[PATCH] mm: tlb_gather_mmu get_cpu_var
[linux-2.6.22.y-op.git] / mm / slab.c
blob22bfb0b2ac8b441d479bbfe16028fa7e0db132e8
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
107 #include <asm/uaccess.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 #include <asm/page.h>
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 #ifdef CONFIG_DEBUG_SLAB
124 #define DEBUG 1
125 #define STATS 1
126 #define FORCED_DEBUG 1
127 #else
128 #define DEBUG 0
129 #define STATS 0
130 #define FORCED_DEBUG 0
131 #endif
134 /* Shouldn't this be in a header file somewhere? */
135 #define BYTES_PER_WORD sizeof(void *)
137 #ifndef cache_line_size
138 #define cache_line_size() L1_CACHE_BYTES
139 #endif
141 #ifndef ARCH_KMALLOC_MINALIGN
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
150 #define ARCH_KMALLOC_MINALIGN 0
151 #endif
153 #ifndef ARCH_SLAB_MINALIGN
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
161 #define ARCH_SLAB_MINALIGN 0
162 #endif
164 #ifndef ARCH_KMALLOC_FLAGS
165 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166 #endif
168 /* Legal flag mask for kmem_cache_create(). */
169 #if DEBUG
170 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 SLAB_DESTROY_BY_RCU)
176 #else
177 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU)
181 #endif
184 * kmem_bufctl_t:
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 typedef unsigned int kmem_bufctl_t;
203 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
204 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207 /* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
210 static unsigned long offslab_limit;
213 * struct slab
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
229 * struct slab_rcu
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
244 struct slab_rcu {
245 struct rcu_head head;
246 kmem_cache_t *cachep;
247 void *addr;
251 * struct array_cache
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
262 struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
276 /* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init {
281 struct array_cache cache;
282 void * entries[BOOT_CPUCACHE_ENTRIES];
286 * The slab lists for all objects.
288 struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
293 unsigned long next_reap;
294 int free_touched;
295 unsigned int free_limit;
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
302 * Need this for bootstrapping a per node allocator.
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306 #define CACHE_CACHE 0
307 #define SIZE_AC 1
308 #define SIZE_L3 (1 + MAX_NUMNODES)
311 * This function must be completely optimized away if
312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
316 static __always_inline int index_of(const size_t size)
318 if (__builtin_constant_p(size)) {
319 int i = 0;
321 #define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326 #include "linux/kmalloc_sizes.h"
327 #undef CACHE
329 extern void __bad_size(void);
330 __bad_size();
332 } else
333 BUG();
334 return 0;
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static inline void kmem_list3_init(struct kmem_list3 *parent)
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
352 #define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
358 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
366 * kmem_cache_t
368 * manages a cache.
371 struct kmem_cache_s {
372 /* 1) per-cpu data, touched during every alloc/free */
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
376 unsigned int shared;
377 unsigned int objsize;
378 /* 2) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
382 spinlock_t spinlock;
384 /* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
388 /* force GFP flags, e.g. GFP_DMA */
389 gfp_t gfpflags;
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
398 /* constructor func */
399 void (*ctor)(void *, kmem_cache_t *, unsigned long);
401 /* de-constructor func */
402 void (*dtor)(void *, kmem_cache_t *, unsigned long);
404 /* 4) cache creation/removal */
405 const char *name;
406 struct list_head next;
408 /* 5) statistics */
409 #if STATS
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
418 unsigned long node_frees;
419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423 #endif
424 #if DEBUG
425 int dbghead;
426 int reallen;
427 #endif
430 #define CFLGS_OFF_SLAB (0x80000000UL)
431 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
433 #define BATCHREFILL_LIMIT 16
434 /* Optimization question: fewer reaps means less
435 * probability for unnessary cpucache drain/refill cycles.
437 * OTHO the cpuarrays can contain lots of objects,
438 * which could lock up otherwise freeable slabs.
440 #define REAPTIMEOUT_CPUC (2*HZ)
441 #define REAPTIMEOUT_LIST3 (4*HZ)
443 #if STATS
444 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
445 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
446 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
447 #define STATS_INC_GROWN(x) ((x)->grown++)
448 #define STATS_INC_REAPED(x) ((x)->reaped++)
449 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
450 (x)->high_mark = (x)->num_active; \
451 } while (0)
452 #define STATS_INC_ERR(x) ((x)->errors++)
453 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
454 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
455 #define STATS_SET_FREEABLE(x, i) \
456 do { if ((x)->max_freeable < i) \
457 (x)->max_freeable = i; \
458 } while (0)
460 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
461 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
462 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
463 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464 #else
465 #define STATS_INC_ACTIVE(x) do { } while (0)
466 #define STATS_DEC_ACTIVE(x) do { } while (0)
467 #define STATS_INC_ALLOCED(x) do { } while (0)
468 #define STATS_INC_GROWN(x) do { } while (0)
469 #define STATS_INC_REAPED(x) do { } while (0)
470 #define STATS_SET_HIGH(x) do { } while (0)
471 #define STATS_INC_ERR(x) do { } while (0)
472 #define STATS_INC_NODEALLOCS(x) do { } while (0)
473 #define STATS_INC_NODEFREES(x) do { } while (0)
474 #define STATS_SET_FREEABLE(x, i) \
475 do { } while (0)
477 #define STATS_INC_ALLOCHIT(x) do { } while (0)
478 #define STATS_INC_ALLOCMISS(x) do { } while (0)
479 #define STATS_INC_FREEHIT(x) do { } while (0)
480 #define STATS_INC_FREEMISS(x) do { } while (0)
481 #endif
483 #if DEBUG
484 /* Magic nums for obj red zoning.
485 * Placed in the first word before and the first word after an obj.
487 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
488 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
490 /* ...and for poisoning */
491 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
492 #define POISON_FREE 0x6b /* for use-after-free poisoning */
493 #define POISON_END 0xa5 /* end-byte of poisoning */
495 /* memory layout of objects:
496 * 0 : objp
497 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
498 * the end of an object is aligned with the end of the real
499 * allocation. Catches writes behind the end of the allocation.
500 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * redzone word.
502 * cachep->dbghead: The real object.
503 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
504 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
506 static int obj_dbghead(kmem_cache_t *cachep)
508 return cachep->dbghead;
511 static int obj_reallen(kmem_cache_t *cachep)
513 return cachep->reallen;
516 static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
518 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
519 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
522 static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525 if (cachep->flags & SLAB_STORE_USER)
526 return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
527 return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
530 static void **dbg_userword(kmem_cache_t *cachep, void *objp)
532 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
533 return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
536 #else
538 #define obj_dbghead(x) 0
539 #define obj_reallen(cachep) (cachep->objsize)
540 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
544 #endif
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
550 #if defined(CONFIG_LARGE_ALLOCS)
551 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
552 #define MAX_GFP_ORDER 13 /* up to 32Mb */
553 #elif defined(CONFIG_MMU)
554 #define MAX_OBJ_ORDER 5 /* 32 pages */
555 #define MAX_GFP_ORDER 5 /* 32 pages */
556 #else
557 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
558 #define MAX_GFP_ORDER 8 /* up to 1Mb */
559 #endif
562 * Do not go above this order unless 0 objects fit into the slab.
564 #define BREAK_GFP_ORDER_HI 1
565 #define BREAK_GFP_ORDER_LO 0
566 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
568 /* Macros for storing/retrieving the cachep and or slab from the
569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
572 #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
573 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
574 #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
575 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
577 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
578 struct cache_sizes malloc_sizes[] = {
579 #define CACHE(x) { .cs_size = (x) },
580 #include <linux/kmalloc_sizes.h>
581 CACHE(ULONG_MAX)
582 #undef CACHE
584 EXPORT_SYMBOL(malloc_sizes);
586 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
587 struct cache_names {
588 char *name;
589 char *name_dma;
592 static struct cache_names __initdata cache_names[] = {
593 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
594 #include <linux/kmalloc_sizes.h>
595 { NULL, }
596 #undef CACHE
599 static struct arraycache_init initarray_cache __initdata =
600 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
601 static struct arraycache_init initarray_generic =
602 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
604 /* internal cache of cache description objs */
605 static kmem_cache_t cache_cache = {
606 .batchcount = 1,
607 .limit = BOOT_CPUCACHE_ENTRIES,
608 .shared = 1,
609 .objsize = sizeof(kmem_cache_t),
610 .flags = SLAB_NO_REAP,
611 .spinlock = SPIN_LOCK_UNLOCKED,
612 .name = "kmem_cache",
613 #if DEBUG
614 .reallen = sizeof(kmem_cache_t),
615 #endif
618 /* Guard access to the cache-chain. */
619 static struct semaphore cache_chain_sem;
620 static struct list_head cache_chain;
623 * vm_enough_memory() looks at this to determine how many
624 * slab-allocated pages are possibly freeable under pressure
626 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
628 atomic_t slab_reclaim_pages;
631 * chicken and egg problem: delay the per-cpu array allocation
632 * until the general caches are up.
634 static enum {
635 NONE,
636 PARTIAL_AC,
637 PARTIAL_L3,
638 FULL
639 } g_cpucache_up;
641 static DEFINE_PER_CPU(struct work_struct, reap_work);
643 static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
644 static void enable_cpucache (kmem_cache_t *cachep);
645 static void cache_reap (void *unused);
646 static int __node_shrink(kmem_cache_t *cachep, int node);
648 static inline struct array_cache *ac_data(kmem_cache_t *cachep)
650 return cachep->array[smp_processor_id()];
653 static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
655 struct cache_sizes *csizep = malloc_sizes;
657 #if DEBUG
658 /* This happens if someone tries to call
659 * kmem_cache_create(), or __kmalloc(), before
660 * the generic caches are initialized.
662 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
663 #endif
664 while (size > csizep->cs_size)
665 csizep++;
668 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
669 * has cs_{dma,}cachep==NULL. Thus no special case
670 * for large kmalloc calls required.
672 if (unlikely(gfpflags & GFP_DMA))
673 return csizep->cs_dmacachep;
674 return csizep->cs_cachep;
677 kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
679 return __find_general_cachep(size, gfpflags);
681 EXPORT_SYMBOL(kmem_find_general_cachep);
683 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
684 static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
685 int flags, size_t *left_over, unsigned int *num)
687 int i;
688 size_t wastage = PAGE_SIZE<<gfporder;
689 size_t extra = 0;
690 size_t base = 0;
692 if (!(flags & CFLGS_OFF_SLAB)) {
693 base = sizeof(struct slab);
694 extra = sizeof(kmem_bufctl_t);
696 i = 0;
697 while (i*size + ALIGN(base+i*extra, align) <= wastage)
698 i++;
699 if (i > 0)
700 i--;
702 if (i > SLAB_LIMIT)
703 i = SLAB_LIMIT;
705 *num = i;
706 wastage -= i*size;
707 wastage -= ALIGN(base+i*extra, align);
708 *left_over = wastage;
711 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
713 static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
715 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
716 function, cachep->name, msg);
717 dump_stack();
721 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
722 * via the workqueue/eventd.
723 * Add the CPU number into the expiration time to minimize the possibility of
724 * the CPUs getting into lockstep and contending for the global cache chain
725 * lock.
727 static void __devinit start_cpu_timer(int cpu)
729 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
732 * When this gets called from do_initcalls via cpucache_init(),
733 * init_workqueues() has already run, so keventd will be setup
734 * at that time.
736 if (keventd_up() && reap_work->func == NULL) {
737 INIT_WORK(reap_work, cache_reap, NULL);
738 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
742 static struct array_cache *alloc_arraycache(int node, int entries,
743 int batchcount)
745 int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
746 struct array_cache *nc = NULL;
748 nc = kmalloc_node(memsize, GFP_KERNEL, node);
749 if (nc) {
750 nc->avail = 0;
751 nc->limit = entries;
752 nc->batchcount = batchcount;
753 nc->touched = 0;
754 spin_lock_init(&nc->lock);
756 return nc;
759 #ifdef CONFIG_NUMA
760 static inline struct array_cache **alloc_alien_cache(int node, int limit)
762 struct array_cache **ac_ptr;
763 int memsize = sizeof(void*)*MAX_NUMNODES;
764 int i;
766 if (limit > 1)
767 limit = 12;
768 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
769 if (ac_ptr) {
770 for_each_node(i) {
771 if (i == node || !node_online(i)) {
772 ac_ptr[i] = NULL;
773 continue;
775 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
776 if (!ac_ptr[i]) {
777 for (i--; i <=0; i--)
778 kfree(ac_ptr[i]);
779 kfree(ac_ptr);
780 return NULL;
784 return ac_ptr;
787 static inline void free_alien_cache(struct array_cache **ac_ptr)
789 int i;
791 if (!ac_ptr)
792 return;
794 for_each_node(i)
795 kfree(ac_ptr[i]);
797 kfree(ac_ptr);
800 static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
802 struct kmem_list3 *rl3 = cachep->nodelists[node];
804 if (ac->avail) {
805 spin_lock(&rl3->list_lock);
806 free_block(cachep, ac->entry, ac->avail, node);
807 ac->avail = 0;
808 spin_unlock(&rl3->list_lock);
812 static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
814 int i=0;
815 struct array_cache *ac;
816 unsigned long flags;
818 for_each_online_node(i) {
819 ac = l3->alien[i];
820 if (ac) {
821 spin_lock_irqsave(&ac->lock, flags);
822 __drain_alien_cache(cachep, ac, i);
823 spin_unlock_irqrestore(&ac->lock, flags);
827 #else
828 #define alloc_alien_cache(node, limit) do { } while (0)
829 #define free_alien_cache(ac_ptr) do { } while (0)
830 #define drain_alien_cache(cachep, l3) do { } while (0)
831 #endif
833 static int __devinit cpuup_callback(struct notifier_block *nfb,
834 unsigned long action, void *hcpu)
836 long cpu = (long)hcpu;
837 kmem_cache_t* cachep;
838 struct kmem_list3 *l3 = NULL;
839 int node = cpu_to_node(cpu);
840 int memsize = sizeof(struct kmem_list3);
841 struct array_cache *nc = NULL;
843 switch (action) {
844 case CPU_UP_PREPARE:
845 down(&cache_chain_sem);
846 /* we need to do this right in the beginning since
847 * alloc_arraycache's are going to use this list.
848 * kmalloc_node allows us to add the slab to the right
849 * kmem_list3 and not this cpu's kmem_list3
852 list_for_each_entry(cachep, &cache_chain, next) {
853 /* setup the size64 kmemlist for cpu before we can
854 * begin anything. Make sure some other cpu on this
855 * node has not already allocated this
857 if (!cachep->nodelists[node]) {
858 if (!(l3 = kmalloc_node(memsize,
859 GFP_KERNEL, node)))
860 goto bad;
861 kmem_list3_init(l3);
862 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
863 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
865 cachep->nodelists[node] = l3;
868 spin_lock_irq(&cachep->nodelists[node]->list_lock);
869 cachep->nodelists[node]->free_limit =
870 (1 + nr_cpus_node(node)) *
871 cachep->batchcount + cachep->num;
872 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
875 /* Now we can go ahead with allocating the shared array's
876 & array cache's */
877 list_for_each_entry(cachep, &cache_chain, next) {
878 nc = alloc_arraycache(node, cachep->limit,
879 cachep->batchcount);
880 if (!nc)
881 goto bad;
882 cachep->array[cpu] = nc;
884 l3 = cachep->nodelists[node];
885 BUG_ON(!l3);
886 if (!l3->shared) {
887 if (!(nc = alloc_arraycache(node,
888 cachep->shared*cachep->batchcount,
889 0xbaadf00d)))
890 goto bad;
892 /* we are serialised from CPU_DEAD or
893 CPU_UP_CANCELLED by the cpucontrol lock */
894 l3->shared = nc;
897 up(&cache_chain_sem);
898 break;
899 case CPU_ONLINE:
900 start_cpu_timer(cpu);
901 break;
902 #ifdef CONFIG_HOTPLUG_CPU
903 case CPU_DEAD:
904 /* fall thru */
905 case CPU_UP_CANCELED:
906 down(&cache_chain_sem);
908 list_for_each_entry(cachep, &cache_chain, next) {
909 struct array_cache *nc;
910 cpumask_t mask;
912 mask = node_to_cpumask(node);
913 spin_lock_irq(&cachep->spinlock);
914 /* cpu is dead; no one can alloc from it. */
915 nc = cachep->array[cpu];
916 cachep->array[cpu] = NULL;
917 l3 = cachep->nodelists[node];
919 if (!l3)
920 goto unlock_cache;
922 spin_lock(&l3->list_lock);
924 /* Free limit for this kmem_list3 */
925 l3->free_limit -= cachep->batchcount;
926 if (nc)
927 free_block(cachep, nc->entry, nc->avail, node);
929 if (!cpus_empty(mask)) {
930 spin_unlock(&l3->list_lock);
931 goto unlock_cache;
934 if (l3->shared) {
935 free_block(cachep, l3->shared->entry,
936 l3->shared->avail, node);
937 kfree(l3->shared);
938 l3->shared = NULL;
940 if (l3->alien) {
941 drain_alien_cache(cachep, l3);
942 free_alien_cache(l3->alien);
943 l3->alien = NULL;
946 /* free slabs belonging to this node */
947 if (__node_shrink(cachep, node)) {
948 cachep->nodelists[node] = NULL;
949 spin_unlock(&l3->list_lock);
950 kfree(l3);
951 } else {
952 spin_unlock(&l3->list_lock);
954 unlock_cache:
955 spin_unlock_irq(&cachep->spinlock);
956 kfree(nc);
958 up(&cache_chain_sem);
959 break;
960 #endif
962 return NOTIFY_OK;
963 bad:
964 up(&cache_chain_sem);
965 return NOTIFY_BAD;
968 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
971 * swap the static kmem_list3 with kmalloced memory
973 static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
974 int nodeid)
976 struct kmem_list3 *ptr;
978 BUG_ON(cachep->nodelists[nodeid] != list);
979 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
980 BUG_ON(!ptr);
982 local_irq_disable();
983 memcpy(ptr, list, sizeof(struct kmem_list3));
984 MAKE_ALL_LISTS(cachep, ptr, nodeid);
985 cachep->nodelists[nodeid] = ptr;
986 local_irq_enable();
989 /* Initialisation.
990 * Called after the gfp() functions have been enabled, and before smp_init().
992 void __init kmem_cache_init(void)
994 size_t left_over;
995 struct cache_sizes *sizes;
996 struct cache_names *names;
997 int i;
999 for (i = 0; i < NUM_INIT_LISTS; i++) {
1000 kmem_list3_init(&initkmem_list3[i]);
1001 if (i < MAX_NUMNODES)
1002 cache_cache.nodelists[i] = NULL;
1006 * Fragmentation resistance on low memory - only use bigger
1007 * page orders on machines with more than 32MB of memory.
1009 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1010 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1012 /* Bootstrap is tricky, because several objects are allocated
1013 * from caches that do not exist yet:
1014 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1015 * structures of all caches, except cache_cache itself: cache_cache
1016 * is statically allocated.
1017 * Initially an __init data area is used for the head array and the
1018 * kmem_list3 structures, it's replaced with a kmalloc allocated
1019 * array at the end of the bootstrap.
1020 * 2) Create the first kmalloc cache.
1021 * The kmem_cache_t for the new cache is allocated normally.
1022 * An __init data area is used for the head array.
1023 * 3) Create the remaining kmalloc caches, with minimally sized
1024 * head arrays.
1025 * 4) Replace the __init data head arrays for cache_cache and the first
1026 * kmalloc cache with kmalloc allocated arrays.
1027 * 5) Replace the __init data for kmem_list3 for cache_cache and
1028 * the other cache's with kmalloc allocated memory.
1029 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1032 /* 1) create the cache_cache */
1033 init_MUTEX(&cache_chain_sem);
1034 INIT_LIST_HEAD(&cache_chain);
1035 list_add(&cache_cache.next, &cache_chain);
1036 cache_cache.colour_off = cache_line_size();
1037 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1038 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1040 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1042 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1043 &left_over, &cache_cache.num);
1044 if (!cache_cache.num)
1045 BUG();
1047 cache_cache.colour = left_over/cache_cache.colour_off;
1048 cache_cache.colour_next = 0;
1049 cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1050 sizeof(struct slab), cache_line_size());
1052 /* 2+3) create the kmalloc caches */
1053 sizes = malloc_sizes;
1054 names = cache_names;
1056 /* Initialize the caches that provide memory for the array cache
1057 * and the kmem_list3 structures first.
1058 * Without this, further allocations will bug
1061 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1062 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1063 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1065 if (INDEX_AC != INDEX_L3)
1066 sizes[INDEX_L3].cs_cachep =
1067 kmem_cache_create(names[INDEX_L3].name,
1068 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1069 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1071 while (sizes->cs_size != ULONG_MAX) {
1073 * For performance, all the general caches are L1 aligned.
1074 * This should be particularly beneficial on SMP boxes, as it
1075 * eliminates "false sharing".
1076 * Note for systems short on memory removing the alignment will
1077 * allow tighter packing of the smaller caches.
1079 if(!sizes->cs_cachep)
1080 sizes->cs_cachep = kmem_cache_create(names->name,
1081 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1082 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1084 /* Inc off-slab bufctl limit until the ceiling is hit. */
1085 if (!(OFF_SLAB(sizes->cs_cachep))) {
1086 offslab_limit = sizes->cs_size-sizeof(struct slab);
1087 offslab_limit /= sizeof(kmem_bufctl_t);
1090 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1091 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1092 (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1093 NULL, NULL);
1095 sizes++;
1096 names++;
1098 /* 4) Replace the bootstrap head arrays */
1100 void * ptr;
1102 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1104 local_irq_disable();
1105 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
1106 memcpy(ptr, ac_data(&cache_cache),
1107 sizeof(struct arraycache_init));
1108 cache_cache.array[smp_processor_id()] = ptr;
1109 local_irq_enable();
1111 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1113 local_irq_disable();
1114 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1115 != &initarray_generic.cache);
1116 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
1117 sizeof(struct arraycache_init));
1118 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1119 ptr;
1120 local_irq_enable();
1122 /* 5) Replace the bootstrap kmem_list3's */
1124 int node;
1125 /* Replace the static kmem_list3 structures for the boot cpu */
1126 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1127 numa_node_id());
1129 for_each_online_node(node) {
1130 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1131 &initkmem_list3[SIZE_AC+node], node);
1133 if (INDEX_AC != INDEX_L3) {
1134 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1135 &initkmem_list3[SIZE_L3+node],
1136 node);
1141 /* 6) resize the head arrays to their final sizes */
1143 kmem_cache_t *cachep;
1144 down(&cache_chain_sem);
1145 list_for_each_entry(cachep, &cache_chain, next)
1146 enable_cpucache(cachep);
1147 up(&cache_chain_sem);
1150 /* Done! */
1151 g_cpucache_up = FULL;
1153 /* Register a cpu startup notifier callback
1154 * that initializes ac_data for all new cpus
1156 register_cpu_notifier(&cpucache_notifier);
1158 /* The reap timers are started later, with a module init call:
1159 * That part of the kernel is not yet operational.
1163 static int __init cpucache_init(void)
1165 int cpu;
1168 * Register the timers that return unneeded
1169 * pages to gfp.
1171 for_each_online_cpu(cpu)
1172 start_cpu_timer(cpu);
1174 return 0;
1177 __initcall(cpucache_init);
1180 * Interface to system's page allocator. No need to hold the cache-lock.
1182 * If we requested dmaable memory, we will get it. Even if we
1183 * did not request dmaable memory, we might get it, but that
1184 * would be relatively rare and ignorable.
1186 static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
1188 struct page *page;
1189 void *addr;
1190 int i;
1192 flags |= cachep->gfpflags;
1193 if (likely(nodeid == -1)) {
1194 page = alloc_pages(flags, cachep->gfporder);
1195 } else {
1196 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1198 if (!page)
1199 return NULL;
1200 addr = page_address(page);
1202 i = (1 << cachep->gfporder);
1203 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1204 atomic_add(i, &slab_reclaim_pages);
1205 add_page_state(nr_slab, i);
1206 while (i--) {
1207 SetPageSlab(page);
1208 page++;
1210 return addr;
1214 * Interface to system's page release.
1216 static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1218 unsigned long i = (1<<cachep->gfporder);
1219 struct page *page = virt_to_page(addr);
1220 const unsigned long nr_freed = i;
1222 while (i--) {
1223 if (!TestClearPageSlab(page))
1224 BUG();
1225 page++;
1227 sub_page_state(nr_slab, nr_freed);
1228 if (current->reclaim_state)
1229 current->reclaim_state->reclaimed_slab += nr_freed;
1230 free_pages((unsigned long)addr, cachep->gfporder);
1231 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1232 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1235 static void kmem_rcu_free(struct rcu_head *head)
1237 struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1238 kmem_cache_t *cachep = slab_rcu->cachep;
1240 kmem_freepages(cachep, slab_rcu->addr);
1241 if (OFF_SLAB(cachep))
1242 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1245 #if DEBUG
1247 #ifdef CONFIG_DEBUG_PAGEALLOC
1248 static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1249 unsigned long caller)
1251 int size = obj_reallen(cachep);
1253 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1255 if (size < 5*sizeof(unsigned long))
1256 return;
1258 *addr++=0x12345678;
1259 *addr++=caller;
1260 *addr++=smp_processor_id();
1261 size -= 3*sizeof(unsigned long);
1263 unsigned long *sptr = &caller;
1264 unsigned long svalue;
1266 while (!kstack_end(sptr)) {
1267 svalue = *sptr++;
1268 if (kernel_text_address(svalue)) {
1269 *addr++=svalue;
1270 size -= sizeof(unsigned long);
1271 if (size <= sizeof(unsigned long))
1272 break;
1277 *addr++=0x87654321;
1279 #endif
1281 static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1283 int size = obj_reallen(cachep);
1284 addr = &((char*)addr)[obj_dbghead(cachep)];
1286 memset(addr, val, size);
1287 *(unsigned char *)(addr+size-1) = POISON_END;
1290 static void dump_line(char *data, int offset, int limit)
1292 int i;
1293 printk(KERN_ERR "%03x:", offset);
1294 for (i=0;i<limit;i++) {
1295 printk(" %02x", (unsigned char)data[offset+i]);
1297 printk("\n");
1299 #endif
1301 #if DEBUG
1303 static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1305 int i, size;
1306 char *realobj;
1308 if (cachep->flags & SLAB_RED_ZONE) {
1309 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1310 *dbg_redzone1(cachep, objp),
1311 *dbg_redzone2(cachep, objp));
1314 if (cachep->flags & SLAB_STORE_USER) {
1315 printk(KERN_ERR "Last user: [<%p>]",
1316 *dbg_userword(cachep, objp));
1317 print_symbol("(%s)",
1318 (unsigned long)*dbg_userword(cachep, objp));
1319 printk("\n");
1321 realobj = (char*)objp+obj_dbghead(cachep);
1322 size = obj_reallen(cachep);
1323 for (i=0; i<size && lines;i+=16, lines--) {
1324 int limit;
1325 limit = 16;
1326 if (i+limit > size)
1327 limit = size-i;
1328 dump_line(realobj, i, limit);
1332 static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1334 char *realobj;
1335 int size, i;
1336 int lines = 0;
1338 realobj = (char*)objp+obj_dbghead(cachep);
1339 size = obj_reallen(cachep);
1341 for (i=0;i<size;i++) {
1342 char exp = POISON_FREE;
1343 if (i == size-1)
1344 exp = POISON_END;
1345 if (realobj[i] != exp) {
1346 int limit;
1347 /* Mismatch ! */
1348 /* Print header */
1349 if (lines == 0) {
1350 printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1351 realobj, size);
1352 print_objinfo(cachep, objp, 0);
1354 /* Hexdump the affected line */
1355 i = (i/16)*16;
1356 limit = 16;
1357 if (i+limit > size)
1358 limit = size-i;
1359 dump_line(realobj, i, limit);
1360 i += 16;
1361 lines++;
1362 /* Limit to 5 lines */
1363 if (lines > 5)
1364 break;
1367 if (lines != 0) {
1368 /* Print some data about the neighboring objects, if they
1369 * exist:
1371 struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
1372 int objnr;
1374 objnr = (objp-slabp->s_mem)/cachep->objsize;
1375 if (objnr) {
1376 objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1377 realobj = (char*)objp+obj_dbghead(cachep);
1378 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1379 realobj, size);
1380 print_objinfo(cachep, objp, 2);
1382 if (objnr+1 < cachep->num) {
1383 objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1384 realobj = (char*)objp+obj_dbghead(cachep);
1385 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1386 realobj, size);
1387 print_objinfo(cachep, objp, 2);
1391 #endif
1393 /* Destroy all the objs in a slab, and release the mem back to the system.
1394 * Before calling the slab must have been unlinked from the cache.
1395 * The cache-lock is not held/needed.
1397 static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1399 void *addr = slabp->s_mem - slabp->colouroff;
1401 #if DEBUG
1402 int i;
1403 for (i = 0; i < cachep->num; i++) {
1404 void *objp = slabp->s_mem + cachep->objsize * i;
1406 if (cachep->flags & SLAB_POISON) {
1407 #ifdef CONFIG_DEBUG_PAGEALLOC
1408 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1409 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1410 else
1411 check_poison_obj(cachep, objp);
1412 #else
1413 check_poison_obj(cachep, objp);
1414 #endif
1416 if (cachep->flags & SLAB_RED_ZONE) {
1417 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1418 slab_error(cachep, "start of a freed object "
1419 "was overwritten");
1420 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1421 slab_error(cachep, "end of a freed object "
1422 "was overwritten");
1424 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1425 (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1427 #else
1428 if (cachep->dtor) {
1429 int i;
1430 for (i = 0; i < cachep->num; i++) {
1431 void* objp = slabp->s_mem+cachep->objsize*i;
1432 (cachep->dtor)(objp, cachep, 0);
1435 #endif
1437 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1438 struct slab_rcu *slab_rcu;
1440 slab_rcu = (struct slab_rcu *) slabp;
1441 slab_rcu->cachep = cachep;
1442 slab_rcu->addr = addr;
1443 call_rcu(&slab_rcu->head, kmem_rcu_free);
1444 } else {
1445 kmem_freepages(cachep, addr);
1446 if (OFF_SLAB(cachep))
1447 kmem_cache_free(cachep->slabp_cache, slabp);
1451 /* For setting up all the kmem_list3s for cache whose objsize is same
1452 as size of kmem_list3. */
1453 static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1455 int node;
1457 for_each_online_node(node) {
1458 cachep->nodelists[node] = &initkmem_list3[index+node];
1459 cachep->nodelists[node]->next_reap = jiffies +
1460 REAPTIMEOUT_LIST3 +
1461 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1466 * kmem_cache_create - Create a cache.
1467 * @name: A string which is used in /proc/slabinfo to identify this cache.
1468 * @size: The size of objects to be created in this cache.
1469 * @align: The required alignment for the objects.
1470 * @flags: SLAB flags
1471 * @ctor: A constructor for the objects.
1472 * @dtor: A destructor for the objects.
1474 * Returns a ptr to the cache on success, NULL on failure.
1475 * Cannot be called within a int, but can be interrupted.
1476 * The @ctor is run when new pages are allocated by the cache
1477 * and the @dtor is run before the pages are handed back.
1479 * @name must be valid until the cache is destroyed. This implies that
1480 * the module calling this has to destroy the cache before getting
1481 * unloaded.
1483 * The flags are
1485 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1486 * to catch references to uninitialised memory.
1488 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1489 * for buffer overruns.
1491 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1492 * memory pressure.
1494 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1495 * cacheline. This can be beneficial if you're counting cycles as closely
1496 * as davem.
1498 kmem_cache_t *
1499 kmem_cache_create (const char *name, size_t size, size_t align,
1500 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1501 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1503 size_t left_over, slab_size, ralign;
1504 kmem_cache_t *cachep = NULL;
1507 * Sanity checks... these are all serious usage bugs.
1509 if ((!name) ||
1510 in_interrupt() ||
1511 (size < BYTES_PER_WORD) ||
1512 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1513 (dtor && !ctor)) {
1514 printk(KERN_ERR "%s: Early error in slab %s\n",
1515 __FUNCTION__, name);
1516 BUG();
1519 #if DEBUG
1520 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1521 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1522 /* No constructor, but inital state check requested */
1523 printk(KERN_ERR "%s: No con, but init state check "
1524 "requested - %s\n", __FUNCTION__, name);
1525 flags &= ~SLAB_DEBUG_INITIAL;
1528 #if FORCED_DEBUG
1530 * Enable redzoning and last user accounting, except for caches with
1531 * large objects, if the increased size would increase the object size
1532 * above the next power of two: caches with object sizes just above a
1533 * power of two have a significant amount of internal fragmentation.
1535 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1536 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1537 if (!(flags & SLAB_DESTROY_BY_RCU))
1538 flags |= SLAB_POISON;
1539 #endif
1540 if (flags & SLAB_DESTROY_BY_RCU)
1541 BUG_ON(flags & SLAB_POISON);
1542 #endif
1543 if (flags & SLAB_DESTROY_BY_RCU)
1544 BUG_ON(dtor);
1547 * Always checks flags, a caller might be expecting debug
1548 * support which isn't available.
1550 if (flags & ~CREATE_MASK)
1551 BUG();
1553 /* Check that size is in terms of words. This is needed to avoid
1554 * unaligned accesses for some archs when redzoning is used, and makes
1555 * sure any on-slab bufctl's are also correctly aligned.
1557 if (size & (BYTES_PER_WORD-1)) {
1558 size += (BYTES_PER_WORD-1);
1559 size &= ~(BYTES_PER_WORD-1);
1562 /* calculate out the final buffer alignment: */
1563 /* 1) arch recommendation: can be overridden for debug */
1564 if (flags & SLAB_HWCACHE_ALIGN) {
1565 /* Default alignment: as specified by the arch code.
1566 * Except if an object is really small, then squeeze multiple
1567 * objects into one cacheline.
1569 ralign = cache_line_size();
1570 while (size <= ralign/2)
1571 ralign /= 2;
1572 } else {
1573 ralign = BYTES_PER_WORD;
1575 /* 2) arch mandated alignment: disables debug if necessary */
1576 if (ralign < ARCH_SLAB_MINALIGN) {
1577 ralign = ARCH_SLAB_MINALIGN;
1578 if (ralign > BYTES_PER_WORD)
1579 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1581 /* 3) caller mandated alignment: disables debug if necessary */
1582 if (ralign < align) {
1583 ralign = align;
1584 if (ralign > BYTES_PER_WORD)
1585 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1587 /* 4) Store it. Note that the debug code below can reduce
1588 * the alignment to BYTES_PER_WORD.
1590 align = ralign;
1592 /* Get cache's description obj. */
1593 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1594 if (!cachep)
1595 goto opps;
1596 memset(cachep, 0, sizeof(kmem_cache_t));
1598 #if DEBUG
1599 cachep->reallen = size;
1601 if (flags & SLAB_RED_ZONE) {
1602 /* redzoning only works with word aligned caches */
1603 align = BYTES_PER_WORD;
1605 /* add space for red zone words */
1606 cachep->dbghead += BYTES_PER_WORD;
1607 size += 2*BYTES_PER_WORD;
1609 if (flags & SLAB_STORE_USER) {
1610 /* user store requires word alignment and
1611 * one word storage behind the end of the real
1612 * object.
1614 align = BYTES_PER_WORD;
1615 size += BYTES_PER_WORD;
1617 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1618 if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
1619 cachep->dbghead += PAGE_SIZE - size;
1620 size = PAGE_SIZE;
1622 #endif
1623 #endif
1625 /* Determine if the slab management is 'on' or 'off' slab. */
1626 if (size >= (PAGE_SIZE>>3))
1628 * Size is large, assume best to place the slab management obj
1629 * off-slab (should allow better packing of objs).
1631 flags |= CFLGS_OFF_SLAB;
1633 size = ALIGN(size, align);
1635 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1637 * A VFS-reclaimable slab tends to have most allocations
1638 * as GFP_NOFS and we really don't want to have to be allocating
1639 * higher-order pages when we are unable to shrink dcache.
1641 cachep->gfporder = 0;
1642 cache_estimate(cachep->gfporder, size, align, flags,
1643 &left_over, &cachep->num);
1644 } else {
1646 * Calculate size (in pages) of slabs, and the num of objs per
1647 * slab. This could be made much more intelligent. For now,
1648 * try to avoid using high page-orders for slabs. When the
1649 * gfp() funcs are more friendly towards high-order requests,
1650 * this should be changed.
1652 do {
1653 unsigned int break_flag = 0;
1654 cal_wastage:
1655 cache_estimate(cachep->gfporder, size, align, flags,
1656 &left_over, &cachep->num);
1657 if (break_flag)
1658 break;
1659 if (cachep->gfporder >= MAX_GFP_ORDER)
1660 break;
1661 if (!cachep->num)
1662 goto next;
1663 if (flags & CFLGS_OFF_SLAB &&
1664 cachep->num > offslab_limit) {
1665 /* This num of objs will cause problems. */
1666 cachep->gfporder--;
1667 break_flag++;
1668 goto cal_wastage;
1672 * Large num of objs is good, but v. large slabs are
1673 * currently bad for the gfp()s.
1675 if (cachep->gfporder >= slab_break_gfp_order)
1676 break;
1678 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1679 break; /* Acceptable internal fragmentation. */
1680 next:
1681 cachep->gfporder++;
1682 } while (1);
1685 if (!cachep->num) {
1686 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1687 kmem_cache_free(&cache_cache, cachep);
1688 cachep = NULL;
1689 goto opps;
1691 slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1692 + sizeof(struct slab), align);
1695 * If the slab has been placed off-slab, and we have enough space then
1696 * move it on-slab. This is at the expense of any extra colouring.
1698 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1699 flags &= ~CFLGS_OFF_SLAB;
1700 left_over -= slab_size;
1703 if (flags & CFLGS_OFF_SLAB) {
1704 /* really off slab. No need for manual alignment */
1705 slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1708 cachep->colour_off = cache_line_size();
1709 /* Offset must be a multiple of the alignment. */
1710 if (cachep->colour_off < align)
1711 cachep->colour_off = align;
1712 cachep->colour = left_over/cachep->colour_off;
1713 cachep->slab_size = slab_size;
1714 cachep->flags = flags;
1715 cachep->gfpflags = 0;
1716 if (flags & SLAB_CACHE_DMA)
1717 cachep->gfpflags |= GFP_DMA;
1718 spin_lock_init(&cachep->spinlock);
1719 cachep->objsize = size;
1721 if (flags & CFLGS_OFF_SLAB)
1722 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
1723 cachep->ctor = ctor;
1724 cachep->dtor = dtor;
1725 cachep->name = name;
1727 /* Don't let CPUs to come and go */
1728 lock_cpu_hotplug();
1730 if (g_cpucache_up == FULL) {
1731 enable_cpucache(cachep);
1732 } else {
1733 if (g_cpucache_up == NONE) {
1734 /* Note: the first kmem_cache_create must create
1735 * the cache that's used by kmalloc(24), otherwise
1736 * the creation of further caches will BUG().
1738 cachep->array[smp_processor_id()] =
1739 &initarray_generic.cache;
1741 /* If the cache that's used by
1742 * kmalloc(sizeof(kmem_list3)) is the first cache,
1743 * then we need to set up all its list3s, otherwise
1744 * the creation of further caches will BUG().
1746 set_up_list3s(cachep, SIZE_AC);
1747 if (INDEX_AC == INDEX_L3)
1748 g_cpucache_up = PARTIAL_L3;
1749 else
1750 g_cpucache_up = PARTIAL_AC;
1751 } else {
1752 cachep->array[smp_processor_id()] =
1753 kmalloc(sizeof(struct arraycache_init),
1754 GFP_KERNEL);
1756 if (g_cpucache_up == PARTIAL_AC) {
1757 set_up_list3s(cachep, SIZE_L3);
1758 g_cpucache_up = PARTIAL_L3;
1759 } else {
1760 int node;
1761 for_each_online_node(node) {
1763 cachep->nodelists[node] =
1764 kmalloc_node(sizeof(struct kmem_list3),
1765 GFP_KERNEL, node);
1766 BUG_ON(!cachep->nodelists[node]);
1767 kmem_list3_init(cachep->nodelists[node]);
1771 cachep->nodelists[numa_node_id()]->next_reap =
1772 jiffies + REAPTIMEOUT_LIST3 +
1773 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1775 BUG_ON(!ac_data(cachep));
1776 ac_data(cachep)->avail = 0;
1777 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1778 ac_data(cachep)->batchcount = 1;
1779 ac_data(cachep)->touched = 0;
1780 cachep->batchcount = 1;
1781 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1784 /* Need the semaphore to access the chain. */
1785 down(&cache_chain_sem);
1787 struct list_head *p;
1788 mm_segment_t old_fs;
1790 old_fs = get_fs();
1791 set_fs(KERNEL_DS);
1792 list_for_each(p, &cache_chain) {
1793 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1794 char tmp;
1795 /* This happens when the module gets unloaded and doesn't
1796 destroy its slab cache and noone else reuses the vmalloc
1797 area of the module. Print a warning. */
1798 if (__get_user(tmp,pc->name)) {
1799 printk("SLAB: cache with size %d has lost its name\n",
1800 pc->objsize);
1801 continue;
1803 if (!strcmp(pc->name,name)) {
1804 printk("kmem_cache_create: duplicate cache %s\n",name);
1805 up(&cache_chain_sem);
1806 unlock_cpu_hotplug();
1807 BUG();
1810 set_fs(old_fs);
1813 /* cache setup completed, link it into the list */
1814 list_add(&cachep->next, &cache_chain);
1815 up(&cache_chain_sem);
1816 unlock_cpu_hotplug();
1817 opps:
1818 if (!cachep && (flags & SLAB_PANIC))
1819 panic("kmem_cache_create(): failed to create slab `%s'\n",
1820 name);
1821 return cachep;
1823 EXPORT_SYMBOL(kmem_cache_create);
1825 #if DEBUG
1826 static void check_irq_off(void)
1828 BUG_ON(!irqs_disabled());
1831 static void check_irq_on(void)
1833 BUG_ON(irqs_disabled());
1836 static void check_spinlock_acquired(kmem_cache_t *cachep)
1838 #ifdef CONFIG_SMP
1839 check_irq_off();
1840 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1841 #endif
1844 static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1846 #ifdef CONFIG_SMP
1847 check_irq_off();
1848 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1849 #endif
1852 #else
1853 #define check_irq_off() do { } while(0)
1854 #define check_irq_on() do { } while(0)
1855 #define check_spinlock_acquired(x) do { } while(0)
1856 #define check_spinlock_acquired_node(x, y) do { } while(0)
1857 #endif
1860 * Waits for all CPUs to execute func().
1862 static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1864 check_irq_on();
1865 preempt_disable();
1867 local_irq_disable();
1868 func(arg);
1869 local_irq_enable();
1871 if (smp_call_function(func, arg, 1, 1))
1872 BUG();
1874 preempt_enable();
1877 static void drain_array_locked(kmem_cache_t* cachep,
1878 struct array_cache *ac, int force, int node);
1880 static void do_drain(void *arg)
1882 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1883 struct array_cache *ac;
1884 int node = numa_node_id();
1886 check_irq_off();
1887 ac = ac_data(cachep);
1888 spin_lock(&cachep->nodelists[node]->list_lock);
1889 free_block(cachep, ac->entry, ac->avail, node);
1890 spin_unlock(&cachep->nodelists[node]->list_lock);
1891 ac->avail = 0;
1894 static void drain_cpu_caches(kmem_cache_t *cachep)
1896 struct kmem_list3 *l3;
1897 int node;
1899 smp_call_function_all_cpus(do_drain, cachep);
1900 check_irq_on();
1901 spin_lock_irq(&cachep->spinlock);
1902 for_each_online_node(node) {
1903 l3 = cachep->nodelists[node];
1904 if (l3) {
1905 spin_lock(&l3->list_lock);
1906 drain_array_locked(cachep, l3->shared, 1, node);
1907 spin_unlock(&l3->list_lock);
1908 if (l3->alien)
1909 drain_alien_cache(cachep, l3);
1912 spin_unlock_irq(&cachep->spinlock);
1915 static int __node_shrink(kmem_cache_t *cachep, int node)
1917 struct slab *slabp;
1918 struct kmem_list3 *l3 = cachep->nodelists[node];
1919 int ret;
1921 for (;;) {
1922 struct list_head *p;
1924 p = l3->slabs_free.prev;
1925 if (p == &l3->slabs_free)
1926 break;
1928 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
1929 #if DEBUG
1930 if (slabp->inuse)
1931 BUG();
1932 #endif
1933 list_del(&slabp->list);
1935 l3->free_objects -= cachep->num;
1936 spin_unlock_irq(&l3->list_lock);
1937 slab_destroy(cachep, slabp);
1938 spin_lock_irq(&l3->list_lock);
1940 ret = !list_empty(&l3->slabs_full) ||
1941 !list_empty(&l3->slabs_partial);
1942 return ret;
1945 static int __cache_shrink(kmem_cache_t *cachep)
1947 int ret = 0, i = 0;
1948 struct kmem_list3 *l3;
1950 drain_cpu_caches(cachep);
1952 check_irq_on();
1953 for_each_online_node(i) {
1954 l3 = cachep->nodelists[i];
1955 if (l3) {
1956 spin_lock_irq(&l3->list_lock);
1957 ret += __node_shrink(cachep, i);
1958 spin_unlock_irq(&l3->list_lock);
1961 return (ret ? 1 : 0);
1965 * kmem_cache_shrink - Shrink a cache.
1966 * @cachep: The cache to shrink.
1968 * Releases as many slabs as possible for a cache.
1969 * To help debugging, a zero exit status indicates all slabs were released.
1971 int kmem_cache_shrink(kmem_cache_t *cachep)
1973 if (!cachep || in_interrupt())
1974 BUG();
1976 return __cache_shrink(cachep);
1978 EXPORT_SYMBOL(kmem_cache_shrink);
1981 * kmem_cache_destroy - delete a cache
1982 * @cachep: the cache to destroy
1984 * Remove a kmem_cache_t object from the slab cache.
1985 * Returns 0 on success.
1987 * It is expected this function will be called by a module when it is
1988 * unloaded. This will remove the cache completely, and avoid a duplicate
1989 * cache being allocated each time a module is loaded and unloaded, if the
1990 * module doesn't have persistent in-kernel storage across loads and unloads.
1992 * The cache must be empty before calling this function.
1994 * The caller must guarantee that noone will allocate memory from the cache
1995 * during the kmem_cache_destroy().
1997 int kmem_cache_destroy(kmem_cache_t * cachep)
1999 int i;
2000 struct kmem_list3 *l3;
2002 if (!cachep || in_interrupt())
2003 BUG();
2005 /* Don't let CPUs to come and go */
2006 lock_cpu_hotplug();
2008 /* Find the cache in the chain of caches. */
2009 down(&cache_chain_sem);
2011 * the chain is never empty, cache_cache is never destroyed
2013 list_del(&cachep->next);
2014 up(&cache_chain_sem);
2016 if (__cache_shrink(cachep)) {
2017 slab_error(cachep, "Can't free all objects");
2018 down(&cache_chain_sem);
2019 list_add(&cachep->next,&cache_chain);
2020 up(&cache_chain_sem);
2021 unlock_cpu_hotplug();
2022 return 1;
2025 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2026 synchronize_rcu();
2028 for_each_online_cpu(i)
2029 kfree(cachep->array[i]);
2031 /* NUMA: free the list3 structures */
2032 for_each_online_node(i) {
2033 if ((l3 = cachep->nodelists[i])) {
2034 kfree(l3->shared);
2035 free_alien_cache(l3->alien);
2036 kfree(l3);
2039 kmem_cache_free(&cache_cache, cachep);
2041 unlock_cpu_hotplug();
2043 return 0;
2045 EXPORT_SYMBOL(kmem_cache_destroy);
2047 /* Get the memory for a slab management obj. */
2048 static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2049 int colour_off, gfp_t local_flags)
2051 struct slab *slabp;
2053 if (OFF_SLAB(cachep)) {
2054 /* Slab management obj is off-slab. */
2055 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2056 if (!slabp)
2057 return NULL;
2058 } else {
2059 slabp = objp+colour_off;
2060 colour_off += cachep->slab_size;
2062 slabp->inuse = 0;
2063 slabp->colouroff = colour_off;
2064 slabp->s_mem = objp+colour_off;
2066 return slabp;
2069 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2071 return (kmem_bufctl_t *)(slabp+1);
2074 static void cache_init_objs(kmem_cache_t *cachep,
2075 struct slab *slabp, unsigned long ctor_flags)
2077 int i;
2079 for (i = 0; i < cachep->num; i++) {
2080 void *objp = slabp->s_mem+cachep->objsize*i;
2081 #if DEBUG
2082 /* need to poison the objs? */
2083 if (cachep->flags & SLAB_POISON)
2084 poison_obj(cachep, objp, POISON_FREE);
2085 if (cachep->flags & SLAB_STORE_USER)
2086 *dbg_userword(cachep, objp) = NULL;
2088 if (cachep->flags & SLAB_RED_ZONE) {
2089 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2090 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2093 * Constructors are not allowed to allocate memory from
2094 * the same cache which they are a constructor for.
2095 * Otherwise, deadlock. They must also be threaded.
2097 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2098 cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2100 if (cachep->flags & SLAB_RED_ZONE) {
2101 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2102 slab_error(cachep, "constructor overwrote the"
2103 " end of an object");
2104 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2105 slab_error(cachep, "constructor overwrote the"
2106 " start of an object");
2108 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2109 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2110 #else
2111 if (cachep->ctor)
2112 cachep->ctor(objp, cachep, ctor_flags);
2113 #endif
2114 slab_bufctl(slabp)[i] = i+1;
2116 slab_bufctl(slabp)[i-1] = BUFCTL_END;
2117 slabp->free = 0;
2120 static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
2122 if (flags & SLAB_DMA) {
2123 if (!(cachep->gfpflags & GFP_DMA))
2124 BUG();
2125 } else {
2126 if (cachep->gfpflags & GFP_DMA)
2127 BUG();
2131 static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2133 int i;
2134 struct page *page;
2136 /* Nasty!!!!!! I hope this is OK. */
2137 i = 1 << cachep->gfporder;
2138 page = virt_to_page(objp);
2139 do {
2140 SET_PAGE_CACHE(page, cachep);
2141 SET_PAGE_SLAB(page, slabp);
2142 page++;
2143 } while (--i);
2147 * Grow (by 1) the number of slabs within a cache. This is called by
2148 * kmem_cache_alloc() when there are no active objs left in a cache.
2150 static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2152 struct slab *slabp;
2153 void *objp;
2154 size_t offset;
2155 gfp_t local_flags;
2156 unsigned long ctor_flags;
2157 struct kmem_list3 *l3;
2159 /* Be lazy and only check for valid flags here,
2160 * keeping it out of the critical path in kmem_cache_alloc().
2162 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2163 BUG();
2164 if (flags & SLAB_NO_GROW)
2165 return 0;
2167 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2168 local_flags = (flags & SLAB_LEVEL_MASK);
2169 if (!(local_flags & __GFP_WAIT))
2171 * Not allowed to sleep. Need to tell a constructor about
2172 * this - it might need to know...
2174 ctor_flags |= SLAB_CTOR_ATOMIC;
2176 /* About to mess with non-constant members - lock. */
2177 check_irq_off();
2178 spin_lock(&cachep->spinlock);
2180 /* Get colour for the slab, and cal the next value. */
2181 offset = cachep->colour_next;
2182 cachep->colour_next++;
2183 if (cachep->colour_next >= cachep->colour)
2184 cachep->colour_next = 0;
2185 offset *= cachep->colour_off;
2187 spin_unlock(&cachep->spinlock);
2189 check_irq_off();
2190 if (local_flags & __GFP_WAIT)
2191 local_irq_enable();
2194 * The test for missing atomic flag is performed here, rather than
2195 * the more obvious place, simply to reduce the critical path length
2196 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2197 * will eventually be caught here (where it matters).
2199 kmem_flagcheck(cachep, flags);
2201 /* Get mem for the objs.
2202 * Attempt to allocate a physical page from 'nodeid',
2204 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2205 goto failed;
2207 /* Get slab management. */
2208 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2209 goto opps1;
2211 slabp->nodeid = nodeid;
2212 set_slab_attr(cachep, slabp, objp);
2214 cache_init_objs(cachep, slabp, ctor_flags);
2216 if (local_flags & __GFP_WAIT)
2217 local_irq_disable();
2218 check_irq_off();
2219 l3 = cachep->nodelists[nodeid];
2220 spin_lock(&l3->list_lock);
2222 /* Make slab active. */
2223 list_add_tail(&slabp->list, &(l3->slabs_free));
2224 STATS_INC_GROWN(cachep);
2225 l3->free_objects += cachep->num;
2226 spin_unlock(&l3->list_lock);
2227 return 1;
2228 opps1:
2229 kmem_freepages(cachep, objp);
2230 failed:
2231 if (local_flags & __GFP_WAIT)
2232 local_irq_disable();
2233 return 0;
2236 #if DEBUG
2239 * Perform extra freeing checks:
2240 * - detect bad pointers.
2241 * - POISON/RED_ZONE checking
2242 * - destructor calls, for caches with POISON+dtor
2244 static void kfree_debugcheck(const void *objp)
2246 struct page *page;
2248 if (!virt_addr_valid(objp)) {
2249 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2250 (unsigned long)objp);
2251 BUG();
2253 page = virt_to_page(objp);
2254 if (!PageSlab(page)) {
2255 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2256 BUG();
2260 static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2261 void *caller)
2263 struct page *page;
2264 unsigned int objnr;
2265 struct slab *slabp;
2267 objp -= obj_dbghead(cachep);
2268 kfree_debugcheck(objp);
2269 page = virt_to_page(objp);
2271 if (GET_PAGE_CACHE(page) != cachep) {
2272 printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2273 GET_PAGE_CACHE(page),cachep);
2274 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2275 printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
2276 WARN_ON(1);
2278 slabp = GET_PAGE_SLAB(page);
2280 if (cachep->flags & SLAB_RED_ZONE) {
2281 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2282 slab_error(cachep, "double free, or memory outside"
2283 " object was overwritten");
2284 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2285 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2287 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2288 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2290 if (cachep->flags & SLAB_STORE_USER)
2291 *dbg_userword(cachep, objp) = caller;
2293 objnr = (objp-slabp->s_mem)/cachep->objsize;
2295 BUG_ON(objnr >= cachep->num);
2296 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2298 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2299 /* Need to call the slab's constructor so the
2300 * caller can perform a verify of its state (debugging).
2301 * Called without the cache-lock held.
2303 cachep->ctor(objp+obj_dbghead(cachep),
2304 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2306 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2307 /* we want to cache poison the object,
2308 * call the destruction callback
2310 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2312 if (cachep->flags & SLAB_POISON) {
2313 #ifdef CONFIG_DEBUG_PAGEALLOC
2314 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2315 store_stackinfo(cachep, objp, (unsigned long)caller);
2316 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2317 } else {
2318 poison_obj(cachep, objp, POISON_FREE);
2320 #else
2321 poison_obj(cachep, objp, POISON_FREE);
2322 #endif
2324 return objp;
2327 static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2329 kmem_bufctl_t i;
2330 int entries = 0;
2332 /* Check slab's freelist to see if this obj is there. */
2333 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2334 entries++;
2335 if (entries > cachep->num || i >= cachep->num)
2336 goto bad;
2338 if (entries != cachep->num - slabp->inuse) {
2339 bad:
2340 printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2341 cachep->name, cachep->num, slabp, slabp->inuse);
2342 for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2343 if ((i%16)==0)
2344 printk("\n%03x:", i);
2345 printk(" %02x", ((unsigned char*)slabp)[i]);
2347 printk("\n");
2348 BUG();
2351 #else
2352 #define kfree_debugcheck(x) do { } while(0)
2353 #define cache_free_debugcheck(x,objp,z) (objp)
2354 #define check_slabp(x,y) do { } while(0)
2355 #endif
2357 static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
2359 int batchcount;
2360 struct kmem_list3 *l3;
2361 struct array_cache *ac;
2363 check_irq_off();
2364 ac = ac_data(cachep);
2365 retry:
2366 batchcount = ac->batchcount;
2367 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2368 /* if there was little recent activity on this
2369 * cache, then perform only a partial refill.
2370 * Otherwise we could generate refill bouncing.
2372 batchcount = BATCHREFILL_LIMIT;
2374 l3 = cachep->nodelists[numa_node_id()];
2376 BUG_ON(ac->avail > 0 || !l3);
2377 spin_lock(&l3->list_lock);
2379 if (l3->shared) {
2380 struct array_cache *shared_array = l3->shared;
2381 if (shared_array->avail) {
2382 if (batchcount > shared_array->avail)
2383 batchcount = shared_array->avail;
2384 shared_array->avail -= batchcount;
2385 ac->avail = batchcount;
2386 memcpy(ac->entry,
2387 &(shared_array->entry[shared_array->avail]),
2388 sizeof(void*)*batchcount);
2389 shared_array->touched = 1;
2390 goto alloc_done;
2393 while (batchcount > 0) {
2394 struct list_head *entry;
2395 struct slab *slabp;
2396 /* Get slab alloc is to come from. */
2397 entry = l3->slabs_partial.next;
2398 if (entry == &l3->slabs_partial) {
2399 l3->free_touched = 1;
2400 entry = l3->slabs_free.next;
2401 if (entry == &l3->slabs_free)
2402 goto must_grow;
2405 slabp = list_entry(entry, struct slab, list);
2406 check_slabp(cachep, slabp);
2407 check_spinlock_acquired(cachep);
2408 while (slabp->inuse < cachep->num && batchcount--) {
2409 kmem_bufctl_t next;
2410 STATS_INC_ALLOCED(cachep);
2411 STATS_INC_ACTIVE(cachep);
2412 STATS_SET_HIGH(cachep);
2414 /* get obj pointer */
2415 ac->entry[ac->avail++] = slabp->s_mem +
2416 slabp->free*cachep->objsize;
2418 slabp->inuse++;
2419 next = slab_bufctl(slabp)[slabp->free];
2420 #if DEBUG
2421 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2422 WARN_ON(numa_node_id() != slabp->nodeid);
2423 #endif
2424 slabp->free = next;
2426 check_slabp(cachep, slabp);
2428 /* move slabp to correct slabp list: */
2429 list_del(&slabp->list);
2430 if (slabp->free == BUFCTL_END)
2431 list_add(&slabp->list, &l3->slabs_full);
2432 else
2433 list_add(&slabp->list, &l3->slabs_partial);
2436 must_grow:
2437 l3->free_objects -= ac->avail;
2438 alloc_done:
2439 spin_unlock(&l3->list_lock);
2441 if (unlikely(!ac->avail)) {
2442 int x;
2443 x = cache_grow(cachep, flags, numa_node_id());
2445 // cache_grow can reenable interrupts, then ac could change.
2446 ac = ac_data(cachep);
2447 if (!x && ac->avail == 0) // no objects in sight? abort
2448 return NULL;
2450 if (!ac->avail) // objects refilled by interrupt?
2451 goto retry;
2453 ac->touched = 1;
2454 return ac->entry[--ac->avail];
2457 static inline void
2458 cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
2460 might_sleep_if(flags & __GFP_WAIT);
2461 #if DEBUG
2462 kmem_flagcheck(cachep, flags);
2463 #endif
2466 #if DEBUG
2467 static void *
2468 cache_alloc_debugcheck_after(kmem_cache_t *cachep,
2469 gfp_t flags, void *objp, void *caller)
2471 if (!objp)
2472 return objp;
2473 if (cachep->flags & SLAB_POISON) {
2474 #ifdef CONFIG_DEBUG_PAGEALLOC
2475 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2476 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2477 else
2478 check_poison_obj(cachep, objp);
2479 #else
2480 check_poison_obj(cachep, objp);
2481 #endif
2482 poison_obj(cachep, objp, POISON_INUSE);
2484 if (cachep->flags & SLAB_STORE_USER)
2485 *dbg_userword(cachep, objp) = caller;
2487 if (cachep->flags & SLAB_RED_ZONE) {
2488 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2489 slab_error(cachep, "double free, or memory outside"
2490 " object was overwritten");
2491 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2492 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2494 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2495 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2497 objp += obj_dbghead(cachep);
2498 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2499 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2501 if (!(flags & __GFP_WAIT))
2502 ctor_flags |= SLAB_CTOR_ATOMIC;
2504 cachep->ctor(objp, cachep, ctor_flags);
2506 return objp;
2508 #else
2509 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2510 #endif
2512 static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2514 void* objp;
2515 struct array_cache *ac;
2517 check_irq_off();
2518 ac = ac_data(cachep);
2519 if (likely(ac->avail)) {
2520 STATS_INC_ALLOCHIT(cachep);
2521 ac->touched = 1;
2522 objp = ac->entry[--ac->avail];
2523 } else {
2524 STATS_INC_ALLOCMISS(cachep);
2525 objp = cache_alloc_refill(cachep, flags);
2527 return objp;
2530 static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2532 unsigned long save_flags;
2533 void* objp;
2535 cache_alloc_debugcheck_before(cachep, flags);
2537 local_irq_save(save_flags);
2538 objp = ____cache_alloc(cachep, flags);
2539 local_irq_restore(save_flags);
2540 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2541 __builtin_return_address(0));
2542 prefetchw(objp);
2543 return objp;
2546 #ifdef CONFIG_NUMA
2548 * A interface to enable slab creation on nodeid
2550 static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2552 struct list_head *entry;
2553 struct slab *slabp;
2554 struct kmem_list3 *l3;
2555 void *obj;
2556 kmem_bufctl_t next;
2557 int x;
2559 l3 = cachep->nodelists[nodeid];
2560 BUG_ON(!l3);
2562 retry:
2563 spin_lock(&l3->list_lock);
2564 entry = l3->slabs_partial.next;
2565 if (entry == &l3->slabs_partial) {
2566 l3->free_touched = 1;
2567 entry = l3->slabs_free.next;
2568 if (entry == &l3->slabs_free)
2569 goto must_grow;
2572 slabp = list_entry(entry, struct slab, list);
2573 check_spinlock_acquired_node(cachep, nodeid);
2574 check_slabp(cachep, slabp);
2576 STATS_INC_NODEALLOCS(cachep);
2577 STATS_INC_ACTIVE(cachep);
2578 STATS_SET_HIGH(cachep);
2580 BUG_ON(slabp->inuse == cachep->num);
2582 /* get obj pointer */
2583 obj = slabp->s_mem + slabp->free*cachep->objsize;
2584 slabp->inuse++;
2585 next = slab_bufctl(slabp)[slabp->free];
2586 #if DEBUG
2587 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2588 #endif
2589 slabp->free = next;
2590 check_slabp(cachep, slabp);
2591 l3->free_objects--;
2592 /* move slabp to correct slabp list: */
2593 list_del(&slabp->list);
2595 if (slabp->free == BUFCTL_END) {
2596 list_add(&slabp->list, &l3->slabs_full);
2597 } else {
2598 list_add(&slabp->list, &l3->slabs_partial);
2601 spin_unlock(&l3->list_lock);
2602 goto done;
2604 must_grow:
2605 spin_unlock(&l3->list_lock);
2606 x = cache_grow(cachep, flags, nodeid);
2608 if (!x)
2609 return NULL;
2611 goto retry;
2612 done:
2613 return obj;
2615 #endif
2618 * Caller needs to acquire correct kmem_list's list_lock
2620 static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
2622 int i;
2623 struct kmem_list3 *l3;
2625 for (i = 0; i < nr_objects; i++) {
2626 void *objp = objpp[i];
2627 struct slab *slabp;
2628 unsigned int objnr;
2630 slabp = GET_PAGE_SLAB(virt_to_page(objp));
2631 l3 = cachep->nodelists[node];
2632 list_del(&slabp->list);
2633 objnr = (objp - slabp->s_mem) / cachep->objsize;
2634 check_spinlock_acquired_node(cachep, node);
2635 check_slabp(cachep, slabp);
2637 #if DEBUG
2638 /* Verify that the slab belongs to the intended node */
2639 WARN_ON(slabp->nodeid != node);
2641 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2642 printk(KERN_ERR "slab: double free detected in cache "
2643 "'%s', objp %p\n", cachep->name, objp);
2644 BUG();
2646 #endif
2647 slab_bufctl(slabp)[objnr] = slabp->free;
2648 slabp->free = objnr;
2649 STATS_DEC_ACTIVE(cachep);
2650 slabp->inuse--;
2651 l3->free_objects++;
2652 check_slabp(cachep, slabp);
2654 /* fixup slab chains */
2655 if (slabp->inuse == 0) {
2656 if (l3->free_objects > l3->free_limit) {
2657 l3->free_objects -= cachep->num;
2658 slab_destroy(cachep, slabp);
2659 } else {
2660 list_add(&slabp->list, &l3->slabs_free);
2662 } else {
2663 /* Unconditionally move a slab to the end of the
2664 * partial list on free - maximum time for the
2665 * other objects to be freed, too.
2667 list_add_tail(&slabp->list, &l3->slabs_partial);
2672 static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2674 int batchcount;
2675 struct kmem_list3 *l3;
2676 int node = numa_node_id();
2678 batchcount = ac->batchcount;
2679 #if DEBUG
2680 BUG_ON(!batchcount || batchcount > ac->avail);
2681 #endif
2682 check_irq_off();
2683 l3 = cachep->nodelists[node];
2684 spin_lock(&l3->list_lock);
2685 if (l3->shared) {
2686 struct array_cache *shared_array = l3->shared;
2687 int max = shared_array->limit-shared_array->avail;
2688 if (max) {
2689 if (batchcount > max)
2690 batchcount = max;
2691 memcpy(&(shared_array->entry[shared_array->avail]),
2692 ac->entry,
2693 sizeof(void*)*batchcount);
2694 shared_array->avail += batchcount;
2695 goto free_done;
2699 free_block(cachep, ac->entry, batchcount, node);
2700 free_done:
2701 #if STATS
2703 int i = 0;
2704 struct list_head *p;
2706 p = l3->slabs_free.next;
2707 while (p != &(l3->slabs_free)) {
2708 struct slab *slabp;
2710 slabp = list_entry(p, struct slab, list);
2711 BUG_ON(slabp->inuse);
2713 i++;
2714 p = p->next;
2716 STATS_SET_FREEABLE(cachep, i);
2718 #endif
2719 spin_unlock(&l3->list_lock);
2720 ac->avail -= batchcount;
2721 memmove(ac->entry, &(ac->entry[batchcount]),
2722 sizeof(void*)*ac->avail);
2727 * __cache_free
2728 * Release an obj back to its cache. If the obj has a constructed
2729 * state, it must be in this state _before_ it is released.
2731 * Called with disabled ints.
2733 static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2735 struct array_cache *ac = ac_data(cachep);
2737 check_irq_off();
2738 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2740 /* Make sure we are not freeing a object from another
2741 * node to the array cache on this cpu.
2743 #ifdef CONFIG_NUMA
2745 struct slab *slabp;
2746 slabp = GET_PAGE_SLAB(virt_to_page(objp));
2747 if (unlikely(slabp->nodeid != numa_node_id())) {
2748 struct array_cache *alien = NULL;
2749 int nodeid = slabp->nodeid;
2750 struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2752 STATS_INC_NODEFREES(cachep);
2753 if (l3->alien && l3->alien[nodeid]) {
2754 alien = l3->alien[nodeid];
2755 spin_lock(&alien->lock);
2756 if (unlikely(alien->avail == alien->limit))
2757 __drain_alien_cache(cachep,
2758 alien, nodeid);
2759 alien->entry[alien->avail++] = objp;
2760 spin_unlock(&alien->lock);
2761 } else {
2762 spin_lock(&(cachep->nodelists[nodeid])->
2763 list_lock);
2764 free_block(cachep, &objp, 1, nodeid);
2765 spin_unlock(&(cachep->nodelists[nodeid])->
2766 list_lock);
2768 return;
2771 #endif
2772 if (likely(ac->avail < ac->limit)) {
2773 STATS_INC_FREEHIT(cachep);
2774 ac->entry[ac->avail++] = objp;
2775 return;
2776 } else {
2777 STATS_INC_FREEMISS(cachep);
2778 cache_flusharray(cachep, ac);
2779 ac->entry[ac->avail++] = objp;
2784 * kmem_cache_alloc - Allocate an object
2785 * @cachep: The cache to allocate from.
2786 * @flags: See kmalloc().
2788 * Allocate an object from this cache. The flags are only relevant
2789 * if the cache has no available objects.
2791 void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
2793 return __cache_alloc(cachep, flags);
2795 EXPORT_SYMBOL(kmem_cache_alloc);
2798 * kmem_ptr_validate - check if an untrusted pointer might
2799 * be a slab entry.
2800 * @cachep: the cache we're checking against
2801 * @ptr: pointer to validate
2803 * This verifies that the untrusted pointer looks sane:
2804 * it is _not_ a guarantee that the pointer is actually
2805 * part of the slab cache in question, but it at least
2806 * validates that the pointer can be dereferenced and
2807 * looks half-way sane.
2809 * Currently only used for dentry validation.
2811 int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2813 unsigned long addr = (unsigned long) ptr;
2814 unsigned long min_addr = PAGE_OFFSET;
2815 unsigned long align_mask = BYTES_PER_WORD-1;
2816 unsigned long size = cachep->objsize;
2817 struct page *page;
2819 if (unlikely(addr < min_addr))
2820 goto out;
2821 if (unlikely(addr > (unsigned long)high_memory - size))
2822 goto out;
2823 if (unlikely(addr & align_mask))
2824 goto out;
2825 if (unlikely(!kern_addr_valid(addr)))
2826 goto out;
2827 if (unlikely(!kern_addr_valid(addr + size - 1)))
2828 goto out;
2829 page = virt_to_page(ptr);
2830 if (unlikely(!PageSlab(page)))
2831 goto out;
2832 if (unlikely(GET_PAGE_CACHE(page) != cachep))
2833 goto out;
2834 return 1;
2835 out:
2836 return 0;
2839 #ifdef CONFIG_NUMA
2841 * kmem_cache_alloc_node - Allocate an object on the specified node
2842 * @cachep: The cache to allocate from.
2843 * @flags: See kmalloc().
2844 * @nodeid: node number of the target node.
2846 * Identical to kmem_cache_alloc, except that this function is slow
2847 * and can sleep. And it will allocate memory on the given node, which
2848 * can improve the performance for cpu bound structures.
2849 * New and improved: it will now make sure that the object gets
2850 * put on the correct node list so that there is no false sharing.
2852 void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
2854 unsigned long save_flags;
2855 void *ptr;
2857 if (nodeid == -1)
2858 return __cache_alloc(cachep, flags);
2860 if (unlikely(!cachep->nodelists[nodeid])) {
2861 /* Fall back to __cache_alloc if we run into trouble */
2862 printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2863 return __cache_alloc(cachep,flags);
2866 cache_alloc_debugcheck_before(cachep, flags);
2867 local_irq_save(save_flags);
2868 if (nodeid == numa_node_id())
2869 ptr = ____cache_alloc(cachep, flags);
2870 else
2871 ptr = __cache_alloc_node(cachep, flags, nodeid);
2872 local_irq_restore(save_flags);
2873 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
2875 return ptr;
2877 EXPORT_SYMBOL(kmem_cache_alloc_node);
2879 void *kmalloc_node(size_t size, gfp_t flags, int node)
2881 kmem_cache_t *cachep;
2883 cachep = kmem_find_general_cachep(size, flags);
2884 if (unlikely(cachep == NULL))
2885 return NULL;
2886 return kmem_cache_alloc_node(cachep, flags, node);
2888 EXPORT_SYMBOL(kmalloc_node);
2889 #endif
2892 * kmalloc - allocate memory
2893 * @size: how many bytes of memory are required.
2894 * @flags: the type of memory to allocate.
2896 * kmalloc is the normal method of allocating memory
2897 * in the kernel.
2899 * The @flags argument may be one of:
2901 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2903 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2905 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2907 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2908 * must be suitable for DMA. This can mean different things on different
2909 * platforms. For example, on i386, it means that the memory must come
2910 * from the first 16MB.
2912 void *__kmalloc(size_t size, gfp_t flags)
2914 kmem_cache_t *cachep;
2916 /* If you want to save a few bytes .text space: replace
2917 * __ with kmem_.
2918 * Then kmalloc uses the uninlined functions instead of the inline
2919 * functions.
2921 cachep = __find_general_cachep(size, flags);
2922 if (unlikely(cachep == NULL))
2923 return NULL;
2924 return __cache_alloc(cachep, flags);
2926 EXPORT_SYMBOL(__kmalloc);
2928 #ifdef CONFIG_SMP
2930 * __alloc_percpu - allocate one copy of the object for every present
2931 * cpu in the system, zeroing them.
2932 * Objects should be dereferenced using the per_cpu_ptr macro only.
2934 * @size: how many bytes of memory are required.
2935 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2937 void *__alloc_percpu(size_t size, size_t align)
2939 int i;
2940 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2942 if (!pdata)
2943 return NULL;
2946 * Cannot use for_each_online_cpu since a cpu may come online
2947 * and we have no way of figuring out how to fix the array
2948 * that we have allocated then....
2950 for_each_cpu(i) {
2951 int node = cpu_to_node(i);
2953 if (node_online(node))
2954 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2955 else
2956 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
2958 if (!pdata->ptrs[i])
2959 goto unwind_oom;
2960 memset(pdata->ptrs[i], 0, size);
2963 /* Catch derefs w/o wrappers */
2964 return (void *) (~(unsigned long) pdata);
2966 unwind_oom:
2967 while (--i >= 0) {
2968 if (!cpu_possible(i))
2969 continue;
2970 kfree(pdata->ptrs[i]);
2972 kfree(pdata);
2973 return NULL;
2975 EXPORT_SYMBOL(__alloc_percpu);
2976 #endif
2979 * kmem_cache_free - Deallocate an object
2980 * @cachep: The cache the allocation was from.
2981 * @objp: The previously allocated object.
2983 * Free an object which was previously allocated from this
2984 * cache.
2986 void kmem_cache_free(kmem_cache_t *cachep, void *objp)
2988 unsigned long flags;
2990 local_irq_save(flags);
2991 __cache_free(cachep, objp);
2992 local_irq_restore(flags);
2994 EXPORT_SYMBOL(kmem_cache_free);
2997 * kzalloc - allocate memory. The memory is set to zero.
2998 * @size: how many bytes of memory are required.
2999 * @flags: the type of memory to allocate.
3001 void *kzalloc(size_t size, gfp_t flags)
3003 void *ret = kmalloc(size, flags);
3004 if (ret)
3005 memset(ret, 0, size);
3006 return ret;
3008 EXPORT_SYMBOL(kzalloc);
3011 * kfree - free previously allocated memory
3012 * @objp: pointer returned by kmalloc.
3014 * If @objp is NULL, no operation is performed.
3016 * Don't free memory not originally allocated by kmalloc()
3017 * or you will run into trouble.
3019 void kfree(const void *objp)
3021 kmem_cache_t *c;
3022 unsigned long flags;
3024 if (unlikely(!objp))
3025 return;
3026 local_irq_save(flags);
3027 kfree_debugcheck(objp);
3028 c = GET_PAGE_CACHE(virt_to_page(objp));
3029 __cache_free(c, (void*)objp);
3030 local_irq_restore(flags);
3032 EXPORT_SYMBOL(kfree);
3034 #ifdef CONFIG_SMP
3036 * free_percpu - free previously allocated percpu memory
3037 * @objp: pointer returned by alloc_percpu.
3039 * Don't free memory not originally allocated by alloc_percpu()
3040 * The complemented objp is to check for that.
3042 void
3043 free_percpu(const void *objp)
3045 int i;
3046 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3049 * We allocate for all cpus so we cannot use for online cpu here.
3051 for_each_cpu(i)
3052 kfree(p->ptrs[i]);
3053 kfree(p);
3055 EXPORT_SYMBOL(free_percpu);
3056 #endif
3058 unsigned int kmem_cache_size(kmem_cache_t *cachep)
3060 return obj_reallen(cachep);
3062 EXPORT_SYMBOL(kmem_cache_size);
3064 const char *kmem_cache_name(kmem_cache_t *cachep)
3066 return cachep->name;
3068 EXPORT_SYMBOL_GPL(kmem_cache_name);
3071 * This initializes kmem_list3 for all nodes.
3073 static int alloc_kmemlist(kmem_cache_t *cachep)
3075 int node;
3076 struct kmem_list3 *l3;
3077 int err = 0;
3079 for_each_online_node(node) {
3080 struct array_cache *nc = NULL, *new;
3081 struct array_cache **new_alien = NULL;
3082 #ifdef CONFIG_NUMA
3083 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3084 goto fail;
3085 #endif
3086 if (!(new = alloc_arraycache(node, (cachep->shared*
3087 cachep->batchcount), 0xbaadf00d)))
3088 goto fail;
3089 if ((l3 = cachep->nodelists[node])) {
3091 spin_lock_irq(&l3->list_lock);
3093 if ((nc = cachep->nodelists[node]->shared))
3094 free_block(cachep, nc->entry,
3095 nc->avail, node);
3097 l3->shared = new;
3098 if (!cachep->nodelists[node]->alien) {
3099 l3->alien = new_alien;
3100 new_alien = NULL;
3102 l3->free_limit = (1 + nr_cpus_node(node))*
3103 cachep->batchcount + cachep->num;
3104 spin_unlock_irq(&l3->list_lock);
3105 kfree(nc);
3106 free_alien_cache(new_alien);
3107 continue;
3109 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3110 GFP_KERNEL, node)))
3111 goto fail;
3113 kmem_list3_init(l3);
3114 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3115 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3116 l3->shared = new;
3117 l3->alien = new_alien;
3118 l3->free_limit = (1 + nr_cpus_node(node))*
3119 cachep->batchcount + cachep->num;
3120 cachep->nodelists[node] = l3;
3122 return err;
3123 fail:
3124 err = -ENOMEM;
3125 return err;
3128 struct ccupdate_struct {
3129 kmem_cache_t *cachep;
3130 struct array_cache *new[NR_CPUS];
3133 static void do_ccupdate_local(void *info)
3135 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3136 struct array_cache *old;
3138 check_irq_off();
3139 old = ac_data(new->cachep);
3141 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3142 new->new[smp_processor_id()] = old;
3146 static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3147 int shared)
3149 struct ccupdate_struct new;
3150 int i, err;
3152 memset(&new.new,0,sizeof(new.new));
3153 for_each_online_cpu(i) {
3154 new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3155 if (!new.new[i]) {
3156 for (i--; i >= 0; i--) kfree(new.new[i]);
3157 return -ENOMEM;
3160 new.cachep = cachep;
3162 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3164 check_irq_on();
3165 spin_lock_irq(&cachep->spinlock);
3166 cachep->batchcount = batchcount;
3167 cachep->limit = limit;
3168 cachep->shared = shared;
3169 spin_unlock_irq(&cachep->spinlock);
3171 for_each_online_cpu(i) {
3172 struct array_cache *ccold = new.new[i];
3173 if (!ccold)
3174 continue;
3175 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3176 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3177 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3178 kfree(ccold);
3181 err = alloc_kmemlist(cachep);
3182 if (err) {
3183 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3184 cachep->name, -err);
3185 BUG();
3187 return 0;
3191 static void enable_cpucache(kmem_cache_t *cachep)
3193 int err;
3194 int limit, shared;
3196 /* The head array serves three purposes:
3197 * - create a LIFO ordering, i.e. return objects that are cache-warm
3198 * - reduce the number of spinlock operations.
3199 * - reduce the number of linked list operations on the slab and
3200 * bufctl chains: array operations are cheaper.
3201 * The numbers are guessed, we should auto-tune as described by
3202 * Bonwick.
3204 if (cachep->objsize > 131072)
3205 limit = 1;
3206 else if (cachep->objsize > PAGE_SIZE)
3207 limit = 8;
3208 else if (cachep->objsize > 1024)
3209 limit = 24;
3210 else if (cachep->objsize > 256)
3211 limit = 54;
3212 else
3213 limit = 120;
3215 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3216 * allocation behaviour: Most allocs on one cpu, most free operations
3217 * on another cpu. For these cases, an efficient object passing between
3218 * cpus is necessary. This is provided by a shared array. The array
3219 * replaces Bonwick's magazine layer.
3220 * On uniprocessor, it's functionally equivalent (but less efficient)
3221 * to a larger limit. Thus disabled by default.
3223 shared = 0;
3224 #ifdef CONFIG_SMP
3225 if (cachep->objsize <= PAGE_SIZE)
3226 shared = 8;
3227 #endif
3229 #if DEBUG
3230 /* With debugging enabled, large batchcount lead to excessively
3231 * long periods with disabled local interrupts. Limit the
3232 * batchcount
3234 if (limit > 32)
3235 limit = 32;
3236 #endif
3237 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3238 if (err)
3239 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3240 cachep->name, -err);
3243 static void drain_array_locked(kmem_cache_t *cachep,
3244 struct array_cache *ac, int force, int node)
3246 int tofree;
3248 check_spinlock_acquired_node(cachep, node);
3249 if (ac->touched && !force) {
3250 ac->touched = 0;
3251 } else if (ac->avail) {
3252 tofree = force ? ac->avail : (ac->limit+4)/5;
3253 if (tofree > ac->avail) {
3254 tofree = (ac->avail+1)/2;
3256 free_block(cachep, ac->entry, tofree, node);
3257 ac->avail -= tofree;
3258 memmove(ac->entry, &(ac->entry[tofree]),
3259 sizeof(void*)*ac->avail);
3264 * cache_reap - Reclaim memory from caches.
3266 * Called from workqueue/eventd every few seconds.
3267 * Purpose:
3268 * - clear the per-cpu caches for this CPU.
3269 * - return freeable pages to the main free memory pool.
3271 * If we cannot acquire the cache chain semaphore then just give up - we'll
3272 * try again on the next iteration.
3274 static void cache_reap(void *unused)
3276 struct list_head *walk;
3277 struct kmem_list3 *l3;
3279 if (down_trylock(&cache_chain_sem)) {
3280 /* Give up. Setup the next iteration. */
3281 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3282 return;
3285 list_for_each(walk, &cache_chain) {
3286 kmem_cache_t *searchp;
3287 struct list_head* p;
3288 int tofree;
3289 struct slab *slabp;
3291 searchp = list_entry(walk, kmem_cache_t, next);
3293 if (searchp->flags & SLAB_NO_REAP)
3294 goto next;
3296 check_irq_on();
3298 l3 = searchp->nodelists[numa_node_id()];
3299 if (l3->alien)
3300 drain_alien_cache(searchp, l3);
3301 spin_lock_irq(&l3->list_lock);
3303 drain_array_locked(searchp, ac_data(searchp), 0,
3304 numa_node_id());
3306 if (time_after(l3->next_reap, jiffies))
3307 goto next_unlock;
3309 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3311 if (l3->shared)
3312 drain_array_locked(searchp, l3->shared, 0,
3313 numa_node_id());
3315 if (l3->free_touched) {
3316 l3->free_touched = 0;
3317 goto next_unlock;
3320 tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
3321 do {
3322 p = l3->slabs_free.next;
3323 if (p == &(l3->slabs_free))
3324 break;
3326 slabp = list_entry(p, struct slab, list);
3327 BUG_ON(slabp->inuse);
3328 list_del(&slabp->list);
3329 STATS_INC_REAPED(searchp);
3331 /* Safe to drop the lock. The slab is no longer
3332 * linked to the cache.
3333 * searchp cannot disappear, we hold
3334 * cache_chain_lock
3336 l3->free_objects -= searchp->num;
3337 spin_unlock_irq(&l3->list_lock);
3338 slab_destroy(searchp, slabp);
3339 spin_lock_irq(&l3->list_lock);
3340 } while(--tofree > 0);
3341 next_unlock:
3342 spin_unlock_irq(&l3->list_lock);
3343 next:
3344 cond_resched();
3346 check_irq_on();
3347 up(&cache_chain_sem);
3348 drain_remote_pages();
3349 /* Setup the next iteration */
3350 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
3353 #ifdef CONFIG_PROC_FS
3355 static void *s_start(struct seq_file *m, loff_t *pos)
3357 loff_t n = *pos;
3358 struct list_head *p;
3360 down(&cache_chain_sem);
3361 if (!n) {
3363 * Output format version, so at least we can change it
3364 * without _too_ many complaints.
3366 #if STATS
3367 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3368 #else
3369 seq_puts(m, "slabinfo - version: 2.1\n");
3370 #endif
3371 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3372 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3373 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3374 #if STATS
3375 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
3376 " <error> <maxfreeable> <nodeallocs> <remotefrees>");
3377 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3378 #endif
3379 seq_putc(m, '\n');
3381 p = cache_chain.next;
3382 while (n--) {
3383 p = p->next;
3384 if (p == &cache_chain)
3385 return NULL;
3387 return list_entry(p, kmem_cache_t, next);
3390 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3392 kmem_cache_t *cachep = p;
3393 ++*pos;
3394 return cachep->next.next == &cache_chain ? NULL
3395 : list_entry(cachep->next.next, kmem_cache_t, next);
3398 static void s_stop(struct seq_file *m, void *p)
3400 up(&cache_chain_sem);
3403 static int s_show(struct seq_file *m, void *p)
3405 kmem_cache_t *cachep = p;
3406 struct list_head *q;
3407 struct slab *slabp;
3408 unsigned long active_objs;
3409 unsigned long num_objs;
3410 unsigned long active_slabs = 0;
3411 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3412 const char *name;
3413 char *error = NULL;
3414 int node;
3415 struct kmem_list3 *l3;
3417 check_irq_on();
3418 spin_lock_irq(&cachep->spinlock);
3419 active_objs = 0;
3420 num_slabs = 0;
3421 for_each_online_node(node) {
3422 l3 = cachep->nodelists[node];
3423 if (!l3)
3424 continue;
3426 spin_lock(&l3->list_lock);
3428 list_for_each(q,&l3->slabs_full) {
3429 slabp = list_entry(q, struct slab, list);
3430 if (slabp->inuse != cachep->num && !error)
3431 error = "slabs_full accounting error";
3432 active_objs += cachep->num;
3433 active_slabs++;
3435 list_for_each(q,&l3->slabs_partial) {
3436 slabp = list_entry(q, struct slab, list);
3437 if (slabp->inuse == cachep->num && !error)
3438 error = "slabs_partial inuse accounting error";
3439 if (!slabp->inuse && !error)
3440 error = "slabs_partial/inuse accounting error";
3441 active_objs += slabp->inuse;
3442 active_slabs++;
3444 list_for_each(q,&l3->slabs_free) {
3445 slabp = list_entry(q, struct slab, list);
3446 if (slabp->inuse && !error)
3447 error = "slabs_free/inuse accounting error";
3448 num_slabs++;
3450 free_objects += l3->free_objects;
3451 shared_avail += l3->shared->avail;
3453 spin_unlock(&l3->list_lock);
3455 num_slabs+=active_slabs;
3456 num_objs = num_slabs*cachep->num;
3457 if (num_objs - active_objs != free_objects && !error)
3458 error = "free_objects accounting error";
3460 name = cachep->name;
3461 if (error)
3462 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3464 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3465 name, active_objs, num_objs, cachep->objsize,
3466 cachep->num, (1<<cachep->gfporder));
3467 seq_printf(m, " : tunables %4u %4u %4u",
3468 cachep->limit, cachep->batchcount,
3469 cachep->shared);
3470 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3471 active_slabs, num_slabs, shared_avail);
3472 #if STATS
3473 { /* list3 stats */
3474 unsigned long high = cachep->high_mark;
3475 unsigned long allocs = cachep->num_allocations;
3476 unsigned long grown = cachep->grown;
3477 unsigned long reaped = cachep->reaped;
3478 unsigned long errors = cachep->errors;
3479 unsigned long max_freeable = cachep->max_freeable;
3480 unsigned long node_allocs = cachep->node_allocs;
3481 unsigned long node_frees = cachep->node_frees;
3483 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3484 %4lu %4lu %4lu %4lu",
3485 allocs, high, grown, reaped, errors,
3486 max_freeable, node_allocs, node_frees);
3488 /* cpu stats */
3490 unsigned long allochit = atomic_read(&cachep->allochit);
3491 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3492 unsigned long freehit = atomic_read(&cachep->freehit);
3493 unsigned long freemiss = atomic_read(&cachep->freemiss);
3495 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3496 allochit, allocmiss, freehit, freemiss);
3498 #endif
3499 seq_putc(m, '\n');
3500 spin_unlock_irq(&cachep->spinlock);
3501 return 0;
3505 * slabinfo_op - iterator that generates /proc/slabinfo
3507 * Output layout:
3508 * cache-name
3509 * num-active-objs
3510 * total-objs
3511 * object size
3512 * num-active-slabs
3513 * total-slabs
3514 * num-pages-per-slab
3515 * + further values on SMP and with statistics enabled
3518 struct seq_operations slabinfo_op = {
3519 .start = s_start,
3520 .next = s_next,
3521 .stop = s_stop,
3522 .show = s_show,
3525 #define MAX_SLABINFO_WRITE 128
3527 * slabinfo_write - Tuning for the slab allocator
3528 * @file: unused
3529 * @buffer: user buffer
3530 * @count: data length
3531 * @ppos: unused
3533 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3534 size_t count, loff_t *ppos)
3536 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3537 int limit, batchcount, shared, res;
3538 struct list_head *p;
3540 if (count > MAX_SLABINFO_WRITE)
3541 return -EINVAL;
3542 if (copy_from_user(&kbuf, buffer, count))
3543 return -EFAULT;
3544 kbuf[MAX_SLABINFO_WRITE] = '\0';
3546 tmp = strchr(kbuf, ' ');
3547 if (!tmp)
3548 return -EINVAL;
3549 *tmp = '\0';
3550 tmp++;
3551 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3552 return -EINVAL;
3554 /* Find the cache in the chain of caches. */
3555 down(&cache_chain_sem);
3556 res = -EINVAL;
3557 list_for_each(p,&cache_chain) {
3558 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3560 if (!strcmp(cachep->name, kbuf)) {
3561 if (limit < 1 ||
3562 batchcount < 1 ||
3563 batchcount > limit ||
3564 shared < 0) {
3565 res = 0;
3566 } else {
3567 res = do_tune_cpucache(cachep, limit,
3568 batchcount, shared);
3570 break;
3573 up(&cache_chain_sem);
3574 if (res >= 0)
3575 res = count;
3576 return res;
3578 #endif
3581 * ksize - get the actual amount of memory allocated for a given object
3582 * @objp: Pointer to the object
3584 * kmalloc may internally round up allocations and return more memory
3585 * than requested. ksize() can be used to determine the actual amount of
3586 * memory allocated. The caller may use this additional memory, even though
3587 * a smaller amount of memory was initially specified with the kmalloc call.
3588 * The caller must guarantee that objp points to a valid object previously
3589 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3590 * must not be freed during the duration of the call.
3592 unsigned int ksize(const void *objp)
3594 if (unlikely(objp == NULL))
3595 return 0;
3597 return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp)));
3602 * kstrdup - allocate space for and copy an existing string
3604 * @s: the string to duplicate
3605 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3607 char *kstrdup(const char *s, gfp_t gfp)
3609 size_t len;
3610 char *buf;
3612 if (!s)
3613 return NULL;
3615 len = strlen(s) + 1;
3616 buf = kmalloc(len, gfp);
3617 if (buf)
3618 memcpy(buf, s, len);
3619 return buf;
3621 EXPORT_SYMBOL(kstrdup);