2 * VFS-related code for RelayFS, a high-speed data relay filesystem.
4 * Copyright (C) 2003-2005 - Tom Zanussi <zanussi@us.ibm.com>, IBM Corp
5 * Copyright (C) 2003-2005 - Karim Yaghmour <karim@opersys.com>
7 * Based on ramfs, Copyright (C) 2002 - Linus Torvalds
9 * This file is released under the GPL.
12 #include <linux/module.h>
14 #include <linux/mount.h>
15 #include <linux/pagemap.h>
16 #include <linux/init.h>
17 #include <linux/string.h>
18 #include <linux/backing-dev.h>
19 #include <linux/namei.h>
20 #include <linux/poll.h>
21 #include <linux/relayfs_fs.h>
25 #define RELAYFS_MAGIC 0xF0B4A981
27 static struct vfsmount
* relayfs_mount
;
28 static int relayfs_mount_count
;
29 static kmem_cache_t
* relayfs_inode_cachep
;
31 static struct backing_dev_info relayfs_backing_dev_info
= {
32 .ra_pages
= 0, /* No readahead */
33 .capabilities
= BDI_CAP_NO_ACCT_DIRTY
| BDI_CAP_NO_WRITEBACK
,
36 static struct inode
*relayfs_get_inode(struct super_block
*sb
, int mode
,
39 struct rchan_buf
*buf
= NULL
;
44 buf
= relay_create_buf(chan
);
49 inode
= new_inode(sb
);
51 relay_destroy_buf(buf
);
58 inode
->i_blksize
= PAGE_CACHE_SIZE
;
60 inode
->i_mapping
->backing_dev_info
= &relayfs_backing_dev_info
;
61 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
62 switch (mode
& S_IFMT
) {
64 inode
->i_fop
= &relayfs_file_operations
;
65 RELAYFS_I(inode
)->buf
= buf
;
68 inode
->i_op
= &simple_dir_inode_operations
;
69 inode
->i_fop
= &simple_dir_operations
;
71 /* directory inodes start off with i_nlink == 2 (for "." entry) */
82 * relayfs_create_entry - create a relayfs directory or file
83 * @name: the name of the file to create
84 * @parent: parent directory
86 * @chan: relay channel associated with the file
88 * Returns the new dentry, NULL on failure
90 * Creates a file or directory with the specifed permissions.
92 static struct dentry
*relayfs_create_entry(const char *name
,
93 struct dentry
*parent
,
101 BUG_ON(!name
|| !(S_ISREG(mode
) || S_ISDIR(mode
)));
103 error
= simple_pin_fs("relayfs", &relayfs_mount
, &relayfs_mount_count
);
105 printk(KERN_ERR
"Couldn't mount relayfs: errcode %d\n", error
);
109 if (!parent
&& relayfs_mount
&& relayfs_mount
->mnt_sb
)
110 parent
= relayfs_mount
->mnt_sb
->s_root
;
113 simple_release_fs(&relayfs_mount
, &relayfs_mount_count
);
117 parent
= dget(parent
);
118 down(&parent
->d_inode
->i_sem
);
119 d
= lookup_one_len(name
, parent
, strlen(name
));
130 inode
= relayfs_get_inode(parent
->d_inode
->i_sb
, mode
, chan
);
136 d_instantiate(d
, inode
);
137 dget(d
); /* Extra count - pin the dentry in core */
140 parent
->d_inode
->i_nlink
++;
145 simple_release_fs(&relayfs_mount
, &relayfs_mount_count
);
148 up(&parent
->d_inode
->i_sem
);
154 * relayfs_create_file - create a file in the relay filesystem
155 * @name: the name of the file to create
156 * @parent: parent directory
157 * @mode: mode, if not specied the default perms are used
158 * @chan: channel associated with the file
160 * Returns file dentry if successful, NULL otherwise.
162 * The file will be created user r on behalf of current user.
164 struct dentry
*relayfs_create_file(const char *name
, struct dentry
*parent
,
165 int mode
, struct rchan
*chan
)
169 mode
= (mode
& S_IALLUGO
) | S_IFREG
;
171 return relayfs_create_entry(name
, parent
, mode
, chan
);
175 * relayfs_create_dir - create a directory in the relay filesystem
176 * @name: the name of the directory to create
177 * @parent: parent directory, NULL if parent should be fs root
179 * Returns directory dentry if successful, NULL otherwise.
181 * The directory will be created world rwx on behalf of current user.
183 struct dentry
*relayfs_create_dir(const char *name
, struct dentry
*parent
)
185 int mode
= S_IFDIR
| S_IRWXU
| S_IRUGO
| S_IXUGO
;
186 return relayfs_create_entry(name
, parent
, mode
, NULL
);
190 * relayfs_remove - remove a file or directory in the relay filesystem
191 * @dentry: file or directory dentry
193 * Returns 0 if successful, negative otherwise.
195 int relayfs_remove(struct dentry
*dentry
)
197 struct dentry
*parent
;
202 parent
= dentry
->d_parent
;
206 parent
= dget(parent
);
207 down(&parent
->d_inode
->i_sem
);
208 if (dentry
->d_inode
) {
209 if (S_ISDIR(dentry
->d_inode
->i_mode
))
210 error
= simple_rmdir(parent
->d_inode
, dentry
);
212 error
= simple_unlink(parent
->d_inode
, dentry
);
218 up(&parent
->d_inode
->i_sem
);
222 simple_release_fs(&relayfs_mount
, &relayfs_mount_count
);
228 * relayfs_remove_dir - remove a directory in the relay filesystem
229 * @dentry: directory dentry
231 * Returns 0 if successful, negative otherwise.
233 int relayfs_remove_dir(struct dentry
*dentry
)
235 return relayfs_remove(dentry
);
239 * relayfs_open - open file op for relayfs files
243 * Increments the channel buffer refcount.
245 static int relayfs_open(struct inode
*inode
, struct file
*filp
)
247 struct rchan_buf
*buf
= RELAYFS_I(inode
)->buf
;
248 kref_get(&buf
->kref
);
254 * relayfs_mmap - mmap file op for relayfs files
256 * @vma: the vma describing what to map
258 * Calls upon relay_mmap_buf to map the file into user space.
260 static int relayfs_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
262 struct inode
*inode
= filp
->f_dentry
->d_inode
;
263 return relay_mmap_buf(RELAYFS_I(inode
)->buf
, vma
);
267 * relayfs_poll - poll file op for relayfs files
273 static unsigned int relayfs_poll(struct file
*filp
, poll_table
*wait
)
275 unsigned int mask
= 0;
276 struct inode
*inode
= filp
->f_dentry
->d_inode
;
277 struct rchan_buf
*buf
= RELAYFS_I(inode
)->buf
;
282 if (filp
->f_mode
& FMODE_READ
) {
283 poll_wait(filp
, &buf
->read_wait
, wait
);
284 if (!relay_buf_empty(buf
))
285 mask
|= POLLIN
| POLLRDNORM
;
292 * relayfs_release - release file op for relayfs files
296 * Decrements the channel refcount, as the filesystem is
297 * no longer using it.
299 static int relayfs_release(struct inode
*inode
, struct file
*filp
)
301 struct rchan_buf
*buf
= RELAYFS_I(inode
)->buf
;
302 kref_put(&buf
->kref
, relay_remove_buf
);
308 * relayfs_read_consume - update the consumed count for the buffer
310 static void relayfs_read_consume(struct rchan_buf
*buf
,
312 size_t bytes_consumed
)
314 size_t subbuf_size
= buf
->chan
->subbuf_size
;
315 size_t n_subbufs
= buf
->chan
->n_subbufs
;
318 if (buf
->bytes_consumed
+ bytes_consumed
> subbuf_size
) {
319 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
320 buf
->bytes_consumed
= 0;
323 buf
->bytes_consumed
+= bytes_consumed
;
324 read_subbuf
= read_pos
/ buf
->chan
->subbuf_size
;
325 if (buf
->bytes_consumed
+ buf
->padding
[read_subbuf
] == subbuf_size
) {
326 if ((read_subbuf
== buf
->subbufs_produced
% n_subbufs
) &&
327 (buf
->offset
== subbuf_size
))
329 relay_subbufs_consumed(buf
->chan
, buf
->cpu
, 1);
330 buf
->bytes_consumed
= 0;
335 * relayfs_read_avail - boolean, are there unconsumed bytes available?
337 static int relayfs_read_avail(struct rchan_buf
*buf
, size_t read_pos
)
339 size_t bytes_produced
, bytes_consumed
, write_offset
;
340 size_t subbuf_size
= buf
->chan
->subbuf_size
;
341 size_t n_subbufs
= buf
->chan
->n_subbufs
;
342 size_t produced
= buf
->subbufs_produced
% n_subbufs
;
343 size_t consumed
= buf
->subbufs_consumed
% n_subbufs
;
345 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
347 if (consumed
> produced
) {
348 if ((produced
> n_subbufs
) &&
349 (produced
+ n_subbufs
- consumed
<= n_subbufs
))
350 produced
+= n_subbufs
;
351 } else if (consumed
== produced
) {
352 if (buf
->offset
> subbuf_size
) {
353 produced
+= n_subbufs
;
354 if (buf
->subbufs_produced
== buf
->subbufs_consumed
)
355 consumed
+= n_subbufs
;
359 if (buf
->offset
> subbuf_size
)
360 bytes_produced
= (produced
- 1) * subbuf_size
+ write_offset
;
362 bytes_produced
= produced
* subbuf_size
+ write_offset
;
363 bytes_consumed
= consumed
* subbuf_size
+ buf
->bytes_consumed
;
365 if (bytes_produced
== bytes_consumed
)
368 relayfs_read_consume(buf
, read_pos
, 0);
374 * relayfs_read_subbuf_avail - return bytes available in sub-buffer
376 static size_t relayfs_read_subbuf_avail(size_t read_pos
,
377 struct rchan_buf
*buf
)
379 size_t padding
, avail
= 0;
380 size_t read_subbuf
, read_offset
, write_subbuf
, write_offset
;
381 size_t subbuf_size
= buf
->chan
->subbuf_size
;
383 write_subbuf
= (buf
->data
- buf
->start
) / subbuf_size
;
384 write_offset
= buf
->offset
> subbuf_size
? subbuf_size
: buf
->offset
;
385 read_subbuf
= read_pos
/ subbuf_size
;
386 read_offset
= read_pos
% subbuf_size
;
387 padding
= buf
->padding
[read_subbuf
];
389 if (read_subbuf
== write_subbuf
) {
390 if (read_offset
+ padding
< write_offset
)
391 avail
= write_offset
- (read_offset
+ padding
);
393 avail
= (subbuf_size
- padding
) - read_offset
;
399 * relayfs_read_start_pos - find the first available byte to read
401 * If the read_pos is in the middle of padding, return the
402 * position of the first actually available byte, otherwise
403 * return the original value.
405 static size_t relayfs_read_start_pos(size_t read_pos
,
406 struct rchan_buf
*buf
)
408 size_t read_subbuf
, padding
, padding_start
, padding_end
;
409 size_t subbuf_size
= buf
->chan
->subbuf_size
;
410 size_t n_subbufs
= buf
->chan
->n_subbufs
;
412 read_subbuf
= read_pos
/ subbuf_size
;
413 padding
= buf
->padding
[read_subbuf
];
414 padding_start
= (read_subbuf
+ 1) * subbuf_size
- padding
;
415 padding_end
= (read_subbuf
+ 1) * subbuf_size
;
416 if (read_pos
>= padding_start
&& read_pos
< padding_end
) {
417 read_subbuf
= (read_subbuf
+ 1) % n_subbufs
;
418 read_pos
= read_subbuf
* subbuf_size
;
425 * relayfs_read_end_pos - return the new read position
427 static size_t relayfs_read_end_pos(struct rchan_buf
*buf
,
431 size_t read_subbuf
, padding
, end_pos
;
432 size_t subbuf_size
= buf
->chan
->subbuf_size
;
433 size_t n_subbufs
= buf
->chan
->n_subbufs
;
435 read_subbuf
= read_pos
/ subbuf_size
;
436 padding
= buf
->padding
[read_subbuf
];
437 if (read_pos
% subbuf_size
+ count
+ padding
== subbuf_size
)
438 end_pos
= (read_subbuf
+ 1) * subbuf_size
;
440 end_pos
= read_pos
+ count
;
441 if (end_pos
>= subbuf_size
* n_subbufs
)
448 * relayfs_read - read file op for relayfs files
450 * @buffer: the userspace buffer
451 * @count: number of bytes to read
452 * @ppos: position to read from
454 * Reads count bytes or the number of bytes available in the
455 * current sub-buffer being read, whichever is smaller.
457 static ssize_t
relayfs_read(struct file
*filp
,
462 struct inode
*inode
= filp
->f_dentry
->d_inode
;
463 struct rchan_buf
*buf
= RELAYFS_I(inode
)->buf
;
464 size_t read_start
, avail
;
469 if(!relayfs_read_avail(buf
, *ppos
))
472 read_start
= relayfs_read_start_pos(*ppos
, buf
);
473 avail
= relayfs_read_subbuf_avail(read_start
, buf
);
477 from
= buf
->start
+ read_start
;
478 ret
= count
= min(count
, avail
);
479 if (copy_to_user(buffer
, from
, count
)) {
483 relayfs_read_consume(buf
, read_start
, count
);
484 *ppos
= relayfs_read_end_pos(buf
, read_start
, count
);
491 * relayfs alloc_inode() implementation
493 static struct inode
*relayfs_alloc_inode(struct super_block
*sb
)
495 struct relayfs_inode_info
*p
= kmem_cache_alloc(relayfs_inode_cachep
, SLAB_KERNEL
);
500 return &p
->vfs_inode
;
504 * relayfs destroy_inode() implementation
506 static void relayfs_destroy_inode(struct inode
*inode
)
508 if (RELAYFS_I(inode
)->buf
)
509 relay_destroy_buf(RELAYFS_I(inode
)->buf
);
511 kmem_cache_free(relayfs_inode_cachep
, RELAYFS_I(inode
));
514 static void init_once(void *p
, kmem_cache_t
*cachep
, unsigned long flags
)
516 struct relayfs_inode_info
*i
= p
;
517 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) == SLAB_CTOR_CONSTRUCTOR
)
518 inode_init_once(&i
->vfs_inode
);
521 struct file_operations relayfs_file_operations
= {
522 .open
= relayfs_open
,
523 .poll
= relayfs_poll
,
524 .mmap
= relayfs_mmap
,
525 .read
= relayfs_read
,
527 .release
= relayfs_release
,
530 static struct super_operations relayfs_ops
= {
531 .statfs
= simple_statfs
,
532 .drop_inode
= generic_delete_inode
,
533 .alloc_inode
= relayfs_alloc_inode
,
534 .destroy_inode
= relayfs_destroy_inode
,
537 static int relayfs_fill_super(struct super_block
* sb
, void * data
, int silent
)
541 int mode
= S_IFDIR
| S_IRWXU
| S_IRUGO
| S_IXUGO
;
543 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
544 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
545 sb
->s_magic
= RELAYFS_MAGIC
;
546 sb
->s_op
= &relayfs_ops
;
547 inode
= relayfs_get_inode(sb
, mode
, NULL
);
552 root
= d_alloc_root(inode
);
562 static struct super_block
* relayfs_get_sb(struct file_system_type
*fs_type
,
563 int flags
, const char *dev_name
,
566 return get_sb_single(fs_type
, flags
, data
, relayfs_fill_super
);
569 static struct file_system_type relayfs_fs_type
= {
570 .owner
= THIS_MODULE
,
572 .get_sb
= relayfs_get_sb
,
573 .kill_sb
= kill_litter_super
,
576 static int __init
init_relayfs_fs(void)
580 relayfs_inode_cachep
= kmem_cache_create("relayfs_inode_cache",
581 sizeof(struct relayfs_inode_info
), 0,
583 if (!relayfs_inode_cachep
)
586 err
= register_filesystem(&relayfs_fs_type
);
588 kmem_cache_destroy(relayfs_inode_cachep
);
593 static void __exit
exit_relayfs_fs(void)
595 unregister_filesystem(&relayfs_fs_type
);
596 kmem_cache_destroy(relayfs_inode_cachep
);
599 module_init(init_relayfs_fs
)
600 module_exit(exit_relayfs_fs
)
602 EXPORT_SYMBOL_GPL(relayfs_file_operations
);
603 EXPORT_SYMBOL_GPL(relayfs_create_dir
);
604 EXPORT_SYMBOL_GPL(relayfs_remove_dir
);
606 MODULE_AUTHOR("Tom Zanussi <zanussi@us.ibm.com> and Karim Yaghmour <karim@opersys.com>");
607 MODULE_DESCRIPTION("Relay Filesystem");
608 MODULE_LICENSE("GPL");