEMENTATION NOTE: There is some confusion over whether the
1247 * set of adjustments that needs to be done should be done in an atomic
1248 * manner or not. That is, if we are attempting to decrement the semval
1249 * should we queue up and wait until we can do so legally?
1250 * The original implementation attempted to do this (queue and wait).
1251 * The current implementation does not do so. The POSIX standard
1252 * and SVID should be consulted to determine what behavior is mandated.
1254 void exit_sem(struct task_struct *tsk)
1256 struct sem_undo_list *undo_list;
1257 struct sem_undo *u, **up;
1259 undo_list = tsk->sysvsem.undo_list;
1260 if (!undo_list)
1261 return;
1263 if (!atomic_dec_and_test(&undo_list->refcnt))
1264 return;
1266 /* There's no need to hold the semundo list lock, as current
1267 * is the last task exiting for this undo list.
1269 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1270 struct sem_array *sma;
1271 int nsems, i;
1272 struct sem_undo *un, **unp;
1273 int semid;
1275 semid = u->semid;
1277 if(semid == -1)
1278 continue;
1279 sma = sem_lock(semid);
1280 if (sma == NULL)
1281 continue;
1283 if (u->semid == -1)
1284 goto next_entry;
1286 BUG_ON(sem_checkid(sma,u->semid));
1288 /* remove u from the sma->undo list */
1289 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1290 if (u == un)
1291 goto found;
1293 printk ("exit_sem undo list error id=%d\n", u->semid);
1294 goto next_entry;
1295 found:
1296 *unp = un->id_next;
1297 /* perform adjustments registered in u */
1298 nsems = sma->sem_nsems;
1299 for (i = 0; i < nsems; i++) {
1300 struct sem * sem = &sma->sem_base[i];
1301 if (u->semadj[i]) {
1302 sem->semval += u->semadj[i];
1304 * Range checks of the new semaphore value,
1305 * not defined by sus:
1306 * - Some unices ignore the undo entirely
1307 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1308 * - some cap the value (e.g. FreeBSD caps
1309 * at 0, but doesn't enforce SEMVMX)
1311 * Linux caps the semaphore value, both at 0
1312 * and at SEMVMX.
1314 * Manfred <manfred@colorfullife.com>
1316 if (sem->semval < 0)
1317 sem->semval = 0;
1318 if (sem->semval > SEMVMX)
1319 sem->semval = SEMVMX;
1320 sem->sempid = current->tgid;
1323 sma->sem_otime = get_seconds();
1324 /* maybe some queued-up processes were waiting for this */
1325 update_queue(sma);
1326 next_entry:
1327 sem_unlock(sma);
1329 kfree(undo_list);
1332 #ifdef CONFIG_PROC_FS
1333 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1335 struct sem_array *sma = it;
1337 return seq_printf(s,
1338 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1339 sma->sem_perm.key,
1340 sma->sem_id,
1341 sma->sem_perm.mode,
1342 sma->sem_nsems,
1343 sma->sem_perm.uid,
1344 sma->sem_perm.gid,
1345 sma->sem_perm.cuid,
1346 sma->sem_perm.cgid,
1347 sma->sem_otime,
1348 sma->sem_ctime);
1350 #endif