2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
42 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
);
45 * For the allocated request tables
47 static kmem_cache_t
*request_cachep
;
50 * For queue allocation
52 static kmem_cache_t
*requestq_cachep
;
55 * For io context allocations
57 static kmem_cache_t
*iocontext_cachep
;
60 * Controlling structure to kblockd
62 static struct workqueue_struct
*kblockd_workqueue
;
64 unsigned long blk_max_low_pfn
, blk_max_pfn
;
66 EXPORT_SYMBOL(blk_max_low_pfn
);
67 EXPORT_SYMBOL(blk_max_pfn
);
69 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME (HZ/50UL)
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ 32
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
82 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
84 return q
->nr_congestion_on
;
88 * The threshold at which a queue is considered to be uncongested
90 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
92 return q
->nr_congestion_off
;
95 static void blk_queue_congestion_threshold(struct request_queue
*q
)
99 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
100 if (nr
> q
->nr_requests
)
102 q
->nr_congestion_on
= nr
;
104 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
107 q
->nr_congestion_off
= nr
;
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * Locates the passed device's request queue and returns the address of its
117 * Will return NULL if the request queue cannot be located.
119 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
121 struct backing_dev_info
*ret
= NULL
;
122 request_queue_t
*q
= bdev_get_queue(bdev
);
125 ret
= &q
->backing_dev_info
;
128 EXPORT_SYMBOL(blk_get_backing_dev_info
);
130 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
133 q
->activity_data
= data
;
135 EXPORT_SYMBOL(blk_queue_activity_fn
);
138 * blk_queue_prep_rq - set a prepare_request function for queue
140 * @pfn: prepare_request function
142 * It's possible for a queue to register a prepare_request callback which
143 * is invoked before the request is handed to the request_fn. The goal of
144 * the function is to prepare a request for I/O, it can be used to build a
145 * cdb from the request data for instance.
148 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
153 EXPORT_SYMBOL(blk_queue_prep_rq
);
156 * blk_queue_merge_bvec - set a merge_bvec function for queue
158 * @mbfn: merge_bvec_fn
160 * Usually queues have static limitations on the max sectors or segments that
161 * we can put in a request. Stacking drivers may have some settings that
162 * are dynamic, and thus we have to query the queue whether it is ok to
163 * add a new bio_vec to a bio at a given offset or not. If the block device
164 * has such limitations, it needs to register a merge_bvec_fn to control
165 * the size of bio's sent to it. Note that a block device *must* allow a
166 * single page to be added to an empty bio. The block device driver may want
167 * to use the bio_split() function to deal with these bio's. By default
168 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
171 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
173 q
->merge_bvec_fn
= mbfn
;
176 EXPORT_SYMBOL(blk_queue_merge_bvec
);
178 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
180 q
->softirq_done_fn
= fn
;
183 EXPORT_SYMBOL(blk_queue_softirq_done
);
186 * blk_queue_make_request - define an alternate make_request function for a device
187 * @q: the request queue for the device to be affected
188 * @mfn: the alternate make_request function
191 * The normal way for &struct bios to be passed to a device
192 * driver is for them to be collected into requests on a request
193 * queue, and then to allow the device driver to select requests
194 * off that queue when it is ready. This works well for many block
195 * devices. However some block devices (typically virtual devices
196 * such as md or lvm) do not benefit from the processing on the
197 * request queue, and are served best by having the requests passed
198 * directly to them. This can be achieved by providing a function
199 * to blk_queue_make_request().
202 * The driver that does this *must* be able to deal appropriately
203 * with buffers in "highmemory". This can be accomplished by either calling
204 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
205 * blk_queue_bounce() to create a buffer in normal memory.
207 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
212 q
->nr_requests
= BLKDEV_MAX_RQ
;
213 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
214 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
215 q
->make_request_fn
= mfn
;
216 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
217 q
->backing_dev_info
.state
= 0;
218 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
219 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
220 blk_queue_hardsect_size(q
, 512);
221 blk_queue_dma_alignment(q
, 511);
222 blk_queue_congestion_threshold(q
);
223 q
->nr_batching
= BLK_BATCH_REQ
;
225 q
->unplug_thresh
= 4; /* hmm */
226 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
227 if (q
->unplug_delay
== 0)
230 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
232 q
->unplug_timer
.function
= blk_unplug_timeout
;
233 q
->unplug_timer
.data
= (unsigned long)q
;
236 * by default assume old behaviour and bounce for any highmem page
238 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
240 blk_queue_activity_fn(q
, NULL
, NULL
);
243 EXPORT_SYMBOL(blk_queue_make_request
);
245 static void rq_init(request_queue_t
*q
, struct request
*rq
)
247 INIT_LIST_HEAD(&rq
->queuelist
);
248 INIT_LIST_HEAD(&rq
->donelist
);
251 rq
->bio
= rq
->biotail
= NULL
;
252 INIT_HLIST_NODE(&rq
->hash
);
253 #if 0 // mask by Victor Yu. 02-12-2007
254 RB_CLEAR_NODE(&rq
->rb_node
);
256 RB_CLEAR_NODE(&rq
->u
.rb_node
);
265 rq
->nr_phys_segments
= 0;
268 rq
->end_io_data
= NULL
;
269 #if 0 // mask by Victor Yu. 02-12-2007
270 rq
->completion_data
= NULL
;
272 rq
->u
.completion_data
= NULL
;
277 * blk_queue_ordered - does this queue support ordered writes
278 * @q: the request queue
279 * @ordered: one of QUEUE_ORDERED_*
280 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
283 * For journalled file systems, doing ordered writes on a commit
284 * block instead of explicitly doing wait_on_buffer (which is bad
285 * for performance) can be a big win. Block drivers supporting this
286 * feature should call this function and indicate so.
289 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
290 prepare_flush_fn
*prepare_flush_fn
)
292 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
293 prepare_flush_fn
== NULL
) {
294 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
298 if (ordered
!= QUEUE_ORDERED_NONE
&&
299 ordered
!= QUEUE_ORDERED_DRAIN
&&
300 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
301 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
302 ordered
!= QUEUE_ORDERED_TAG
&&
303 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
304 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
305 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
309 q
->ordered
= ordered
;
310 q
->next_ordered
= ordered
;
311 q
->prepare_flush_fn
= prepare_flush_fn
;
316 EXPORT_SYMBOL(blk_queue_ordered
);
319 * blk_queue_issue_flush_fn - set function for issuing a flush
320 * @q: the request queue
321 * @iff: the function to be called issuing the flush
324 * If a driver supports issuing a flush command, the support is notified
325 * to the block layer by defining it through this call.
328 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
330 q
->issue_flush_fn
= iff
;
333 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
336 * Cache flushing for ordered writes handling
338 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
342 return 1 << ffz(q
->ordseq
);
345 unsigned blk_ordered_req_seq(struct request
*rq
)
347 request_queue_t
*q
= rq
->q
;
349 BUG_ON(q
->ordseq
== 0);
351 if (rq
== &q
->pre_flush_rq
)
352 return QUEUE_ORDSEQ_PREFLUSH
;
353 if (rq
== &q
->bar_rq
)
354 return QUEUE_ORDSEQ_BAR
;
355 if (rq
== &q
->post_flush_rq
)
356 return QUEUE_ORDSEQ_POSTFLUSH
;
358 if ((rq
->cmd_flags
& REQ_ORDERED_COLOR
) ==
359 (q
->orig_bar_rq
->cmd_flags
& REQ_ORDERED_COLOR
))
360 return QUEUE_ORDSEQ_DRAIN
;
362 return QUEUE_ORDSEQ_DONE
;
365 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
370 if (error
&& !q
->orderr
)
373 BUG_ON(q
->ordseq
& seq
);
376 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
380 * Okay, sequence complete.
383 uptodate
= q
->orderr
? q
->orderr
: 1;
387 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
388 end_that_request_last(rq
, uptodate
);
391 static void pre_flush_end_io(struct request
*rq
, int error
)
393 elv_completed_request(rq
->q
, rq
);
394 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
397 static void bar_end_io(struct request
*rq
, int error
)
399 elv_completed_request(rq
->q
, rq
);
400 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
403 static void post_flush_end_io(struct request
*rq
, int error
)
405 elv_completed_request(rq
->q
, rq
);
406 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
409 static void queue_flush(request_queue_t
*q
, unsigned which
)
412 rq_end_io_fn
*end_io
;
414 if (which
== QUEUE_ORDERED_PREFLUSH
) {
415 rq
= &q
->pre_flush_rq
;
416 end_io
= pre_flush_end_io
;
418 rq
= &q
->post_flush_rq
;
419 end_io
= post_flush_end_io
;
422 rq
->cmd_flags
= REQ_HARDBARRIER
;
424 rq
->elevator_private
= NULL
;
425 rq
->elevator_private2
= NULL
;
426 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
428 q
->prepare_flush_fn(q
, rq
);
430 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
433 static inline struct request
*start_ordered(request_queue_t
*q
,
438 q
->ordered
= q
->next_ordered
;
439 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
442 * Prep proxy barrier request.
444 blkdev_dequeue_request(rq
);
449 if (bio_data_dir(q
->orig_bar_rq
->bio
) == WRITE
)
450 rq
->cmd_flags
|= REQ_RW
;
451 rq
->cmd_flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
452 rq
->elevator_private
= NULL
;
453 rq
->elevator_private2
= NULL
;
454 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
455 rq
->end_io
= bar_end_io
;
458 * Queue ordered sequence. As we stack them at the head, we
459 * need to queue in reverse order. Note that we rely on that
460 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
461 * request gets inbetween ordered sequence.
463 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
464 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
466 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
468 elv_insert(q
, rq
, ELEVATOR_INSERT_FRONT
);
470 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
471 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
472 rq
= &q
->pre_flush_rq
;
474 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
476 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
477 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
484 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
486 struct request
*rq
= *rqp
;
487 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
493 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
494 *rqp
= start_ordered(q
, rq
);
498 * This can happen when the queue switches to
499 * ORDERED_NONE while this request is on it.
501 blkdev_dequeue_request(rq
);
502 end_that_request_first(rq
, -EOPNOTSUPP
,
503 rq
->hard_nr_sectors
);
504 end_that_request_last(rq
, -EOPNOTSUPP
);
511 * Ordered sequence in progress
514 /* Special requests are not subject to ordering rules. */
515 if (!blk_fs_request(rq
) &&
516 rq
!= &q
->pre_flush_rq
&& rq
!= &q
->post_flush_rq
)
519 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
520 /* Ordered by tag. Blocking the next barrier is enough. */
521 if (is_barrier
&& rq
!= &q
->bar_rq
)
524 /* Ordered by draining. Wait for turn. */
525 WARN_ON(blk_ordered_req_seq(rq
) < blk_ordered_cur_seq(q
));
526 if (blk_ordered_req_seq(rq
) > blk_ordered_cur_seq(q
))
533 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
535 request_queue_t
*q
= bio
->bi_private
;
536 struct bio_vec
*bvec
;
540 * This is dry run, restore bio_sector and size. We'll finish
541 * this request again with the original bi_end_io after an
542 * error occurs or post flush is complete.
551 bio_for_each_segment(bvec
, bio
, i
) {
552 bvec
->bv_len
+= bvec
->bv_offset
;
557 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
558 bio
->bi_size
= q
->bi_size
;
559 bio
->bi_sector
-= (q
->bi_size
>> 9);
565 static int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
566 unsigned int nbytes
, int error
)
568 request_queue_t
*q
= rq
->q
;
572 if (&q
->bar_rq
!= rq
)
576 * Okay, this is the barrier request in progress, dry finish it.
578 if (error
&& !q
->orderr
)
581 endio
= bio
->bi_end_io
;
582 private = bio
->bi_private
;
583 bio
->bi_end_io
= flush_dry_bio_endio
;
586 bio_endio(bio
, nbytes
, error
);
588 bio
->bi_end_io
= endio
;
589 bio
->bi_private
= private;
595 * blk_queue_bounce_limit - set bounce buffer limit for queue
596 * @q: the request queue for the device
597 * @dma_addr: bus address limit
600 * Different hardware can have different requirements as to what pages
601 * it can do I/O directly to. A low level driver can call
602 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
603 * buffers for doing I/O to pages residing above @page.
605 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
607 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
610 q
->bounce_gfp
= GFP_NOIO
;
611 #if BITS_PER_LONG == 64
612 /* Assume anything <= 4GB can be handled by IOMMU.
613 Actually some IOMMUs can handle everything, but I don't
614 know of a way to test this here. */
615 if (bounce_pfn
< (min_t(u64
,0xffffffff,BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
617 q
->bounce_pfn
= max_low_pfn
;
619 if (bounce_pfn
< blk_max_low_pfn
)
621 q
->bounce_pfn
= bounce_pfn
;
624 init_emergency_isa_pool();
625 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
626 q
->bounce_pfn
= bounce_pfn
;
630 EXPORT_SYMBOL(blk_queue_bounce_limit
);
633 * blk_queue_max_sectors - set max sectors for a request for this queue
634 * @q: the request queue for the device
635 * @max_sectors: max sectors in the usual 512b unit
638 * Enables a low level driver to set an upper limit on the size of
641 void blk_queue_max_sectors(request_queue_t
*q
, unsigned int max_sectors
)
643 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
644 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
645 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
648 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
649 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
651 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
652 q
->max_hw_sectors
= max_sectors
;
656 EXPORT_SYMBOL(blk_queue_max_sectors
);
659 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
660 * @q: the request queue for the device
661 * @max_segments: max number of segments
664 * Enables a low level driver to set an upper limit on the number of
665 * physical data segments in a request. This would be the largest sized
666 * scatter list the driver could handle.
668 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
672 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
675 q
->max_phys_segments
= max_segments
;
678 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
681 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
682 * @q: the request queue for the device
683 * @max_segments: max number of segments
686 * Enables a low level driver to set an upper limit on the number of
687 * hw data segments in a request. This would be the largest number of
688 * address/length pairs the host adapter can actually give as once
691 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
695 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
698 q
->max_hw_segments
= max_segments
;
701 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
704 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
705 * @q: the request queue for the device
706 * @max_size: max size of segment in bytes
709 * Enables a low level driver to set an upper limit on the size of a
712 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
714 if (max_size
< PAGE_CACHE_SIZE
) {
715 max_size
= PAGE_CACHE_SIZE
;
716 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
719 q
->max_segment_size
= max_size
;
722 EXPORT_SYMBOL(blk_queue_max_segment_size
);
725 * blk_queue_hardsect_size - set hardware sector size for the queue
726 * @q: the request queue for the device
727 * @size: the hardware sector size, in bytes
730 * This should typically be set to the lowest possible sector size
731 * that the hardware can operate on (possible without reverting to
732 * even internal read-modify-write operations). Usually the default
733 * of 512 covers most hardware.
735 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
737 q
->hardsect_size
= size
;
740 EXPORT_SYMBOL(blk_queue_hardsect_size
);
743 * Returns the minimum that is _not_ zero, unless both are zero.
745 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
748 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
749 * @t: the stacking driver (top)
750 * @b: the underlying device (bottom)
752 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
754 /* zero is "infinity" */
755 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
756 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
758 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
759 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
760 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
761 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
762 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
763 clear_bit(QUEUE_FLAG_CLUSTER
, &t
->queue_flags
);
766 EXPORT_SYMBOL(blk_queue_stack_limits
);
769 * blk_queue_segment_boundary - set boundary rules for segment merging
770 * @q: the request queue for the device
771 * @mask: the memory boundary mask
773 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
775 if (mask
< PAGE_CACHE_SIZE
- 1) {
776 mask
= PAGE_CACHE_SIZE
- 1;
777 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
780 q
->seg_boundary_mask
= mask
;
783 EXPORT_SYMBOL(blk_queue_segment_boundary
);
786 * blk_queue_dma_alignment - set dma length and memory alignment
787 * @q: the request queue for the device
788 * @mask: alignment mask
791 * set required memory and length aligment for direct dma transactions.
792 * this is used when buiding direct io requests for the queue.
795 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
797 q
->dma_alignment
= mask
;
800 EXPORT_SYMBOL(blk_queue_dma_alignment
);
803 * blk_queue_find_tag - find a request by its tag and queue
804 * @q: The request queue for the device
805 * @tag: The tag of the request
808 * Should be used when a device returns a tag and you want to match
811 * no locks need be held.
813 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
815 return blk_map_queue_find_tag(q
->queue_tags
, tag
);
818 EXPORT_SYMBOL(blk_queue_find_tag
);
821 * __blk_free_tags - release a given set of tag maintenance info
822 * @bqt: the tag map to free
824 * Tries to free the specified @bqt@. Returns true if it was
825 * actually freed and false if there are still references using it
827 static int __blk_free_tags(struct blk_queue_tag
*bqt
)
831 retval
= atomic_dec_and_test(&bqt
->refcnt
);
834 BUG_ON(!list_empty(&bqt
->busy_list
));
836 kfree(bqt
->tag_index
);
837 bqt
->tag_index
= NULL
;
850 * __blk_queue_free_tags - release tag maintenance info
851 * @q: the request queue for the device
854 * blk_cleanup_queue() will take care of calling this function, if tagging
855 * has been used. So there's no need to call this directly.
857 static void __blk_queue_free_tags(request_queue_t
*q
)
859 struct blk_queue_tag
*bqt
= q
->queue_tags
;
864 __blk_free_tags(bqt
);
866 q
->queue_tags
= NULL
;
867 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
872 * blk_free_tags - release a given set of tag maintenance info
873 * @bqt: the tag map to free
875 * For externally managed @bqt@ frees the map. Callers of this
876 * function must guarantee to have released all the queues that
877 * might have been using this tag map.
879 void blk_free_tags(struct blk_queue_tag
*bqt
)
881 if (unlikely(!__blk_free_tags(bqt
)))
884 EXPORT_SYMBOL(blk_free_tags
);
887 * blk_queue_free_tags - release tag maintenance info
888 * @q: the request queue for the device
891 * This is used to disabled tagged queuing to a device, yet leave
894 void blk_queue_free_tags(request_queue_t
*q
)
896 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
899 EXPORT_SYMBOL(blk_queue_free_tags
);
902 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
904 struct request
**tag_index
;
905 unsigned long *tag_map
;
908 if (q
&& depth
> q
->nr_requests
* 2) {
909 depth
= q
->nr_requests
* 2;
910 printk(KERN_ERR
"%s: adjusted depth to %d\n",
911 __FUNCTION__
, depth
);
914 tag_index
= kzalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
918 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
919 tag_map
= kzalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
923 tags
->real_max_depth
= depth
;
924 tags
->max_depth
= depth
;
925 tags
->tag_index
= tag_index
;
926 tags
->tag_map
= tag_map
;
934 static struct blk_queue_tag
*__blk_queue_init_tags(struct request_queue
*q
,
937 struct blk_queue_tag
*tags
;
939 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
943 if (init_tag_map(q
, tags
, depth
))
946 INIT_LIST_HEAD(&tags
->busy_list
);
948 atomic_set(&tags
->refcnt
, 1);
956 * blk_init_tags - initialize the tag info for an external tag map
957 * @depth: the maximum queue depth supported
958 * @tags: the tag to use
960 struct blk_queue_tag
*blk_init_tags(int depth
)
962 return __blk_queue_init_tags(NULL
, depth
);
964 EXPORT_SYMBOL(blk_init_tags
);
967 * blk_queue_init_tags - initialize the queue tag info
968 * @q: the request queue for the device
969 * @depth: the maximum queue depth supported
970 * @tags: the tag to use
972 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
973 struct blk_queue_tag
*tags
)
977 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
979 if (!tags
&& !q
->queue_tags
) {
980 tags
= __blk_queue_init_tags(q
, depth
);
984 } else if (q
->queue_tags
) {
985 if ((rc
= blk_queue_resize_tags(q
, depth
)))
987 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
990 atomic_inc(&tags
->refcnt
);
993 * assign it, all done
995 q
->queue_tags
= tags
;
996 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
1003 EXPORT_SYMBOL(blk_queue_init_tags
);
1006 * blk_queue_resize_tags - change the queueing depth
1007 * @q: the request queue for the device
1008 * @new_depth: the new max command queueing depth
1011 * Must be called with the queue lock held.
1013 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
1015 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1016 struct request
**tag_index
;
1017 unsigned long *tag_map
;
1018 int max_depth
, nr_ulongs
;
1024 * if we already have large enough real_max_depth. just
1025 * adjust max_depth. *NOTE* as requests with tag value
1026 * between new_depth and real_max_depth can be in-flight, tag
1027 * map can not be shrunk blindly here.
1029 if (new_depth
<= bqt
->real_max_depth
) {
1030 bqt
->max_depth
= new_depth
;
1035 * Currently cannot replace a shared tag map with a new
1036 * one, so error out if this is the case
1038 if (atomic_read(&bqt
->refcnt
) != 1)
1042 * save the old state info, so we can copy it back
1044 tag_index
= bqt
->tag_index
;
1045 tag_map
= bqt
->tag_map
;
1046 max_depth
= bqt
->real_max_depth
;
1048 if (init_tag_map(q
, bqt
, new_depth
))
1051 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1052 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1053 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1060 EXPORT_SYMBOL(blk_queue_resize_tags
);
1063 * blk_queue_end_tag - end tag operations for a request
1064 * @q: the request queue for the device
1065 * @rq: the request that has completed
1068 * Typically called when end_that_request_first() returns 0, meaning
1069 * all transfers have been done for a request. It's important to call
1070 * this function before end_that_request_last(), as that will put the
1071 * request back on the free list thus corrupting the internal tag list.
1074 * queue lock must be held.
1076 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1078 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1083 if (unlikely(tag
>= bqt
->real_max_depth
))
1085 * This can happen after tag depth has been reduced.
1086 * FIXME: how about a warning or info message here?
1090 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1091 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1096 list_del_init(&rq
->queuelist
);
1097 rq
->cmd_flags
&= ~REQ_QUEUED
;
1100 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1101 printk(KERN_ERR
"%s: tag %d is missing\n",
1104 bqt
->tag_index
[tag
] = NULL
;
1108 EXPORT_SYMBOL(blk_queue_end_tag
);
1111 * blk_queue_start_tag - find a free tag and assign it
1112 * @q: the request queue for the device
1113 * @rq: the block request that needs tagging
1116 * This can either be used as a stand-alone helper, or possibly be
1117 * assigned as the queue &prep_rq_fn (in which case &struct request
1118 * automagically gets a tag assigned). Note that this function
1119 * assumes that any type of request can be queued! if this is not
1120 * true for your device, you must check the request type before
1121 * calling this function. The request will also be removed from
1122 * the request queue, so it's the drivers responsibility to readd
1123 * it if it should need to be restarted for some reason.
1126 * queue lock must be held.
1128 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1130 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1133 if (unlikely((rq
->cmd_flags
& REQ_QUEUED
))) {
1135 "%s: request %p for device [%s] already tagged %d",
1137 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1142 * Protect against shared tag maps, as we may not have exclusive
1143 * access to the tag map.
1146 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1147 if (tag
>= bqt
->max_depth
)
1150 } while (test_and_set_bit(tag
, bqt
->tag_map
));
1152 rq
->cmd_flags
|= REQ_QUEUED
;
1154 bqt
->tag_index
[tag
] = rq
;
1155 blkdev_dequeue_request(rq
);
1156 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1161 EXPORT_SYMBOL(blk_queue_start_tag
);
1164 * blk_queue_invalidate_tags - invalidate all pending tags
1165 * @q: the request queue for the device
1168 * Hardware conditions may dictate a need to stop all pending requests.
1169 * In this case, we will safely clear the block side of the tag queue and
1170 * readd all requests to the request queue in the right order.
1173 * queue lock must be held.
1175 void blk_queue_invalidate_tags(request_queue_t
*q
)
1177 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1178 struct list_head
*tmp
, *n
;
1181 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1182 rq
= list_entry_rq(tmp
);
1184 if (rq
->tag
== -1) {
1186 "%s: bad tag found on list\n", __FUNCTION__
);
1187 list_del_init(&rq
->queuelist
);
1188 rq
->cmd_flags
&= ~REQ_QUEUED
;
1190 blk_queue_end_tag(q
, rq
);
1192 rq
->cmd_flags
&= ~REQ_STARTED
;
1193 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1197 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1199 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1203 printk("%s: dev %s: type=%x, flags=%x\n", msg
,
1204 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
1207 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1209 rq
->current_nr_sectors
);
1210 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1212 if (blk_pc_request(rq
)) {
1214 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1215 printk("%02x ", rq
->cmd
[bit
]);
1220 EXPORT_SYMBOL(blk_dump_rq_flags
);
1222 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1224 struct bio_vec
*bv
, *bvprv
= NULL
;
1225 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1226 int high
, highprv
= 1;
1228 if (unlikely(!bio
->bi_io_vec
))
1231 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1232 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1233 bio_for_each_segment(bv
, bio
, i
) {
1235 * the trick here is making sure that a high page is never
1236 * considered part of another segment, since that might
1237 * change with the bounce page.
1239 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1240 if (high
|| highprv
)
1241 goto new_hw_segment
;
1243 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1245 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1247 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1249 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1250 goto new_hw_segment
;
1252 seg_size
+= bv
->bv_len
;
1253 hw_seg_size
+= bv
->bv_len
;
1258 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1259 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1260 hw_seg_size
+= bv
->bv_len
;
1263 if (hw_seg_size
> bio
->bi_hw_front_size
)
1264 bio
->bi_hw_front_size
= hw_seg_size
;
1265 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1271 seg_size
= bv
->bv_len
;
1274 if (hw_seg_size
> bio
->bi_hw_back_size
)
1275 bio
->bi_hw_back_size
= hw_seg_size
;
1276 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1277 bio
->bi_hw_front_size
= hw_seg_size
;
1278 bio
->bi_phys_segments
= nr_phys_segs
;
1279 bio
->bi_hw_segments
= nr_hw_segs
;
1280 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1284 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1287 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1290 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1292 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1296 * bio and nxt are contigous in memory, check if the queue allows
1297 * these two to be merged into one
1299 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1305 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1308 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1309 blk_recount_segments(q
, bio
);
1310 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1311 blk_recount_segments(q
, nxt
);
1312 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1313 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1315 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1322 * map a request to scatterlist, return number of sg entries setup. Caller
1323 * must make sure sg can hold rq->nr_phys_segments entries
1325 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1327 struct bio_vec
*bvec
, *bvprv
;
1329 int nsegs
, i
, cluster
;
1332 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1335 * for each bio in rq
1338 rq_for_each_bio(bio
, rq
) {
1340 * for each segment in bio
1342 bio_for_each_segment(bvec
, bio
, i
) {
1343 int nbytes
= bvec
->bv_len
;
1345 if (bvprv
&& cluster
) {
1346 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1349 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1351 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1354 sg
[nsegs
- 1].length
+= nbytes
;
1357 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1358 sg
[nsegs
].page
= bvec
->bv_page
;
1359 sg
[nsegs
].length
= nbytes
;
1360 sg
[nsegs
].offset
= bvec
->bv_offset
;
1365 } /* segments in bio */
1371 EXPORT_SYMBOL(blk_rq_map_sg
);
1374 * the standard queue merge functions, can be overridden with device
1375 * specific ones if so desired
1378 static inline int ll_new_mergeable(request_queue_t
*q
,
1379 struct request
*req
,
1382 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1384 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1385 req
->cmd_flags
|= REQ_NOMERGE
;
1386 if (req
== q
->last_merge
)
1387 q
->last_merge
= NULL
;
1392 * A hw segment is just getting larger, bump just the phys
1395 req
->nr_phys_segments
+= nr_phys_segs
;
1399 static inline int ll_new_hw_segment(request_queue_t
*q
,
1400 struct request
*req
,
1403 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1404 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1406 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1407 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1408 req
->cmd_flags
|= REQ_NOMERGE
;
1409 if (req
== q
->last_merge
)
1410 q
->last_merge
= NULL
;
1415 * This will form the start of a new hw segment. Bump both
1418 req
->nr_hw_segments
+= nr_hw_segs
;
1419 req
->nr_phys_segments
+= nr_phys_segs
;
1423 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1426 unsigned short max_sectors
;
1429 if (unlikely(blk_pc_request(req
)))
1430 max_sectors
= q
->max_hw_sectors
;
1432 max_sectors
= q
->max_sectors
;
1434 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1435 req
->cmd_flags
|= REQ_NOMERGE
;
1436 if (req
== q
->last_merge
)
1437 q
->last_merge
= NULL
;
1440 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1441 blk_recount_segments(q
, req
->biotail
);
1442 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1443 blk_recount_segments(q
, bio
);
1444 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1445 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1446 !BIOVEC_VIRT_OVERSIZE(len
)) {
1447 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1450 if (req
->nr_hw_segments
== 1)
1451 req
->bio
->bi_hw_front_size
= len
;
1452 if (bio
->bi_hw_segments
== 1)
1453 bio
->bi_hw_back_size
= len
;
1458 return ll_new_hw_segment(q
, req
, bio
);
1461 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1464 unsigned short max_sectors
;
1467 if (unlikely(blk_pc_request(req
)))
1468 max_sectors
= q
->max_hw_sectors
;
1470 max_sectors
= q
->max_sectors
;
1473 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1474 req
->cmd_flags
|= REQ_NOMERGE
;
1475 if (req
== q
->last_merge
)
1476 q
->last_merge
= NULL
;
1479 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1480 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1481 blk_recount_segments(q
, bio
);
1482 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1483 blk_recount_segments(q
, req
->bio
);
1484 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1485 !BIOVEC_VIRT_OVERSIZE(len
)) {
1486 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1489 if (bio
->bi_hw_segments
== 1)
1490 bio
->bi_hw_front_size
= len
;
1491 if (req
->nr_hw_segments
== 1)
1492 req
->biotail
->bi_hw_back_size
= len
;
1497 return ll_new_hw_segment(q
, req
, bio
);
1500 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1501 struct request
*next
)
1503 int total_phys_segments
;
1504 int total_hw_segments
;
1507 * First check if the either of the requests are re-queued
1508 * requests. Can't merge them if they are.
1510 if (req
->special
|| next
->special
)
1514 * Will it become too large?
1516 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1519 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1520 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1521 total_phys_segments
--;
1523 if (total_phys_segments
> q
->max_phys_segments
)
1526 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1527 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1528 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1530 * propagate the combined length to the end of the requests
1532 if (req
->nr_hw_segments
== 1)
1533 req
->bio
->bi_hw_front_size
= len
;
1534 if (next
->nr_hw_segments
== 1)
1535 next
->biotail
->bi_hw_back_size
= len
;
1536 total_hw_segments
--;
1539 if (total_hw_segments
> q
->max_hw_segments
)
1542 /* Merge is OK... */
1543 req
->nr_phys_segments
= total_phys_segments
;
1544 req
->nr_hw_segments
= total_hw_segments
;
1549 * "plug" the device if there are no outstanding requests: this will
1550 * force the transfer to start only after we have put all the requests
1553 * This is called with interrupts off and no requests on the queue and
1554 * with the queue lock held.
1556 void blk_plug_device(request_queue_t
*q
)
1558 WARN_ON(!irqs_disabled());
1561 * don't plug a stopped queue, it must be paired with blk_start_queue()
1562 * which will restart the queueing
1564 if (blk_queue_stopped(q
))
1567 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
)) {
1568 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1569 blk_add_trace_generic(q
, NULL
, 0, BLK_TA_PLUG
);
1573 EXPORT_SYMBOL(blk_plug_device
);
1576 * remove the queue from the plugged list, if present. called with
1577 * queue lock held and interrupts disabled.
1579 int blk_remove_plug(request_queue_t
*q
)
1581 WARN_ON(!irqs_disabled());
1583 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1586 del_timer(&q
->unplug_timer
);
1590 EXPORT_SYMBOL(blk_remove_plug
);
1593 * remove the plug and let it rip..
1595 void __generic_unplug_device(request_queue_t
*q
)
1597 if (unlikely(blk_queue_stopped(q
)))
1600 if (!blk_remove_plug(q
))
1605 EXPORT_SYMBOL(__generic_unplug_device
);
1608 * generic_unplug_device - fire a request queue
1609 * @q: The &request_queue_t in question
1612 * Linux uses plugging to build bigger requests queues before letting
1613 * the device have at them. If a queue is plugged, the I/O scheduler
1614 * is still adding and merging requests on the queue. Once the queue
1615 * gets unplugged, the request_fn defined for the queue is invoked and
1616 * transfers started.
1618 void generic_unplug_device(request_queue_t
*q
)
1620 spin_lock_irq(q
->queue_lock
);
1621 __generic_unplug_device(q
);
1622 spin_unlock_irq(q
->queue_lock
);
1624 EXPORT_SYMBOL(generic_unplug_device
);
1626 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1629 request_queue_t
*q
= bdi
->unplug_io_data
;
1632 * devices don't necessarily have an ->unplug_fn defined
1635 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1636 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1642 static void blk_unplug_work(void *data
)
1644 request_queue_t
*q
= data
;
1646 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_IO
, NULL
,
1647 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1652 static void blk_unplug_timeout(unsigned long data
)
1654 request_queue_t
*q
= (request_queue_t
*)data
;
1656 blk_add_trace_pdu_int(q
, BLK_TA_UNPLUG_TIMER
, NULL
,
1657 q
->rq
.count
[READ
] + q
->rq
.count
[WRITE
]);
1659 kblockd_schedule_work(&q
->unplug_work
);
1663 * blk_start_queue - restart a previously stopped queue
1664 * @q: The &request_queue_t in question
1667 * blk_start_queue() will clear the stop flag on the queue, and call
1668 * the request_fn for the queue if it was in a stopped state when
1669 * entered. Also see blk_stop_queue(). Queue lock must be held.
1671 void blk_start_queue(request_queue_t
*q
)
1673 WARN_ON(!irqs_disabled());
1675 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1678 * one level of recursion is ok and is much faster than kicking
1679 * the unplug handling
1681 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1683 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1686 kblockd_schedule_work(&q
->unplug_work
);
1690 EXPORT_SYMBOL(blk_start_queue
);
1693 * blk_stop_queue - stop a queue
1694 * @q: The &request_queue_t in question
1697 * The Linux block layer assumes that a block driver will consume all
1698 * entries on the request queue when the request_fn strategy is called.
1699 * Often this will not happen, because of hardware limitations (queue
1700 * depth settings). If a device driver gets a 'queue full' response,
1701 * or if it simply chooses not to queue more I/O at one point, it can
1702 * call this function to prevent the request_fn from being called until
1703 * the driver has signalled it's ready to go again. This happens by calling
1704 * blk_start_queue() to restart queue operations. Queue lock must be held.
1706 void blk_stop_queue(request_queue_t
*q
)
1709 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1711 EXPORT_SYMBOL(blk_stop_queue
);
1714 * blk_sync_queue - cancel any pending callbacks on a queue
1718 * The block layer may perform asynchronous callback activity
1719 * on a queue, such as calling the unplug function after a timeout.
1720 * A block device may call blk_sync_queue to ensure that any
1721 * such activity is cancelled, thus allowing it to release resources
1722 * the the callbacks might use. The caller must already have made sure
1723 * that its ->make_request_fn will not re-add plugging prior to calling
1727 void blk_sync_queue(struct request_queue
*q
)
1729 del_timer_sync(&q
->unplug_timer
);
1732 EXPORT_SYMBOL(blk_sync_queue
);
1735 * blk_run_queue - run a single device queue
1736 * @q: The queue to run
1738 void blk_run_queue(struct request_queue
*q
)
1740 unsigned long flags
;
1742 spin_lock_irqsave(q
->queue_lock
, flags
);
1746 * Only recurse once to avoid overrunning the stack, let the unplug
1747 * handling reinvoke the handler shortly if we already got there.
1749 if (!elv_queue_empty(q
)) {
1750 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1752 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1755 kblockd_schedule_work(&q
->unplug_work
);
1759 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1761 EXPORT_SYMBOL(blk_run_queue
);
1764 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1765 * @kobj: the kobj belonging of the request queue to be released
1768 * blk_cleanup_queue is the pair to blk_init_queue() or
1769 * blk_queue_make_request(). It should be called when a request queue is
1770 * being released; typically when a block device is being de-registered.
1771 * Currently, its primary task it to free all the &struct request
1772 * structures that were allocated to the queue and the queue itself.
1775 * Hopefully the low level driver will have finished any
1776 * outstanding requests first...
1778 static void blk_release_queue(struct kobject
*kobj
)
1780 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
1781 struct request_list
*rl
= &q
->rq
;
1786 mempool_destroy(rl
->rq_pool
);
1789 __blk_queue_free_tags(q
);
1791 blk_trace_shutdown(q
);
1793 kmem_cache_free(requestq_cachep
, q
);
1796 void blk_put_queue(request_queue_t
*q
)
1798 kobject_put(&q
->kobj
);
1800 EXPORT_SYMBOL(blk_put_queue
);
1802 void blk_cleanup_queue(request_queue_t
* q
)
1804 mutex_lock(&q
->sysfs_lock
);
1805 set_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
);
1806 mutex_unlock(&q
->sysfs_lock
);
1809 elevator_exit(q
->elevator
);
1814 EXPORT_SYMBOL(blk_cleanup_queue
);
1816 static int blk_init_free_list(request_queue_t
*q
)
1818 struct request_list
*rl
= &q
->rq
;
1820 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1821 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1823 init_waitqueue_head(&rl
->wait
[READ
]);
1824 init_waitqueue_head(&rl
->wait
[WRITE
]);
1826 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1827 mempool_free_slab
, request_cachep
, q
->node
);
1835 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1837 return blk_alloc_queue_node(gfp_mask
, -1);
1839 EXPORT_SYMBOL(blk_alloc_queue
);
1841 static struct kobj_type queue_ktype
;
1843 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1847 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1851 memset(q
, 0, sizeof(*q
));
1852 init_timer(&q
->unplug_timer
);
1854 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
1855 q
->kobj
.ktype
= &queue_ktype
;
1856 kobject_init(&q
->kobj
);
1858 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1859 q
->backing_dev_info
.unplug_io_data
= q
;
1861 mutex_init(&q
->sysfs_lock
);
1865 EXPORT_SYMBOL(blk_alloc_queue_node
);
1868 * blk_init_queue - prepare a request queue for use with a block device
1869 * @rfn: The function to be called to process requests that have been
1870 * placed on the queue.
1871 * @lock: Request queue spin lock
1874 * If a block device wishes to use the standard request handling procedures,
1875 * which sorts requests and coalesces adjacent requests, then it must
1876 * call blk_init_queue(). The function @rfn will be called when there
1877 * are requests on the queue that need to be processed. If the device
1878 * supports plugging, then @rfn may not be called immediately when requests
1879 * are available on the queue, but may be called at some time later instead.
1880 * Plugged queues are generally unplugged when a buffer belonging to one
1881 * of the requests on the queue is needed, or due to memory pressure.
1883 * @rfn is not required, or even expected, to remove all requests off the
1884 * queue, but only as many as it can handle at a time. If it does leave
1885 * requests on the queue, it is responsible for arranging that the requests
1886 * get dealt with eventually.
1888 * The queue spin lock must be held while manipulating the requests on the
1889 * request queue; this lock will be taken also from interrupt context, so irq
1890 * disabling is needed for it.
1892 * Function returns a pointer to the initialized request queue, or NULL if
1893 * it didn't succeed.
1896 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1897 * when the block device is deactivated (such as at module unload).
1900 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1902 return blk_init_queue_node(rfn
, lock
, -1);
1904 EXPORT_SYMBOL(blk_init_queue
);
1907 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1909 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1915 if (blk_init_free_list(q
)) {
1916 kmem_cache_free(requestq_cachep
, q
);
1921 * if caller didn't supply a lock, they get per-queue locking with
1925 spin_lock_init(&q
->__queue_lock
);
1926 lock
= &q
->__queue_lock
;
1929 q
->request_fn
= rfn
;
1930 q
->back_merge_fn
= ll_back_merge_fn
;
1931 q
->front_merge_fn
= ll_front_merge_fn
;
1932 q
->merge_requests_fn
= ll_merge_requests_fn
;
1933 q
->prep_rq_fn
= NULL
;
1934 q
->unplug_fn
= generic_unplug_device
;
1935 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1936 q
->queue_lock
= lock
;
1938 blk_queue_segment_boundary(q
, 0xffffffff);
1940 blk_queue_make_request(q
, __make_request
);
1941 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1943 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1944 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1949 if (!elevator_init(q
, NULL
)) {
1950 blk_queue_congestion_threshold(q
);
1957 EXPORT_SYMBOL(blk_init_queue_node
);
1959 int blk_get_queue(request_queue_t
*q
)
1961 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1962 kobject_get(&q
->kobj
);
1969 EXPORT_SYMBOL(blk_get_queue
);
1971 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1973 if (rq
->cmd_flags
& REQ_ELVPRIV
)
1974 elv_put_request(q
, rq
);
1975 mempool_free(rq
, q
->rq
.rq_pool
);
1978 static struct request
*
1979 blk_alloc_request(request_queue_t
*q
, int rw
, int priv
, gfp_t gfp_mask
)
1981 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1987 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1988 * see bio.h and blkdev.h
1990 rq
->cmd_flags
= rw
| REQ_ALLOCED
;
1993 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
1994 mempool_free(rq
, q
->rq
.rq_pool
);
1997 rq
->cmd_flags
|= REQ_ELVPRIV
;
2004 * ioc_batching returns true if the ioc is a valid batching request and
2005 * should be given priority access to a request.
2007 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
2013 * Make sure the process is able to allocate at least 1 request
2014 * even if the batch times out, otherwise we could theoretically
2017 return ioc
->nr_batch_requests
== q
->nr_batching
||
2018 (ioc
->nr_batch_requests
> 0
2019 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
2023 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2024 * will cause the process to be a "batcher" on all queues in the system. This
2025 * is the behaviour we want though - once it gets a wakeup it should be given
2028 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
2030 if (!ioc
|| ioc_batching(q
, ioc
))
2033 ioc
->nr_batch_requests
= q
->nr_batching
;
2034 ioc
->last_waited
= jiffies
;
2037 static void __freed_request(request_queue_t
*q
, int rw
)
2039 struct request_list
*rl
= &q
->rq
;
2041 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
2042 blk_clear_queue_congested(q
, rw
);
2044 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
2045 if (waitqueue_active(&rl
->wait
[rw
]))
2046 wake_up(&rl
->wait
[rw
]);
2048 blk_clear_queue_full(q
, rw
);
2053 * A request has just been released. Account for it, update the full and
2054 * congestion status, wake up any waiters. Called under q->queue_lock.
2056 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2058 struct request_list
*rl
= &q
->rq
;
2064 __freed_request(q
, rw
);
2066 if (unlikely(rl
->starved
[rw
^ 1]))
2067 __freed_request(q
, rw
^ 1);
2070 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2072 * Get a free request, queue_lock must be held.
2073 * Returns NULL on failure, with queue_lock held.
2074 * Returns !NULL on success, with queue_lock *not held*.
2076 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2079 struct request
*rq
= NULL
;
2080 struct request_list
*rl
= &q
->rq
;
2081 struct io_context
*ioc
= NULL
;
2082 int may_queue
, priv
;
2084 may_queue
= elv_may_queue(q
, rw
);
2085 if (may_queue
== ELV_MQUEUE_NO
)
2088 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2089 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2090 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
2092 * The queue will fill after this allocation, so set
2093 * it as full, and mark this process as "batching".
2094 * This process will be allowed to complete a batch of
2095 * requests, others will be blocked.
2097 if (!blk_queue_full(q
, rw
)) {
2098 ioc_set_batching(q
, ioc
);
2099 blk_set_queue_full(q
, rw
);
2101 if (may_queue
!= ELV_MQUEUE_MUST
2102 && !ioc_batching(q
, ioc
)) {
2104 * The queue is full and the allocating
2105 * process is not a "batcher", and not
2106 * exempted by the IO scheduler
2112 blk_set_queue_congested(q
, rw
);
2116 * Only allow batching queuers to allocate up to 50% over the defined
2117 * limit of requests, otherwise we could have thousands of requests
2118 * allocated with any setting of ->nr_requests
2120 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2124 rl
->starved
[rw
] = 0;
2126 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2130 spin_unlock_irq(q
->queue_lock
);
2132 rq
= blk_alloc_request(q
, rw
, priv
, gfp_mask
);
2133 if (unlikely(!rq
)) {
2135 * Allocation failed presumably due to memory. Undo anything
2136 * we might have messed up.
2138 * Allocating task should really be put onto the front of the
2139 * wait queue, but this is pretty rare.
2141 spin_lock_irq(q
->queue_lock
);
2142 freed_request(q
, rw
, priv
);
2145 * in the very unlikely event that allocation failed and no
2146 * requests for this direction was pending, mark us starved
2147 * so that freeing of a request in the other direction will
2148 * notice us. another possible fix would be to split the
2149 * rq mempool into READ and WRITE
2152 if (unlikely(rl
->count
[rw
] == 0))
2153 rl
->starved
[rw
] = 1;
2159 * ioc may be NULL here, and ioc_batching will be false. That's
2160 * OK, if the queue is under the request limit then requests need
2161 * not count toward the nr_batch_requests limit. There will always
2162 * be some limit enforced by BLK_BATCH_TIME.
2164 if (ioc_batching(q
, ioc
))
2165 ioc
->nr_batch_requests
--;
2169 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_GETRQ
);
2175 * No available requests for this queue, unplug the device and wait for some
2176 * requests to become available.
2178 * Called with q->queue_lock held, and returns with it unlocked.
2180 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2185 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2188 struct request_list
*rl
= &q
->rq
;
2190 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2191 TASK_UNINTERRUPTIBLE
);
2193 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2196 struct io_context
*ioc
;
2198 blk_add_trace_generic(q
, bio
, rw
, BLK_TA_SLEEPRQ
);
2200 __generic_unplug_device(q
);
2201 spin_unlock_irq(q
->queue_lock
);
2205 * After sleeping, we become a "batching" process and
2206 * will be able to allocate at least one request, and
2207 * up to a big batch of them for a small period time.
2208 * See ioc_batching, ioc_set_batching
2210 ioc
= current_io_context(GFP_NOIO
, q
->node
);
2211 ioc_set_batching(q
, ioc
);
2213 spin_lock_irq(q
->queue_lock
);
2215 finish_wait(&rl
->wait
[rw
], &wait
);
2221 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2225 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2227 spin_lock_irq(q
->queue_lock
);
2228 if (gfp_mask
& __GFP_WAIT
) {
2229 rq
= get_request_wait(q
, rw
, NULL
);
2231 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2233 spin_unlock_irq(q
->queue_lock
);
2235 /* q->queue_lock is unlocked at this point */
2239 EXPORT_SYMBOL(blk_get_request
);
2242 * blk_start_queueing - initiate dispatch of requests to device
2243 * @q: request queue to kick into gear
2245 * This is basically a helper to remove the need to know whether a queue
2246 * is plugged or not if someone just wants to initiate dispatch of requests
2249 * The queue lock must be held with interrupts disabled.
2251 void blk_start_queueing(request_queue_t
*q
)
2253 if (!blk_queue_plugged(q
))
2256 __generic_unplug_device(q
);
2258 EXPORT_SYMBOL(blk_start_queueing
);
2261 * blk_requeue_request - put a request back on queue
2262 * @q: request queue where request should be inserted
2263 * @rq: request to be inserted
2266 * Drivers often keep queueing requests until the hardware cannot accept
2267 * more, when that condition happens we need to put the request back
2268 * on the queue. Must be called with queue lock held.
2270 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2272 blk_add_trace_rq(q
, rq
, BLK_TA_REQUEUE
);
2274 if (blk_rq_tagged(rq
))
2275 blk_queue_end_tag(q
, rq
);
2277 elv_requeue_request(q
, rq
);
2280 EXPORT_SYMBOL(blk_requeue_request
);
2283 * blk_insert_request - insert a special request in to a request queue
2284 * @q: request queue where request should be inserted
2285 * @rq: request to be inserted
2286 * @at_head: insert request at head or tail of queue
2287 * @data: private data
2290 * Many block devices need to execute commands asynchronously, so they don't
2291 * block the whole kernel from preemption during request execution. This is
2292 * accomplished normally by inserting aritficial requests tagged as
2293 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2294 * scheduled for actual execution by the request queue.
2296 * We have the option of inserting the head or the tail of the queue.
2297 * Typically we use the tail for new ioctls and so forth. We use the head
2298 * of the queue for things like a QUEUE_FULL message from a device, or a
2299 * host that is unable to accept a particular command.
2301 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2302 int at_head
, void *data
)
2304 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2305 unsigned long flags
;
2308 * tell I/O scheduler that this isn't a regular read/write (ie it
2309 * must not attempt merges on this) and that it acts as a soft
2312 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
2313 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
2317 spin_lock_irqsave(q
->queue_lock
, flags
);
2320 * If command is tagged, release the tag
2322 if (blk_rq_tagged(rq
))
2323 blk_queue_end_tag(q
, rq
);
2325 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2326 __elv_add_request(q
, rq
, where
, 0);
2327 blk_start_queueing(q
);
2328 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2331 EXPORT_SYMBOL(blk_insert_request
);
2334 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2335 * @q: request queue where request should be inserted
2336 * @rq: request structure to fill
2337 * @ubuf: the user buffer
2338 * @len: length of user data
2341 * Data will be mapped directly for zero copy io, if possible. Otherwise
2342 * a kernel bounce buffer is used.
2344 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2345 * still in process context.
2347 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2348 * before being submitted to the device, as pages mapped may be out of
2349 * reach. It's the callers responsibility to make sure this happens. The
2350 * original bio must be passed back in to blk_rq_unmap_user() for proper
2353 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2356 unsigned long uaddr
;
2360 if (len
> (q
->max_hw_sectors
<< 9))
2365 reading
= rq_data_dir(rq
) == READ
;
2368 * if alignment requirement is satisfied, map in user pages for
2369 * direct dma. else, set up kernel bounce buffers
2371 uaddr
= (unsigned long) ubuf
;
2372 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2373 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2375 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2378 rq
->bio
= rq
->biotail
= bio
;
2379 blk_rq_bio_prep(q
, rq
, bio
);
2381 rq
->buffer
= rq
->data
= NULL
;
2387 * bio is the err-ptr
2389 return PTR_ERR(bio
);
2392 EXPORT_SYMBOL(blk_rq_map_user
);
2395 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2396 * @q: request queue where request should be inserted
2397 * @rq: request to map data to
2398 * @iov: pointer to the iovec
2399 * @iov_count: number of elements in the iovec
2402 * Data will be mapped directly for zero copy io, if possible. Otherwise
2403 * a kernel bounce buffer is used.
2405 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2406 * still in process context.
2408 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2409 * before being submitted to the device, as pages mapped may be out of
2410 * reach. It's the callers responsibility to make sure this happens. The
2411 * original bio must be passed back in to blk_rq_unmap_user() for proper
2414 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2415 struct sg_iovec
*iov
, int iov_count
)
2419 if (!iov
|| iov_count
<= 0)
2422 /* we don't allow misaligned data like bio_map_user() does. If the
2423 * user is using sg, they're expected to know the alignment constraints
2424 * and respect them accordingly */
2425 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2427 return PTR_ERR(bio
);
2429 rq
->bio
= rq
->biotail
= bio
;
2430 blk_rq_bio_prep(q
, rq
, bio
);
2431 rq
->buffer
= rq
->data
= NULL
;
2432 rq
->data_len
= bio
->bi_size
;
2436 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2439 * blk_rq_unmap_user - unmap a request with user data
2440 * @bio: bio to be unmapped
2441 * @ulen: length of user buffer
2444 * Unmap a bio previously mapped by blk_rq_map_user().
2446 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2451 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2452 bio_unmap_user(bio
);
2454 ret
= bio_uncopy_user(bio
);
2460 EXPORT_SYMBOL(blk_rq_unmap_user
);
2463 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2464 * @q: request queue where request should be inserted
2465 * @rq: request to fill
2466 * @kbuf: the kernel buffer
2467 * @len: length of user data
2468 * @gfp_mask: memory allocation flags
2470 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2471 unsigned int len
, gfp_t gfp_mask
)
2475 if (len
> (q
->max_hw_sectors
<< 9))
2480 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2482 return PTR_ERR(bio
);
2484 if (rq_data_dir(rq
) == WRITE
)
2485 bio
->bi_rw
|= (1 << BIO_RW
);
2487 rq
->bio
= rq
->biotail
= bio
;
2488 blk_rq_bio_prep(q
, rq
, bio
);
2490 rq
->buffer
= rq
->data
= NULL
;
2495 EXPORT_SYMBOL(blk_rq_map_kern
);
2498 * blk_execute_rq_nowait - insert a request into queue for execution
2499 * @q: queue to insert the request in
2500 * @bd_disk: matching gendisk
2501 * @rq: request to insert
2502 * @at_head: insert request at head or tail of queue
2503 * @done: I/O completion handler
2506 * Insert a fully prepared request at the back of the io scheduler queue
2507 * for execution. Don't wait for completion.
2509 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2510 struct request
*rq
, int at_head
,
2513 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2515 rq
->rq_disk
= bd_disk
;
2516 rq
->cmd_flags
|= REQ_NOMERGE
;
2518 WARN_ON(irqs_disabled());
2519 spin_lock_irq(q
->queue_lock
);
2520 __elv_add_request(q
, rq
, where
, 1);
2521 __generic_unplug_device(q
);
2522 spin_unlock_irq(q
->queue_lock
);
2524 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2527 * blk_execute_rq - insert a request into queue for execution
2528 * @q: queue to insert the request in
2529 * @bd_disk: matching gendisk
2530 * @rq: request to insert
2531 * @at_head: insert request at head or tail of queue
2534 * Insert a fully prepared request at the back of the io scheduler queue
2535 * for execution and wait for completion.
2537 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2538 struct request
*rq
, int at_head
)
2540 DECLARE_COMPLETION_ONSTACK(wait
);
2541 char sense
[SCSI_SENSE_BUFFERSIZE
];
2545 * we need an extra reference to the request, so we can look at
2546 * it after io completion
2551 memset(sense
, 0, sizeof(sense
));
2556 rq
->end_io_data
= &wait
;
2557 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2558 wait_for_completion(&wait
);
2566 EXPORT_SYMBOL(blk_execute_rq
);
2569 * blkdev_issue_flush - queue a flush
2570 * @bdev: blockdev to issue flush for
2571 * @error_sector: error sector
2574 * Issue a flush for the block device in question. Caller can supply
2575 * room for storing the error offset in case of a flush error, if they
2576 * wish to. Caller must run wait_for_completion() on its own.
2578 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2582 if (bdev
->bd_disk
== NULL
)
2585 q
= bdev_get_queue(bdev
);
2588 if (!q
->issue_flush_fn
)
2591 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2594 EXPORT_SYMBOL(blkdev_issue_flush
);
2596 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2598 int rw
= rq_data_dir(rq
);
2600 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2604 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2606 disk_round_stats(rq
->rq_disk
);
2607 rq
->rq_disk
->in_flight
++;
2612 * add-request adds a request to the linked list.
2613 * queue lock is held and interrupts disabled, as we muck with the
2614 * request queue list.
2616 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2618 drive_stat_acct(req
, req
->nr_sectors
, 1);
2621 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2624 * elevator indicated where it wants this request to be
2625 * inserted at elevator_merge time
2627 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2631 * disk_round_stats() - Round off the performance stats on a struct
2634 * The average IO queue length and utilisation statistics are maintained
2635 * by observing the current state of the queue length and the amount of
2636 * time it has been in this state for.
2638 * Normally, that accounting is done on IO completion, but that can result
2639 * in more than a second's worth of IO being accounted for within any one
2640 * second, leading to >100% utilisation. To deal with that, we call this
2641 * function to do a round-off before returning the results when reading
2642 * /proc/diskstats. This accounts immediately for all queue usage up to
2643 * the current jiffies and restarts the counters again.
2645 void disk_round_stats(struct gendisk
*disk
)
2647 unsigned long now
= jiffies
;
2649 if (now
== disk
->stamp
)
2652 if (disk
->in_flight
) {
2653 __disk_stat_add(disk
, time_in_queue
,
2654 disk
->in_flight
* (now
- disk
->stamp
));
2655 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2660 EXPORT_SYMBOL_GPL(disk_round_stats
);
2663 * queue lock must be held
2665 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2669 if (unlikely(--req
->ref_count
))
2672 elv_completed_request(q
, req
);
2675 * Request may not have originated from ll_rw_blk. if not,
2676 * it didn't come out of our reserved rq pools
2678 if (req
->cmd_flags
& REQ_ALLOCED
) {
2679 int rw
= rq_data_dir(req
);
2680 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
2682 BUG_ON(!list_empty(&req
->queuelist
));
2683 BUG_ON(!hlist_unhashed(&req
->hash
));
2685 blk_free_request(q
, req
);
2686 freed_request(q
, rw
, priv
);
2690 EXPORT_SYMBOL_GPL(__blk_put_request
);
2692 void blk_put_request(struct request
*req
)
2694 unsigned long flags
;
2695 request_queue_t
*q
= req
->q
;
2698 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2699 * following if (q) test.
2702 spin_lock_irqsave(q
->queue_lock
, flags
);
2703 __blk_put_request(q
, req
);
2704 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2708 EXPORT_SYMBOL(blk_put_request
);
2711 * blk_end_sync_rq - executes a completion event on a request
2712 * @rq: request to complete
2713 * @error: end io status of the request
2715 void blk_end_sync_rq(struct request
*rq
, int error
)
2717 struct completion
*waiting
= rq
->end_io_data
;
2719 rq
->end_io_data
= NULL
;
2720 __blk_put_request(rq
->q
, rq
);
2723 * complete last, if this is a stack request the process (and thus
2724 * the rq pointer) could be invalid right after this complete()
2728 EXPORT_SYMBOL(blk_end_sync_rq
);
2731 * Has to be called with the request spinlock acquired
2733 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2734 struct request
*next
)
2736 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2742 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2745 if (rq_data_dir(req
) != rq_data_dir(next
)
2746 || req
->rq_disk
!= next
->rq_disk
2751 * If we are allowed to merge, then append bio list
2752 * from next to rq and release next. merge_requests_fn
2753 * will have updated segment counts, update sector
2756 if (!q
->merge_requests_fn(q
, req
, next
))
2760 * At this point we have either done a back merge
2761 * or front merge. We need the smaller start_time of
2762 * the merged requests to be the current request
2763 * for accounting purposes.
2765 if (time_after(req
->start_time
, next
->start_time
))
2766 req
->start_time
= next
->start_time
;
2768 req
->biotail
->bi_next
= next
->bio
;
2769 req
->biotail
= next
->biotail
;
2771 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2773 elv_merge_requests(q
, req
, next
);
2776 disk_round_stats(req
->rq_disk
);
2777 req
->rq_disk
->in_flight
--;
2780 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2782 __blk_put_request(q
, next
);
2786 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2788 struct request
*next
= elv_latter_request(q
, rq
);
2791 return attempt_merge(q
, rq
, next
);
2796 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2798 struct request
*prev
= elv_former_request(q
, rq
);
2801 return attempt_merge(q
, prev
, rq
);
2806 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2808 req
->cmd_type
= REQ_TYPE_FS
;
2811 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2813 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2814 req
->cmd_flags
|= REQ_FAILFAST
;
2817 * REQ_BARRIER implies no merging, but lets make it explicit
2819 if (unlikely(bio_barrier(bio
)))
2820 req
->cmd_flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2823 req
->cmd_flags
|= REQ_RW_SYNC
;
2824 if (bio_rw_meta(bio
))
2825 req
->cmd_flags
|= REQ_RW_META
;
2828 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2829 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2830 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2831 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2832 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2833 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2834 req
->bio
= req
->biotail
= bio
;
2835 req
->ioprio
= bio_prio(bio
);
2836 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2837 req
->start_time
= jiffies
;
2840 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2842 struct request
*req
;
2843 int el_ret
, nr_sectors
, barrier
, err
;
2844 const unsigned short prio
= bio_prio(bio
);
2845 const int sync
= bio_sync(bio
);
2847 nr_sectors
= bio_sectors(bio
);
2850 * low level driver can indicate that it wants pages above a
2851 * certain limit bounced to low memory (ie for highmem, or even
2852 * ISA dma in theory)
2854 blk_queue_bounce(q
, &bio
);
2856 barrier
= bio_barrier(bio
);
2857 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2862 spin_lock_irq(q
->queue_lock
);
2864 if (unlikely(barrier
) || elv_queue_empty(q
))
2867 el_ret
= elv_merge(q
, &req
, bio
);
2869 case ELEVATOR_BACK_MERGE
:
2870 BUG_ON(!rq_mergeable(req
));
2872 if (!q
->back_merge_fn(q
, req
, bio
))
2875 blk_add_trace_bio(q
, bio
, BLK_TA_BACKMERGE
);
2877 req
->biotail
->bi_next
= bio
;
2879 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2880 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2881 drive_stat_acct(req
, nr_sectors
, 0);
2882 if (!attempt_back_merge(q
, req
))
2883 elv_merged_request(q
, req
, el_ret
);
2886 case ELEVATOR_FRONT_MERGE
:
2887 BUG_ON(!rq_mergeable(req
));
2889 if (!q
->front_merge_fn(q
, req
, bio
))
2892 blk_add_trace_bio(q
, bio
, BLK_TA_FRONTMERGE
);
2894 bio
->bi_next
= req
->bio
;
2898 * may not be valid. if the low level driver said
2899 * it didn't need a bounce buffer then it better
2900 * not touch req->buffer either...
2902 req
->buffer
= bio_data(bio
);
2903 req
->current_nr_sectors
= bio_cur_sectors(bio
);
2904 req
->hard_cur_sectors
= req
->current_nr_sectors
;
2905 req
->sector
= req
->hard_sector
= bio
->bi_sector
;
2906 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2907 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2908 drive_stat_acct(req
, nr_sectors
, 0);
2909 if (!attempt_front_merge(q
, req
))
2910 elv_merged_request(q
, req
, el_ret
);
2913 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2920 * Grab a free request. This is might sleep but can not fail.
2921 * Returns with the queue unlocked.
2923 req
= get_request_wait(q
, bio_data_dir(bio
), bio
);
2926 * After dropping the lock and possibly sleeping here, our request
2927 * may now be mergeable after it had proven unmergeable (above).
2928 * We don't worry about that case for efficiency. It won't happen
2929 * often, and the elevators are able to handle it.
2931 init_request_from_bio(req
, bio
);
2933 spin_lock_irq(q
->queue_lock
);
2934 if (elv_queue_empty(q
))
2936 add_request(q
, req
);
2939 __generic_unplug_device(q
);
2941 spin_unlock_irq(q
->queue_lock
);
2945 bio_endio(bio
, nr_sectors
<< 9, err
);
2950 * If bio->bi_dev is a partition, remap the location
2952 static inline void blk_partition_remap(struct bio
*bio
)
2954 struct block_device
*bdev
= bio
->bi_bdev
;
2956 if (bdev
!= bdev
->bd_contains
) {
2957 struct hd_struct
*p
= bdev
->bd_part
;
2958 const int rw
= bio_data_dir(bio
);
2960 p
->sectors
[rw
] += bio_sectors(bio
);
2963 bio
->bi_sector
+= p
->start_sect
;
2964 bio
->bi_bdev
= bdev
->bd_contains
;
2968 static void handle_bad_sector(struct bio
*bio
)
2970 char b
[BDEVNAME_SIZE
];
2972 printk(KERN_INFO
"attempt to access beyond end of device\n");
2973 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2974 bdevname(bio
->bi_bdev
, b
),
2976 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2977 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2979 set_bit(BIO_EOF
, &bio
->bi_flags
);
2983 * generic_make_request: hand a buffer to its device driver for I/O
2984 * @bio: The bio describing the location in memory and on the device.
2986 * generic_make_request() is used to make I/O requests of block
2987 * devices. It is passed a &struct bio, which describes the I/O that needs
2990 * generic_make_request() does not return any status. The
2991 * success/failure status of the request, along with notification of
2992 * completion, is delivered asynchronously through the bio->bi_end_io
2993 * function described (one day) else where.
2995 * The caller of generic_make_request must make sure that bi_io_vec
2996 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2997 * set to describe the device address, and the
2998 * bi_end_io and optionally bi_private are set to describe how
2999 * completion notification should be signaled.
3001 * generic_make_request and the drivers it calls may use bi_next if this
3002 * bio happens to be merged with someone else, and may change bi_dev and
3003 * bi_sector for remaps as it sees fit. So the values of these fields
3004 * should NOT be depended on after the call to generic_make_request.
3006 void generic_make_request(struct bio
*bio
)
3010 sector_t old_sector
;
3011 int ret
, nr_sectors
= bio_sectors(bio
);
3015 /* Test device or partition size, when known. */
3016 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3018 sector_t sector
= bio
->bi_sector
;
3020 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
3022 * This may well happen - the kernel calls bread()
3023 * without checking the size of the device, e.g., when
3024 * mounting a device.
3026 handle_bad_sector(bio
);
3032 * Resolve the mapping until finished. (drivers are
3033 * still free to implement/resolve their own stacking
3034 * by explicitly returning 0)
3036 * NOTE: we don't repeat the blk_size check for each new device.
3037 * Stacking drivers are expected to know what they are doing.
3042 char b
[BDEVNAME_SIZE
];
3044 q
= bdev_get_queue(bio
->bi_bdev
);
3047 "generic_make_request: Trying to access "
3048 "nonexistent block-device %s (%Lu)\n",
3049 bdevname(bio
->bi_bdev
, b
),
3050 (long long) bio
->bi_sector
);
3052 bio_endio(bio
, bio
->bi_size
, -EIO
);
3056 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3057 printk("bio too big device %s (%u > %u)\n",
3058 bdevname(bio
->bi_bdev
, b
),
3064 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3068 * If this device has partitions, remap block n
3069 * of partition p to block n+start(p) of the disk.
3071 blk_partition_remap(bio
);
3073 if (old_sector
!= -1)
3074 blk_add_trace_remap(q
, bio
, old_dev
, bio
->bi_sector
,
3077 blk_add_trace_bio(q
, bio
, BLK_TA_QUEUE
);
3079 old_sector
= bio
->bi_sector
;
3080 old_dev
= bio
->bi_bdev
->bd_dev
;
3082 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
3084 sector_t sector
= bio
->bi_sector
;
3086 if (maxsector
< nr_sectors
||
3087 maxsector
- nr_sectors
< sector
) {
3089 * This may well happen - partitions are not
3090 * checked to make sure they are within the size
3091 * of the whole device.
3093 handle_bad_sector(bio
);
3098 ret
= q
->make_request_fn(q
, bio
);
3102 EXPORT_SYMBOL(generic_make_request
);
3105 * submit_bio: submit a bio to the block device layer for I/O
3106 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3107 * @bio: The &struct bio which describes the I/O
3109 * submit_bio() is very similar in purpose to generic_make_request(), and
3110 * uses that function to do most of the work. Both are fairly rough
3111 * interfaces, @bio must be presetup and ready for I/O.
3114 void submit_bio(int rw
, struct bio
*bio
)
3116 int count
= bio_sectors(bio
);
3118 BIO_BUG_ON(!bio
->bi_size
);
3119 BIO_BUG_ON(!bio
->bi_io_vec
);
3122 count_vm_events(PGPGOUT
, count
);
3124 count_vm_events(PGPGIN
, count
);
3126 if (unlikely(block_dump
)) {
3127 char b
[BDEVNAME_SIZE
];
3128 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3129 current
->comm
, current
->pid
,
3130 (rw
& WRITE
) ? "WRITE" : "READ",
3131 (unsigned long long)bio
->bi_sector
,
3132 bdevname(bio
->bi_bdev
,b
));
3135 generic_make_request(bio
);
3138 EXPORT_SYMBOL(submit_bio
);
3140 static void blk_recalc_rq_segments(struct request
*rq
)
3142 struct bio
*bio
, *prevbio
= NULL
;
3143 int nr_phys_segs
, nr_hw_segs
;
3144 unsigned int phys_size
, hw_size
;
3145 request_queue_t
*q
= rq
->q
;
3150 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3151 rq_for_each_bio(bio
, rq
) {
3152 /* Force bio hw/phys segs to be recalculated. */
3153 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3155 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3156 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3158 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3159 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3161 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3162 pseg
<= q
->max_segment_size
) {
3164 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3168 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3169 hseg
<= q
->max_segment_size
) {
3171 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3178 rq
->nr_phys_segments
= nr_phys_segs
;
3179 rq
->nr_hw_segments
= nr_hw_segs
;
3182 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3184 if (blk_fs_request(rq
)) {
3185 rq
->hard_sector
+= nsect
;
3186 rq
->hard_nr_sectors
-= nsect
;
3189 * Move the I/O submission pointers ahead if required.
3191 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3192 (rq
->sector
<= rq
->hard_sector
)) {
3193 rq
->sector
= rq
->hard_sector
;
3194 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3195 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3196 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3197 rq
->buffer
= bio_data(rq
->bio
);
3201 * if total number of sectors is less than the first segment
3202 * size, something has gone terribly wrong
3204 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3205 printk("blk: request botched\n");
3206 rq
->nr_sectors
= rq
->current_nr_sectors
;
3211 static int __end_that_request_first(struct request
*req
, int uptodate
,
3214 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3217 blk_add_trace_rq(req
->q
, req
, BLK_TA_COMPLETE
);
3220 * extend uptodate bool to allow < 0 value to be direct io error
3223 if (end_io_error(uptodate
))
3224 error
= !uptodate
? -EIO
: uptodate
;
3227 * for a REQ_BLOCK_PC request, we want to carry any eventual
3228 * sense key with us all the way through
3230 if (!blk_pc_request(req
))
3234 if (blk_fs_request(req
) && !(req
->cmd_flags
& REQ_QUIET
))
3235 printk("end_request: I/O error, dev %s, sector %llu\n",
3236 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3237 (unsigned long long)req
->sector
);
3240 if (blk_fs_request(req
) && req
->rq_disk
) {
3241 const int rw
= rq_data_dir(req
);
3243 disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3246 total_bytes
= bio_nbytes
= 0;
3247 while ((bio
= req
->bio
) != NULL
) {
3250 if (nr_bytes
>= bio
->bi_size
) {
3251 req
->bio
= bio
->bi_next
;
3252 nbytes
= bio
->bi_size
;
3253 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3254 bio_endio(bio
, nbytes
, error
);
3258 int idx
= bio
->bi_idx
+ next_idx
;
3260 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3261 blk_dump_rq_flags(req
, "__end_that");
3262 printk("%s: bio idx %d >= vcnt %d\n",
3264 bio
->bi_idx
, bio
->bi_vcnt
);
3268 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3269 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3272 * not a complete bvec done
3274 if (unlikely(nbytes
> nr_bytes
)) {
3275 bio_nbytes
+= nr_bytes
;
3276 total_bytes
+= nr_bytes
;
3281 * advance to the next vector
3284 bio_nbytes
+= nbytes
;
3287 total_bytes
+= nbytes
;
3290 if ((bio
= req
->bio
)) {
3292 * end more in this run, or just return 'not-done'
3294 if (unlikely(nr_bytes
<= 0))
3306 * if the request wasn't completed, update state
3309 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3310 bio_endio(bio
, bio_nbytes
, error
);
3311 bio
->bi_idx
+= next_idx
;
3312 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3313 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3316 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3317 blk_recalc_rq_segments(req
);
3322 * end_that_request_first - end I/O on a request
3323 * @req: the request being processed
3324 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3325 * @nr_sectors: number of sectors to end I/O on
3328 * Ends I/O on a number of sectors attached to @req, and sets it up
3329 * for the next range of segments (if any) in the cluster.
3332 * 0 - we are done with this request, call end_that_request_last()
3333 * 1 - still buffers pending for this request
3335 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3337 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3340 EXPORT_SYMBOL(end_that_request_first
);
3343 * end_that_request_chunk - end I/O on a request
3344 * @req: the request being processed
3345 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3346 * @nr_bytes: number of bytes to complete
3349 * Ends I/O on a number of bytes attached to @req, and sets it up
3350 * for the next range of segments (if any). Like end_that_request_first(),
3351 * but deals with bytes instead of sectors.
3354 * 0 - we are done with this request, call end_that_request_last()
3355 * 1 - still buffers pending for this request
3357 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3359 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3362 EXPORT_SYMBOL(end_that_request_chunk
);
3365 * splice the completion data to a local structure and hand off to
3366 * process_completion_queue() to complete the requests
3368 static void blk_done_softirq(struct softirq_action
*h
)
3370 struct list_head
*cpu_list
, local_list
;
3372 local_irq_disable();
3373 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3374 list_replace_init(cpu_list
, &local_list
);
3377 while (!list_empty(&local_list
)) {
3378 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3380 list_del_init(&rq
->donelist
);
3381 rq
->q
->softirq_done_fn(rq
);
3385 #ifdef CONFIG_HOTPLUG_CPU
3387 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3391 * If a CPU goes away, splice its entries to the current CPU
3392 * and trigger a run of the softirq
3394 if (action
== CPU_DEAD
) {
3395 int cpu
= (unsigned long) hcpu
;
3397 local_irq_disable();
3398 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3399 &__get_cpu_var(blk_cpu_done
));
3400 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3408 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3409 .notifier_call
= blk_cpu_notify
,
3412 #endif /* CONFIG_HOTPLUG_CPU */
3415 * blk_complete_request - end I/O on a request
3416 * @req: the request being processed
3419 * Ends all I/O on a request. It does not handle partial completions,
3420 * unless the driver actually implements this in its completion callback
3421 * through requeueing. Theh actual completion happens out-of-order,
3422 * through a softirq handler. The user must have registered a completion
3423 * callback through blk_queue_softirq_done().
3426 void blk_complete_request(struct request
*req
)
3428 struct list_head
*cpu_list
;
3429 unsigned long flags
;
3431 BUG_ON(!req
->q
->softirq_done_fn
);
3433 local_irq_save(flags
);
3435 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3436 list_add_tail(&req
->donelist
, cpu_list
);
3437 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3439 local_irq_restore(flags
);
3442 EXPORT_SYMBOL(blk_complete_request
);
3445 * queue lock must be held
3447 void end_that_request_last(struct request
*req
, int uptodate
)
3449 struct gendisk
*disk
= req
->rq_disk
;
3453 * extend uptodate bool to allow < 0 value to be direct io error
3456 if (end_io_error(uptodate
))
3457 error
= !uptodate
? -EIO
: uptodate
;
3459 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3460 laptop_io_completion();
3463 * Account IO completion. bar_rq isn't accounted as a normal
3464 * IO on queueing nor completion. Accounting the containing
3465 * request is enough.
3467 if (disk
&& blk_fs_request(req
) && req
!= &req
->q
->bar_rq
) {
3468 unsigned long duration
= jiffies
- req
->start_time
;
3469 const int rw
= rq_data_dir(req
);
3471 __disk_stat_inc(disk
, ios
[rw
]);
3472 __disk_stat_add(disk
, ticks
[rw
], duration
);
3473 disk_round_stats(disk
);
3477 req
->end_io(req
, error
);
3479 __blk_put_request(req
->q
, req
);
3482 EXPORT_SYMBOL(end_that_request_last
);
3484 void end_request(struct request
*req
, int uptodate
)
3486 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3487 add_disk_randomness(req
->rq_disk
);
3488 blkdev_dequeue_request(req
);
3489 end_that_request_last(req
, uptodate
);
3493 EXPORT_SYMBOL(end_request
);
3495 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3497 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3498 rq
->cmd_flags
|= (bio
->bi_rw
& 3);
3500 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3501 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3502 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3503 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3504 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3505 rq
->buffer
= bio_data(bio
);
3507 rq
->bio
= rq
->biotail
= bio
;
3510 EXPORT_SYMBOL(blk_rq_bio_prep
);
3512 int kblockd_schedule_work(struct work_struct
*work
)
3514 return queue_work(kblockd_workqueue
, work
);
3517 EXPORT_SYMBOL(kblockd_schedule_work
);
3519 void kblockd_flush(void)
3521 flush_workqueue(kblockd_workqueue
);
3523 EXPORT_SYMBOL(kblockd_flush
);
3525 int __init
blk_dev_init(void)
3529 kblockd_workqueue
= create_workqueue("kblockd");
3530 if (!kblockd_workqueue
)
3531 panic("Failed to create kblockd\n");
3533 request_cachep
= kmem_cache_create("blkdev_requests",
3534 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3536 requestq_cachep
= kmem_cache_create("blkdev_queue",
3537 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3539 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3540 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3542 for_each_possible_cpu(i
)
3543 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3545 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3546 register_hotcpu_notifier(&blk_cpu_notifier
);
3548 blk_max_low_pfn
= max_low_pfn
;
3549 blk_max_pfn
= max_pfn
;
3555 * IO Context helper functions
3557 void put_io_context(struct io_context
*ioc
)
3562 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3564 if (atomic_dec_and_test(&ioc
->refcount
)) {
3565 struct cfq_io_context
*cic
;
3568 if (ioc
->aic
&& ioc
->aic
->dtor
)
3569 ioc
->aic
->dtor(ioc
->aic
);
3570 if (ioc
->cic_root
.rb_node
!= NULL
) {
3571 struct rb_node
*n
= rb_first(&ioc
->cic_root
);
3573 cic
= rb_entry(n
, struct cfq_io_context
, rb_node
);
3578 kmem_cache_free(iocontext_cachep
, ioc
);
3581 EXPORT_SYMBOL(put_io_context
);
3583 /* Called by the exitting task */
3584 void exit_io_context(void)
3586 struct io_context
*ioc
;
3587 struct cfq_io_context
*cic
;
3590 ioc
= current
->io_context
;
3591 current
->io_context
= NULL
;
3592 task_unlock(current
);
3595 if (ioc
->aic
&& ioc
->aic
->exit
)
3596 ioc
->aic
->exit(ioc
->aic
);
3597 if (ioc
->cic_root
.rb_node
!= NULL
) {
3598 cic
= rb_entry(rb_first(&ioc
->cic_root
), struct cfq_io_context
, rb_node
);
3602 put_io_context(ioc
);
3606 * If the current task has no IO context then create one and initialise it.
3607 * Otherwise, return its existing IO context.
3609 * This returned IO context doesn't have a specifically elevated refcount,
3610 * but since the current task itself holds a reference, the context can be
3611 * used in general code, so long as it stays within `current` context.
3613 static struct io_context
*current_io_context(gfp_t gfp_flags
, int node
)
3615 struct task_struct
*tsk
= current
;
3616 struct io_context
*ret
;
3618 ret
= tsk
->io_context
;
3622 ret
= kmem_cache_alloc_node(iocontext_cachep
, gfp_flags
, node
);
3624 atomic_set(&ret
->refcount
, 1);
3625 ret
->task
= current
;
3626 ret
->ioprio_changed
= 0;
3627 ret
->last_waited
= jiffies
; /* doesn't matter... */
3628 ret
->nr_batch_requests
= 0; /* because this is 0 */
3630 ret
->cic_root
.rb_node
= NULL
;
3631 /* make sure set_task_ioprio() sees the settings above */
3633 tsk
->io_context
= ret
;
3638 EXPORT_SYMBOL(current_io_context
);
3641 * If the current task has no IO context then create one and initialise it.
3642 * If it does have a context, take a ref on it.
3644 * This is always called in the context of the task which submitted the I/O.
3646 struct io_context
*get_io_context(gfp_t gfp_flags
, int node
)
3648 struct io_context
*ret
;
3649 ret
= current_io_context(gfp_flags
, node
);
3651 atomic_inc(&ret
->refcount
);
3654 EXPORT_SYMBOL(get_io_context
);
3656 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3658 struct io_context
*src
= *psrc
;
3659 struct io_context
*dst
= *pdst
;
3662 BUG_ON(atomic_read(&src
->refcount
) == 0);
3663 atomic_inc(&src
->refcount
);
3664 put_io_context(dst
);
3668 EXPORT_SYMBOL(copy_io_context
);
3670 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3672 struct io_context
*temp
;
3677 EXPORT_SYMBOL(swap_io_context
);
3682 struct queue_sysfs_entry
{
3683 struct attribute attr
;
3684 ssize_t (*show
)(struct request_queue
*, char *);
3685 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3689 queue_var_show(unsigned int var
, char *page
)
3691 return sprintf(page
, "%d\n", var
);
3695 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3697 char *p
= (char *) page
;
3699 *var
= simple_strtoul(p
, &p
, 10);
3703 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3705 return queue_var_show(q
->nr_requests
, (page
));
3709 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3711 struct request_list
*rl
= &q
->rq
;
3713 int ret
= queue_var_store(&nr
, page
, count
);
3714 if (nr
< BLKDEV_MIN_RQ
)
3717 spin_lock_irq(q
->queue_lock
);
3718 q
->nr_requests
= nr
;
3719 blk_queue_congestion_threshold(q
);
3721 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3722 blk_set_queue_congested(q
, READ
);
3723 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3724 blk_clear_queue_congested(q
, READ
);
3726 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3727 blk_set_queue_congested(q
, WRITE
);
3728 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3729 blk_clear_queue_congested(q
, WRITE
);
3731 if (rl
->count
[READ
] >= q
->nr_requests
) {
3732 blk_set_queue_full(q
, READ
);
3733 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3734 blk_clear_queue_full(q
, READ
);
3735 wake_up(&rl
->wait
[READ
]);
3738 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3739 blk_set_queue_full(q
, WRITE
);
3740 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3741 blk_clear_queue_full(q
, WRITE
);
3742 wake_up(&rl
->wait
[WRITE
]);
3744 spin_unlock_irq(q
->queue_lock
);
3748 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3750 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3752 return queue_var_show(ra_kb
, (page
));
3756 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3758 unsigned long ra_kb
;
3759 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3761 spin_lock_irq(q
->queue_lock
);
3762 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3763 spin_unlock_irq(q
->queue_lock
);
3768 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3770 int max_sectors_kb
= q
->max_sectors
>> 1;
3772 return queue_var_show(max_sectors_kb
, (page
));
3776 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3778 unsigned long max_sectors_kb
,
3779 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3780 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3781 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3784 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3787 * Take the queue lock to update the readahead and max_sectors
3788 * values synchronously:
3790 spin_lock_irq(q
->queue_lock
);
3792 * Trim readahead window as well, if necessary:
3794 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3795 if (ra_kb
> max_sectors_kb
)
3796 q
->backing_dev_info
.ra_pages
=
3797 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3799 q
->max_sectors
= max_sectors_kb
<< 1;
3800 spin_unlock_irq(q
->queue_lock
);
3805 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3807 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3809 return queue_var_show(max_hw_sectors_kb
, (page
));
3813 static struct queue_sysfs_entry queue_requests_entry
= {
3814 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3815 .show
= queue_requests_show
,
3816 .store
= queue_requests_store
,
3819 static struct queue_sysfs_entry queue_ra_entry
= {
3820 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3821 .show
= queue_ra_show
,
3822 .store
= queue_ra_store
,
3825 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3826 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3827 .show
= queue_max_sectors_show
,
3828 .store
= queue_max_sectors_store
,
3831 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3832 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3833 .show
= queue_max_hw_sectors_show
,
3836 static struct queue_sysfs_entry queue_iosched_entry
= {
3837 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3838 .show
= elv_iosched_show
,
3839 .store
= elv_iosched_store
,
3842 static struct attribute
*default_attrs
[] = {
3843 &queue_requests_entry
.attr
,
3844 &queue_ra_entry
.attr
,
3845 &queue_max_hw_sectors_entry
.attr
,
3846 &queue_max_sectors_entry
.attr
,
3847 &queue_iosched_entry
.attr
,
3851 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3854 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3856 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3857 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3862 mutex_lock(&q
->sysfs_lock
);
3863 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3864 mutex_unlock(&q
->sysfs_lock
);
3867 res
= entry
->show(q
, page
);
3868 mutex_unlock(&q
->sysfs_lock
);
3873 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3874 const char *page
, size_t length
)
3876 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3877 request_queue_t
*q
= container_of(kobj
, struct request_queue
, kobj
);
3883 mutex_lock(&q
->sysfs_lock
);
3884 if (test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)) {
3885 mutex_unlock(&q
->sysfs_lock
);
3888 res
= entry
->store(q
, page
, length
);
3889 mutex_unlock(&q
->sysfs_lock
);
3893 static struct sysfs_ops queue_sysfs_ops
= {
3894 .show
= queue_attr_show
,
3895 .store
= queue_attr_store
,
3898 static struct kobj_type queue_ktype
= {
3899 .sysfs_ops
= &queue_sysfs_ops
,
3900 .default_attrs
= default_attrs
,
3901 .release
= blk_release_queue
,
3904 int blk_register_queue(struct gendisk
*disk
)
3908 request_queue_t
*q
= disk
->queue
;
3910 if (!q
|| !q
->request_fn
)
3913 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3915 ret
= kobject_add(&q
->kobj
);
3919 kobject_uevent(&q
->kobj
, KOBJ_ADD
);
3921 ret
= elv_register_queue(q
);
3923 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3924 kobject_del(&q
->kobj
);
3931 void blk_unregister_queue(struct gendisk
*disk
)
3933 request_queue_t
*q
= disk
->queue
;
3935 if (q
&& q
->request_fn
) {
3936 elv_unregister_queue(q
);
3938 kobject_uevent(&q
->kobj
, KOBJ_REMOVE
);
3939 kobject_del(&q
->kobj
);
3940 kobject_put(&disk
->kobj
);