[PATCH] remove unused o_flags from do_shmat
[linux-2.6.22.y-op.git] / block / as-iosched.c
blob0c750393be4acad096f29a53eba1538126e65a63
1 /*
2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@suse.de>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/config.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/compiler.h>
18 #include <linux/hash.h>
19 #include <linux/rbtree.h>
20 #include <linux/interrupt.h>
22 #define REQ_SYNC 1
23 #define REQ_ASYNC 0
26 * See Documentation/block/as-iosched.txt
30 * max time before a read is submitted.
32 #define default_read_expire (HZ / 8)
35 * ditto for writes, these limits are not hard, even
36 * if the disk is capable of satisfying them.
38 #define default_write_expire (HZ / 4)
41 * read_batch_expire describes how long we will allow a stream of reads to
42 * persist before looking to see whether it is time to switch over to writes.
44 #define default_read_batch_expire (HZ / 2)
47 * write_batch_expire describes how long we want a stream of writes to run for.
48 * This is not a hard limit, but a target we set for the auto-tuning thingy.
49 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
50 * a short amount of time...
52 #define default_write_batch_expire (HZ / 8)
55 * max time we may wait to anticipate a read (default around 6ms)
57 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
60 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
61 * however huge values tend to interfere and not decay fast enough. A program
62 * might be in a non-io phase of operation. Waiting on user input for example,
63 * or doing a lengthy computation. A small penalty can be justified there, and
64 * will still catch out those processes that constantly have large thinktimes.
66 #define MAX_THINKTIME (HZ/50UL)
68 /* Bits in as_io_context.state */
69 enum as_io_states {
70 AS_TASK_RUNNING=0, /* Process has not exited */
71 AS_TASK_IOSTARTED, /* Process has started some IO */
72 AS_TASK_IORUNNING, /* Process has completed some IO */
75 enum anticipation_status {
76 ANTIC_OFF=0, /* Not anticipating (normal operation) */
77 ANTIC_WAIT_REQ, /* The last read has not yet completed */
78 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
79 last read (which has completed) */
80 ANTIC_FINISHED, /* Anticipating but have found a candidate
81 * or timed out */
84 struct as_data {
86 * run time data
89 struct request_queue *q; /* the "owner" queue */
92 * requests (as_rq s) are present on both sort_list and fifo_list
94 struct rb_root sort_list[2];
95 struct list_head fifo_list[2];
97 struct as_rq *next_arq[2]; /* next in sort order */
98 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
99 struct list_head *hash; /* request hash */
101 unsigned long exit_prob; /* probability a task will exit while
102 being waited on */
103 unsigned long exit_no_coop; /* probablility an exited task will
104 not be part of a later cooperating
105 request */
106 unsigned long new_ttime_total; /* mean thinktime on new proc */
107 unsigned long new_ttime_mean;
108 u64 new_seek_total; /* mean seek on new proc */
109 sector_t new_seek_mean;
111 unsigned long current_batch_expires;
112 unsigned long last_check_fifo[2];
113 int changed_batch; /* 1: waiting for old batch to end */
114 int new_batch; /* 1: waiting on first read complete */
115 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
116 int write_batch_count; /* max # of reqs in a write batch */
117 int current_write_count; /* how many requests left this batch */
118 int write_batch_idled; /* has the write batch gone idle? */
119 mempool_t *arq_pool;
121 enum anticipation_status antic_status;
122 unsigned long antic_start; /* jiffies: when it started */
123 struct timer_list antic_timer; /* anticipatory scheduling timer */
124 struct work_struct antic_work; /* Deferred unplugging */
125 struct io_context *io_context; /* Identify the expected process */
126 int ioc_finished; /* IO associated with io_context is finished */
127 int nr_dispatched;
130 * settings that change how the i/o scheduler behaves
132 unsigned long fifo_expire[2];
133 unsigned long batch_expire[2];
134 unsigned long antic_expire;
137 #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
140 * per-request data.
142 enum arq_state {
143 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
144 AS_RQ_QUEUED, /* In the request queue. It belongs to the
145 scheduler */
146 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
147 driver now */
148 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
149 AS_RQ_REMOVED,
150 AS_RQ_MERGED,
151 AS_RQ_POSTSCHED, /* when they shouldn't be */
154 struct as_rq {
156 * rbtree index, key is the starting offset
158 struct rb_node rb_node;
159 sector_t rb_key;
161 struct request *request;
163 struct io_context *io_context; /* The submitting task */
166 * request hash, key is the ending offset (for back merge lookup)
168 struct list_head hash;
169 unsigned int on_hash;
172 * expire fifo
174 struct list_head fifo;
175 unsigned long expires;
177 unsigned int is_sync;
178 enum arq_state state;
181 #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
183 static kmem_cache_t *arq_pool;
185 static atomic_t ioc_count = ATOMIC_INIT(0);
186 static struct completion *ioc_gone;
188 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
189 static void as_antic_stop(struct as_data *ad);
192 * IO Context helper functions
195 /* Called to deallocate the as_io_context */
196 static void free_as_io_context(struct as_io_context *aic)
198 kfree(aic);
199 if (atomic_dec_and_test(&ioc_count) && ioc_gone)
200 complete(ioc_gone);
203 static void as_trim(struct io_context *ioc)
205 if (ioc->aic)
206 free_as_io_context(ioc->aic);
207 ioc->aic = NULL;
210 /* Called when the task exits */
211 static void exit_as_io_context(struct as_io_context *aic)
213 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
214 clear_bit(AS_TASK_RUNNING, &aic->state);
217 static struct as_io_context *alloc_as_io_context(void)
219 struct as_io_context *ret;
221 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
222 if (ret) {
223 ret->dtor = free_as_io_context;
224 ret->exit = exit_as_io_context;
225 ret->state = 1 << AS_TASK_RUNNING;
226 atomic_set(&ret->nr_queued, 0);
227 atomic_set(&ret->nr_dispatched, 0);
228 spin_lock_init(&ret->lock);
229 ret->ttime_total = 0;
230 ret->ttime_samples = 0;
231 ret->ttime_mean = 0;
232 ret->seek_total = 0;
233 ret->seek_samples = 0;
234 ret->seek_mean = 0;
235 atomic_inc(&ioc_count);
238 return ret;
242 * If the current task has no AS IO context then create one and initialise it.
243 * Then take a ref on the task's io context and return it.
245 static struct io_context *as_get_io_context(void)
247 struct io_context *ioc = get_io_context(GFP_ATOMIC);
248 if (ioc && !ioc->aic) {
249 ioc->aic = alloc_as_io_context();
250 if (!ioc->aic) {
251 put_io_context(ioc);
252 ioc = NULL;
255 return ioc;
258 static void as_put_io_context(struct as_rq *arq)
260 struct as_io_context *aic;
262 if (unlikely(!arq->io_context))
263 return;
265 aic = arq->io_context->aic;
267 if (arq->is_sync == REQ_SYNC && aic) {
268 spin_lock(&aic->lock);
269 set_bit(AS_TASK_IORUNNING, &aic->state);
270 aic->last_end_request = jiffies;
271 spin_unlock(&aic->lock);
274 put_io_context(arq->io_context);
278 * the back merge hash support functions
280 static const int as_hash_shift = 6;
281 #define AS_HASH_BLOCK(sec) ((sec) >> 3)
282 #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
283 #define AS_HASH_ENTRIES (1 << as_hash_shift)
284 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
285 #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
287 static inline void __as_del_arq_hash(struct as_rq *arq)
289 arq->on_hash = 0;
290 list_del_init(&arq->hash);
293 static inline void as_del_arq_hash(struct as_rq *arq)
295 if (arq->on_hash)
296 __as_del_arq_hash(arq);
299 static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
301 struct request *rq = arq->request;
303 BUG_ON(arq->on_hash);
305 arq->on_hash = 1;
306 list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
310 * move hot entry to front of chain
312 static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
314 struct request *rq = arq->request;
315 struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
317 if (!arq->on_hash) {
318 WARN_ON(1);
319 return;
322 if (arq->hash.prev != head) {
323 list_del(&arq->hash);
324 list_add(&arq->hash, head);
328 static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
330 struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
331 struct list_head *entry, *next = hash_list->next;
333 while ((entry = next) != hash_list) {
334 struct as_rq *arq = list_entry_hash(entry);
335 struct request *__rq = arq->request;
337 next = entry->next;
339 BUG_ON(!arq->on_hash);
341 if (!rq_mergeable(__rq)) {
342 as_del_arq_hash(arq);
343 continue;
346 if (rq_hash_key(__rq) == offset)
347 return __rq;
350 return NULL;
354 * rb tree support functions
356 #define RB_EMPTY(root) ((root)->rb_node == NULL)
357 #define ON_RB(node) (rb_parent(node) != node)
358 #define RB_CLEAR(node) (rb_set_parent(node, node))
359 #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
360 #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
361 #define rq_rb_key(rq) (rq)->sector
364 * as_find_first_arq finds the first (lowest sector numbered) request
365 * for the specified data_dir. Used to sweep back to the start of the disk
366 * (1-way elevator) after we process the last (highest sector) request.
368 static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
370 struct rb_node *n = ad->sort_list[data_dir].rb_node;
372 if (n == NULL)
373 return NULL;
375 for (;;) {
376 if (n->rb_left == NULL)
377 return rb_entry_arq(n);
379 n = n->rb_left;
384 * Add the request to the rb tree if it is unique. If there is an alias (an
385 * existing request against the same sector), which can happen when using
386 * direct IO, then return the alias.
388 static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
390 struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
391 struct rb_node *parent = NULL;
392 struct as_rq *__arq;
393 struct request *rq = arq->request;
395 arq->rb_key = rq_rb_key(rq);
397 while (*p) {
398 parent = *p;
399 __arq = rb_entry_arq(parent);
401 if (arq->rb_key < __arq->rb_key)
402 p = &(*p)->rb_left;
403 else if (arq->rb_key > __arq->rb_key)
404 p = &(*p)->rb_right;
405 else
406 return __arq;
409 rb_link_node(&arq->rb_node, parent, p);
410 rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
412 return NULL;
415 static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
417 struct as_rq *alias;
419 while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
420 as_move_to_dispatch(ad, alias);
421 as_antic_stop(ad);
425 static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
427 if (!ON_RB(&arq->rb_node)) {
428 WARN_ON(1);
429 return;
432 rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
433 RB_CLEAR(&arq->rb_node);
436 static struct request *
437 as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
439 struct rb_node *n = ad->sort_list[data_dir].rb_node;
440 struct as_rq *arq;
442 while (n) {
443 arq = rb_entry_arq(n);
445 if (sector < arq->rb_key)
446 n = n->rb_left;
447 else if (sector > arq->rb_key)
448 n = n->rb_right;
449 else
450 return arq->request;
453 return NULL;
457 * IO Scheduler proper
460 #define MAXBACK (1024 * 1024) /*
461 * Maximum distance the disk will go backward
462 * for a request.
465 #define BACK_PENALTY 2
468 * as_choose_req selects the preferred one of two requests of the same data_dir
469 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
471 static struct as_rq *
472 as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
474 int data_dir;
475 sector_t last, s1, s2, d1, d2;
476 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
477 const sector_t maxback = MAXBACK;
479 if (arq1 == NULL || arq1 == arq2)
480 return arq2;
481 if (arq2 == NULL)
482 return arq1;
484 data_dir = arq1->is_sync;
486 last = ad->last_sector[data_dir];
487 s1 = arq1->request->sector;
488 s2 = arq2->request->sector;
490 BUG_ON(data_dir != arq2->is_sync);
493 * Strict one way elevator _except_ in the case where we allow
494 * short backward seeks which are biased as twice the cost of a
495 * similar forward seek.
497 if (s1 >= last)
498 d1 = s1 - last;
499 else if (s1+maxback >= last)
500 d1 = (last - s1)*BACK_PENALTY;
501 else {
502 r1_wrap = 1;
503 d1 = 0; /* shut up, gcc */
506 if (s2 >= last)
507 d2 = s2 - last;
508 else if (s2+maxback >= last)
509 d2 = (last - s2)*BACK_PENALTY;
510 else {
511 r2_wrap = 1;
512 d2 = 0;
515 /* Found required data */
516 if (!r1_wrap && r2_wrap)
517 return arq1;
518 else if (!r2_wrap && r1_wrap)
519 return arq2;
520 else if (r1_wrap && r2_wrap) {
521 /* both behind the head */
522 if (s1 <= s2)
523 return arq1;
524 else
525 return arq2;
528 /* Both requests in front of the head */
529 if (d1 < d2)
530 return arq1;
531 else if (d2 < d1)
532 return arq2;
533 else {
534 if (s1 >= s2)
535 return arq1;
536 else
537 return arq2;
542 * as_find_next_arq finds the next request after @prev in elevator order.
543 * this with as_choose_req form the basis for how the scheduler chooses
544 * what request to process next. Anticipation works on top of this.
546 static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
548 const int data_dir = last->is_sync;
549 struct as_rq *ret;
550 struct rb_node *rbnext = rb_next(&last->rb_node);
551 struct rb_node *rbprev = rb_prev(&last->rb_node);
552 struct as_rq *arq_next, *arq_prev;
554 BUG_ON(!ON_RB(&last->rb_node));
556 if (rbprev)
557 arq_prev = rb_entry_arq(rbprev);
558 else
559 arq_prev = NULL;
561 if (rbnext)
562 arq_next = rb_entry_arq(rbnext);
563 else {
564 arq_next = as_find_first_arq(ad, data_dir);
565 if (arq_next == last)
566 arq_next = NULL;
569 ret = as_choose_req(ad, arq_next, arq_prev);
571 return ret;
575 * anticipatory scheduling functions follow
579 * as_antic_expired tells us when we have anticipated too long.
580 * The funny "absolute difference" math on the elapsed time is to handle
581 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
583 static int as_antic_expired(struct as_data *ad)
585 long delta_jif;
587 delta_jif = jiffies - ad->antic_start;
588 if (unlikely(delta_jif < 0))
589 delta_jif = -delta_jif;
590 if (delta_jif < ad->antic_expire)
591 return 0;
593 return 1;
597 * as_antic_waitnext starts anticipating that a nice request will soon be
598 * submitted. See also as_antic_waitreq
600 static void as_antic_waitnext(struct as_data *ad)
602 unsigned long timeout;
604 BUG_ON(ad->antic_status != ANTIC_OFF
605 && ad->antic_status != ANTIC_WAIT_REQ);
607 timeout = ad->antic_start + ad->antic_expire;
609 mod_timer(&ad->antic_timer, timeout);
611 ad->antic_status = ANTIC_WAIT_NEXT;
615 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
616 * until the request that we're anticipating on has finished. This means we
617 * are timing from when the candidate process wakes up hopefully.
619 static void as_antic_waitreq(struct as_data *ad)
621 BUG_ON(ad->antic_status == ANTIC_FINISHED);
622 if (ad->antic_status == ANTIC_OFF) {
623 if (!ad->io_context || ad->ioc_finished)
624 as_antic_waitnext(ad);
625 else
626 ad->antic_status = ANTIC_WAIT_REQ;
631 * This is called directly by the functions in this file to stop anticipation.
632 * We kill the timer and schedule a call to the request_fn asap.
634 static void as_antic_stop(struct as_data *ad)
636 int status = ad->antic_status;
638 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
639 if (status == ANTIC_WAIT_NEXT)
640 del_timer(&ad->antic_timer);
641 ad->antic_status = ANTIC_FINISHED;
642 /* see as_work_handler */
643 kblockd_schedule_work(&ad->antic_work);
648 * as_antic_timeout is the timer function set by as_antic_waitnext.
650 static void as_antic_timeout(unsigned long data)
652 struct request_queue *q = (struct request_queue *)data;
653 struct as_data *ad = q->elevator->elevator_data;
654 unsigned long flags;
656 spin_lock_irqsave(q->queue_lock, flags);
657 if (ad->antic_status == ANTIC_WAIT_REQ
658 || ad->antic_status == ANTIC_WAIT_NEXT) {
659 struct as_io_context *aic = ad->io_context->aic;
661 ad->antic_status = ANTIC_FINISHED;
662 kblockd_schedule_work(&ad->antic_work);
664 if (aic->ttime_samples == 0) {
665 /* process anticipated on has exited or timed out*/
666 ad->exit_prob = (7*ad->exit_prob + 256)/8;
668 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
669 /* process not "saved" by a cooperating request */
670 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
673 spin_unlock_irqrestore(q->queue_lock, flags);
676 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
677 unsigned long ttime)
679 /* fixed point: 1.0 == 1<<8 */
680 if (aic->ttime_samples == 0) {
681 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
682 ad->new_ttime_mean = ad->new_ttime_total / 256;
684 ad->exit_prob = (7*ad->exit_prob)/8;
686 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
687 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
688 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
691 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
692 sector_t sdist)
694 u64 total;
696 if (aic->seek_samples == 0) {
697 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
698 ad->new_seek_mean = ad->new_seek_total / 256;
702 * Don't allow the seek distance to get too large from the
703 * odd fragment, pagein, etc
705 if (aic->seek_samples <= 60) /* second&third seek */
706 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
707 else
708 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
710 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
711 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
712 total = aic->seek_total + (aic->seek_samples/2);
713 do_div(total, aic->seek_samples);
714 aic->seek_mean = (sector_t)total;
718 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
719 * updates @aic->ttime_mean based on that. It is called when a new
720 * request is queued.
722 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
723 struct request *rq)
725 struct as_rq *arq = RQ_DATA(rq);
726 int data_dir = arq->is_sync;
727 unsigned long thinktime = 0;
728 sector_t seek_dist;
730 if (aic == NULL)
731 return;
733 if (data_dir == REQ_SYNC) {
734 unsigned long in_flight = atomic_read(&aic->nr_queued)
735 + atomic_read(&aic->nr_dispatched);
736 spin_lock(&aic->lock);
737 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
738 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
739 /* Calculate read -> read thinktime */
740 if (test_bit(AS_TASK_IORUNNING, &aic->state)
741 && in_flight == 0) {
742 thinktime = jiffies - aic->last_end_request;
743 thinktime = min(thinktime, MAX_THINKTIME-1);
745 as_update_thinktime(ad, aic, thinktime);
747 /* Calculate read -> read seek distance */
748 if (aic->last_request_pos < rq->sector)
749 seek_dist = rq->sector - aic->last_request_pos;
750 else
751 seek_dist = aic->last_request_pos - rq->sector;
752 as_update_seekdist(ad, aic, seek_dist);
754 aic->last_request_pos = rq->sector + rq->nr_sectors;
755 set_bit(AS_TASK_IOSTARTED, &aic->state);
756 spin_unlock(&aic->lock);
761 * as_close_req decides if one request is considered "close" to the
762 * previous one issued.
764 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
765 struct as_rq *arq)
767 unsigned long delay; /* milliseconds */
768 sector_t last = ad->last_sector[ad->batch_data_dir];
769 sector_t next = arq->request->sector;
770 sector_t delta; /* acceptable close offset (in sectors) */
771 sector_t s;
773 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
774 delay = 0;
775 else
776 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
778 if (delay == 0)
779 delta = 8192;
780 else if (delay <= 20 && delay <= ad->antic_expire)
781 delta = 8192 << delay;
782 else
783 return 1;
785 if ((last <= next + (delta>>1)) && (next <= last + delta))
786 return 1;
788 if (last < next)
789 s = next - last;
790 else
791 s = last - next;
793 if (aic->seek_samples == 0) {
795 * Process has just started IO. Use past statistics to
796 * gauge success possibility
798 if (ad->new_seek_mean > s) {
799 /* this request is better than what we're expecting */
800 return 1;
803 } else {
804 if (aic->seek_mean > s) {
805 /* this request is better than what we're expecting */
806 return 1;
810 return 0;
814 * as_can_break_anticipation returns true if we have been anticipating this
815 * request.
817 * It also returns true if the process against which we are anticipating
818 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
819 * dispatch it ASAP, because we know that application will not be submitting
820 * any new reads.
822 * If the task which has submitted the request has exited, break anticipation.
824 * If this task has queued some other IO, do not enter enticipation.
826 static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
828 struct io_context *ioc;
829 struct as_io_context *aic;
831 ioc = ad->io_context;
832 BUG_ON(!ioc);
834 if (arq && ioc == arq->io_context) {
835 /* request from same process */
836 return 1;
839 if (ad->ioc_finished && as_antic_expired(ad)) {
841 * In this situation status should really be FINISHED,
842 * however the timer hasn't had the chance to run yet.
844 return 1;
847 aic = ioc->aic;
848 if (!aic)
849 return 0;
851 if (atomic_read(&aic->nr_queued) > 0) {
852 /* process has more requests queued */
853 return 1;
856 if (atomic_read(&aic->nr_dispatched) > 0) {
857 /* process has more requests dispatched */
858 return 1;
861 if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
863 * Found a close request that is not one of ours.
865 * This makes close requests from another process update
866 * our IO history. Is generally useful when there are
867 * two or more cooperating processes working in the same
868 * area.
870 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
871 if (aic->ttime_samples == 0)
872 ad->exit_prob = (7*ad->exit_prob + 256)/8;
874 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
877 as_update_iohist(ad, aic, arq->request);
878 return 1;
881 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
882 /* process anticipated on has exited */
883 if (aic->ttime_samples == 0)
884 ad->exit_prob = (7*ad->exit_prob + 256)/8;
886 if (ad->exit_no_coop > 128)
887 return 1;
890 if (aic->ttime_samples == 0) {
891 if (ad->new_ttime_mean > ad->antic_expire)
892 return 1;
893 if (ad->exit_prob * ad->exit_no_coop > 128*256)
894 return 1;
895 } else if (aic->ttime_mean > ad->antic_expire) {
896 /* the process thinks too much between requests */
897 return 1;
900 return 0;
904 * as_can_anticipate indicates weather we should either run arq
905 * or keep anticipating a better request.
907 static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
909 if (!ad->io_context)
911 * Last request submitted was a write
913 return 0;
915 if (ad->antic_status == ANTIC_FINISHED)
917 * Don't restart if we have just finished. Run the next request
919 return 0;
921 if (as_can_break_anticipation(ad, arq))
923 * This request is a good candidate. Don't keep anticipating,
924 * run it.
926 return 0;
929 * OK from here, we haven't finished, and don't have a decent request!
930 * Status is either ANTIC_OFF so start waiting,
931 * ANTIC_WAIT_REQ so continue waiting for request to finish
932 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
935 return 1;
939 * as_update_arq must be called whenever a request (arq) is added to
940 * the sort_list. This function keeps caches up to date, and checks if the
941 * request might be one we are "anticipating"
943 static void as_update_arq(struct as_data *ad, struct as_rq *arq)
945 const int data_dir = arq->is_sync;
947 /* keep the next_arq cache up to date */
948 ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
951 * have we been anticipating this request?
952 * or does it come from the same process as the one we are anticipating
953 * for?
955 if (ad->antic_status == ANTIC_WAIT_REQ
956 || ad->antic_status == ANTIC_WAIT_NEXT) {
957 if (as_can_break_anticipation(ad, arq))
958 as_antic_stop(ad);
963 * Gathers timings and resizes the write batch automatically
965 static void update_write_batch(struct as_data *ad)
967 unsigned long batch = ad->batch_expire[REQ_ASYNC];
968 long write_time;
970 write_time = (jiffies - ad->current_batch_expires) + batch;
971 if (write_time < 0)
972 write_time = 0;
974 if (write_time > batch && !ad->write_batch_idled) {
975 if (write_time > batch * 3)
976 ad->write_batch_count /= 2;
977 else
978 ad->write_batch_count--;
979 } else if (write_time < batch && ad->current_write_count == 0) {
980 if (batch > write_time * 3)
981 ad->write_batch_count *= 2;
982 else
983 ad->write_batch_count++;
986 if (ad->write_batch_count < 1)
987 ad->write_batch_count = 1;
991 * as_completed_request is to be called when a request has completed and
992 * returned something to the requesting process, be it an error or data.
994 static void as_completed_request(request_queue_t *q, struct request *rq)
996 struct as_data *ad = q->elevator->elevator_data;
997 struct as_rq *arq = RQ_DATA(rq);
999 WARN_ON(!list_empty(&rq->queuelist));
1001 if (arq->state != AS_RQ_REMOVED) {
1002 printk("arq->state %d\n", arq->state);
1003 WARN_ON(1);
1004 goto out;
1007 if (ad->changed_batch && ad->nr_dispatched == 1) {
1008 kblockd_schedule_work(&ad->antic_work);
1009 ad->changed_batch = 0;
1011 if (ad->batch_data_dir == REQ_SYNC)
1012 ad->new_batch = 1;
1014 WARN_ON(ad->nr_dispatched == 0);
1015 ad->nr_dispatched--;
1018 * Start counting the batch from when a request of that direction is
1019 * actually serviced. This should help devices with big TCQ windows
1020 * and writeback caches
1022 if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
1023 update_write_batch(ad);
1024 ad->current_batch_expires = jiffies +
1025 ad->batch_expire[REQ_SYNC];
1026 ad->new_batch = 0;
1029 if (ad->io_context == arq->io_context && ad->io_context) {
1030 ad->antic_start = jiffies;
1031 ad->ioc_finished = 1;
1032 if (ad->antic_status == ANTIC_WAIT_REQ) {
1034 * We were waiting on this request, now anticipate
1035 * the next one
1037 as_antic_waitnext(ad);
1041 as_put_io_context(arq);
1042 out:
1043 arq->state = AS_RQ_POSTSCHED;
1047 * as_remove_queued_request removes a request from the pre dispatch queue
1048 * without updating refcounts. It is expected the caller will drop the
1049 * reference unless it replaces the request at somepart of the elevator
1050 * (ie. the dispatch queue)
1052 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
1054 struct as_rq *arq = RQ_DATA(rq);
1055 const int data_dir = arq->is_sync;
1056 struct as_data *ad = q->elevator->elevator_data;
1058 WARN_ON(arq->state != AS_RQ_QUEUED);
1060 if (arq->io_context && arq->io_context->aic) {
1061 BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
1062 atomic_dec(&arq->io_context->aic->nr_queued);
1066 * Update the "next_arq" cache if we are about to remove its
1067 * entry
1069 if (ad->next_arq[data_dir] == arq)
1070 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1072 list_del_init(&arq->fifo);
1073 as_del_arq_hash(arq);
1074 as_del_arq_rb(ad, arq);
1078 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
1079 * 1 otherwise. It is ratelimited so that we only perform the check once per
1080 * `fifo_expire' interval. Otherwise a large number of expired requests
1081 * would create a hopeless seekstorm.
1083 * See as_antic_expired comment.
1085 static int as_fifo_expired(struct as_data *ad, int adir)
1087 struct as_rq *arq;
1088 long delta_jif;
1090 delta_jif = jiffies - ad->last_check_fifo[adir];
1091 if (unlikely(delta_jif < 0))
1092 delta_jif = -delta_jif;
1093 if (delta_jif < ad->fifo_expire[adir])
1094 return 0;
1096 ad->last_check_fifo[adir] = jiffies;
1098 if (list_empty(&ad->fifo_list[adir]))
1099 return 0;
1101 arq = list_entry_fifo(ad->fifo_list[adir].next);
1103 return time_after(jiffies, arq->expires);
1107 * as_batch_expired returns true if the current batch has expired. A batch
1108 * is a set of reads or a set of writes.
1110 static inline int as_batch_expired(struct as_data *ad)
1112 if (ad->changed_batch || ad->new_batch)
1113 return 0;
1115 if (ad->batch_data_dir == REQ_SYNC)
1116 /* TODO! add a check so a complete fifo gets written? */
1117 return time_after(jiffies, ad->current_batch_expires);
1119 return time_after(jiffies, ad->current_batch_expires)
1120 || ad->current_write_count == 0;
1124 * move an entry to dispatch queue
1126 static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
1128 struct request *rq = arq->request;
1129 const int data_dir = arq->is_sync;
1131 BUG_ON(!ON_RB(&arq->rb_node));
1133 as_antic_stop(ad);
1134 ad->antic_status = ANTIC_OFF;
1137 * This has to be set in order to be correctly updated by
1138 * as_find_next_arq
1140 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
1142 if (data_dir == REQ_SYNC) {
1143 /* In case we have to anticipate after this */
1144 copy_io_context(&ad->io_context, &arq->io_context);
1145 } else {
1146 if (ad->io_context) {
1147 put_io_context(ad->io_context);
1148 ad->io_context = NULL;
1151 if (ad->current_write_count != 0)
1152 ad->current_write_count--;
1154 ad->ioc_finished = 0;
1156 ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
1159 * take it off the sort and fifo list, add to dispatch queue
1161 as_remove_queued_request(ad->q, rq);
1162 WARN_ON(arq->state != AS_RQ_QUEUED);
1164 elv_dispatch_sort(ad->q, rq);
1166 arq->state = AS_RQ_DISPATCHED;
1167 if (arq->io_context && arq->io_context->aic)
1168 atomic_inc(&arq->io_context->aic->nr_dispatched);
1169 ad->nr_dispatched++;
1173 * as_dispatch_request selects the best request according to
1174 * read/write expire, batch expire, etc, and moves it to the dispatch
1175 * queue. Returns 1 if a request was found, 0 otherwise.
1177 static int as_dispatch_request(request_queue_t *q, int force)
1179 struct as_data *ad = q->elevator->elevator_data;
1180 struct as_rq *arq;
1181 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1182 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1184 if (unlikely(force)) {
1186 * Forced dispatch, accounting is useless. Reset
1187 * accounting states and dump fifo_lists. Note that
1188 * batch_data_dir is reset to REQ_SYNC to avoid
1189 * screwing write batch accounting as write batch
1190 * accounting occurs on W->R transition.
1192 int dispatched = 0;
1194 ad->batch_data_dir = REQ_SYNC;
1195 ad->changed_batch = 0;
1196 ad->new_batch = 0;
1198 while (ad->next_arq[REQ_SYNC]) {
1199 as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
1200 dispatched++;
1202 ad->last_check_fifo[REQ_SYNC] = jiffies;
1204 while (ad->next_arq[REQ_ASYNC]) {
1205 as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
1206 dispatched++;
1208 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1210 return dispatched;
1213 /* Signal that the write batch was uncontended, so we can't time it */
1214 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1215 if (ad->current_write_count == 0 || !writes)
1216 ad->write_batch_idled = 1;
1219 if (!(reads || writes)
1220 || ad->antic_status == ANTIC_WAIT_REQ
1221 || ad->antic_status == ANTIC_WAIT_NEXT
1222 || ad->changed_batch)
1223 return 0;
1225 if (!(reads && writes && as_batch_expired(ad))) {
1227 * batch is still running or no reads or no writes
1229 arq = ad->next_arq[ad->batch_data_dir];
1231 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1232 if (as_fifo_expired(ad, REQ_SYNC))
1233 goto fifo_expired;
1235 if (as_can_anticipate(ad, arq)) {
1236 as_antic_waitreq(ad);
1237 return 0;
1241 if (arq) {
1242 /* we have a "next request" */
1243 if (reads && !writes)
1244 ad->current_batch_expires =
1245 jiffies + ad->batch_expire[REQ_SYNC];
1246 goto dispatch_request;
1251 * at this point we are not running a batch. select the appropriate
1252 * data direction (read / write)
1255 if (reads) {
1256 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
1258 if (writes && ad->batch_data_dir == REQ_SYNC)
1260 * Last batch was a read, switch to writes
1262 goto dispatch_writes;
1264 if (ad->batch_data_dir == REQ_ASYNC) {
1265 WARN_ON(ad->new_batch);
1266 ad->changed_batch = 1;
1268 ad->batch_data_dir = REQ_SYNC;
1269 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1270 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1271 goto dispatch_request;
1275 * the last batch was a read
1278 if (writes) {
1279 dispatch_writes:
1280 BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
1282 if (ad->batch_data_dir == REQ_SYNC) {
1283 ad->changed_batch = 1;
1286 * new_batch might be 1 when the queue runs out of
1287 * reads. A subsequent submission of a write might
1288 * cause a change of batch before the read is finished.
1290 ad->new_batch = 0;
1292 ad->batch_data_dir = REQ_ASYNC;
1293 ad->current_write_count = ad->write_batch_count;
1294 ad->write_batch_idled = 0;
1295 arq = ad->next_arq[ad->batch_data_dir];
1296 goto dispatch_request;
1299 BUG();
1300 return 0;
1302 dispatch_request:
1304 * If a request has expired, service it.
1307 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1308 fifo_expired:
1309 arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1310 BUG_ON(arq == NULL);
1313 if (ad->changed_batch) {
1314 WARN_ON(ad->new_batch);
1316 if (ad->nr_dispatched)
1317 return 0;
1319 if (ad->batch_data_dir == REQ_ASYNC)
1320 ad->current_batch_expires = jiffies +
1321 ad->batch_expire[REQ_ASYNC];
1322 else
1323 ad->new_batch = 1;
1325 ad->changed_batch = 0;
1329 * arq is the selected appropriate request.
1331 as_move_to_dispatch(ad, arq);
1333 return 1;
1337 * add arq to rbtree and fifo
1339 static void as_add_request(request_queue_t *q, struct request *rq)
1341 struct as_data *ad = q->elevator->elevator_data;
1342 struct as_rq *arq = RQ_DATA(rq);
1343 int data_dir;
1345 arq->state = AS_RQ_NEW;
1347 if (rq_data_dir(arq->request) == READ
1348 || current->flags&PF_SYNCWRITE)
1349 arq->is_sync = 1;
1350 else
1351 arq->is_sync = 0;
1352 data_dir = arq->is_sync;
1354 arq->io_context = as_get_io_context();
1356 if (arq->io_context) {
1357 as_update_iohist(ad, arq->io_context->aic, arq->request);
1358 atomic_inc(&arq->io_context->aic->nr_queued);
1361 as_add_arq_rb(ad, arq);
1362 if (rq_mergeable(arq->request))
1363 as_add_arq_hash(ad, arq);
1366 * set expire time (only used for reads) and add to fifo list
1368 arq->expires = jiffies + ad->fifo_expire[data_dir];
1369 list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
1371 as_update_arq(ad, arq); /* keep state machine up to date */
1372 arq->state = AS_RQ_QUEUED;
1375 static void as_activate_request(request_queue_t *q, struct request *rq)
1377 struct as_rq *arq = RQ_DATA(rq);
1379 WARN_ON(arq->state != AS_RQ_DISPATCHED);
1380 arq->state = AS_RQ_REMOVED;
1381 if (arq->io_context && arq->io_context->aic)
1382 atomic_dec(&arq->io_context->aic->nr_dispatched);
1385 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1387 struct as_rq *arq = RQ_DATA(rq);
1389 WARN_ON(arq->state != AS_RQ_REMOVED);
1390 arq->state = AS_RQ_DISPATCHED;
1391 if (arq->io_context && arq->io_context->aic)
1392 atomic_inc(&arq->io_context->aic->nr_dispatched);
1396 * as_queue_empty tells us if there are requests left in the device. It may
1397 * not be the case that a driver can get the next request even if the queue
1398 * is not empty - it is used in the block layer to check for plugging and
1399 * merging opportunities
1401 static int as_queue_empty(request_queue_t *q)
1403 struct as_data *ad = q->elevator->elevator_data;
1405 return list_empty(&ad->fifo_list[REQ_ASYNC])
1406 && list_empty(&ad->fifo_list[REQ_SYNC]);
1409 static struct request *as_former_request(request_queue_t *q,
1410 struct request *rq)
1412 struct as_rq *arq = RQ_DATA(rq);
1413 struct rb_node *rbprev = rb_prev(&arq->rb_node);
1414 struct request *ret = NULL;
1416 if (rbprev)
1417 ret = rb_entry_arq(rbprev)->request;
1419 return ret;
1422 static struct request *as_latter_request(request_queue_t *q,
1423 struct request *rq)
1425 struct as_rq *arq = RQ_DATA(rq);
1426 struct rb_node *rbnext = rb_next(&arq->rb_node);
1427 struct request *ret = NULL;
1429 if (rbnext)
1430 ret = rb_entry_arq(rbnext)->request;
1432 return ret;
1435 static int
1436 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1438 struct as_data *ad = q->elevator->elevator_data;
1439 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1440 struct request *__rq;
1441 int ret;
1444 * see if the merge hash can satisfy a back merge
1446 __rq = as_find_arq_hash(ad, bio->bi_sector);
1447 if (__rq) {
1448 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
1450 if (elv_rq_merge_ok(__rq, bio)) {
1451 ret = ELEVATOR_BACK_MERGE;
1452 goto out;
1457 * check for front merge
1459 __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
1460 if (__rq) {
1461 BUG_ON(rb_key != rq_rb_key(__rq));
1463 if (elv_rq_merge_ok(__rq, bio)) {
1464 ret = ELEVATOR_FRONT_MERGE;
1465 goto out;
1469 return ELEVATOR_NO_MERGE;
1470 out:
1471 if (ret) {
1472 if (rq_mergeable(__rq))
1473 as_hot_arq_hash(ad, RQ_DATA(__rq));
1475 *req = __rq;
1476 return ret;
1479 static void as_merged_request(request_queue_t *q, struct request *req)
1481 struct as_data *ad = q->elevator->elevator_data;
1482 struct as_rq *arq = RQ_DATA(req);
1485 * hash always needs to be repositioned, key is end sector
1487 as_del_arq_hash(arq);
1488 as_add_arq_hash(ad, arq);
1491 * if the merge was a front merge, we need to reposition request
1493 if (rq_rb_key(req) != arq->rb_key) {
1494 as_del_arq_rb(ad, arq);
1495 as_add_arq_rb(ad, arq);
1497 * Note! At this stage of this and the next function, our next
1498 * request may not be optimal - eg the request may have "grown"
1499 * behind the disk head. We currently don't bother adjusting.
1504 static void as_merged_requests(request_queue_t *q, struct request *req,
1505 struct request *next)
1507 struct as_data *ad = q->elevator->elevator_data;
1508 struct as_rq *arq = RQ_DATA(req);
1509 struct as_rq *anext = RQ_DATA(next);
1511 BUG_ON(!arq);
1512 BUG_ON(!anext);
1515 * reposition arq (this is the merged request) in hash, and in rbtree
1516 * in case of a front merge
1518 as_del_arq_hash(arq);
1519 as_add_arq_hash(ad, arq);
1521 if (rq_rb_key(req) != arq->rb_key) {
1522 as_del_arq_rb(ad, arq);
1523 as_add_arq_rb(ad, arq);
1527 * if anext expires before arq, assign its expire time to arq
1528 * and move into anext position (anext will be deleted) in fifo
1530 if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
1531 if (time_before(anext->expires, arq->expires)) {
1532 list_move(&arq->fifo, &anext->fifo);
1533 arq->expires = anext->expires;
1535 * Don't copy here but swap, because when anext is
1536 * removed below, it must contain the unused context
1538 swap_io_context(&arq->io_context, &anext->io_context);
1543 * kill knowledge of next, this one is a goner
1545 as_remove_queued_request(q, next);
1546 as_put_io_context(anext);
1548 anext->state = AS_RQ_MERGED;
1552 * This is executed in a "deferred" process context, by kblockd. It calls the
1553 * driver's request_fn so the driver can submit that request.
1555 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1556 * state before calling, and don't rely on any state over calls.
1558 * FIXME! dispatch queue is not a queue at all!
1560 static void as_work_handler(void *data)
1562 struct request_queue *q = data;
1563 unsigned long flags;
1565 spin_lock_irqsave(q->queue_lock, flags);
1566 if (!as_queue_empty(q))
1567 q->request_fn(q);
1568 spin_unlock_irqrestore(q->queue_lock, flags);
1571 static void as_put_request(request_queue_t *q, struct request *rq)
1573 struct as_data *ad = q->elevator->elevator_data;
1574 struct as_rq *arq = RQ_DATA(rq);
1576 if (!arq) {
1577 WARN_ON(1);
1578 return;
1581 if (unlikely(arq->state != AS_RQ_POSTSCHED &&
1582 arq->state != AS_RQ_PRESCHED &&
1583 arq->state != AS_RQ_MERGED)) {
1584 printk("arq->state %d\n", arq->state);
1585 WARN_ON(1);
1588 mempool_free(arq, ad->arq_pool);
1589 rq->elevator_private = NULL;
1592 static int as_set_request(request_queue_t *q, struct request *rq,
1593 struct bio *bio, gfp_t gfp_mask)
1595 struct as_data *ad = q->elevator->elevator_data;
1596 struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
1598 if (arq) {
1599 memset(arq, 0, sizeof(*arq));
1600 RB_CLEAR(&arq->rb_node);
1601 arq->request = rq;
1602 arq->state = AS_RQ_PRESCHED;
1603 arq->io_context = NULL;
1604 INIT_LIST_HEAD(&arq->hash);
1605 arq->on_hash = 0;
1606 INIT_LIST_HEAD(&arq->fifo);
1607 rq->elevator_private = arq;
1608 return 0;
1611 return 1;
1614 static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
1616 int ret = ELV_MQUEUE_MAY;
1617 struct as_data *ad = q->elevator->elevator_data;
1618 struct io_context *ioc;
1619 if (ad->antic_status == ANTIC_WAIT_REQ ||
1620 ad->antic_status == ANTIC_WAIT_NEXT) {
1621 ioc = as_get_io_context();
1622 if (ad->io_context == ioc)
1623 ret = ELV_MQUEUE_MUST;
1624 put_io_context(ioc);
1627 return ret;
1630 static void as_exit_queue(elevator_t *e)
1632 struct as_data *ad = e->elevator_data;
1634 del_timer_sync(&ad->antic_timer);
1635 kblockd_flush();
1637 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1638 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1640 mempool_destroy(ad->arq_pool);
1641 put_io_context(ad->io_context);
1642 kfree(ad->hash);
1643 kfree(ad);
1647 * initialize elevator private data (as_data), and alloc a arq for
1648 * each request on the free lists
1650 static void *as_init_queue(request_queue_t *q, elevator_t *e)
1652 struct as_data *ad;
1653 int i;
1655 if (!arq_pool)
1656 return NULL;
1658 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1659 if (!ad)
1660 return NULL;
1661 memset(ad, 0, sizeof(*ad));
1663 ad->q = q; /* Identify what queue the data belongs to */
1665 ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
1666 GFP_KERNEL, q->node);
1667 if (!ad->hash) {
1668 kfree(ad);
1669 return NULL;
1672 ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1673 mempool_free_slab, arq_pool, q->node);
1674 if (!ad->arq_pool) {
1675 kfree(ad->hash);
1676 kfree(ad);
1677 return NULL;
1680 /* anticipatory scheduling helpers */
1681 ad->antic_timer.function = as_antic_timeout;
1682 ad->antic_timer.data = (unsigned long)q;
1683 init_timer(&ad->antic_timer);
1684 INIT_WORK(&ad->antic_work, as_work_handler, q);
1686 for (i = 0; i < AS_HASH_ENTRIES; i++)
1687 INIT_LIST_HEAD(&ad->hash[i]);
1689 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1690 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1691 ad->sort_list[REQ_SYNC] = RB_ROOT;
1692 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1693 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1694 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1695 ad->antic_expire = default_antic_expire;
1696 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1697 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1699 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1700 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1701 if (ad->write_batch_count < 2)
1702 ad->write_batch_count = 2;
1704 return ad;
1708 * sysfs parts below
1711 static ssize_t
1712 as_var_show(unsigned int var, char *page)
1714 return sprintf(page, "%d\n", var);
1717 static ssize_t
1718 as_var_store(unsigned long *var, const char *page, size_t count)
1720 char *p = (char *) page;
1722 *var = simple_strtoul(p, &p, 10);
1723 return count;
1726 static ssize_t est_time_show(elevator_t *e, char *page)
1728 struct as_data *ad = e->elevator_data;
1729 int pos = 0;
1731 pos += sprintf(page+pos, "%lu %% exit probability\n",
1732 100*ad->exit_prob/256);
1733 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1734 "cooperating process submitting IO\n",
1735 100*ad->exit_no_coop/256);
1736 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1737 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1738 (unsigned long long)ad->new_seek_mean);
1740 return pos;
1743 #define SHOW_FUNCTION(__FUNC, __VAR) \
1744 static ssize_t __FUNC(elevator_t *e, char *page) \
1746 struct as_data *ad = e->elevator_data; \
1747 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1749 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1750 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1751 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1752 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1753 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1754 #undef SHOW_FUNCTION
1756 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1757 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1759 struct as_data *ad = e->elevator_data; \
1760 int ret = as_var_store(__PTR, (page), count); \
1761 if (*(__PTR) < (MIN)) \
1762 *(__PTR) = (MIN); \
1763 else if (*(__PTR) > (MAX)) \
1764 *(__PTR) = (MAX); \
1765 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1766 return ret; \
1768 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1769 STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1770 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1771 STORE_FUNCTION(as_read_batch_expire_store,
1772 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1773 STORE_FUNCTION(as_write_batch_expire_store,
1774 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1775 #undef STORE_FUNCTION
1777 #define AS_ATTR(name) \
1778 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1780 static struct elv_fs_entry as_attrs[] = {
1781 __ATTR_RO(est_time),
1782 AS_ATTR(read_expire),
1783 AS_ATTR(write_expire),
1784 AS_ATTR(antic_expire),
1785 AS_ATTR(read_batch_expire),
1786 AS_ATTR(write_batch_expire),
1787 __ATTR_NULL
1790 static struct elevator_type iosched_as = {
1791 .ops = {
1792 .elevator_merge_fn = as_merge,
1793 .elevator_merged_fn = as_merged_request,
1794 .elevator_merge_req_fn = as_merged_requests,
1795 .elevator_dispatch_fn = as_dispatch_request,
1796 .elevator_add_req_fn = as_add_request,
1797 .elevator_activate_req_fn = as_activate_request,
1798 .elevator_deactivate_req_fn = as_deactivate_request,
1799 .elevator_queue_empty_fn = as_queue_empty,
1800 .elevator_completed_req_fn = as_completed_request,
1801 .elevator_former_req_fn = as_former_request,
1802 .elevator_latter_req_fn = as_latter_request,
1803 .elevator_set_req_fn = as_set_request,
1804 .elevator_put_req_fn = as_put_request,
1805 .elevator_may_queue_fn = as_may_queue,
1806 .elevator_init_fn = as_init_queue,
1807 .elevator_exit_fn = as_exit_queue,
1808 .trim = as_trim,
1811 .elevator_attrs = as_attrs,
1812 .elevator_name = "anticipatory",
1813 .elevator_owner = THIS_MODULE,
1816 static int __init as_init(void)
1818 int ret;
1820 arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
1821 0, 0, NULL, NULL);
1822 if (!arq_pool)
1823 return -ENOMEM;
1825 ret = elv_register(&iosched_as);
1826 if (!ret) {
1828 * don't allow AS to get unregistered, since we would have
1829 * to browse all tasks in the system and release their
1830 * as_io_context first
1832 __module_get(THIS_MODULE);
1833 return 0;
1836 kmem_cache_destroy(arq_pool);
1837 return ret;
1840 static void __exit as_exit(void)
1842 DECLARE_COMPLETION(all_gone);
1843 elv_unregister(&iosched_as);
1844 ioc_gone = &all_gone;
1845 /* ioc_gone's update must be visible before reading ioc_count */
1846 smp_wmb();
1847 if (atomic_read(&ioc_count))
1848 wait_for_completion(ioc_gone);
1849 synchronize_rcu();
1850 kmem_cache_destroy(arq_pool);
1853 module_init(as_init);
1854 module_exit(as_exit);
1856 MODULE_AUTHOR("Nick Piggin");
1857 MODULE_LICENSE("GPL");
1858 MODULE_DESCRIPTION("anticipatory IO scheduler");