The comment describing how MS_ASYNC works in msync.c is confusing
[linux-2.6.22.y-op.git] / mm / memory.c
blob80c3fb370f91400aae34ae97ce188a9d97629609
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
70 unsigned long num_physpages;
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 0;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_page_state(nr_page_table_pages);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
263 if (!(*tlb)->fullmm)
264 flush_tlb_pgtables((*tlb)->mm, start, end);
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 unsigned long floor, unsigned long ceiling)
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
280 if (is_vm_hugetlb_page(vma)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 floor, next? next->vm_start: ceiling);
283 } else {
285 * Optimization: gather nearby vmas into one call down
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_vm_hugetlb_page(next)) {
289 vma = next;
290 next = vma->vm_next;
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
297 vma = next;
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
303 struct page *new = pte_alloc_one(mm, address);
304 if (!new)
305 return -ENOMEM;
307 pte_lock_init(new);
308 spin_lock(&mm->page_table_lock);
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
311 pte_free(new);
312 } else {
313 mm->nr_ptes++;
314 inc_page_state(nr_page_table_pages);
315 pmd_populate(mm, pmd, new);
317 spin_unlock(&mm->page_table_lock);
318 return 0;
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
349 * The calling function must still handle the error.
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
361 static inline int is_cow_mapping(unsigned int flags)
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
367 * This function gets the "struct page" associated with a pte.
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
388 unsigned long pfn = pte_pfn(pte);
390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
394 if (!is_cow_mapping(vma->vm_flags))
395 return NULL;
398 #ifdef CONFIG_DEBUG_VM
399 if (unlikely(!pfn_valid(pfn))) {
400 print_bad_pte(vma, pte, addr);
401 return NULL;
403 #endif
406 * NOTE! We still have PageReserved() pages in the page
407 * tables.
409 * The PAGE_ZERO() pages and various VDSO mappings can
410 * cause them to exist.
412 return pfn_to_page(pfn);
416 * copy one vm_area from one task to the other. Assumes the page tables
417 * already present in the new task to be cleared in the whole range
418 * covered by this vma.
421 static inline void
422 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
423 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
424 unsigned long addr, int *rss)
426 unsigned long vm_flags = vma->vm_flags;
427 pte_t pte = *src_pte;
428 struct page *page;
430 /* pte contains position in swap or file, so copy. */
431 if (unlikely(!pte_present(pte))) {
432 if (!pte_file(pte)) {
433 swap_duplicate(pte_to_swp_entry(pte));
434 /* make sure dst_mm is on swapoff's mmlist. */
435 if (unlikely(list_empty(&dst_mm->mmlist))) {
436 spin_lock(&mmlist_lock);
437 if (list_empty(&dst_mm->mmlist))
438 list_add(&dst_mm->mmlist,
439 &src_mm->mmlist);
440 spin_unlock(&mmlist_lock);
443 goto out_set_pte;
447 * If it's a COW mapping, write protect it both
448 * in the parent and the child
450 if (is_cow_mapping(vm_flags)) {
451 ptep_set_wrprotect(src_mm, addr, src_pte);
452 pte = *src_pte;
456 * If it's a shared mapping, mark it clean in
457 * the child
459 if (vm_flags & VM_SHARED)
460 pte = pte_mkclean(pte);
461 pte = pte_mkold(pte);
463 page = vm_normal_page(vma, addr, pte);
464 if (page) {
465 get_page(page);
466 page_dup_rmap(page);
467 rss[!!PageAnon(page)]++;
470 out_set_pte:
471 set_pte_at(dst_mm, addr, dst_pte, pte);
474 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
475 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
476 unsigned long addr, unsigned long end)
478 pte_t *src_pte, *dst_pte;
479 spinlock_t *src_ptl, *dst_ptl;
480 int progress = 0;
481 int rss[2];
483 again:
484 rss[1] = rss[0] = 0;
485 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
486 if (!dst_pte)
487 return -ENOMEM;
488 src_pte = pte_offset_map_nested(src_pmd, addr);
489 src_ptl = pte_lockptr(src_mm, src_pmd);
490 spin_lock(src_ptl);
492 do {
494 * We are holding two locks at this point - either of them
495 * could generate latencies in another task on another CPU.
497 if (progress >= 32) {
498 progress = 0;
499 if (need_resched() ||
500 need_lockbreak(src_ptl) ||
501 need_lockbreak(dst_ptl))
502 break;
504 if (pte_none(*src_pte)) {
505 progress++;
506 continue;
508 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
509 progress += 8;
510 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
512 spin_unlock(src_ptl);
513 pte_unmap_nested(src_pte - 1);
514 add_mm_rss(dst_mm, rss[0], rss[1]);
515 pte_unmap_unlock(dst_pte - 1, dst_ptl);
516 cond_resched();
517 if (addr != end)
518 goto again;
519 return 0;
522 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
523 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
524 unsigned long addr, unsigned long end)
526 pmd_t *src_pmd, *dst_pmd;
527 unsigned long next;
529 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
530 if (!dst_pmd)
531 return -ENOMEM;
532 src_pmd = pmd_offset(src_pud, addr);
533 do {
534 next = pmd_addr_end(addr, end);
535 if (pmd_none_or_clear_bad(src_pmd))
536 continue;
537 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
538 vma, addr, next))
539 return -ENOMEM;
540 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
541 return 0;
544 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
545 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
546 unsigned long addr, unsigned long end)
548 pud_t *src_pud, *dst_pud;
549 unsigned long next;
551 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
552 if (!dst_pud)
553 return -ENOMEM;
554 src_pud = pud_offset(src_pgd, addr);
555 do {
556 next = pud_addr_end(addr, end);
557 if (pud_none_or_clear_bad(src_pud))
558 continue;
559 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
560 vma, addr, next))
561 return -ENOMEM;
562 } while (dst_pud++, src_pud++, addr = next, addr != end);
563 return 0;
566 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
567 struct vm_area_struct *vma)
569 pgd_t *src_pgd, *dst_pgd;
570 unsigned long next;
571 unsigned long addr = vma->vm_start;
572 unsigned long end = vma->vm_end;
575 * Don't copy ptes where a page fault will fill them correctly.
576 * Fork becomes much lighter when there are big shared or private
577 * readonly mappings. The tradeoff is that copy_page_range is more
578 * efficient than faulting.
580 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
581 if (!vma->anon_vma)
582 return 0;
585 if (is_vm_hugetlb_page(vma))
586 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
588 dst_pgd = pgd_offset(dst_mm, addr);
589 src_pgd = pgd_offset(src_mm, addr);
590 do {
591 next = pgd_addr_end(addr, end);
592 if (pgd_none_or_clear_bad(src_pgd))
593 continue;
594 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
595 vma, addr, next))
596 return -ENOMEM;
597 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
598 return 0;
601 static unsigned long zap_pte_range(struct mmu_gather *tlb,
602 struct vm_area_struct *vma, pmd_t *pmd,
603 unsigned long addr, unsigned long end,
604 long *zap_work, struct zap_details *details)
606 struct mm_struct *mm = tlb->mm;
607 pte_t *pte;
608 spinlock_t *ptl;
609 int file_rss = 0;
610 int anon_rss = 0;
612 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
613 do {
614 pte_t ptent = *pte;
615 if (pte_none(ptent)) {
616 (*zap_work)--;
617 continue;
620 (*zap_work) -= PAGE_SIZE;
622 if (pte_present(ptent)) {
623 struct page *page;
625 page = vm_normal_page(vma, addr, ptent);
626 if (unlikely(details) && page) {
628 * unmap_shared_mapping_pages() wants to
629 * invalidate cache without truncating:
630 * unmap shared but keep private pages.
632 if (details->check_mapping &&
633 details->check_mapping != page->mapping)
634 continue;
636 * Each page->index must be checked when
637 * invalidating or truncating nonlinear.
639 if (details->nonlinear_vma &&
640 (page->index < details->first_index ||
641 page->index > details->last_index))
642 continue;
644 ptent = ptep_get_and_clear_full(mm, addr, pte,
645 tlb->fullmm);
646 tlb_remove_tlb_entry(tlb, pte, addr);
647 if (unlikely(!page))
648 continue;
649 if (unlikely(details) && details->nonlinear_vma
650 && linear_page_index(details->nonlinear_vma,
651 addr) != page->index)
652 set_pte_at(mm, addr, pte,
653 pgoff_to_pte(page->index));
654 if (PageAnon(page))
655 anon_rss--;
656 else {
657 if (pte_dirty(ptent))
658 set_page_dirty(page);
659 if (pte_young(ptent))
660 mark_page_accessed(page);
661 file_rss--;
663 page_remove_rmap(page);
664 tlb_remove_page(tlb, page);
665 continue;
668 * If details->check_mapping, we leave swap entries;
669 * if details->nonlinear_vma, we leave file entries.
671 if (unlikely(details))
672 continue;
673 if (!pte_file(ptent))
674 free_swap_and_cache(pte_to_swp_entry(ptent));
675 pte_clear_full(mm, addr, pte, tlb->fullmm);
676 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
678 add_mm_rss(mm, file_rss, anon_rss);
679 pte_unmap_unlock(pte - 1, ptl);
681 return addr;
684 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
685 struct vm_area_struct *vma, pud_t *pud,
686 unsigned long addr, unsigned long end,
687 long *zap_work, struct zap_details *details)
689 pmd_t *pmd;
690 unsigned long next;
692 pmd = pmd_offset(pud, addr);
693 do {
694 next = pmd_addr_end(addr, end);
695 if (pmd_none_or_clear_bad(pmd)) {
696 (*zap_work)--;
697 continue;
699 next = zap_pte_range(tlb, vma, pmd, addr, next,
700 zap_work, details);
701 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
703 return addr;
706 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
707 struct vm_area_struct *vma, pgd_t *pgd,
708 unsigned long addr, unsigned long end,
709 long *zap_work, struct zap_details *details)
711 pud_t *pud;
712 unsigned long next;
714 pud = pud_offset(pgd, addr);
715 do {
716 next = pud_addr_end(addr, end);
717 if (pud_none_or_clear_bad(pud)) {
718 (*zap_work)--;
719 continue;
721 next = zap_pmd_range(tlb, vma, pud, addr, next,
722 zap_work, details);
723 } while (pud++, addr = next, (addr != end && *zap_work > 0));
725 return addr;
728 static unsigned long unmap_page_range(struct mmu_gather *tlb,
729 struct vm_area_struct *vma,
730 unsigned long addr, unsigned long end,
731 long *zap_work, struct zap_details *details)
733 pgd_t *pgd;
734 unsigned long next;
736 if (details && !details->check_mapping && !details->nonlinear_vma)
737 details = NULL;
739 BUG_ON(addr >= end);
740 tlb_start_vma(tlb, vma);
741 pgd = pgd_offset(vma->vm_mm, addr);
742 do {
743 next = pgd_addr_end(addr, end);
744 if (pgd_none_or_clear_bad(pgd)) {
745 (*zap_work)--;
746 continue;
748 next = zap_pud_range(tlb, vma, pgd, addr, next,
749 zap_work, details);
750 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
751 tlb_end_vma(tlb, vma);
753 return addr;
756 #ifdef CONFIG_PREEMPT
757 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
758 #else
759 /* No preempt: go for improved straight-line efficiency */
760 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
761 #endif
764 * unmap_vmas - unmap a range of memory covered by a list of vma's
765 * @tlbp: address of the caller's struct mmu_gather
766 * @vma: the starting vma
767 * @start_addr: virtual address at which to start unmapping
768 * @end_addr: virtual address at which to end unmapping
769 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
770 * @details: details of nonlinear truncation or shared cache invalidation
772 * Returns the end address of the unmapping (restart addr if interrupted).
774 * Unmap all pages in the vma list.
776 * We aim to not hold locks for too long (for scheduling latency reasons).
777 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
778 * return the ending mmu_gather to the caller.
780 * Only addresses between `start' and `end' will be unmapped.
782 * The VMA list must be sorted in ascending virtual address order.
784 * unmap_vmas() assumes that the caller will flush the whole unmapped address
785 * range after unmap_vmas() returns. So the only responsibility here is to
786 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
787 * drops the lock and schedules.
789 unsigned long unmap_vmas(struct mmu_gather **tlbp,
790 struct vm_area_struct *vma, unsigned long start_addr,
791 unsigned long end_addr, unsigned long *nr_accounted,
792 struct zap_details *details)
794 long zap_work = ZAP_BLOCK_SIZE;
795 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
796 int tlb_start_valid = 0;
797 unsigned long start = start_addr;
798 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
799 int fullmm = (*tlbp)->fullmm;
801 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
802 unsigned long end;
804 start = max(vma->vm_start, start_addr);
805 if (start >= vma->vm_end)
806 continue;
807 end = min(vma->vm_end, end_addr);
808 if (end <= vma->vm_start)
809 continue;
811 if (vma->vm_flags & VM_ACCOUNT)
812 *nr_accounted += (end - start) >> PAGE_SHIFT;
814 while (start != end) {
815 if (!tlb_start_valid) {
816 tlb_start = start;
817 tlb_start_valid = 1;
820 if (unlikely(is_vm_hugetlb_page(vma))) {
821 unmap_hugepage_range(vma, start, end);
822 zap_work -= (end - start) /
823 (HPAGE_SIZE / PAGE_SIZE);
824 start = end;
825 } else
826 start = unmap_page_range(*tlbp, vma,
827 start, end, &zap_work, details);
829 if (zap_work > 0) {
830 BUG_ON(start != end);
831 break;
834 tlb_finish_mmu(*tlbp, tlb_start, start);
836 if (need_resched() ||
837 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
838 if (i_mmap_lock) {
839 *tlbp = NULL;
840 goto out;
842 cond_resched();
845 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
846 tlb_start_valid = 0;
847 zap_work = ZAP_BLOCK_SIZE;
850 out:
851 return start; /* which is now the end (or restart) address */
855 * zap_page_range - remove user pages in a given range
856 * @vma: vm_area_struct holding the applicable pages
857 * @address: starting address of pages to zap
858 * @size: number of bytes to zap
859 * @details: details of nonlinear truncation or shared cache invalidation
861 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
862 unsigned long size, struct zap_details *details)
864 struct mm_struct *mm = vma->vm_mm;
865 struct mmu_gather *tlb;
866 unsigned long end = address + size;
867 unsigned long nr_accounted = 0;
869 lru_add_drain();
870 tlb = tlb_gather_mmu(mm, 0);
871 update_hiwater_rss(mm);
872 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
873 if (tlb)
874 tlb_finish_mmu(tlb, address, end);
875 return end;
879 * Do a quick page-table lookup for a single page.
881 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
882 unsigned int flags)
884 pgd_t *pgd;
885 pud_t *pud;
886 pmd_t *pmd;
887 pte_t *ptep, pte;
888 spinlock_t *ptl;
889 struct page *page;
890 struct mm_struct *mm = vma->vm_mm;
892 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
893 if (!IS_ERR(page)) {
894 BUG_ON(flags & FOLL_GET);
895 goto out;
898 page = NULL;
899 pgd = pgd_offset(mm, address);
900 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
901 goto no_page_table;
903 pud = pud_offset(pgd, address);
904 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
905 goto no_page_table;
907 pmd = pmd_offset(pud, address);
908 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909 goto no_page_table;
911 if (pmd_huge(*pmd)) {
912 BUG_ON(flags & FOLL_GET);
913 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
914 goto out;
917 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
918 if (!ptep)
919 goto out;
921 pte = *ptep;
922 if (!pte_present(pte))
923 goto unlock;
924 if ((flags & FOLL_WRITE) && !pte_write(pte))
925 goto unlock;
926 page = vm_normal_page(vma, address, pte);
927 if (unlikely(!page))
928 goto unlock;
930 if (flags & FOLL_GET)
931 get_page(page);
932 if (flags & FOLL_TOUCH) {
933 if ((flags & FOLL_WRITE) &&
934 !pte_dirty(pte) && !PageDirty(page))
935 set_page_dirty(page);
936 mark_page_accessed(page);
938 unlock:
939 pte_unmap_unlock(ptep, ptl);
940 out:
941 return page;
943 no_page_table:
945 * When core dumping an enormous anonymous area that nobody
946 * has touched so far, we don't want to allocate page tables.
948 if (flags & FOLL_ANON) {
949 page = ZERO_PAGE(address);
950 if (flags & FOLL_GET)
951 get_page(page);
952 BUG_ON(flags & FOLL_WRITE);
954 return page;
957 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
958 unsigned long start, int len, int write, int force,
959 struct page **pages, struct vm_area_struct **vmas)
961 int i;
962 unsigned int vm_flags;
965 * Require read or write permissions.
966 * If 'force' is set, we only require the "MAY" flags.
968 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
969 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
970 i = 0;
972 do {
973 struct vm_area_struct *vma;
974 unsigned int foll_flags;
976 vma = find_extend_vma(mm, start);
977 if (!vma && in_gate_area(tsk, start)) {
978 unsigned long pg = start & PAGE_MASK;
979 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
980 pgd_t *pgd;
981 pud_t *pud;
982 pmd_t *pmd;
983 pte_t *pte;
984 if (write) /* user gate pages are read-only */
985 return i ? : -EFAULT;
986 if (pg > TASK_SIZE)
987 pgd = pgd_offset_k(pg);
988 else
989 pgd = pgd_offset_gate(mm, pg);
990 BUG_ON(pgd_none(*pgd));
991 pud = pud_offset(pgd, pg);
992 BUG_ON(pud_none(*pud));
993 pmd = pmd_offset(pud, pg);
994 if (pmd_none(*pmd))
995 return i ? : -EFAULT;
996 pte = pte_offset_map(pmd, pg);
997 if (pte_none(*pte)) {
998 pte_unmap(pte);
999 return i ? : -EFAULT;
1001 if (pages) {
1002 struct page *page = vm_normal_page(gate_vma, start, *pte);
1003 pages[i] = page;
1004 if (page)
1005 get_page(page);
1007 pte_unmap(pte);
1008 if (vmas)
1009 vmas[i] = gate_vma;
1010 i++;
1011 start += PAGE_SIZE;
1012 len--;
1013 continue;
1016 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1017 || !(vm_flags & vma->vm_flags))
1018 return i ? : -EFAULT;
1020 if (is_vm_hugetlb_page(vma)) {
1021 i = follow_hugetlb_page(mm, vma, pages, vmas,
1022 &start, &len, i);
1023 continue;
1026 foll_flags = FOLL_TOUCH;
1027 if (pages)
1028 foll_flags |= FOLL_GET;
1029 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1030 (!vma->vm_ops || !vma->vm_ops->nopage))
1031 foll_flags |= FOLL_ANON;
1033 do {
1034 struct page *page;
1036 if (write)
1037 foll_flags |= FOLL_WRITE;
1039 cond_resched();
1040 while (!(page = follow_page(vma, start, foll_flags))) {
1041 int ret;
1042 ret = __handle_mm_fault(mm, vma, start,
1043 foll_flags & FOLL_WRITE);
1045 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1046 * broken COW when necessary, even if maybe_mkwrite
1047 * decided not to set pte_write. We can thus safely do
1048 * subsequent page lookups as if they were reads.
1050 if (ret & VM_FAULT_WRITE)
1051 foll_flags &= ~FOLL_WRITE;
1053 switch (ret & ~VM_FAULT_WRITE) {
1054 case VM_FAULT_MINOR:
1055 tsk->min_flt++;
1056 break;
1057 case VM_FAULT_MAJOR:
1058 tsk->maj_flt++;
1059 break;
1060 case VM_FAULT_SIGBUS:
1061 return i ? i : -EFAULT;
1062 case VM_FAULT_OOM:
1063 return i ? i : -ENOMEM;
1064 default:
1065 BUG();
1068 if (pages) {
1069 pages[i] = page;
1070 flush_dcache_page(page);
1072 if (vmas)
1073 vmas[i] = vma;
1074 i++;
1075 start += PAGE_SIZE;
1076 len--;
1077 } while (len && start < vma->vm_end);
1078 } while (len);
1079 return i;
1081 EXPORT_SYMBOL(get_user_pages);
1083 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1084 unsigned long addr, unsigned long end, pgprot_t prot)
1086 pte_t *pte;
1087 spinlock_t *ptl;
1089 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1090 if (!pte)
1091 return -ENOMEM;
1092 do {
1093 struct page *page = ZERO_PAGE(addr);
1094 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1095 page_cache_get(page);
1096 page_add_file_rmap(page);
1097 inc_mm_counter(mm, file_rss);
1098 BUG_ON(!pte_none(*pte));
1099 set_pte_at(mm, addr, pte, zero_pte);
1100 } while (pte++, addr += PAGE_SIZE, addr != end);
1101 pte_unmap_unlock(pte - 1, ptl);
1102 return 0;
1105 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1106 unsigned long addr, unsigned long end, pgprot_t prot)
1108 pmd_t *pmd;
1109 unsigned long next;
1111 pmd = pmd_alloc(mm, pud, addr);
1112 if (!pmd)
1113 return -ENOMEM;
1114 do {
1115 next = pmd_addr_end(addr, end);
1116 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1117 return -ENOMEM;
1118 } while (pmd++, addr = next, addr != end);
1119 return 0;
1122 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1123 unsigned long addr, unsigned long end, pgprot_t prot)
1125 pud_t *pud;
1126 unsigned long next;
1128 pud = pud_alloc(mm, pgd, addr);
1129 if (!pud)
1130 return -ENOMEM;
1131 do {
1132 next = pud_addr_end(addr, end);
1133 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1134 return -ENOMEM;
1135 } while (pud++, addr = next, addr != end);
1136 return 0;
1139 int zeromap_page_range(struct vm_area_struct *vma,
1140 unsigned long addr, unsigned long size, pgprot_t prot)
1142 pgd_t *pgd;
1143 unsigned long next;
1144 unsigned long end = addr + size;
1145 struct mm_struct *mm = vma->vm_mm;
1146 int err;
1148 BUG_ON(addr >= end);
1149 pgd = pgd_offset(mm, addr);
1150 flush_cache_range(vma, addr, end);
1151 do {
1152 next = pgd_addr_end(addr, end);
1153 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1154 if (err)
1155 break;
1156 } while (pgd++, addr = next, addr != end);
1157 return err;
1160 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1162 pgd_t * pgd = pgd_offset(mm, addr);
1163 pud_t * pud = pud_alloc(mm, pgd, addr);
1164 if (pud) {
1165 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1166 if (pmd)
1167 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1169 return NULL;
1173 * This is the old fallback for page remapping.
1175 * For historical reasons, it only allows reserved pages. Only
1176 * old drivers should use this, and they needed to mark their
1177 * pages reserved for the old functions anyway.
1179 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1181 int retval;
1182 pte_t *pte;
1183 spinlock_t *ptl;
1185 retval = -EINVAL;
1186 if (PageAnon(page))
1187 goto out;
1188 retval = -ENOMEM;
1189 flush_dcache_page(page);
1190 pte = get_locked_pte(mm, addr, &ptl);
1191 if (!pte)
1192 goto out;
1193 retval = -EBUSY;
1194 if (!pte_none(*pte))
1195 goto out_unlock;
1197 /* Ok, finally just insert the thing.. */
1198 get_page(page);
1199 inc_mm_counter(mm, file_rss);
1200 page_add_file_rmap(page);
1201 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1203 retval = 0;
1204 out_unlock:
1205 pte_unmap_unlock(pte, ptl);
1206 out:
1207 return retval;
1211 * This allows drivers to insert individual pages they've allocated
1212 * into a user vma.
1214 * The page has to be a nice clean _individual_ kernel allocation.
1215 * If you allocate a compound page, you need to have marked it as
1216 * such (__GFP_COMP), or manually just split the page up yourself
1217 * (see split_page()).
1219 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1220 * took an arbitrary page protection parameter. This doesn't allow
1221 * that. Your vma protection will have to be set up correctly, which
1222 * means that if you want a shared writable mapping, you'd better
1223 * ask for a shared writable mapping!
1225 * The page does not need to be reserved.
1227 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1229 if (addr < vma->vm_start || addr >= vma->vm_end)
1230 return -EFAULT;
1231 if (!page_count(page))
1232 return -EINVAL;
1233 vma->vm_flags |= VM_INSERTPAGE;
1234 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1236 EXPORT_SYMBOL(vm_insert_page);
1239 * maps a range of physical memory into the requested pages. the old
1240 * mappings are removed. any references to nonexistent pages results
1241 * in null mappings (currently treated as "copy-on-access")
1243 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1244 unsigned long addr, unsigned long end,
1245 unsigned long pfn, pgprot_t prot)
1247 pte_t *pte;
1248 spinlock_t *ptl;
1250 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1251 if (!pte)
1252 return -ENOMEM;
1253 do {
1254 BUG_ON(!pte_none(*pte));
1255 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1256 pfn++;
1257 } while (pte++, addr += PAGE_SIZE, addr != end);
1258 pte_unmap_unlock(pte - 1, ptl);
1259 return 0;
1262 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1263 unsigned long addr, unsigned long end,
1264 unsigned long pfn, pgprot_t prot)
1266 pmd_t *pmd;
1267 unsigned long next;
1269 pfn -= addr >> PAGE_SHIFT;
1270 pmd = pmd_alloc(mm, pud, addr);
1271 if (!pmd)
1272 return -ENOMEM;
1273 do {
1274 next = pmd_addr_end(addr, end);
1275 if (remap_pte_range(mm, pmd, addr, next,
1276 pfn + (addr >> PAGE_SHIFT), prot))
1277 return -ENOMEM;
1278 } while (pmd++, addr = next, addr != end);
1279 return 0;
1282 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1283 unsigned long addr, unsigned long end,
1284 unsigned long pfn, pgprot_t prot)
1286 pud_t *pud;
1287 unsigned long next;
1289 pfn -= addr >> PAGE_SHIFT;
1290 pud = pud_alloc(mm, pgd, addr);
1291 if (!pud)
1292 return -ENOMEM;
1293 do {
1294 next = pud_addr_end(addr, end);
1295 if (remap_pmd_range(mm, pud, addr, next,
1296 pfn + (addr >> PAGE_SHIFT), prot))
1297 return -ENOMEM;
1298 } while (pud++, addr = next, addr != end);
1299 return 0;
1302 /* Note: this is only safe if the mm semaphore is held when called. */
1303 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1304 unsigned long pfn, unsigned long size, pgprot_t prot)
1306 pgd_t *pgd;
1307 unsigned long next;
1308 unsigned long end = addr + PAGE_ALIGN(size);
1309 struct mm_struct *mm = vma->vm_mm;
1310 int err;
1313 * Physically remapped pages are special. Tell the
1314 * rest of the world about it:
1315 * VM_IO tells people not to look at these pages
1316 * (accesses can have side effects).
1317 * VM_RESERVED is specified all over the place, because
1318 * in 2.4 it kept swapout's vma scan off this vma; but
1319 * in 2.6 the LRU scan won't even find its pages, so this
1320 * flag means no more than count its pages in reserved_vm,
1321 * and omit it from core dump, even when VM_IO turned off.
1322 * VM_PFNMAP tells the core MM that the base pages are just
1323 * raw PFN mappings, and do not have a "struct page" associated
1324 * with them.
1326 * There's a horrible special case to handle copy-on-write
1327 * behaviour that some programs depend on. We mark the "original"
1328 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1330 if (is_cow_mapping(vma->vm_flags)) {
1331 if (addr != vma->vm_start || end != vma->vm_end)
1332 return -EINVAL;
1333 vma->vm_pgoff = pfn;
1336 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1338 BUG_ON(addr >= end);
1339 pfn -= addr >> PAGE_SHIFT;
1340 pgd = pgd_offset(mm, addr);
1341 flush_cache_range(vma, addr, end);
1342 do {
1343 next = pgd_addr_end(addr, end);
1344 err = remap_pud_range(mm, pgd, addr, next,
1345 pfn + (addr >> PAGE_SHIFT), prot);
1346 if (err)
1347 break;
1348 } while (pgd++, addr = next, addr != end);
1349 return err;
1351 EXPORT_SYMBOL(remap_pfn_range);
1354 * handle_pte_fault chooses page fault handler according to an entry
1355 * which was read non-atomically. Before making any commitment, on
1356 * those architectures or configurations (e.g. i386 with PAE) which
1357 * might give a mix of unmatched parts, do_swap_page and do_file_page
1358 * must check under lock before unmapping the pte and proceeding
1359 * (but do_wp_page is only called after already making such a check;
1360 * and do_anonymous_page and do_no_page can safely check later on).
1362 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1363 pte_t *page_table, pte_t orig_pte)
1365 int same = 1;
1366 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1367 if (sizeof(pte_t) > sizeof(unsigned long)) {
1368 spinlock_t *ptl = pte_lockptr(mm, pmd);
1369 spin_lock(ptl);
1370 same = pte_same(*page_table, orig_pte);
1371 spin_unlock(ptl);
1373 #endif
1374 pte_unmap(page_table);
1375 return same;
1379 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1380 * servicing faults for write access. In the normal case, do always want
1381 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1382 * that do not have writing enabled, when used by access_process_vm.
1384 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1386 if (likely(vma->vm_flags & VM_WRITE))
1387 pte = pte_mkwrite(pte);
1388 return pte;
1391 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1394 * If the source page was a PFN mapping, we don't have
1395 * a "struct page" for it. We do a best-effort copy by
1396 * just copying from the original user address. If that
1397 * fails, we just zero-fill it. Live with it.
1399 if (unlikely(!src)) {
1400 void *kaddr = kmap_atomic(dst, KM_USER0);
1401 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1404 * This really shouldn't fail, because the page is there
1405 * in the page tables. But it might just be unreadable,
1406 * in which case we just give up and fill the result with
1407 * zeroes.
1409 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1410 memset(kaddr, 0, PAGE_SIZE);
1411 kunmap_atomic(kaddr, KM_USER0);
1412 return;
1415 copy_user_highpage(dst, src, va);
1419 * This routine handles present pages, when users try to write
1420 * to a shared page. It is done by copying the page to a new address
1421 * and decrementing the shared-page counter for the old page.
1423 * Note that this routine assumes that the protection checks have been
1424 * done by the caller (the low-level page fault routine in most cases).
1425 * Thus we can safely just mark it writable once we've done any necessary
1426 * COW.
1428 * We also mark the page dirty at this point even though the page will
1429 * change only once the write actually happens. This avoids a few races,
1430 * and potentially makes it more efficient.
1432 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1433 * but allow concurrent faults), with pte both mapped and locked.
1434 * We return with mmap_sem still held, but pte unmapped and unlocked.
1436 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1437 unsigned long address, pte_t *page_table, pmd_t *pmd,
1438 spinlock_t *ptl, pte_t orig_pte)
1440 struct page *old_page, *new_page;
1441 pte_t entry;
1442 int ret = VM_FAULT_MINOR;
1444 old_page = vm_normal_page(vma, address, orig_pte);
1445 if (!old_page)
1446 goto gotten;
1448 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1449 int reuse = can_share_swap_page(old_page);
1450 unlock_page(old_page);
1451 if (reuse) {
1452 flush_cache_page(vma, address, pte_pfn(orig_pte));
1453 entry = pte_mkyoung(orig_pte);
1454 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1455 ptep_set_access_flags(vma, address, page_table, entry, 1);
1456 update_mmu_cache(vma, address, entry);
1457 lazy_mmu_prot_update(entry);
1458 ret |= VM_FAULT_WRITE;
1459 goto unlock;
1464 * Ok, we need to copy. Oh, well..
1466 page_cache_get(old_page);
1467 gotten:
1468 pte_unmap_unlock(page_table, ptl);
1470 if (unlikely(anon_vma_prepare(vma)))
1471 goto oom;
1472 if (old_page == ZERO_PAGE(address)) {
1473 new_page = alloc_zeroed_user_highpage(vma, address);
1474 if (!new_page)
1475 goto oom;
1476 } else {
1477 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1478 if (!new_page)
1479 goto oom;
1480 cow_user_page(new_page, old_page, address);
1484 * Re-check the pte - we dropped the lock
1486 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1487 if (likely(pte_same(*page_table, orig_pte))) {
1488 if (old_page) {
1489 page_remove_rmap(old_page);
1490 if (!PageAnon(old_page)) {
1491 dec_mm_counter(mm, file_rss);
1492 inc_mm_counter(mm, anon_rss);
1494 } else
1495 inc_mm_counter(mm, anon_rss);
1496 flush_cache_page(vma, address, pte_pfn(orig_pte));
1497 entry = mk_pte(new_page, vma->vm_page_prot);
1498 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1499 ptep_establish(vma, address, page_table, entry);
1500 update_mmu_cache(vma, address, entry);
1501 lazy_mmu_prot_update(entry);
1502 lru_cache_add_active(new_page);
1503 page_add_new_anon_rmap(new_page, vma, address);
1505 /* Free the old page.. */
1506 new_page = old_page;
1507 ret |= VM_FAULT_WRITE;
1509 if (new_page)
1510 page_cache_release(new_page);
1511 if (old_page)
1512 page_cache_release(old_page);
1513 unlock:
1514 pte_unmap_unlock(page_table, ptl);
1515 return ret;
1516 oom:
1517 if (old_page)
1518 page_cache_release(old_page);
1519 return VM_FAULT_OOM;
1523 * Helper functions for unmap_mapping_range().
1525 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1527 * We have to restart searching the prio_tree whenever we drop the lock,
1528 * since the iterator is only valid while the lock is held, and anyway
1529 * a later vma might be split and reinserted earlier while lock dropped.
1531 * The list of nonlinear vmas could be handled more efficiently, using
1532 * a placeholder, but handle it in the same way until a need is shown.
1533 * It is important to search the prio_tree before nonlinear list: a vma
1534 * may become nonlinear and be shifted from prio_tree to nonlinear list
1535 * while the lock is dropped; but never shifted from list to prio_tree.
1537 * In order to make forward progress despite restarting the search,
1538 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1539 * quickly skip it next time around. Since the prio_tree search only
1540 * shows us those vmas affected by unmapping the range in question, we
1541 * can't efficiently keep all vmas in step with mapping->truncate_count:
1542 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1543 * mapping->truncate_count and vma->vm_truncate_count are protected by
1544 * i_mmap_lock.
1546 * In order to make forward progress despite repeatedly restarting some
1547 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1548 * and restart from that address when we reach that vma again. It might
1549 * have been split or merged, shrunk or extended, but never shifted: so
1550 * restart_addr remains valid so long as it remains in the vma's range.
1551 * unmap_mapping_range forces truncate_count to leap over page-aligned
1552 * values so we can save vma's restart_addr in its truncate_count field.
1554 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1556 static void reset_vma_truncate_counts(struct address_space *mapping)
1558 struct vm_area_struct *vma;
1559 struct prio_tree_iter iter;
1561 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1562 vma->vm_truncate_count = 0;
1563 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1564 vma->vm_truncate_count = 0;
1567 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1568 unsigned long start_addr, unsigned long end_addr,
1569 struct zap_details *details)
1571 unsigned long restart_addr;
1572 int need_break;
1574 again:
1575 restart_addr = vma->vm_truncate_count;
1576 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1577 start_addr = restart_addr;
1578 if (start_addr >= end_addr) {
1579 /* Top of vma has been split off since last time */
1580 vma->vm_truncate_count = details->truncate_count;
1581 return 0;
1585 restart_addr = zap_page_range(vma, start_addr,
1586 end_addr - start_addr, details);
1587 need_break = need_resched() ||
1588 need_lockbreak(details->i_mmap_lock);
1590 if (restart_addr >= end_addr) {
1591 /* We have now completed this vma: mark it so */
1592 vma->vm_truncate_count = details->truncate_count;
1593 if (!need_break)
1594 return 0;
1595 } else {
1596 /* Note restart_addr in vma's truncate_count field */
1597 vma->vm_truncate_count = restart_addr;
1598 if (!need_break)
1599 goto again;
1602 spin_unlock(details->i_mmap_lock);
1603 cond_resched();
1604 spin_lock(details->i_mmap_lock);
1605 return -EINTR;
1608 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1609 struct zap_details *details)
1611 struct vm_area_struct *vma;
1612 struct prio_tree_iter iter;
1613 pgoff_t vba, vea, zba, zea;
1615 restart:
1616 vma_prio_tree_foreach(vma, &iter, root,
1617 details->first_index, details->last_index) {
1618 /* Skip quickly over those we have already dealt with */
1619 if (vma->vm_truncate_count == details->truncate_count)
1620 continue;
1622 vba = vma->vm_pgoff;
1623 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1624 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1625 zba = details->first_index;
1626 if (zba < vba)
1627 zba = vba;
1628 zea = details->last_index;
1629 if (zea > vea)
1630 zea = vea;
1632 if (unmap_mapping_range_vma(vma,
1633 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1634 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1635 details) < 0)
1636 goto restart;
1640 static inline void unmap_mapping_range_list(struct list_head *head,
1641 struct zap_details *details)
1643 struct vm_area_struct *vma;
1646 * In nonlinear VMAs there is no correspondence between virtual address
1647 * offset and file offset. So we must perform an exhaustive search
1648 * across *all* the pages in each nonlinear VMA, not just the pages
1649 * whose virtual address lies outside the file truncation point.
1651 restart:
1652 list_for_each_entry(vma, head, shared.vm_set.list) {
1653 /* Skip quickly over those we have already dealt with */
1654 if (vma->vm_truncate_count == details->truncate_count)
1655 continue;
1656 details->nonlinear_vma = vma;
1657 if (unmap_mapping_range_vma(vma, vma->vm_start,
1658 vma->vm_end, details) < 0)
1659 goto restart;
1664 * unmap_mapping_range - unmap the portion of all mmaps
1665 * in the specified address_space corresponding to the specified
1666 * page range in the underlying file.
1667 * @mapping: the address space containing mmaps to be unmapped.
1668 * @holebegin: byte in first page to unmap, relative to the start of
1669 * the underlying file. This will be rounded down to a PAGE_SIZE
1670 * boundary. Note that this is different from vmtruncate(), which
1671 * must keep the partial page. In contrast, we must get rid of
1672 * partial pages.
1673 * @holelen: size of prospective hole in bytes. This will be rounded
1674 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1675 * end of the file.
1676 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1677 * but 0 when invalidating pagecache, don't throw away private data.
1679 void unmap_mapping_range(struct address_space *mapping,
1680 loff_t const holebegin, loff_t const holelen, int even_cows)
1682 struct zap_details details;
1683 pgoff_t hba = holebegin >> PAGE_SHIFT;
1684 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1686 /* Check for overflow. */
1687 if (sizeof(holelen) > sizeof(hlen)) {
1688 long long holeend =
1689 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1690 if (holeend & ~(long long)ULONG_MAX)
1691 hlen = ULONG_MAX - hba + 1;
1694 details.check_mapping = even_cows? NULL: mapping;
1695 details.nonlinear_vma = NULL;
1696 details.first_index = hba;
1697 details.last_index = hba + hlen - 1;
1698 if (details.last_index < details.first_index)
1699 details.last_index = ULONG_MAX;
1700 details.i_mmap_lock = &mapping->i_mmap_lock;
1702 spin_lock(&mapping->i_mmap_lock);
1704 /* serialize i_size write against truncate_count write */
1705 smp_wmb();
1706 /* Protect against page faults, and endless unmapping loops */
1707 mapping->truncate_count++;
1709 * For archs where spin_lock has inclusive semantics like ia64
1710 * this smp_mb() will prevent to read pagetable contents
1711 * before the truncate_count increment is visible to
1712 * other cpus.
1714 smp_mb();
1715 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1716 if (mapping->truncate_count == 0)
1717 reset_vma_truncate_counts(mapping);
1718 mapping->truncate_count++;
1720 details.truncate_count = mapping->truncate_count;
1722 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1723 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1724 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1725 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1726 spin_unlock(&mapping->i_mmap_lock);
1728 EXPORT_SYMBOL(unmap_mapping_range);
1731 * Handle all mappings that got truncated by a "truncate()"
1732 * system call.
1734 * NOTE! We have to be ready to update the memory sharing
1735 * between the file and the memory map for a potential last
1736 * incomplete page. Ugly, but necessary.
1738 int vmtruncate(struct inode * inode, loff_t offset)
1740 struct address_space *mapping = inode->i_mapping;
1741 unsigned long limit;
1743 if (inode->i_size < offset)
1744 goto do_expand;
1746 * truncation of in-use swapfiles is disallowed - it would cause
1747 * subsequent swapout to scribble on the now-freed blocks.
1749 if (IS_SWAPFILE(inode))
1750 goto out_busy;
1751 i_size_write(inode, offset);
1752 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1753 truncate_inode_pages(mapping, offset);
1754 goto out_truncate;
1756 do_expand:
1757 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1758 if (limit != RLIM_INFINITY && offset > limit)
1759 goto out_sig;
1760 if (offset > inode->i_sb->s_maxbytes)
1761 goto out_big;
1762 i_size_write(inode, offset);
1764 out_truncate:
1765 if (inode->i_op && inode->i_op->truncate)
1766 inode->i_op->truncate(inode);
1767 return 0;
1768 out_sig:
1769 send_sig(SIGXFSZ, current, 0);
1770 out_big:
1771 return -EFBIG;
1772 out_busy:
1773 return -ETXTBSY;
1775 EXPORT_SYMBOL(vmtruncate);
1777 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1779 struct address_space *mapping = inode->i_mapping;
1782 * If the underlying filesystem is not going to provide
1783 * a way to truncate a range of blocks (punch a hole) -
1784 * we should return failure right now.
1786 if (!inode->i_op || !inode->i_op->truncate_range)
1787 return -ENOSYS;
1789 mutex_lock(&inode->i_mutex);
1790 down_write(&inode->i_alloc_sem);
1791 unmap_mapping_range(mapping, offset, (end - offset), 1);
1792 truncate_inode_pages_range(mapping, offset, end);
1793 inode->i_op->truncate_range(inode, offset, end);
1794 up_write(&inode->i_alloc_sem);
1795 mutex_unlock(&inode->i_mutex);
1797 return 0;
1799 EXPORT_SYMBOL(vmtruncate_range);
1802 * Primitive swap readahead code. We simply read an aligned block of
1803 * (1 << page_cluster) entries in the swap area. This method is chosen
1804 * because it doesn't cost us any seek time. We also make sure to queue
1805 * the 'original' request together with the readahead ones...
1807 * This has been extended to use the NUMA policies from the mm triggering
1808 * the readahead.
1810 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1812 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1814 #ifdef CONFIG_NUMA
1815 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1816 #endif
1817 int i, num;
1818 struct page *new_page;
1819 unsigned long offset;
1822 * Get the number of handles we should do readahead io to.
1824 num = valid_swaphandles(entry, &offset);
1825 for (i = 0; i < num; offset++, i++) {
1826 /* Ok, do the async read-ahead now */
1827 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1828 offset), vma, addr);
1829 if (!new_page)
1830 break;
1831 page_cache_release(new_page);
1832 #ifdef CONFIG_NUMA
1834 * Find the next applicable VMA for the NUMA policy.
1836 addr += PAGE_SIZE;
1837 if (addr == 0)
1838 vma = NULL;
1839 if (vma) {
1840 if (addr >= vma->vm_end) {
1841 vma = next_vma;
1842 next_vma = vma ? vma->vm_next : NULL;
1844 if (vma && addr < vma->vm_start)
1845 vma = NULL;
1846 } else {
1847 if (next_vma && addr >= next_vma->vm_start) {
1848 vma = next_vma;
1849 next_vma = vma->vm_next;
1852 #endif
1854 lru_add_drain(); /* Push any new pages onto the LRU now */
1858 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1859 * but allow concurrent faults), and pte mapped but not yet locked.
1860 * We return with mmap_sem still held, but pte unmapped and unlocked.
1862 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1863 unsigned long address, pte_t *page_table, pmd_t *pmd,
1864 int write_access, pte_t orig_pte)
1866 spinlock_t *ptl;
1867 struct page *page;
1868 swp_entry_t entry;
1869 pte_t pte;
1870 int ret = VM_FAULT_MINOR;
1872 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1873 goto out;
1875 entry = pte_to_swp_entry(orig_pte);
1876 again:
1877 page = lookup_swap_cache(entry);
1878 if (!page) {
1879 swapin_readahead(entry, address, vma);
1880 page = read_swap_cache_async(entry, vma, address);
1881 if (!page) {
1883 * Back out if somebody else faulted in this pte
1884 * while we released the pte lock.
1886 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1887 if (likely(pte_same(*page_table, orig_pte)))
1888 ret = VM_FAULT_OOM;
1889 goto unlock;
1892 /* Had to read the page from swap area: Major fault */
1893 ret = VM_FAULT_MAJOR;
1894 inc_page_state(pgmajfault);
1895 grab_swap_token();
1898 mark_page_accessed(page);
1899 lock_page(page);
1900 if (!PageSwapCache(page)) {
1901 /* Page migration has occured */
1902 unlock_page(page);
1903 page_cache_release(page);
1904 goto again;
1908 * Back out if somebody else already faulted in this pte.
1910 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1911 if (unlikely(!pte_same(*page_table, orig_pte)))
1912 goto out_nomap;
1914 if (unlikely(!PageUptodate(page))) {
1915 ret = VM_FAULT_SIGBUS;
1916 goto out_nomap;
1919 /* The page isn't present yet, go ahead with the fault. */
1921 inc_mm_counter(mm, anon_rss);
1922 pte = mk_pte(page, vma->vm_page_prot);
1923 if (write_access && can_share_swap_page(page)) {
1924 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1925 write_access = 0;
1928 flush_icache_page(vma, page);
1929 set_pte_at(mm, address, page_table, pte);
1930 page_add_anon_rmap(page, vma, address);
1932 swap_free(entry);
1933 if (vm_swap_full())
1934 remove_exclusive_swap_page(page);
1935 unlock_page(page);
1937 if (write_access) {
1938 if (do_wp_page(mm, vma, address,
1939 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1940 ret = VM_FAULT_OOM;
1941 goto out;
1944 /* No need to invalidate - it was non-present before */
1945 update_mmu_cache(vma, address, pte);
1946 lazy_mmu_prot_update(pte);
1947 unlock:
1948 pte_unmap_unlock(page_table, ptl);
1949 out:
1950 return ret;
1951 out_nomap:
1952 pte_unmap_unlock(page_table, ptl);
1953 unlock_page(page);
1954 page_cache_release(page);
1955 return ret;
1959 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1960 * but allow concurrent faults), and pte mapped but not yet locked.
1961 * We return with mmap_sem still held, but pte unmapped and unlocked.
1963 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1964 unsigned long address, pte_t *page_table, pmd_t *pmd,
1965 int write_access)
1967 struct page *page;
1968 spinlock_t *ptl;
1969 pte_t entry;
1971 if (write_access) {
1972 /* Allocate our own private page. */
1973 pte_unmap(page_table);
1975 if (unlikely(anon_vma_prepare(vma)))
1976 goto oom;
1977 page = alloc_zeroed_user_highpage(vma, address);
1978 if (!page)
1979 goto oom;
1981 entry = mk_pte(page, vma->vm_page_prot);
1982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1984 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1985 if (!pte_none(*page_table))
1986 goto release;
1987 inc_mm_counter(mm, anon_rss);
1988 lru_cache_add_active(page);
1989 page_add_new_anon_rmap(page, vma, address);
1990 } else {
1991 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1992 page = ZERO_PAGE(address);
1993 page_cache_get(page);
1994 entry = mk_pte(page, vma->vm_page_prot);
1996 ptl = pte_lockptr(mm, pmd);
1997 spin_lock(ptl);
1998 if (!pte_none(*page_table))
1999 goto release;
2000 inc_mm_counter(mm, file_rss);
2001 page_add_file_rmap(page);
2004 set_pte_at(mm, address, page_table, entry);
2006 /* No need to invalidate - it was non-present before */
2007 update_mmu_cache(vma, address, entry);
2008 lazy_mmu_prot_update(entry);
2009 unlock:
2010 pte_unmap_unlock(page_table, ptl);
2011 return VM_FAULT_MINOR;
2012 release:
2013 page_cache_release(page);
2014 goto unlock;
2015 oom:
2016 return VM_FAULT_OOM;
2020 * do_no_page() tries to create a new page mapping. It aggressively
2021 * tries to share with existing pages, but makes a separate copy if
2022 * the "write_access" parameter is true in order to avoid the next
2023 * page fault.
2025 * As this is called only for pages that do not currently exist, we
2026 * do not need to flush old virtual caches or the TLB.
2028 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2029 * but allow concurrent faults), and pte mapped but not yet locked.
2030 * We return with mmap_sem still held, but pte unmapped and unlocked.
2032 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2033 unsigned long address, pte_t *page_table, pmd_t *pmd,
2034 int write_access)
2036 spinlock_t *ptl;
2037 struct page *new_page;
2038 struct address_space *mapping = NULL;
2039 pte_t entry;
2040 unsigned int sequence = 0;
2041 int ret = VM_FAULT_MINOR;
2042 int anon = 0;
2044 pte_unmap(page_table);
2045 BUG_ON(vma->vm_flags & VM_PFNMAP);
2047 if (vma->vm_file) {
2048 mapping = vma->vm_file->f_mapping;
2049 sequence = mapping->truncate_count;
2050 smp_rmb(); /* serializes i_size against truncate_count */
2052 retry:
2053 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2055 * No smp_rmb is needed here as long as there's a full
2056 * spin_lock/unlock sequence inside the ->nopage callback
2057 * (for the pagecache lookup) that acts as an implicit
2058 * smp_mb() and prevents the i_size read to happen
2059 * after the next truncate_count read.
2062 /* no page was available -- either SIGBUS or OOM */
2063 if (new_page == NOPAGE_SIGBUS)
2064 return VM_FAULT_SIGBUS;
2065 if (new_page == NOPAGE_OOM)
2066 return VM_FAULT_OOM;
2069 * Should we do an early C-O-W break?
2071 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2072 struct page *page;
2074 if (unlikely(anon_vma_prepare(vma)))
2075 goto oom;
2076 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2077 if (!page)
2078 goto oom;
2079 copy_user_highpage(page, new_page, address);
2080 page_cache_release(new_page);
2081 new_page = page;
2082 anon = 1;
2085 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2087 * For a file-backed vma, someone could have truncated or otherwise
2088 * invalidated this page. If unmap_mapping_range got called,
2089 * retry getting the page.
2091 if (mapping && unlikely(sequence != mapping->truncate_count)) {
2092 pte_unmap_unlock(page_table, ptl);
2093 page_cache_release(new_page);
2094 cond_resched();
2095 sequence = mapping->truncate_count;
2096 smp_rmb();
2097 goto retry;
2101 * This silly early PAGE_DIRTY setting removes a race
2102 * due to the bad i386 page protection. But it's valid
2103 * for other architectures too.
2105 * Note that if write_access is true, we either now have
2106 * an exclusive copy of the page, or this is a shared mapping,
2107 * so we can make it writable and dirty to avoid having to
2108 * handle that later.
2110 /* Only go through if we didn't race with anybody else... */
2111 if (pte_none(*page_table)) {
2112 flush_icache_page(vma, new_page);
2113 entry = mk_pte(new_page, vma->vm_page_prot);
2114 if (write_access)
2115 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2116 set_pte_at(mm, address, page_table, entry);
2117 if (anon) {
2118 inc_mm_counter(mm, anon_rss);
2119 lru_cache_add_active(new_page);
2120 page_add_new_anon_rmap(new_page, vma, address);
2121 } else {
2122 inc_mm_counter(mm, file_rss);
2123 page_add_file_rmap(new_page);
2125 } else {
2126 /* One of our sibling threads was faster, back out. */
2127 page_cache_release(new_page);
2128 goto unlock;
2131 /* no need to invalidate: a not-present page shouldn't be cached */
2132 update_mmu_cache(vma, address, entry);
2133 lazy_mmu_prot_update(entry);
2134 unlock:
2135 pte_unmap_unlock(page_table, ptl);
2136 return ret;
2137 oom:
2138 page_cache_release(new_page);
2139 return VM_FAULT_OOM;
2143 * Fault of a previously existing named mapping. Repopulate the pte
2144 * from the encoded file_pte if possible. This enables swappable
2145 * nonlinear vmas.
2147 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2148 * but allow concurrent faults), and pte mapped but not yet locked.
2149 * We return with mmap_sem still held, but pte unmapped and unlocked.
2151 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2152 unsigned long address, pte_t *page_table, pmd_t *pmd,
2153 int write_access, pte_t orig_pte)
2155 pgoff_t pgoff;
2156 int err;
2158 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2159 return VM_FAULT_MINOR;
2161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2163 * Page table corrupted: show pte and kill process.
2165 print_bad_pte(vma, orig_pte, address);
2166 return VM_FAULT_OOM;
2168 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2170 pgoff = pte_to_pgoff(orig_pte);
2171 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2172 vma->vm_page_prot, pgoff, 0);
2173 if (err == -ENOMEM)
2174 return VM_FAULT_OOM;
2175 if (err)
2176 return VM_FAULT_SIGBUS;
2177 return VM_FAULT_MAJOR;
2181 * These routines also need to handle stuff like marking pages dirty
2182 * and/or accessed for architectures that don't do it in hardware (most
2183 * RISC architectures). The early dirtying is also good on the i386.
2185 * There is also a hook called "update_mmu_cache()" that architectures
2186 * with external mmu caches can use to update those (ie the Sparc or
2187 * PowerPC hashed page tables that act as extended TLBs).
2189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2190 * but allow concurrent faults), and pte mapped but not yet locked.
2191 * We return with mmap_sem still held, but pte unmapped and unlocked.
2193 static inline int handle_pte_fault(struct mm_struct *mm,
2194 struct vm_area_struct *vma, unsigned long address,
2195 pte_t *pte, pmd_t *pmd, int write_access)
2197 pte_t entry;
2198 pte_t old_entry;
2199 spinlock_t *ptl;
2201 old_entry = entry = *pte;
2202 if (!pte_present(entry)) {
2203 if (pte_none(entry)) {
2204 if (!vma->vm_ops || !vma->vm_ops->nopage)
2205 return do_anonymous_page(mm, vma, address,
2206 pte, pmd, write_access);
2207 return do_no_page(mm, vma, address,
2208 pte, pmd, write_access);
2210 if (pte_file(entry))
2211 return do_file_page(mm, vma, address,
2212 pte, pmd, write_access, entry);
2213 return do_swap_page(mm, vma, address,
2214 pte, pmd, write_access, entry);
2217 ptl = pte_lockptr(mm, pmd);
2218 spin_lock(ptl);
2219 if (unlikely(!pte_same(*pte, entry)))
2220 goto unlock;
2221 if (write_access) {
2222 if (!pte_write(entry))
2223 return do_wp_page(mm, vma, address,
2224 pte, pmd, ptl, entry);
2225 entry = pte_mkdirty(entry);
2227 entry = pte_mkyoung(entry);
2228 if (!pte_same(old_entry, entry)) {
2229 ptep_set_access_flags(vma, address, pte, entry, write_access);
2230 update_mmu_cache(vma, address, entry);
2231 lazy_mmu_prot_update(entry);
2232 } else {
2234 * This is needed only for protection faults but the arch code
2235 * is not yet telling us if this is a protection fault or not.
2236 * This still avoids useless tlb flushes for .text page faults
2237 * with threads.
2239 if (write_access)
2240 flush_tlb_page(vma, address);
2242 unlock:
2243 pte_unmap_unlock(pte, ptl);
2244 return VM_FAULT_MINOR;
2248 * By the time we get here, we already hold the mm semaphore
2250 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2251 unsigned long address, int write_access)
2253 pgd_t *pgd;
2254 pud_t *pud;
2255 pmd_t *pmd;
2256 pte_t *pte;
2258 __set_current_state(TASK_RUNNING);
2260 inc_page_state(pgfault);
2262 if (unlikely(is_vm_hugetlb_page(vma)))
2263 return hugetlb_fault(mm, vma, address, write_access);
2265 pgd = pgd_offset(mm, address);
2266 pud = pud_alloc(mm, pgd, address);
2267 if (!pud)
2268 return VM_FAULT_OOM;
2269 pmd = pmd_alloc(mm, pud, address);
2270 if (!pmd)
2271 return VM_FAULT_OOM;
2272 pte = pte_alloc_map(mm, pmd, address);
2273 if (!pte)
2274 return VM_FAULT_OOM;
2276 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2279 EXPORT_SYMBOL_GPL(__handle_mm_fault);
2281 #ifndef __PAGETABLE_PUD_FOLDED
2283 * Allocate page upper directory.
2284 * We've already handled the fast-path in-line.
2286 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2288 pud_t *new = pud_alloc_one(mm, address);
2289 if (!new)
2290 return -ENOMEM;
2292 spin_lock(&mm->page_table_lock);
2293 if (pgd_present(*pgd)) /* Another has populated it */
2294 pud_free(new);
2295 else
2296 pgd_populate(mm, pgd, new);
2297 spin_unlock(&mm->page_table_lock);
2298 return 0;
2300 #else
2301 /* Workaround for gcc 2.96 */
2302 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2304 return 0;
2306 #endif /* __PAGETABLE_PUD_FOLDED */
2308 #ifndef __PAGETABLE_PMD_FOLDED
2310 * Allocate page middle directory.
2311 * We've already handled the fast-path in-line.
2313 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2315 pmd_t *new = pmd_alloc_one(mm, address);
2316 if (!new)
2317 return -ENOMEM;
2319 spin_lock(&mm->page_table_lock);
2320 #ifndef __ARCH_HAS_4LEVEL_HACK
2321 if (pud_present(*pud)) /* Another has populated it */
2322 pmd_free(new);
2323 else
2324 pud_populate(mm, pud, new);
2325 #else
2326 if (pgd_present(*pud)) /* Another has populated it */
2327 pmd_free(new);
2328 else
2329 pgd_populate(mm, pud, new);
2330 #endif /* __ARCH_HAS_4LEVEL_HACK */
2331 spin_unlock(&mm->page_table_lock);
2332 return 0;
2334 #else
2335 /* Workaround for gcc 2.96 */
2336 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2338 return 0;
2340 #endif /* __PAGETABLE_PMD_FOLDED */
2342 int make_pages_present(unsigned long addr, unsigned long end)
2344 int ret, len, write;
2345 struct vm_area_struct * vma;
2347 vma = find_vma(current->mm, addr);
2348 if (!vma)
2349 return -1;
2350 write = (vma->vm_flags & VM_WRITE) != 0;
2351 if (addr >= end)
2352 BUG();
2353 if (end > vma->vm_end)
2354 BUG();
2355 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2356 ret = get_user_pages(current, current->mm, addr,
2357 len, write, 0, NULL, NULL);
2358 if (ret < 0)
2359 return ret;
2360 return ret == len ? 0 : -1;
2364 * Map a vmalloc()-space virtual address to the physical page.
2366 struct page * vmalloc_to_page(void * vmalloc_addr)
2368 unsigned long addr = (unsigned long) vmalloc_addr;
2369 struct page *page = NULL;
2370 pgd_t *pgd = pgd_offset_k(addr);
2371 pud_t *pud;
2372 pmd_t *pmd;
2373 pte_t *ptep, pte;
2375 if (!pgd_none(*pgd)) {
2376 pud = pud_offset(pgd, addr);
2377 if (!pud_none(*pud)) {
2378 pmd = pmd_offset(pud, addr);
2379 if (!pmd_none(*pmd)) {
2380 ptep = pte_offset_map(pmd, addr);
2381 pte = *ptep;
2382 if (pte_present(pte))
2383 page = pte_page(pte);
2384 pte_unmap(ptep);
2388 return page;
2391 EXPORT_SYMBOL(vmalloc_to_page);
2394 * Map a vmalloc()-space virtual address to the physical page frame number.
2396 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2398 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2401 EXPORT_SYMBOL(vmalloc_to_pfn);
2403 #if !defined(__HAVE_ARCH_GATE_AREA)
2405 #if defined(AT_SYSINFO_EHDR)
2406 static struct vm_area_struct gate_vma;
2408 static int __init gate_vma_init(void)
2410 gate_vma.vm_mm = NULL;
2411 gate_vma.vm_start = FIXADDR_USER_START;
2412 gate_vma.vm_end = FIXADDR_USER_END;
2413 gate_vma.vm_page_prot = PAGE_READONLY;
2414 gate_vma.vm_flags = 0;
2415 return 0;
2417 __initcall(gate_vma_init);
2418 #endif
2420 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2422 #ifdef AT_SYSINFO_EHDR
2423 return &gate_vma;
2424 #else
2425 return NULL;
2426 #endif
2429 int in_gate_area_no_task(unsigned long addr)
2431 #ifdef AT_SYSINFO_EHDR
2432 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2433 return 1;
2434 #endif
2435 return 0;
2438 #endif /* __HAVE_ARCH_GATE_AREA */