MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / fs / inode.c
blob71fc0011aee50a214ad79f20750e4c66b672947a
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
27 * This is needed for the following functions:
28 * - inode_has_buffers
29 * - invalidate_inode_buffers
30 * - invalidate_bdev
32 * FIXME: remove all knowledge of the buffer layer from this file
34 #include <linux/buffer_head.h>
37 * New inode.c implementation.
39 * This implementation has the basic premise of trying
40 * to be extremely low-overhead and SMP-safe, yet be
41 * simple enough to be "obviously correct".
43 * Famous last words.
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
52 * Inode lookup is no longer as critical as it used to be:
53 * most of the lookups are going to be through the dcache.
55 #define I_HASHBITS i_hash_shift
56 #define I_HASHMASK i_hash_mask
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
62 * Each inode can be on two separate lists. One is
63 * the hash list of the inode, used for lookups. The
64 * other linked list is the "type" list:
65 * "in_use" - valid inode, i_count > 0, i_nlink > 0
66 * "dirty" - as "in_use" but also dirty
67 * "unused" - valid inode, i_count = 0
69 * A "dirty" list is maintained for each super block,
70 * allowing for low-overhead inode sync() operations.
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
78 * A simple spinlock to protect the list manipulations.
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
83 DEFINE_SPINLOCK(inode_lock);
86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
93 static DEFINE_MUTEX(iprune_mutex);
96 * Statistics gathering..
98 struct inodes_stat_t inodes_stat;
100 static kmem_cache_t * inode_cachep __read_mostly;
102 static struct inode *alloc_inode(struct super_block *sb)
104 static const struct address_space_operations empty_aops;
105 static struct inode_operations empty_iops;
106 static const struct file_operations empty_fops;
107 struct inode *inode;
109 if (sb->s_op->alloc_inode)
110 inode = sb->s_op->alloc_inode(sb);
111 else
112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
114 if (inode) {
115 struct address_space * const mapping = &inode->i_data;
117 inode->i_sb = sb;
118 inode->i_blkbits = sb->s_blocksize_bits;
119 inode->i_flags = 0;
120 atomic_set(&inode->i_count, 1);
121 inode->i_op = &empty_iops;
122 inode->i_fop = &empty_fops;
123 inode->i_nlink = 1;
124 atomic_set(&inode->i_writecount, 0);
125 inode->i_size = 0;
126 inode->i_blocks = 0;
127 inode->i_bytes = 0;
128 inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 #if 0 // mask by Victor Yu. 02-12-2007
133 inode->i_pipe = NULL;
134 inode->i_bdev = NULL;
135 inode->i_cdev = NULL;
136 #else
137 inode->u.i_pipe = NULL;
138 inode->u.i_bdev = NULL;
139 inode->u.i_cdev = NULL;
140 #endif
141 inode->i_rdev = 0;
142 inode->dirtied_when = 0;
143 if (security_inode_alloc(inode)) {
144 if (inode->i_sb->s_op->destroy_inode)
145 inode->i_sb->s_op->destroy_inode(inode);
146 else
147 kmem_cache_free(inode_cachep, (inode));
148 return NULL;
151 mapping->a_ops = &empty_aops;
152 mapping->host = inode;
153 mapping->flags = 0;
154 mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
155 mapping->assoc_mapping = NULL;
156 mapping->backing_dev_info = &default_backing_dev_info;
159 * If the block_device provides a backing_dev_info for client
160 * inodes then use that. Otherwise the inode share the bdev's
161 * backing_dev_info.
163 if (sb->s_bdev) {
164 struct backing_dev_info *bdi;
166 bdi = sb->s_bdev->bd_inode_backing_dev_info;
167 if (!bdi)
168 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
169 mapping->backing_dev_info = bdi;
171 inode->i_private = NULL;
172 inode->i_mapping = mapping;
174 return inode;
177 void destroy_inode(struct inode *inode)
179 BUG_ON(inode_has_buffers(inode));
180 security_inode_free(inode);
181 if (inode->i_sb->s_op->destroy_inode)
182 inode->i_sb->s_op->destroy_inode(inode);
183 else
184 kmem_cache_free(inode_cachep, (inode));
189 * These are initializations that only need to be done
190 * once, because the fields are idempotent across use
191 * of the inode, so let the slab aware of that.
193 void inode_init_once(struct inode *inode)
195 memset(inode, 0, sizeof(*inode));
196 INIT_HLIST_NODE(&inode->i_hash);
197 INIT_LIST_HEAD(&inode->i_dentry);
198 INIT_LIST_HEAD(&inode->i_devices);
199 mutex_init(&inode->i_mutex);
200 init_rwsem(&inode->i_alloc_sem);
201 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
202 rwlock_init(&inode->i_data.tree_lock);
203 spin_lock_init(&inode->i_data.i_mmap_lock);
204 INIT_LIST_HEAD(&inode->i_data.private_list);
205 spin_lock_init(&inode->i_data.private_lock);
206 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
207 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
208 spin_lock_init(&inode->i_lock);
209 i_size_ordered_init(inode);
210 #ifdef CONFIG_INOTIFY
211 INIT_LIST_HEAD(&inode->inotify_watches);
212 mutex_init(&inode->inotify_mutex);
213 #endif
216 EXPORT_SYMBOL(inode_init_once);
218 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
220 struct inode * inode = (struct inode *) foo;
222 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
223 SLAB_CTOR_CONSTRUCTOR)
224 inode_init_once(inode);
228 * inode_lock must be held
230 void __iget(struct inode * inode)
232 if (atomic_read(&inode->i_count)) {
233 atomic_inc(&inode->i_count);
234 return;
236 atomic_inc(&inode->i_count);
237 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
238 list_move(&inode->i_list, &inode_in_use);
239 inodes_stat.nr_unused--;
243 * clear_inode - clear an inode
244 * @inode: inode to clear
246 * This is called by the filesystem to tell us
247 * that the inode is no longer useful. We just
248 * terminate it with extreme prejudice.
250 void clear_inode(struct inode *inode)
252 might_sleep();
253 invalidate_inode_buffers(inode);
255 BUG_ON(inode->i_data.nrpages);
256 BUG_ON(!(inode->i_state & I_FREEING));
257 BUG_ON(inode->i_state & I_CLEAR);
258 wait_on_inode(inode);
259 DQUOT_DROP(inode);
260 if (inode->i_sb && inode->i_sb->s_op->clear_inode)
261 inode->i_sb->s_op->clear_inode(inode);
262 #if 0 // mask by Victor Yu. 02-12-2007
263 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
264 #else
265 if (S_ISBLK(inode->i_mode) && inode->u.i_bdev)
266 #endif
267 bd_forget(inode);
268 #if 0 // mask by Victor Yu. 02-12-2007
269 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
270 #else
271 if (S_ISCHR(inode->i_mode) && inode->u.i_cdev)
272 #endif
273 cd_forget(inode);
274 inode->i_state = I_CLEAR;
277 EXPORT_SYMBOL(clear_inode);
280 * dispose_list - dispose of the contents of a local list
281 * @head: the head of the list to free
283 * Dispose-list gets a local list with local inodes in it, so it doesn't
284 * need to worry about list corruption and SMP locks.
286 static void dispose_list(struct list_head *head)
288 int nr_disposed = 0;
290 while (!list_empty(head)) {
291 struct inode *inode;
293 inode = list_entry(head->next, struct inode, i_list);
294 list_del(&inode->i_list);
296 if (inode->i_data.nrpages)
297 truncate_inode_pages(&inode->i_data, 0);
298 clear_inode(inode);
300 spin_lock(&inode_lock);
301 hlist_del_init(&inode->i_hash);
302 list_del_init(&inode->i_sb_list);
303 spin_unlock(&inode_lock);
305 wake_up_inode(inode);
306 destroy_inode(inode);
307 nr_disposed++;
309 spin_lock(&inode_lock);
310 inodes_stat.nr_inodes -= nr_disposed;
311 spin_unlock(&inode_lock);
315 * Invalidate all inodes for a device.
317 static int invalidate_list(struct list_head *head, struct list_head *dispose)
319 struct list_head *next;
320 int busy = 0, count = 0;
322 next = head->next;
323 for (;;) {
324 struct list_head * tmp = next;
325 struct inode * inode;
328 * We can reschedule here without worrying about the list's
329 * consistency because the per-sb list of inodes must not
330 * change during umount anymore, and because iprune_mutex keeps
331 * shrink_icache_memory() away.
333 cond_resched_lock(&inode_lock);
335 next = next->next;
336 if (tmp == head)
337 break;
338 inode = list_entry(tmp, struct inode, i_sb_list);
339 invalidate_inode_buffers(inode);
340 if (!atomic_read(&inode->i_count)) {
341 list_move(&inode->i_list, dispose);
342 inode->i_state |= I_FREEING;
343 count++;
344 continue;
346 busy = 1;
348 /* only unused inodes may be cached with i_count zero */
349 inodes_stat.nr_unused -= count;
350 return busy;
354 * invalidate_inodes - discard the inodes on a device
355 * @sb: superblock
357 * Discard all of the inodes for a given superblock. If the discard
358 * fails because there are busy inodes then a non zero value is returned.
359 * If the discard is successful all the inodes have been discarded.
361 int invalidate_inodes(struct super_block * sb)
363 int busy;
364 LIST_HEAD(throw_away);
366 mutex_lock(&iprune_mutex);
367 spin_lock(&inode_lock);
368 inotify_unmount_inodes(&sb->s_inodes);
369 busy = invalidate_list(&sb->s_inodes, &throw_away);
370 spin_unlock(&inode_lock);
372 dispose_list(&throw_away);
373 mutex_unlock(&iprune_mutex);
375 return busy;
378 EXPORT_SYMBOL(invalidate_inodes);
380 static int can_unuse(struct inode *inode)
382 if (inode->i_state)
383 return 0;
384 if (inode_has_buffers(inode))
385 return 0;
386 if (atomic_read(&inode->i_count))
387 return 0;
388 if (inode->i_data.nrpages)
389 return 0;
390 return 1;
394 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
395 * a temporary list and then are freed outside inode_lock by dispose_list().
397 * Any inodes which are pinned purely because of attached pagecache have their
398 * pagecache removed. We expect the final iput() on that inode to add it to
399 * the front of the inode_unused list. So look for it there and if the
400 * inode is still freeable, proceed. The right inode is found 99.9% of the
401 * time in testing on a 4-way.
403 * If the inode has metadata buffers attached to mapping->private_list then
404 * try to remove them.
406 static void prune_icache(int nr_to_scan)
408 LIST_HEAD(freeable);
409 int nr_pruned = 0;
410 int nr_scanned;
411 unsigned long reap = 0;
413 mutex_lock(&iprune_mutex);
414 spin_lock(&inode_lock);
415 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
416 struct inode *inode;
418 if (list_empty(&inode_unused))
419 break;
421 inode = list_entry(inode_unused.prev, struct inode, i_list);
423 if (inode->i_state || atomic_read(&inode->i_count)) {
424 list_move(&inode->i_list, &inode_unused);
425 continue;
427 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
428 __iget(inode);
429 spin_unlock(&inode_lock);
430 if (remove_inode_buffers(inode))
431 reap += invalidate_inode_pages(&inode->i_data);
432 iput(inode);
433 spin_lock(&inode_lock);
435 if (inode != list_entry(inode_unused.next,
436 struct inode, i_list))
437 continue; /* wrong inode or list_empty */
438 if (!can_unuse(inode))
439 continue;
441 list_move(&inode->i_list, &freeable);
442 inode->i_state |= I_FREEING;
443 nr_pruned++;
445 inodes_stat.nr_unused -= nr_pruned;
446 if (current_is_kswapd())
447 __count_vm_events(KSWAPD_INODESTEAL, reap);
448 else
449 __count_vm_events(PGINODESTEAL, reap);
450 spin_unlock(&inode_lock);
452 dispose_list(&freeable);
453 mutex_unlock(&iprune_mutex);
457 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
458 * "unused" means that no dentries are referring to the inodes: the files are
459 * not open and the dcache references to those inodes have already been
460 * reclaimed.
462 * This function is passed the number of inodes to scan, and it returns the
463 * total number of remaining possibly-reclaimable inodes.
465 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
467 if (nr) {
469 * Nasty deadlock avoidance. We may hold various FS locks,
470 * and we don't want to recurse into the FS that called us
471 * in clear_inode() and friends..
473 if (!(gfp_mask & __GFP_FS))
474 return -1;
475 prune_icache(nr);
477 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
480 static void __wait_on_freeing_inode(struct inode *inode);
482 * Called with the inode lock held.
483 * NOTE: we are not increasing the inode-refcount, you must call __iget()
484 * by hand after calling find_inode now! This simplifies iunique and won't
485 * add any additional branch in the common code.
487 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
489 struct hlist_node *node;
490 struct inode * inode = NULL;
492 repeat:
493 hlist_for_each (node, head) {
494 inode = hlist_entry(node, struct inode, i_hash);
495 if (inode->i_sb != sb)
496 continue;
497 if (!test(inode, data))
498 continue;
499 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
500 __wait_on_freeing_inode(inode);
501 goto repeat;
503 break;
505 return node ? inode : NULL;
509 * find_inode_fast is the fast path version of find_inode, see the comment at
510 * iget_locked for details.
512 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
514 struct hlist_node *node;
515 struct inode * inode = NULL;
517 repeat:
518 hlist_for_each (node, head) {
519 inode = hlist_entry(node, struct inode, i_hash);
520 if (inode->i_ino != ino)
521 continue;
522 if (inode->i_sb != sb)
523 continue;
524 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
525 __wait_on_freeing_inode(inode);
526 goto repeat;
528 break;
530 return node ? inode : NULL;
534 * new_inode - obtain an inode
535 * @sb: superblock
537 * Allocates a new inode for given superblock.
539 struct inode *new_inode(struct super_block *sb)
541 static unsigned long last_ino;
542 struct inode * inode;
544 spin_lock_prefetch(&inode_lock);
546 inode = alloc_inode(sb);
547 if (inode) {
548 spin_lock(&inode_lock);
549 inodes_stat.nr_inodes++;
550 list_add(&inode->i_list, &inode_in_use);
551 list_add(&inode->i_sb_list, &sb->s_inodes);
552 inode->i_ino = ++last_ino;
553 inode->i_state = 0;
554 spin_unlock(&inode_lock);
556 return inode;
559 EXPORT_SYMBOL(new_inode);
561 void unlock_new_inode(struct inode *inode)
564 * This is special! We do not need the spinlock
565 * when clearing I_LOCK, because we're guaranteed
566 * that nobody else tries to do anything about the
567 * state of the inode when it is locked, as we
568 * just created it (so there can be no old holders
569 * that haven't tested I_LOCK).
571 inode->i_state &= ~(I_LOCK|I_NEW);
572 wake_up_inode(inode);
575 EXPORT_SYMBOL(unlock_new_inode);
578 * This is called without the inode lock held.. Be careful.
580 * We no longer cache the sb_flags in i_flags - see fs.h
581 * -- rmk@arm.uk.linux.org
583 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
585 struct inode * inode;
587 inode = alloc_inode(sb);
588 if (inode) {
589 struct inode * old;
591 spin_lock(&inode_lock);
592 /* We released the lock, so.. */
593 old = find_inode(sb, head, test, data);
594 if (!old) {
595 if (set(inode, data))
596 goto set_failed;
598 inodes_stat.nr_inodes++;
599 list_add(&inode->i_list, &inode_in_use);
600 list_add(&inode->i_sb_list, &sb->s_inodes);
601 hlist_add_head(&inode->i_hash, head);
602 inode->i_state = I_LOCK|I_NEW;
603 spin_unlock(&inode_lock);
605 /* Return the locked inode with I_NEW set, the
606 * caller is responsible for filling in the contents
608 return inode;
612 * Uhhuh, somebody else created the same inode under
613 * us. Use the old inode instead of the one we just
614 * allocated.
616 __iget(old);
617 spin_unlock(&inode_lock);
618 destroy_inode(inode);
619 inode = old;
620 wait_on_inode(inode);
622 return inode;
624 set_failed:
625 spin_unlock(&inode_lock);
626 destroy_inode(inode);
627 return NULL;
631 * get_new_inode_fast is the fast path version of get_new_inode, see the
632 * comment at iget_locked for details.
634 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
636 struct inode * inode;
638 inode = alloc_inode(sb);
639 if (inode) {
640 struct inode * old;
642 spin_lock(&inode_lock);
643 /* We released the lock, so.. */
644 old = find_inode_fast(sb, head, ino);
645 if (!old) {
646 inode->i_ino = ino;
647 inodes_stat.nr_inodes++;
648 list_add(&inode->i_list, &inode_in_use);
649 list_add(&inode->i_sb_list, &sb->s_inodes);
650 hlist_add_head(&inode->i_hash, head);
651 inode->i_state = I_LOCK|I_NEW;
652 spin_unlock(&inode_lock);
654 /* Return the locked inode with I_NEW set, the
655 * caller is responsible for filling in the contents
657 return inode;
661 * Uhhuh, somebody else created the same inode under
662 * us. Use the old inode instead of the one we just
663 * allocated.
665 __iget(old);
666 spin_unlock(&inode_lock);
667 destroy_inode(inode);
668 inode = old;
669 wait_on_inode(inode);
671 return inode;
674 static unsigned long hash(struct super_block *sb, unsigned long hashval)
676 unsigned long tmp;
678 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
679 L1_CACHE_BYTES;
680 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
681 return tmp & I_HASHMASK;
685 * iunique - get a unique inode number
686 * @sb: superblock
687 * @max_reserved: highest reserved inode number
689 * Obtain an inode number that is unique on the system for a given
690 * superblock. This is used by file systems that have no natural
691 * permanent inode numbering system. An inode number is returned that
692 * is higher than the reserved limit but unique.
694 * BUGS:
695 * With a large number of inodes live on the file system this function
696 * currently becomes quite slow.
698 ino_t iunique(struct super_block *sb, ino_t max_reserved)
700 static ino_t counter;
701 struct inode *inode;
702 struct hlist_head * head;
703 ino_t res;
704 spin_lock(&inode_lock);
705 retry:
706 if (counter > max_reserved) {
707 head = inode_hashtable + hash(sb,counter);
708 res = counter++;
709 inode = find_inode_fast(sb, head, res);
710 if (!inode) {
711 spin_unlock(&inode_lock);
712 return res;
714 } else {
715 counter = max_reserved + 1;
717 goto retry;
721 EXPORT_SYMBOL(iunique);
723 struct inode *igrab(struct inode *inode)
725 spin_lock(&inode_lock);
726 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
727 __iget(inode);
728 else
730 * Handle the case where s_op->clear_inode is not been
731 * called yet, and somebody is calling igrab
732 * while the inode is getting freed.
734 inode = NULL;
735 spin_unlock(&inode_lock);
736 return inode;
739 EXPORT_SYMBOL(igrab);
742 * ifind - internal function, you want ilookup5() or iget5().
743 * @sb: super block of file system to search
744 * @head: the head of the list to search
745 * @test: callback used for comparisons between inodes
746 * @data: opaque data pointer to pass to @test
747 * @wait: if true wait for the inode to be unlocked, if false do not
749 * ifind() searches for the inode specified by @data in the inode
750 * cache. This is a generalized version of ifind_fast() for file systems where
751 * the inode number is not sufficient for unique identification of an inode.
753 * If the inode is in the cache, the inode is returned with an incremented
754 * reference count.
756 * Otherwise NULL is returned.
758 * Note, @test is called with the inode_lock held, so can't sleep.
760 static struct inode *ifind(struct super_block *sb,
761 struct hlist_head *head, int (*test)(struct inode *, void *),
762 void *data, const int wait)
764 struct inode *inode;
766 spin_lock(&inode_lock);
767 inode = find_inode(sb, head, test, data);
768 if (inode) {
769 __iget(inode);
770 spin_unlock(&inode_lock);
771 if (likely(wait))
772 wait_on_inode(inode);
773 return inode;
775 spin_unlock(&inode_lock);
776 return NULL;
780 * ifind_fast - internal function, you want ilookup() or iget().
781 * @sb: super block of file system to search
782 * @head: head of the list to search
783 * @ino: inode number to search for
785 * ifind_fast() searches for the inode @ino in the inode cache. This is for
786 * file systems where the inode number is sufficient for unique identification
787 * of an inode.
789 * If the inode is in the cache, the inode is returned with an incremented
790 * reference count.
792 * Otherwise NULL is returned.
794 static struct inode *ifind_fast(struct super_block *sb,
795 struct hlist_head *head, unsigned long ino)
797 struct inode *inode;
799 spin_lock(&inode_lock);
800 inode = find_inode_fast(sb, head, ino);
801 if (inode) {
802 __iget(inode);
803 spin_unlock(&inode_lock);
804 wait_on_inode(inode);
805 return inode;
807 spin_unlock(&inode_lock);
808 return NULL;
812 * ilookup5_nowait - search for an inode in the inode cache
813 * @sb: super block of file system to search
814 * @hashval: hash value (usually inode number) to search for
815 * @test: callback used for comparisons between inodes
816 * @data: opaque data pointer to pass to @test
818 * ilookup5() uses ifind() to search for the inode specified by @hashval and
819 * @data in the inode cache. This is a generalized version of ilookup() for
820 * file systems where the inode number is not sufficient for unique
821 * identification of an inode.
823 * If the inode is in the cache, the inode is returned with an incremented
824 * reference count. Note, the inode lock is not waited upon so you have to be
825 * very careful what you do with the returned inode. You probably should be
826 * using ilookup5() instead.
828 * Otherwise NULL is returned.
830 * Note, @test is called with the inode_lock held, so can't sleep.
832 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
833 int (*test)(struct inode *, void *), void *data)
835 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
837 return ifind(sb, head, test, data, 0);
840 EXPORT_SYMBOL(ilookup5_nowait);
843 * ilookup5 - search for an inode in the inode cache
844 * @sb: super block of file system to search
845 * @hashval: hash value (usually inode number) to search for
846 * @test: callback used for comparisons between inodes
847 * @data: opaque data pointer to pass to @test
849 * ilookup5() uses ifind() to search for the inode specified by @hashval and
850 * @data in the inode cache. This is a generalized version of ilookup() for
851 * file systems where the inode number is not sufficient for unique
852 * identification of an inode.
854 * If the inode is in the cache, the inode lock is waited upon and the inode is
855 * returned with an incremented reference count.
857 * Otherwise NULL is returned.
859 * Note, @test is called with the inode_lock held, so can't sleep.
861 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
862 int (*test)(struct inode *, void *), void *data)
864 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
866 return ifind(sb, head, test, data, 1);
869 EXPORT_SYMBOL(ilookup5);
872 * ilookup - search for an inode in the inode cache
873 * @sb: super block of file system to search
874 * @ino: inode number to search for
876 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
877 * This is for file systems where the inode number is sufficient for unique
878 * identification of an inode.
880 * If the inode is in the cache, the inode is returned with an incremented
881 * reference count.
883 * Otherwise NULL is returned.
885 struct inode *ilookup(struct super_block *sb, unsigned long ino)
887 struct hlist_head *head = inode_hashtable + hash(sb, ino);
889 return ifind_fast(sb, head, ino);
892 EXPORT_SYMBOL(ilookup);
895 * iget5_locked - obtain an inode from a mounted file system
896 * @sb: super block of file system
897 * @hashval: hash value (usually inode number) to get
898 * @test: callback used for comparisons between inodes
899 * @set: callback used to initialize a new struct inode
900 * @data: opaque data pointer to pass to @test and @set
902 * This is iget() without the read_inode() portion of get_new_inode().
904 * iget5_locked() uses ifind() to search for the inode specified by @hashval
905 * and @data in the inode cache and if present it is returned with an increased
906 * reference count. This is a generalized version of iget_locked() for file
907 * systems where the inode number is not sufficient for unique identification
908 * of an inode.
910 * If the inode is not in cache, get_new_inode() is called to allocate a new
911 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
912 * file system gets to fill it in before unlocking it via unlock_new_inode().
914 * Note both @test and @set are called with the inode_lock held, so can't sleep.
916 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
917 int (*test)(struct inode *, void *),
918 int (*set)(struct inode *, void *), void *data)
920 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
921 struct inode *inode;
923 inode = ifind(sb, head, test, data, 1);
924 if (inode)
925 return inode;
927 * get_new_inode() will do the right thing, re-trying the search
928 * in case it had to block at any point.
930 return get_new_inode(sb, head, test, set, data);
933 EXPORT_SYMBOL(iget5_locked);
936 * iget_locked - obtain an inode from a mounted file system
937 * @sb: super block of file system
938 * @ino: inode number to get
940 * This is iget() without the read_inode() portion of get_new_inode_fast().
942 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
943 * the inode cache and if present it is returned with an increased reference
944 * count. This is for file systems where the inode number is sufficient for
945 * unique identification of an inode.
947 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
948 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
949 * The file system gets to fill it in before unlocking it via
950 * unlock_new_inode().
952 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
954 struct hlist_head *head = inode_hashtable + hash(sb, ino);
955 struct inode *inode;
957 inode = ifind_fast(sb, head, ino);
958 if (inode)
959 return inode;
961 * get_new_inode_fast() will do the right thing, re-trying the search
962 * in case it had to block at any point.
964 return get_new_inode_fast(sb, head, ino);
967 EXPORT_SYMBOL(iget_locked);
970 * __insert_inode_hash - hash an inode
971 * @inode: unhashed inode
972 * @hashval: unsigned long value used to locate this object in the
973 * inode_hashtable.
975 * Add an inode to the inode hash for this superblock.
977 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
979 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
980 spin_lock(&inode_lock);
981 hlist_add_head(&inode->i_hash, head);
982 spin_unlock(&inode_lock);
985 EXPORT_SYMBOL(__insert_inode_hash);
988 * remove_inode_hash - remove an inode from the hash
989 * @inode: inode to unhash
991 * Remove an inode from the superblock.
993 void remove_inode_hash(struct inode *inode)
995 spin_lock(&inode_lock);
996 hlist_del_init(&inode->i_hash);
997 spin_unlock(&inode_lock);
1000 EXPORT_SYMBOL(remove_inode_hash);
1003 * Tell the filesystem that this inode is no longer of any interest and should
1004 * be completely destroyed.
1006 * We leave the inode in the inode hash table until *after* the filesystem's
1007 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1008 * instigate) will always find up-to-date information either in the hash or on
1009 * disk.
1011 * I_FREEING is set so that no-one will take a new reference to the inode while
1012 * it is being deleted.
1014 void generic_delete_inode(struct inode *inode)
1016 struct super_operations *op = inode->i_sb->s_op;
1018 list_del_init(&inode->i_list);
1019 list_del_init(&inode->i_sb_list);
1020 inode->i_state |= I_FREEING;
1021 inodes_stat.nr_inodes--;
1022 spin_unlock(&inode_lock);
1024 security_inode_delete(inode);
1026 if (op->delete_inode) {
1027 void (*delete)(struct inode *) = op->delete_inode;
1028 if (!is_bad_inode(inode))
1029 DQUOT_INIT(inode);
1030 /* Filesystems implementing their own
1031 * s_op->delete_inode are required to call
1032 * truncate_inode_pages and clear_inode()
1033 * internally */
1034 delete(inode);
1035 } else {
1036 truncate_inode_pages(&inode->i_data, 0);
1037 clear_inode(inode);
1039 spin_lock(&inode_lock);
1040 hlist_del_init(&inode->i_hash);
1041 spin_unlock(&inode_lock);
1042 wake_up_inode(inode);
1043 BUG_ON(inode->i_state != I_CLEAR);
1044 destroy_inode(inode);
1047 EXPORT_SYMBOL(generic_delete_inode);
1049 static void generic_forget_inode(struct inode *inode)
1051 struct super_block *sb = inode->i_sb;
1053 if (!hlist_unhashed(&inode->i_hash)) {
1054 if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1055 list_move(&inode->i_list, &inode_unused);
1056 inodes_stat.nr_unused++;
1057 if (!sb || (sb->s_flags & MS_ACTIVE)) {
1058 spin_unlock(&inode_lock);
1059 return;
1061 inode->i_state |= I_WILL_FREE;
1062 spin_unlock(&inode_lock);
1063 write_inode_now(inode, 1);
1064 spin_lock(&inode_lock);
1065 inode->i_state &= ~I_WILL_FREE;
1066 inodes_stat.nr_unused--;
1067 hlist_del_init(&inode->i_hash);
1069 list_del_init(&inode->i_list);
1070 list_del_init(&inode->i_sb_list);
1071 inode->i_state |= I_FREEING;
1072 inodes_stat.nr_inodes--;
1073 spin_unlock(&inode_lock);
1074 if (inode->i_data.nrpages)
1075 truncate_inode_pages(&inode->i_data, 0);
1076 clear_inode(inode);
1077 wake_up_inode(inode);
1078 destroy_inode(inode);
1082 * Normal UNIX filesystem behaviour: delete the
1083 * inode when the usage count drops to zero, and
1084 * i_nlink is zero.
1086 void generic_drop_inode(struct inode *inode)
1088 if (!inode->i_nlink)
1089 generic_delete_inode(inode);
1090 else
1091 generic_forget_inode(inode);
1094 EXPORT_SYMBOL_GPL(generic_drop_inode);
1097 * Called when we're dropping the last reference
1098 * to an inode.
1100 * Call the FS "drop()" function, defaulting to
1101 * the legacy UNIX filesystem behaviour..
1103 * NOTE! NOTE! NOTE! We're called with the inode lock
1104 * held, and the drop function is supposed to release
1105 * the lock!
1107 static inline void iput_final(struct inode *inode)
1109 struct super_operations *op = inode->i_sb->s_op;
1110 void (*drop)(struct inode *) = generic_drop_inode;
1112 if (op && op->drop_inode)
1113 drop = op->drop_inode;
1114 drop(inode);
1118 * iput - put an inode
1119 * @inode: inode to put
1121 * Puts an inode, dropping its usage count. If the inode use count hits
1122 * zero, the inode is then freed and may also be destroyed.
1124 * Consequently, iput() can sleep.
1126 void iput(struct inode *inode)
1128 if (inode) {
1129 struct super_operations *op = inode->i_sb->s_op;
1131 BUG_ON(inode->i_state == I_CLEAR);
1133 if (op && op->put_inode)
1134 op->put_inode(inode);
1136 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1137 iput_final(inode);
1141 EXPORT_SYMBOL(iput);
1144 * bmap - find a block number in a file
1145 * @inode: inode of file
1146 * @block: block to find
1148 * Returns the block number on the device holding the inode that
1149 * is the disk block number for the block of the file requested.
1150 * That is, asked for block 4 of inode 1 the function will return the
1151 * disk block relative to the disk start that holds that block of the
1152 * file.
1154 sector_t bmap(struct inode * inode, sector_t block)
1156 sector_t res = 0;
1157 if (inode->i_mapping->a_ops->bmap)
1158 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1159 return res;
1162 EXPORT_SYMBOL(bmap);
1165 * touch_atime - update the access time
1166 * @mnt: mount the inode is accessed on
1167 * @dentry: dentry accessed
1169 * Update the accessed time on an inode and mark it for writeback.
1170 * This function automatically handles read only file systems and media,
1171 * as well as the "noatime" flag and inode specific "noatime" markers.
1173 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1175 struct inode *inode = dentry->d_inode;
1176 struct timespec now;
1178 if (IS_RDONLY(inode))
1179 return;
1181 if ((inode->i_flags & S_NOATIME) ||
1182 (inode->i_sb->s_flags & MS_NOATIME) ||
1183 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
1184 return;
1187 * We may have a NULL vfsmount when coming from NFSD
1189 if (mnt &&
1190 ((mnt->mnt_flags & MNT_NOATIME) ||
1191 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))))
1192 return;
1194 now = current_fs_time(inode->i_sb);
1195 if (!timespec_equal(&inode->i_atime, &now)) {
1196 inode->i_atime = now;
1197 mark_inode_dirty_sync(inode);
1201 EXPORT_SYMBOL(touch_atime);
1204 * file_update_time - update mtime and ctime time
1205 * @file: file accessed
1207 * Update the mtime and ctime members of an inode and mark the inode
1208 * for writeback. Note that this function is meant exclusively for
1209 * usage in the file write path of filesystems, and filesystems may
1210 * choose to explicitly ignore update via this function with the
1211 * S_NOCTIME inode flag, e.g. for network filesystem where these
1212 * timestamps are handled by the server.
1215 void file_update_time(struct file *file)
1217 struct inode *inode = file->f_dentry->d_inode;
1218 struct timespec now;
1219 int sync_it = 0;
1221 if (IS_NOCMTIME(inode))
1222 return;
1223 if (IS_RDONLY(inode))
1224 return;
1226 now = current_fs_time(inode->i_sb);
1227 if (!timespec_equal(&inode->i_mtime, &now)) {
1228 inode->i_mtime = now;
1229 sync_it = 1;
1232 if (!timespec_equal(&inode->i_ctime, &now)) {
1233 inode->i_ctime = now;
1234 sync_it = 1;
1237 if (sync_it)
1238 mark_inode_dirty_sync(inode);
1241 EXPORT_SYMBOL(file_update_time);
1243 int inode_needs_sync(struct inode *inode)
1245 if (IS_SYNC(inode))
1246 return 1;
1247 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1248 return 1;
1249 return 0;
1252 EXPORT_SYMBOL(inode_needs_sync);
1255 * Quota functions that want to walk the inode lists..
1257 #ifdef CONFIG_QUOTA
1259 /* Function back in dquot.c */
1260 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1262 void remove_dquot_ref(struct super_block *sb, int type,
1263 struct list_head *tofree_head)
1265 struct inode *inode;
1267 if (!sb->dq_op)
1268 return; /* nothing to do */
1269 spin_lock(&inode_lock); /* This lock is for inodes code */
1272 * We don't have to lock against quota code - test IS_QUOTAINIT is
1273 * just for speedup...
1275 list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1276 if (!IS_NOQUOTA(inode))
1277 remove_inode_dquot_ref(inode, type, tofree_head);
1279 spin_unlock(&inode_lock);
1282 #endif
1284 int inode_wait(void *word)
1286 schedule();
1287 return 0;
1291 * If we try to find an inode in the inode hash while it is being
1292 * deleted, we have to wait until the filesystem completes its
1293 * deletion before reporting that it isn't found. This function waits
1294 * until the deletion _might_ have completed. Callers are responsible
1295 * to recheck inode state.
1297 * It doesn't matter if I_LOCK is not set initially, a call to
1298 * wake_up_inode() after removing from the hash list will DTRT.
1300 * This is called with inode_lock held.
1302 static void __wait_on_freeing_inode(struct inode *inode)
1304 wait_queue_head_t *wq;
1305 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1306 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1307 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1308 spin_unlock(&inode_lock);
1309 schedule();
1310 finish_wait(wq, &wait.wait);
1311 spin_lock(&inode_lock);
1314 void wake_up_inode(struct inode *inode)
1317 * Prevent speculative execution through spin_unlock(&inode_lock);
1319 smp_mb();
1320 wake_up_bit(&inode->i_state, __I_LOCK);
1324 * We rarely want to lock two inodes that do not have a parent/child
1325 * relationship (such as directory, child inode) simultaneously. The
1326 * vast majority of file systems should be able to get along fine
1327 * without this. Do not use these functions except as a last resort.
1329 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1331 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1332 if (inode1)
1333 mutex_lock(&inode1->i_mutex);
1334 else if (inode2)
1335 mutex_lock(&inode2->i_mutex);
1336 return;
1339 if (inode1 < inode2) {
1340 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1341 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1342 } else {
1343 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1344 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1347 EXPORT_SYMBOL(inode_double_lock);
1349 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1351 if (inode1)
1352 mutex_unlock(&inode1->i_mutex);
1354 if (inode2 && inode2 != inode1)
1355 mutex_unlock(&inode2->i_mutex);
1357 EXPORT_SYMBOL(inode_double_unlock);
1359 static __initdata unsigned long ihash_entries;
1360 static int __init set_ihash_entries(char *str)
1362 if (!str)
1363 return 0;
1364 ihash_entries = simple_strtoul(str, &str, 0);
1365 return 1;
1367 __setup("ihash_entries=", set_ihash_entries);
1370 * Initialize the waitqueues and inode hash table.
1372 void __init inode_init_early(void)
1374 int loop;
1376 /* If hashes are distributed across NUMA nodes, defer
1377 * hash allocation until vmalloc space is available.
1379 if (hashdist)
1380 return;
1382 inode_hashtable =
1383 alloc_large_system_hash("Inode-cache",
1384 sizeof(struct hlist_head),
1385 ihash_entries,
1387 HASH_EARLY,
1388 &i_hash_shift,
1389 &i_hash_mask,
1392 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1393 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1396 void __init inode_init(unsigned long mempages)
1398 int loop;
1400 /* inode slab cache */
1401 inode_cachep = kmem_cache_create("inode_cache",
1402 sizeof(struct inode),
1404 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1405 SLAB_MEM_SPREAD),
1406 init_once,
1407 NULL);
1408 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1410 /* Hash may have been set up in inode_init_early */
1411 if (!hashdist)
1412 return;
1414 inode_hashtable =
1415 alloc_large_system_hash("Inode-cache",
1416 sizeof(struct hlist_head),
1417 ihash_entries,
1420 &i_hash_shift,
1421 &i_hash_mask,
1424 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1425 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1428 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1430 inode->i_mode = mode;
1431 if (S_ISCHR(mode)) {
1432 inode->i_fop = &def_chr_fops;
1433 inode->i_rdev = rdev;
1434 } else if (S_ISBLK(mode)) {
1435 inode->i_fop = &def_blk_fops;
1436 inode->i_rdev = rdev;
1437 } else if (S_ISFIFO(mode))
1438 inode->i_fop = &def_fifo_fops;
1439 else if (S_ISSOCK(mode))
1440 inode->i_fop = &bad_sock_fops;
1441 else
1442 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1443 mode);
1445 EXPORT_SYMBOL(init_special_inode);