4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
44 #include <linux/swapops.h>
49 /* Incremented by the number of inactive pages that were scanned */
50 unsigned long nr_scanned
;
52 /* This context's GFP mask */
57 /* Can pages be swapped as part of reclaim? */
60 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
61 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
62 * In this context, it doesn't matter that we scan the
63 * whole list at once. */
68 int all_unreclaimable
;
72 * The list of shrinker callbacks used by to apply pressure to
77 struct list_head list
;
78 int seeks
; /* seeks to recreate an obj */
79 long nr
; /* objs pending delete */
82 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84 #ifdef ARCH_HAS_PREFETCH
85 #define prefetch_prev_lru_page(_page, _base, _field) \
87 if ((_page)->lru.prev != _base) { \
90 prev = lru_to_page(&(_page->lru)); \
91 prefetch(&prev->_field); \
95 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #ifdef ARCH_HAS_PREFETCHW
99 #define prefetchw_prev_lru_page(_page, _base, _field) \
101 if ((_page)->lru.prev != _base) { \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetchw(&prev->_field); \
109 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
113 * From 0 .. 100. Higher means more swappy.
115 int vm_swappiness
= 60;
116 long vm_total_pages
; /* The total number of pages which the VM controls */
118 static LIST_HEAD(shrinker_list
);
119 static DECLARE_RWSEM(shrinker_rwsem
);
122 * Add a shrinker callback to be called from the vm
124 struct shrinker
*set_shrinker(int seeks
, shrinker_t theshrinker
)
126 struct shrinker
*shrinker
;
128 shrinker
= kmalloc(sizeof(*shrinker
), GFP_KERNEL
);
130 shrinker
->shrinker
= theshrinker
;
131 shrinker
->seeks
= seeks
;
133 down_write(&shrinker_rwsem
);
134 list_add_tail(&shrinker
->list
, &shrinker_list
);
135 up_write(&shrinker_rwsem
);
139 EXPORT_SYMBOL(set_shrinker
);
144 void remove_shrinker(struct shrinker
*shrinker
)
146 down_write(&shrinker_rwsem
);
147 list_del(&shrinker
->list
);
148 up_write(&shrinker_rwsem
);
151 EXPORT_SYMBOL(remove_shrinker
);
153 #define SHRINK_BATCH 128
155 * Call the shrink functions to age shrinkable caches
157 * Here we assume it costs one seek to replace a lru page and that it also
158 * takes a seek to recreate a cache object. With this in mind we age equal
159 * percentages of the lru and ageable caches. This should balance the seeks
160 * generated by these structures.
162 * If the vm encounted mapped pages on the LRU it increase the pressure on
163 * slab to avoid swapping.
165 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
167 * `lru_pages' represents the number of on-LRU pages in all the zones which
168 * are eligible for the caller's allocation attempt. It is used for balancing
169 * slab reclaim versus page reclaim.
171 * Returns the number of slab objects which we shrunk.
173 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
174 unsigned long lru_pages
)
176 struct shrinker
*shrinker
;
177 unsigned long ret
= 0;
180 scanned
= SWAP_CLUSTER_MAX
;
182 if (!down_read_trylock(&shrinker_rwsem
))
183 return 1; /* Assume we'll be able to shrink next time */
185 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
186 unsigned long long delta
;
187 unsigned long total_scan
;
188 unsigned long max_pass
= (*shrinker
->shrinker
)(0, gfp_mask
);
190 delta
= (4 * scanned
) / shrinker
->seeks
;
192 do_div(delta
, lru_pages
+ 1);
193 shrinker
->nr
+= delta
;
194 if (shrinker
->nr
< 0) {
195 printk(KERN_ERR
"%s: nr=%ld\n",
196 __FUNCTION__
, shrinker
->nr
);
197 shrinker
->nr
= max_pass
;
201 * Avoid risking looping forever due to too large nr value:
202 * never try to free more than twice the estimate number of
205 if (shrinker
->nr
> max_pass
* 2)
206 shrinker
->nr
= max_pass
* 2;
208 total_scan
= shrinker
->nr
;
211 while (total_scan
>= SHRINK_BATCH
) {
212 long this_scan
= SHRINK_BATCH
;
216 nr_before
= (*shrinker
->shrinker
)(0, gfp_mask
);
217 shrink_ret
= (*shrinker
->shrinker
)(this_scan
, gfp_mask
);
218 if (shrink_ret
== -1)
220 if (shrink_ret
< nr_before
)
221 ret
+= nr_before
- shrink_ret
;
222 count_vm_events(SLABS_SCANNED
, this_scan
);
223 total_scan
-= this_scan
;
228 shrinker
->nr
+= total_scan
;
230 up_read(&shrinker_rwsem
);
234 /* Called without lock on whether page is mapped, so answer is unstable */
235 static inline int page_mapping_inuse(struct page
*page
)
237 struct address_space
*mapping
;
239 /* Page is in somebody's page tables. */
240 if (page_mapped(page
))
243 /* Be more reluctant to reclaim swapcache than pagecache */
244 if (PageSwapCache(page
))
247 mapping
= page_mapping(page
);
251 /* File is mmap'd by somebody? */
252 return mapping_mapped(mapping
);
255 static inline int is_page_cache_freeable(struct page
*page
)
257 return page_count(page
) - !!PagePrivate(page
) == 2;
260 static int may_write_to_queue(struct backing_dev_info
*bdi
)
262 if (current
->flags
& PF_SWAPWRITE
)
264 if (!bdi_write_congested(bdi
))
266 if (bdi
== current
->backing_dev_info
)
272 * We detected a synchronous write error writing a page out. Probably
273 * -ENOSPC. We need to propagate that into the address_space for a subsequent
274 * fsync(), msync() or close().
276 * The tricky part is that after writepage we cannot touch the mapping: nothing
277 * prevents it from being freed up. But we have a ref on the page and once
278 * that page is locked, the mapping is pinned.
280 * We're allowed to run sleeping lock_page() here because we know the caller has
283 static void handle_write_error(struct address_space
*mapping
,
284 struct page
*page
, int error
)
287 if (page_mapping(page
) == mapping
)
288 mapping_set_error(mapping
, error
);
292 /* possible outcome of pageout() */
294 /* failed to write page out, page is locked */
296 /* move page to the active list, page is locked */
298 /* page has been sent to the disk successfully, page is unlocked */
300 /* page is clean and locked */
305 * pageout is called by shrink_page_list() for each dirty page.
306 * Calls ->writepage().
308 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
)
311 * If the page is dirty, only perform writeback if that write
312 * will be non-blocking. To prevent this allocation from being
313 * stalled by pagecache activity. But note that there may be
314 * stalls if we need to run get_block(). We could test
315 * PagePrivate for that.
317 * If this process is currently in generic_file_write() against
318 * this page's queue, we can perform writeback even if that
321 * If the page is swapcache, write it back even if that would
322 * block, for some throttling. This happens by accident, because
323 * swap_backing_dev_info is bust: it doesn't reflect the
324 * congestion state of the swapdevs. Easy to fix, if needed.
325 * See swapfile.c:page_queue_congested().
327 if (!is_page_cache_freeable(page
))
331 * Some data journaling orphaned pages can have
332 * page->mapping == NULL while being dirty with clean buffers.
334 if (PagePrivate(page
)) {
335 if (try_to_free_buffers(page
)) {
336 ClearPageDirty(page
);
337 printk("%s: orphaned page\n", __FUNCTION__
);
343 if (mapping
->a_ops
->writepage
== NULL
)
344 return PAGE_ACTIVATE
;
345 if (!may_write_to_queue(mapping
->backing_dev_info
))
348 if (clear_page_dirty_for_io(page
)) {
350 struct writeback_control wbc
= {
351 .sync_mode
= WB_SYNC_NONE
,
352 .nr_to_write
= SWAP_CLUSTER_MAX
,
354 .range_end
= LLONG_MAX
,
359 SetPageReclaim(page
);
360 res
= mapping
->a_ops
->writepage(page
, &wbc
);
362 handle_write_error(mapping
, page
, res
);
363 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
364 ClearPageReclaim(page
);
365 return PAGE_ACTIVATE
;
367 if (!PageWriteback(page
)) {
368 /* synchronous write or broken a_ops? */
369 ClearPageReclaim(page
);
371 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
379 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
380 * someone else has a ref on the page, abort and return 0. If it was
381 * successfully detached, return 1. Assumes the caller has a single ref on
384 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
386 BUG_ON(!PageLocked(page
));
387 BUG_ON(mapping
!= page_mapping(page
));
389 write_lock_irq(&mapping
->tree_lock
);
391 * The non racy check for a busy page.
393 * Must be careful with the order of the tests. When someone has
394 * a ref to the page, it may be possible that they dirty it then
395 * drop the reference. So if PageDirty is tested before page_count
396 * here, then the following race may occur:
398 * get_user_pages(&page);
399 * [user mapping goes away]
401 * !PageDirty(page) [good]
402 * SetPageDirty(page);
404 * !page_count(page) [good, discard it]
406 * [oops, our write_to data is lost]
408 * Reversing the order of the tests ensures such a situation cannot
409 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
410 * load is not satisfied before that of page->_count.
412 * Note that if SetPageDirty is always performed via set_page_dirty,
413 * and thus under tree_lock, then this ordering is not required.
415 if (unlikely(page_count(page
) != 2))
418 if (unlikely(PageDirty(page
)))
421 if (PageSwapCache(page
)) {
422 swp_entry_t swap
= { .val
= page_private(page
) };
423 __delete_from_swap_cache(page
);
424 write_unlock_irq(&mapping
->tree_lock
);
426 __put_page(page
); /* The pagecache ref */
430 __remove_from_page_cache(page
);
431 write_unlock_irq(&mapping
->tree_lock
);
436 write_unlock_irq(&mapping
->tree_lock
);
441 * shrink_page_list() returns the number of reclaimed pages
443 static unsigned long shrink_page_list(struct list_head
*page_list
,
444 struct scan_control
*sc
)
446 LIST_HEAD(ret_pages
);
447 struct pagevec freed_pvec
;
449 unsigned long nr_reclaimed
= 0;
453 pagevec_init(&freed_pvec
, 1);
454 while (!list_empty(page_list
)) {
455 struct address_space
*mapping
;
462 page
= lru_to_page(page_list
);
463 list_del(&page
->lru
);
465 if (TestSetPageLocked(page
))
468 VM_BUG_ON(PageActive(page
));
472 if (!sc
->may_swap
&& page_mapped(page
))
475 /* Double the slab pressure for mapped and swapcache pages */
476 if (page_mapped(page
) || PageSwapCache(page
))
479 if (PageWriteback(page
))
482 referenced
= page_referenced(page
, 1);
483 /* In active use or really unfreeable? Activate it. */
484 if (referenced
&& page_mapping_inuse(page
))
485 goto activate_locked
;
489 * Anonymous process memory has backing store?
490 * Try to allocate it some swap space here.
492 if (PageAnon(page
) && !PageSwapCache(page
))
493 if (!add_to_swap(page
, GFP_ATOMIC
))
494 goto activate_locked
;
495 #endif /* CONFIG_SWAP */
497 mapping
= page_mapping(page
);
498 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
499 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
502 * The page is mapped into the page tables of one or more
503 * processes. Try to unmap it here.
505 if (page_mapped(page
) && mapping
) {
506 switch (try_to_unmap(page
, 0)) {
508 goto activate_locked
;
512 ; /* try to free the page below */
516 if (PageDirty(page
)) {
521 if (!sc
->may_writepage
)
524 /* Page is dirty, try to write it out here */
525 switch(pageout(page
, mapping
)) {
529 goto activate_locked
;
531 if (PageWriteback(page
) || PageDirty(page
))
534 * A synchronous write - probably a ramdisk. Go
535 * ahead and try to reclaim the page.
537 if (TestSetPageLocked(page
))
539 if (PageDirty(page
) || PageWriteback(page
))
541 mapping
= page_mapping(page
);
543 ; /* try to free the page below */
548 * If the page has buffers, try to free the buffer mappings
549 * associated with this page. If we succeed we try to free
552 * We do this even if the page is PageDirty().
553 * try_to_release_page() does not perform I/O, but it is
554 * possible for a page to have PageDirty set, but it is actually
555 * clean (all its buffers are clean). This happens if the
556 * buffers were written out directly, with submit_bh(). ext3
557 * will do this, as well as the blockdev mapping.
558 * try_to_release_page() will discover that cleanness and will
559 * drop the buffers and mark the page clean - it can be freed.
561 * Rarely, pages can have buffers and no ->mapping. These are
562 * the pages which were not successfully invalidated in
563 * truncate_complete_page(). We try to drop those buffers here
564 * and if that worked, and the page is no longer mapped into
565 * process address space (page_count == 1) it can be freed.
566 * Otherwise, leave the page on the LRU so it is swappable.
568 if (PagePrivate(page
)) {
569 if (!try_to_release_page(page
, sc
->gfp_mask
))
570 goto activate_locked
;
571 if (!mapping
&& page_count(page
) == 1)
575 if (!mapping
|| !remove_mapping(mapping
, page
))
581 if (!pagevec_add(&freed_pvec
, page
))
582 __pagevec_release_nonlru(&freed_pvec
);
591 list_add(&page
->lru
, &ret_pages
);
592 VM_BUG_ON(PageLRU(page
));
594 list_splice(&ret_pages
, page_list
);
595 if (pagevec_count(&freed_pvec
))
596 __pagevec_release_nonlru(&freed_pvec
);
597 count_vm_events(PGACTIVATE
, pgactivate
);
602 * zone->lru_lock is heavily contended. Some of the functions that
603 * shrink the lists perform better by taking out a batch of pages
604 * and working on them outside the LRU lock.
606 * For pagecache intensive workloads, this function is the hottest
607 * spot in the kernel (apart from copy_*_user functions).
609 * Appropriate locks must be held before calling this function.
611 * @nr_to_scan: The number of pages to look through on the list.
612 * @src: The LRU list to pull pages off.
613 * @dst: The temp list to put pages on to.
614 * @scanned: The number of pages that were scanned.
616 * returns how many pages were moved onto *@dst.
618 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
619 struct list_head
*src
, struct list_head
*dst
,
620 unsigned long *scanned
)
622 unsigned long nr_taken
= 0;
626 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
627 struct list_head
*target
;
628 page
= lru_to_page(src
);
629 prefetchw_prev_lru_page(page
, src
, flags
);
631 VM_BUG_ON(!PageLRU(page
));
633 list_del(&page
->lru
);
635 if (likely(get_page_unless_zero(page
))) {
637 * Be careful not to clear PageLRU until after we're
638 * sure the page is not being freed elsewhere -- the
639 * page release code relies on it.
644 } /* else it is being freed elsewhere */
646 list_add(&page
->lru
, target
);
654 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
657 static unsigned long shrink_inactive_list(unsigned long max_scan
,
658 struct zone
*zone
, struct scan_control
*sc
)
660 LIST_HEAD(page_list
);
662 unsigned long nr_scanned
= 0;
663 unsigned long nr_reclaimed
= 0;
665 pagevec_init(&pvec
, 1);
668 spin_lock_irq(&zone
->lru_lock
);
671 unsigned long nr_taken
;
672 unsigned long nr_scan
;
673 unsigned long nr_freed
;
675 nr_taken
= isolate_lru_pages(sc
->swap_cluster_max
,
676 &zone
->inactive_list
,
677 &page_list
, &nr_scan
);
678 __mod_zone_page_state(zone
, NR_INACTIVE
, -nr_taken
);
679 zone
->pages_scanned
+= nr_scan
;
680 spin_unlock_irq(&zone
->lru_lock
);
682 nr_scanned
+= nr_scan
;
683 nr_freed
= shrink_page_list(&page_list
, sc
);
684 nr_reclaimed
+= nr_freed
;
686 if (current_is_kswapd()) {
687 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
688 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
690 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
691 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
696 spin_lock(&zone
->lru_lock
);
698 * Put back any unfreeable pages.
700 while (!list_empty(&page_list
)) {
701 page
= lru_to_page(&page_list
);
702 VM_BUG_ON(PageLRU(page
));
704 list_del(&page
->lru
);
705 if (PageActive(page
))
706 add_page_to_active_list(zone
, page
);
708 add_page_to_inactive_list(zone
, page
);
709 if (!pagevec_add(&pvec
, page
)) {
710 spin_unlock_irq(&zone
->lru_lock
);
711 __pagevec_release(&pvec
);
712 spin_lock_irq(&zone
->lru_lock
);
715 } while (nr_scanned
< max_scan
);
716 spin_unlock(&zone
->lru_lock
);
719 pagevec_release(&pvec
);
724 * We are about to scan this zone at a certain priority level. If that priority
725 * level is smaller (ie: more urgent) than the previous priority, then note
726 * that priority level within the zone. This is done so that when the next
727 * process comes in to scan this zone, it will immediately start out at this
728 * priority level rather than having to build up its own scanning priority.
729 * Here, this priority affects only the reclaim-mapped threshold.
731 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
733 if (priority
< zone
->prev_priority
)
734 zone
->prev_priority
= priority
;
737 static inline int zone_is_near_oom(struct zone
*zone
)
739 return zone
->pages_scanned
>= (zone_page_state(zone
, NR_ACTIVE
)
740 + zone_page_state(zone
, NR_INACTIVE
))*3;
744 * This moves pages from the active list to the inactive list.
746 * We move them the other way if the page is referenced by one or more
747 * processes, from rmap.
749 * If the pages are mostly unmapped, the processing is fast and it is
750 * appropriate to hold zone->lru_lock across the whole operation. But if
751 * the pages are mapped, the processing is slow (page_referenced()) so we
752 * should drop zone->lru_lock around each page. It's impossible to balance
753 * this, so instead we remove the pages from the LRU while processing them.
754 * It is safe to rely on PG_active against the non-LRU pages in here because
755 * nobody will play with that bit on a non-LRU page.
757 * The downside is that we have to touch page->_count against each page.
758 * But we had to alter page->flags anyway.
760 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
761 struct scan_control
*sc
, int priority
)
763 unsigned long pgmoved
;
764 int pgdeactivate
= 0;
765 unsigned long pgscanned
;
766 LIST_HEAD(l_hold
); /* The pages which were snipped off */
767 LIST_HEAD(l_inactive
); /* Pages to go onto the inactive_list */
768 LIST_HEAD(l_active
); /* Pages to go onto the active_list */
771 int reclaim_mapped
= 0;
779 if (zone_is_near_oom(zone
))
780 goto force_reclaim_mapped
;
783 * `distress' is a measure of how much trouble we're having
784 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
786 distress
= 100 >> min(zone
->prev_priority
, priority
);
789 * The point of this algorithm is to decide when to start
790 * reclaiming mapped memory instead of just pagecache. Work out
794 mapped_ratio
= ((global_page_state(NR_FILE_MAPPED
) +
795 global_page_state(NR_ANON_PAGES
)) * 100) /
799 * Now decide how much we really want to unmap some pages. The
800 * mapped ratio is downgraded - just because there's a lot of
801 * mapped memory doesn't necessarily mean that page reclaim
804 * The distress ratio is important - we don't want to start
807 * A 100% value of vm_swappiness overrides this algorithm
810 swap_tendency
= mapped_ratio
/ 2 + distress
+ sc
->swappiness
;
813 * If there's huge imbalance between active and inactive
814 * (think active 100 times larger than inactive) we should
815 * become more permissive, or the system will take too much
816 * cpu before it start swapping during memory pressure.
817 * Distress is about avoiding early-oom, this is about
818 * making swappiness graceful despite setting it to low
821 * Avoid div by zero with nr_inactive+1, and max resulting
822 * value is vm_total_pages.
824 imbalance
= zone_page_state(zone
, NR_ACTIVE
);
825 imbalance
/= zone_page_state(zone
, NR_INACTIVE
) + 1;
828 * Reduce the effect of imbalance if swappiness is low,
829 * this means for a swappiness very low, the imbalance
830 * must be much higher than 100 for this logic to make
833 * Max temporary value is vm_total_pages*100.
835 imbalance
*= (vm_swappiness
+ 1);
839 * If not much of the ram is mapped, makes the imbalance
840 * less relevant, it's high priority we refill the inactive
841 * list with mapped pages only in presence of high ratio of
844 * Max temporary value is vm_total_pages*100.
846 imbalance
*= mapped_ratio
;
849 /* apply imbalance feedback to swap_tendency */
850 swap_tendency
+= imbalance
;
853 * Now use this metric to decide whether to start moving mapped
854 * memory onto the inactive list.
856 if (swap_tendency
>= 100)
857 force_reclaim_mapped
:
862 spin_lock_irq(&zone
->lru_lock
);
863 pgmoved
= isolate_lru_pages(nr_pages
, &zone
->active_list
,
864 &l_hold
, &pgscanned
);
865 zone
->pages_scanned
+= pgscanned
;
866 __mod_zone_page_state(zone
, NR_ACTIVE
, -pgmoved
);
867 spin_unlock_irq(&zone
->lru_lock
);
869 while (!list_empty(&l_hold
)) {
871 page
= lru_to_page(&l_hold
);
872 list_del(&page
->lru
);
873 if (page_mapped(page
)) {
874 if (!reclaim_mapped
||
875 (total_swap_pages
== 0 && PageAnon(page
)) ||
876 page_referenced(page
, 0)) {
877 list_add(&page
->lru
, &l_active
);
881 list_add(&page
->lru
, &l_inactive
);
884 pagevec_init(&pvec
, 1);
886 spin_lock_irq(&zone
->lru_lock
);
887 while (!list_empty(&l_inactive
)) {
888 page
= lru_to_page(&l_inactive
);
889 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
890 VM_BUG_ON(PageLRU(page
));
892 VM_BUG_ON(!PageActive(page
));
893 ClearPageActive(page
);
895 list_move(&page
->lru
, &zone
->inactive_list
);
897 if (!pagevec_add(&pvec
, page
)) {
898 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
899 spin_unlock_irq(&zone
->lru_lock
);
900 pgdeactivate
+= pgmoved
;
902 if (buffer_heads_over_limit
)
903 pagevec_strip(&pvec
);
904 __pagevec_release(&pvec
);
905 spin_lock_irq(&zone
->lru_lock
);
908 __mod_zone_page_state(zone
, NR_INACTIVE
, pgmoved
);
909 pgdeactivate
+= pgmoved
;
910 if (buffer_heads_over_limit
) {
911 spin_unlock_irq(&zone
->lru_lock
);
912 pagevec_strip(&pvec
);
913 spin_lock_irq(&zone
->lru_lock
);
917 while (!list_empty(&l_active
)) {
918 page
= lru_to_page(&l_active
);
919 prefetchw_prev_lru_page(page
, &l_active
, flags
);
920 VM_BUG_ON(PageLRU(page
));
922 VM_BUG_ON(!PageActive(page
));
923 list_move(&page
->lru
, &zone
->active_list
);
925 if (!pagevec_add(&pvec
, page
)) {
926 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
928 spin_unlock_irq(&zone
->lru_lock
);
929 __pagevec_release(&pvec
);
930 spin_lock_irq(&zone
->lru_lock
);
933 __mod_zone_page_state(zone
, NR_ACTIVE
, pgmoved
);
935 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
936 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
937 spin_unlock_irq(&zone
->lru_lock
);
939 pagevec_release(&pvec
);
943 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
945 static unsigned long shrink_zone(int priority
, struct zone
*zone
,
946 struct scan_control
*sc
)
948 unsigned long nr_active
;
949 unsigned long nr_inactive
;
950 unsigned long nr_to_scan
;
951 unsigned long nr_reclaimed
= 0;
953 atomic_inc(&zone
->reclaim_in_progress
);
956 * Add one to `nr_to_scan' just to make sure that the kernel will
957 * slowly sift through the active list.
959 zone
->nr_scan_active
+=
960 (zone_page_state(zone
, NR_ACTIVE
) >> priority
) + 1;
961 nr_active
= zone
->nr_scan_active
;
962 if (nr_active
>= sc
->swap_cluster_max
)
963 zone
->nr_scan_active
= 0;
967 zone
->nr_scan_inactive
+=
968 (zone_page_state(zone
, NR_INACTIVE
) >> priority
) + 1;
969 nr_inactive
= zone
->nr_scan_inactive
;
970 if (nr_inactive
>= sc
->swap_cluster_max
)
971 zone
->nr_scan_inactive
= 0;
975 while (nr_active
|| nr_inactive
) {
977 nr_to_scan
= min(nr_active
,
978 (unsigned long)sc
->swap_cluster_max
);
979 nr_active
-= nr_to_scan
;
980 shrink_active_list(nr_to_scan
, zone
, sc
, priority
);
984 nr_to_scan
= min(nr_inactive
,
985 (unsigned long)sc
->swap_cluster_max
);
986 nr_inactive
-= nr_to_scan
;
987 nr_reclaimed
+= shrink_inactive_list(nr_to_scan
, zone
,
992 throttle_vm_writeout(sc
->gfp_mask
);
994 atomic_dec(&zone
->reclaim_in_progress
);
999 * This is the direct reclaim path, for page-allocating processes. We only
1000 * try to reclaim pages from zones which will satisfy the caller's allocation
1003 * We reclaim from a zone even if that zone is over pages_high. Because:
1004 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1006 * b) The zones may be over pages_high but they must go *over* pages_high to
1007 * satisfy the `incremental min' zone defense algorithm.
1009 * Returns the number of reclaimed pages.
1011 * If a zone is deemed to be full of pinned pages then just give it a light
1012 * scan then give up on it.
1014 static unsigned long shrink_zones(int priority
, struct zone
**zones
,
1015 struct scan_control
*sc
)
1017 unsigned long nr_reclaimed
= 0;
1020 sc
->all_unreclaimable
= 1;
1021 for (i
= 0; zones
[i
] != NULL
; i
++) {
1022 struct zone
*zone
= zones
[i
];
1024 if (!populated_zone(zone
))
1027 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1030 note_zone_scanning_priority(zone
, priority
);
1032 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1033 continue; /* Let kswapd poll it */
1035 sc
->all_unreclaimable
= 0;
1037 nr_reclaimed
+= shrink_zone(priority
, zone
, sc
);
1039 return nr_reclaimed
;
1043 * This is the main entry point to direct page reclaim.
1045 * If a full scan of the inactive list fails to free enough memory then we
1046 * are "out of memory" and something needs to be killed.
1048 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1049 * high - the zone may be full of dirty or under-writeback pages, which this
1050 * caller can't do much about. We kick pdflush and take explicit naps in the
1051 * hope that some of these pages can be written. But if the allocating task
1052 * holds filesystem locks which prevent writeout this might not work, and the
1053 * allocation attempt will fail.
1055 unsigned long try_to_free_pages(struct zone
**zones
, gfp_t gfp_mask
)
1059 unsigned long total_scanned
= 0;
1060 unsigned long nr_reclaimed
= 0;
1061 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1062 unsigned long lru_pages
= 0;
1064 struct scan_control sc
= {
1065 .gfp_mask
= gfp_mask
,
1066 .may_writepage
= !laptop_mode
,
1067 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1069 .swappiness
= vm_swappiness
,
1072 count_vm_event(ALLOCSTALL
);
1074 for (i
= 0; zones
[i
] != NULL
; i
++) {
1075 struct zone
*zone
= zones
[i
];
1077 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1080 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1081 + zone_page_state(zone
, NR_INACTIVE
);
1084 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1087 disable_swap_token();
1088 nr_reclaimed
+= shrink_zones(priority
, zones
, &sc
);
1089 shrink_slab(sc
.nr_scanned
, gfp_mask
, lru_pages
);
1090 if (reclaim_state
) {
1091 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1092 reclaim_state
->reclaimed_slab
= 0;
1094 total_scanned
+= sc
.nr_scanned
;
1095 if (nr_reclaimed
>= sc
.swap_cluster_max
) {
1101 * Try to write back as many pages as we just scanned. This
1102 * tends to cause slow streaming writers to write data to the
1103 * disk smoothly, at the dirtying rate, which is nice. But
1104 * that's undesirable in laptop mode, where we *want* lumpy
1105 * writeout. So in laptop mode, write out the whole world.
1107 if (total_scanned
> sc
.swap_cluster_max
+
1108 sc
.swap_cluster_max
/ 2) {
1109 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1110 sc
.may_writepage
= 1;
1113 /* Take a nap, wait for some writeback to complete */
1114 if (sc
.nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1115 congestion_wait(WRITE
, HZ
/10);
1117 /* top priority shrink_caches still had more to do? don't OOM, then */
1118 if (!sc
.all_unreclaimable
)
1122 * Now that we've scanned all the zones at this priority level, note
1123 * that level within the zone so that the next thread which performs
1124 * scanning of this zone will immediately start out at this priority
1125 * level. This affects only the decision whether or not to bring
1126 * mapped pages onto the inactive list.
1130 for (i
= 0; zones
[i
] != 0; i
++) {
1131 struct zone
*zone
= zones
[i
];
1133 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1136 zone
->prev_priority
= priority
;
1142 * For kswapd, balance_pgdat() will work across all this node's zones until
1143 * they are all at pages_high.
1145 * Returns the number of pages which were actually freed.
1147 * There is special handling here for zones which are full of pinned pages.
1148 * This can happen if the pages are all mlocked, or if they are all used by
1149 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1150 * What we do is to detect the case where all pages in the zone have been
1151 * scanned twice and there has been zero successful reclaim. Mark the zone as
1152 * dead and from now on, only perform a short scan. Basically we're polling
1153 * the zone for when the problem goes away.
1155 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1156 * zones which have free_pages > pages_high, but once a zone is found to have
1157 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1158 * of the number of free pages in the lower zones. This interoperates with
1159 * the page allocator fallback scheme to ensure that aging of pages is balanced
1162 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1167 unsigned long total_scanned
;
1168 unsigned long nr_reclaimed
;
1169 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1170 struct scan_control sc
= {
1171 .gfp_mask
= GFP_KERNEL
,
1173 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1174 .swappiness
= vm_swappiness
,
1177 * temp_priority is used to remember the scanning priority at which
1178 * this zone was successfully refilled to free_pages == pages_high.
1180 int temp_priority
[MAX_NR_ZONES
];
1185 sc
.may_writepage
= !laptop_mode
;
1186 count_vm_event(PAGEOUTRUN
);
1188 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1189 temp_priority
[i
] = DEF_PRIORITY
;
1191 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1192 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1193 unsigned long lru_pages
= 0;
1195 /* The swap token gets in the way of swapout... */
1197 disable_swap_token();
1202 * Scan in the highmem->dma direction for the highest
1203 * zone which needs scanning
1205 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1206 struct zone
*zone
= pgdat
->node_zones
+ i
;
1208 if (!populated_zone(zone
))
1211 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1214 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1223 for (i
= 0; i
<= end_zone
; i
++) {
1224 struct zone
*zone
= pgdat
->node_zones
+ i
;
1226 lru_pages
+= zone_page_state(zone
, NR_ACTIVE
)
1227 + zone_page_state(zone
, NR_INACTIVE
);
1231 * Now scan the zone in the dma->highmem direction, stopping
1232 * at the last zone which needs scanning.
1234 * We do this because the page allocator works in the opposite
1235 * direction. This prevents the page allocator from allocating
1236 * pages behind kswapd's direction of progress, which would
1237 * cause too much scanning of the lower zones.
1239 for (i
= 0; i
<= end_zone
; i
++) {
1240 struct zone
*zone
= pgdat
->node_zones
+ i
;
1243 if (!populated_zone(zone
))
1246 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1249 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1252 temp_priority
[i
] = priority
;
1254 note_zone_scanning_priority(zone
, priority
);
1255 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1256 reclaim_state
->reclaimed_slab
= 0;
1257 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1259 nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1260 total_scanned
+= sc
.nr_scanned
;
1261 if (zone
->all_unreclaimable
)
1263 if (nr_slab
== 0 && zone
->pages_scanned
>=
1264 (zone_page_state(zone
, NR_ACTIVE
)
1265 + zone_page_state(zone
, NR_INACTIVE
)) * 6)
1266 zone
->all_unreclaimable
= 1;
1268 * If we've done a decent amount of scanning and
1269 * the reclaim ratio is low, start doing writepage
1270 * even in laptop mode
1272 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1273 total_scanned
> nr_reclaimed
+ nr_reclaimed
/ 2)
1274 sc
.may_writepage
= 1;
1277 break; /* kswapd: all done */
1279 * OK, kswapd is getting into trouble. Take a nap, then take
1280 * another pass across the zones.
1282 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1283 congestion_wait(WRITE
, HZ
/10);
1286 * We do this so kswapd doesn't build up large priorities for
1287 * example when it is freeing in parallel with allocators. It
1288 * matches the direct reclaim path behaviour in terms of impact
1289 * on zone->*_priority.
1291 if (nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1296 * Note within each zone the priority level at which this zone was
1297 * brought into a happy state. So that the next thread which scans this
1298 * zone will start out at that priority level.
1300 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1301 struct zone
*zone
= pgdat
->node_zones
+ i
;
1303 zone
->prev_priority
= temp_priority
[i
];
1305 if (!all_zones_ok
) {
1313 return nr_reclaimed
;
1317 * The background pageout daemon, started as a kernel thread
1318 * from the init process.
1320 * This basically trickles out pages so that we have _some_
1321 * free memory available even if there is no other activity
1322 * that frees anything up. This is needed for things like routing
1323 * etc, where we otherwise might have all activity going on in
1324 * asynchronous contexts that cannot page things out.
1326 * If there are applications that are active memory-allocators
1327 * (most normal use), this basically shouldn't matter.
1329 static int kswapd(void *p
)
1331 unsigned long order
;
1332 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1333 struct task_struct
*tsk
= current
;
1335 struct reclaim_state reclaim_state
= {
1336 .reclaimed_slab
= 0,
1340 cpumask
= node_to_cpumask(pgdat
->node_id
);
1341 if (!cpus_empty(cpumask
))
1342 set_cpus_allowed(tsk
, cpumask
);
1343 current
->reclaim_state
= &reclaim_state
;
1346 * Tell the memory management that we're a "memory allocator",
1347 * and that if we need more memory we should get access to it
1348 * regardless (see "__alloc_pages()"). "kswapd" should
1349 * never get caught in the normal page freeing logic.
1351 * (Kswapd normally doesn't need memory anyway, but sometimes
1352 * you need a small amount of memory in order to be able to
1353 * page out something else, and this flag essentially protects
1354 * us from recursively trying to free more memory as we're
1355 * trying to free the first piece of memory in the first place).
1357 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1361 unsigned long new_order
;
1363 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1364 new_order
= pgdat
->kswapd_max_order
;
1365 pgdat
->kswapd_max_order
= 0;
1366 if (order
< new_order
) {
1368 * Don't sleep if someone wants a larger 'order'
1373 if (!freezing(current
))
1376 order
= pgdat
->kswapd_max_order
;
1378 finish_wait(&pgdat
->kswapd_wait
, &wait
);
1380 if (!try_to_freeze()) {
1381 /* We can speed up thawing tasks if we don't call
1382 * balance_pgdat after returning from the refrigerator
1384 balance_pgdat(pgdat
, order
);
1391 * A zone is low on free memory, so wake its kswapd task to service it.
1393 void wakeup_kswapd(struct zone
*zone
, int order
)
1397 if (!populated_zone(zone
))
1400 pgdat
= zone
->zone_pgdat
;
1401 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
1403 if (pgdat
->kswapd_max_order
< order
)
1404 pgdat
->kswapd_max_order
= order
;
1405 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1407 if (!waitqueue_active(&pgdat
->kswapd_wait
))
1409 wake_up_interruptible(&pgdat
->kswapd_wait
);
1414 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1415 * from LRU lists system-wide, for given pass and priority, and returns the
1416 * number of reclaimed pages
1418 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1420 static unsigned long shrink_all_zones(unsigned long nr_pages
, int prio
,
1421 int pass
, struct scan_control
*sc
)
1424 unsigned long nr_to_scan
, ret
= 0;
1426 for_each_zone(zone
) {
1428 if (!populated_zone(zone
))
1431 if (zone
->all_unreclaimable
&& prio
!= DEF_PRIORITY
)
1434 /* For pass = 0 we don't shrink the active list */
1436 zone
->nr_scan_active
+=
1437 (zone_page_state(zone
, NR_ACTIVE
) >> prio
) + 1;
1438 if (zone
->nr_scan_active
>= nr_pages
|| pass
> 3) {
1439 zone
->nr_scan_active
= 0;
1440 nr_to_scan
= min(nr_pages
,
1441 zone_page_state(zone
, NR_ACTIVE
));
1442 shrink_active_list(nr_to_scan
, zone
, sc
, prio
);
1446 zone
->nr_scan_inactive
+=
1447 (zone_page_state(zone
, NR_INACTIVE
) >> prio
) + 1;
1448 if (zone
->nr_scan_inactive
>= nr_pages
|| pass
> 3) {
1449 zone
->nr_scan_inactive
= 0;
1450 nr_to_scan
= min(nr_pages
,
1451 zone_page_state(zone
, NR_INACTIVE
));
1452 ret
+= shrink_inactive_list(nr_to_scan
, zone
, sc
);
1453 if (ret
>= nr_pages
)
1461 static unsigned long count_lru_pages(void)
1463 return global_page_state(NR_ACTIVE
) + global_page_state(NR_INACTIVE
);
1467 * Try to free `nr_pages' of memory, system-wide, and return the number of
1470 * Rather than trying to age LRUs the aim is to preserve the overall
1471 * LRU order by reclaiming preferentially
1472 * inactive > active > active referenced > active mapped
1474 unsigned long shrink_all_memory(unsigned long nr_pages
)
1476 unsigned long lru_pages
, nr_slab
;
1477 unsigned long ret
= 0;
1479 struct reclaim_state reclaim_state
;
1480 struct scan_control sc
= {
1481 .gfp_mask
= GFP_KERNEL
,
1483 .swap_cluster_max
= nr_pages
,
1485 .swappiness
= vm_swappiness
,
1488 current
->reclaim_state
= &reclaim_state
;
1490 lru_pages
= count_lru_pages();
1491 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
1492 /* If slab caches are huge, it's better to hit them first */
1493 while (nr_slab
>= lru_pages
) {
1494 reclaim_state
.reclaimed_slab
= 0;
1495 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
1496 if (!reclaim_state
.reclaimed_slab
)
1499 ret
+= reclaim_state
.reclaimed_slab
;
1500 if (ret
>= nr_pages
)
1503 nr_slab
-= reclaim_state
.reclaimed_slab
;
1507 * We try to shrink LRUs in 5 passes:
1508 * 0 = Reclaim from inactive_list only
1509 * 1 = Reclaim from active list but don't reclaim mapped
1510 * 2 = 2nd pass of type 1
1511 * 3 = Reclaim mapped (normal reclaim)
1512 * 4 = 2nd pass of type 3
1514 for (pass
= 0; pass
< 5; pass
++) {
1517 /* Force reclaiming mapped pages in the passes #3 and #4 */
1520 sc
.swappiness
= 100;
1523 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
1524 unsigned long nr_to_scan
= nr_pages
- ret
;
1527 ret
+= shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
1528 if (ret
>= nr_pages
)
1531 reclaim_state
.reclaimed_slab
= 0;
1532 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
1534 ret
+= reclaim_state
.reclaimed_slab
;
1535 if (ret
>= nr_pages
)
1538 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
1539 congestion_wait(WRITE
, HZ
/ 10);
1544 * If ret = 0, we could not shrink LRUs, but there may be something
1549 reclaim_state
.reclaimed_slab
= 0;
1550 shrink_slab(nr_pages
, sc
.gfp_mask
, count_lru_pages());
1551 ret
+= reclaim_state
.reclaimed_slab
;
1552 } while (ret
< nr_pages
&& reclaim_state
.reclaimed_slab
> 0);
1556 current
->reclaim_state
= NULL
;
1562 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1563 not required for correctness. So if the last cpu in a node goes
1564 away, we get changed to run anywhere: as the first one comes back,
1565 restore their cpu bindings. */
1566 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
1567 unsigned long action
, void *hcpu
)
1572 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
1573 for_each_online_pgdat(pgdat
) {
1574 mask
= node_to_cpumask(pgdat
->node_id
);
1575 if (any_online_cpu(mask
) != NR_CPUS
)
1576 /* One of our CPUs online: restore mask */
1577 set_cpus_allowed(pgdat
->kswapd
, mask
);
1584 * This kswapd start function will be called by init and node-hot-add.
1585 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1587 int kswapd_run(int nid
)
1589 pg_data_t
*pgdat
= NODE_DATA(nid
);
1595 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
1596 if (IS_ERR(pgdat
->kswapd
)) {
1597 /* failure at boot is fatal */
1598 BUG_ON(system_state
== SYSTEM_BOOTING
);
1599 printk("Failed to start kswapd on node %d\n",nid
);
1605 static int __init
kswapd_init(void)
1610 for_each_online_node(nid
)
1612 hotcpu_notifier(cpu_callback
, 0);
1616 module_init(kswapd_init
)
1622 * If non-zero call zone_reclaim when the number of free pages falls below
1625 int zone_reclaim_mode __read_mostly
;
1627 #define RECLAIM_OFF 0
1628 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1629 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1630 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1633 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1634 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1637 #define ZONE_RECLAIM_PRIORITY 4
1640 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1643 int sysctl_min_unmapped_ratio
= 1;
1646 * If the number of slab pages in a zone grows beyond this percentage then
1647 * slab reclaim needs to occur.
1649 int sysctl_min_slab_ratio
= 5;
1652 * Try to free up some pages from this zone through reclaim.
1654 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1656 /* Minimum pages needed in order to stay on node */
1657 const unsigned long nr_pages
= 1 << order
;
1658 struct task_struct
*p
= current
;
1659 struct reclaim_state reclaim_state
;
1661 unsigned long nr_reclaimed
= 0;
1662 struct scan_control sc
= {
1663 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
1664 .may_swap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
1665 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
1667 .gfp_mask
= gfp_mask
,
1668 .swappiness
= vm_swappiness
,
1670 unsigned long slab_reclaimable
;
1672 disable_swap_token();
1675 * We need to be able to allocate from the reserves for RECLAIM_SWAP
1676 * and we also need to be able to write out pages for RECLAIM_WRITE
1679 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
1680 reclaim_state
.reclaimed_slab
= 0;
1681 p
->reclaim_state
= &reclaim_state
;
1683 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1684 zone_page_state(zone
, NR_FILE_MAPPED
) >
1685 zone
->min_unmapped_pages
) {
1687 * Free memory by calling shrink zone with increasing
1688 * priorities until we have enough memory freed.
1690 priority
= ZONE_RECLAIM_PRIORITY
;
1692 note_zone_scanning_priority(zone
, priority
);
1693 nr_reclaimed
+= shrink_zone(priority
, zone
, &sc
);
1695 } while (priority
>= 0 && nr_reclaimed
< nr_pages
);
1698 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1699 if (slab_reclaimable
> zone
->min_slab_pages
) {
1701 * shrink_slab() does not currently allow us to determine how
1702 * many pages were freed in this zone. So we take the current
1703 * number of slab pages and shake the slab until it is reduced
1704 * by the same nr_pages that we used for reclaiming unmapped
1707 * Note that shrink_slab will free memory on all zones and may
1710 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
1711 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
1712 slab_reclaimable
- nr_pages
)
1716 * Update nr_reclaimed by the number of slab pages we
1717 * reclaimed from this zone.
1719 nr_reclaimed
+= slab_reclaimable
-
1720 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
1723 p
->reclaim_state
= NULL
;
1724 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
1725 return nr_reclaimed
>= nr_pages
;
1728 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
1734 * Zone reclaim reclaims unmapped file backed pages and
1735 * slab pages if we are over the defined limits.
1737 * A small portion of unmapped file backed pages is needed for
1738 * file I/O otherwise pages read by file I/O will be immediately
1739 * thrown out if the zone is overallocated. So we do not reclaim
1740 * if less than a specified percentage of the zone is used by
1741 * unmapped file backed pages.
1743 if (zone_page_state(zone
, NR_FILE_PAGES
) -
1744 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
1745 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
1746 <= zone
->min_slab_pages
)
1750 * Avoid concurrent zone reclaims, do not reclaim in a zone that does
1751 * not have reclaimable pages and if we should not delay the allocation
1754 if (!(gfp_mask
& __GFP_WAIT
) ||
1755 zone
->all_unreclaimable
||
1756 atomic_read(&zone
->reclaim_in_progress
) > 0 ||
1757 (current
->flags
& PF_MEMALLOC
))
1761 * Only run zone reclaim on the local zone or on zones that do not
1762 * have associated processors. This will favor the local processor
1763 * over remote processors and spread off node memory allocations
1764 * as wide as possible.
1766 node_id
= zone_to_nid(zone
);
1767 mask
= node_to_cpumask(node_id
);
1768 if (!cpus_empty(mask
) && node_id
!= numa_node_id())
1770 return __zone_reclaim(zone
, gfp_mask
, order
);