MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / block / as-iosched.c
blob0b0ae53b38f5fbd8ad1373984688a82caa5d54f7
1 /*
2 * Anticipatory & deadline i/o scheduler.
4 * Copyright (C) 2002 Jens Axboe <axboe@kernel.dk>
5 * Nick Piggin <nickpiggin@yahoo.com.au>
7 */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/bio.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/compiler.h>
17 #include <linux/rbtree.h>
18 #include <linux/interrupt.h>
20 #define REQ_SYNC 1
21 #define REQ_ASYNC 0
24 * See Documentation/block/as-iosched.txt
28 * max time before a read is submitted.
30 #define default_read_expire (HZ / 8)
33 * ditto for writes, these limits are not hard, even
34 * if the disk is capable of satisfying them.
36 #define default_write_expire (HZ / 4)
39 * read_batch_expire describes how long we will allow a stream of reads to
40 * persist before looking to see whether it is time to switch over to writes.
42 #define default_read_batch_expire (HZ / 2)
45 * write_batch_expire describes how long we want a stream of writes to run for.
46 * This is not a hard limit, but a target we set for the auto-tuning thingy.
47 * See, the problem is: we can send a lot of writes to disk cache / TCQ in
48 * a short amount of time...
50 #define default_write_batch_expire (HZ / 8)
53 * max time we may wait to anticipate a read (default around 6ms)
55 #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
58 * Keep track of up to 20ms thinktimes. We can go as big as we like here,
59 * however huge values tend to interfere and not decay fast enough. A program
60 * might be in a non-io phase of operation. Waiting on user input for example,
61 * or doing a lengthy computation. A small penalty can be justified there, and
62 * will still catch out those processes that constantly have large thinktimes.
64 #define MAX_THINKTIME (HZ/50UL)
66 /* Bits in as_io_context.state */
67 enum as_io_states {
68 AS_TASK_RUNNING=0, /* Process has not exited */
69 AS_TASK_IOSTARTED, /* Process has started some IO */
70 AS_TASK_IORUNNING, /* Process has completed some IO */
73 enum anticipation_status {
74 ANTIC_OFF=0, /* Not anticipating (normal operation) */
75 ANTIC_WAIT_REQ, /* The last read has not yet completed */
76 ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
77 last read (which has completed) */
78 ANTIC_FINISHED, /* Anticipating but have found a candidate
79 * or timed out */
82 struct as_data {
84 * run time data
87 struct request_queue *q; /* the "owner" queue */
90 * requests (as_rq s) are present on both sort_list and fifo_list
92 struct rb_root sort_list[2];
93 struct list_head fifo_list[2];
95 struct request *next_rq[2]; /* next in sort order */
96 sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
98 unsigned long exit_prob; /* probability a task will exit while
99 being waited on */
100 unsigned long exit_no_coop; /* probablility an exited task will
101 not be part of a later cooperating
102 request */
103 unsigned long new_ttime_total; /* mean thinktime on new proc */
104 unsigned long new_ttime_mean;
105 u64 new_seek_total; /* mean seek on new proc */
106 sector_t new_seek_mean;
108 unsigned long current_batch_expires;
109 unsigned long last_check_fifo[2];
110 int changed_batch; /* 1: waiting for old batch to end */
111 int new_batch; /* 1: waiting on first read complete */
112 int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
113 int write_batch_count; /* max # of reqs in a write batch */
114 int current_write_count; /* how many requests left this batch */
115 int write_batch_idled; /* has the write batch gone idle? */
117 enum anticipation_status antic_status;
118 unsigned long antic_start; /* jiffies: when it started */
119 struct timer_list antic_timer; /* anticipatory scheduling timer */
120 struct work_struct antic_work; /* Deferred unplugging */
121 struct io_context *io_context; /* Identify the expected process */
122 int ioc_finished; /* IO associated with io_context is finished */
123 int nr_dispatched;
126 * settings that change how the i/o scheduler behaves
128 unsigned long fifo_expire[2];
129 unsigned long batch_expire[2];
130 unsigned long antic_expire;
134 * per-request data.
136 enum arq_state {
137 AS_RQ_NEW=0, /* New - not referenced and not on any lists */
138 AS_RQ_QUEUED, /* In the request queue. It belongs to the
139 scheduler */
140 AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
141 driver now */
142 AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
143 AS_RQ_REMOVED,
144 AS_RQ_MERGED,
145 AS_RQ_POSTSCHED, /* when they shouldn't be */
148 #define RQ_IOC(rq) ((struct io_context *) (rq)->elevator_private)
149 #define RQ_STATE(rq) ((enum arq_state)(rq)->elevator_private2)
150 #define RQ_SET_STATE(rq, state) ((rq)->elevator_private2 = (void *) state)
152 static DEFINE_PER_CPU(unsigned long, ioc_count);
153 static struct completion *ioc_gone;
155 static void as_move_to_dispatch(struct as_data *ad, struct request *rq);
156 static void as_antic_stop(struct as_data *ad);
159 * IO Context helper functions
162 /* Called to deallocate the as_io_context */
163 static void free_as_io_context(struct as_io_context *aic)
165 kfree(aic);
166 elv_ioc_count_dec(ioc_count);
167 if (ioc_gone && !elv_ioc_count_read(ioc_count))
168 complete(ioc_gone);
171 static void as_trim(struct io_context *ioc)
173 if (ioc->aic)
174 free_as_io_context(ioc->aic);
175 ioc->aic = NULL;
178 /* Called when the task exits */
179 static void exit_as_io_context(struct as_io_context *aic)
181 WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
182 clear_bit(AS_TASK_RUNNING, &aic->state);
185 static struct as_io_context *alloc_as_io_context(void)
187 struct as_io_context *ret;
189 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
190 if (ret) {
191 ret->dtor = free_as_io_context;
192 ret->exit = exit_as_io_context;
193 ret->state = 1 << AS_TASK_RUNNING;
194 atomic_set(&ret->nr_queued, 0);
195 atomic_set(&ret->nr_dispatched, 0);
196 spin_lock_init(&ret->lock);
197 ret->ttime_total = 0;
198 ret->ttime_samples = 0;
199 ret->ttime_mean = 0;
200 ret->seek_total = 0;
201 ret->seek_samples = 0;
202 ret->seek_mean = 0;
203 elv_ioc_count_inc(ioc_count);
206 return ret;
210 * If the current task has no AS IO context then create one and initialise it.
211 * Then take a ref on the task's io context and return it.
213 static struct io_context *as_get_io_context(int node)
215 struct io_context *ioc = get_io_context(GFP_ATOMIC, node);
216 if (ioc && !ioc->aic) {
217 ioc->aic = alloc_as_io_context();
218 if (!ioc->aic) {
219 put_io_context(ioc);
220 ioc = NULL;
223 return ioc;
226 static void as_put_io_context(struct request *rq)
228 struct as_io_context *aic;
230 if (unlikely(!RQ_IOC(rq)))
231 return;
233 aic = RQ_IOC(rq)->aic;
235 if (rq_is_sync(rq) && aic) {
236 spin_lock(&aic->lock);
237 set_bit(AS_TASK_IORUNNING, &aic->state);
238 aic->last_end_request = jiffies;
239 spin_unlock(&aic->lock);
242 put_io_context(RQ_IOC(rq));
246 * rb tree support functions
248 #define RQ_RB_ROOT(ad, rq) (&(ad)->sort_list[rq_is_sync((rq))])
250 static void as_add_rq_rb(struct as_data *ad, struct request *rq)
252 struct request *alias;
254 while ((unlikely(alias = elv_rb_add(RQ_RB_ROOT(ad, rq), rq)))) {
255 as_move_to_dispatch(ad, alias);
256 as_antic_stop(ad);
260 static inline void as_del_rq_rb(struct as_data *ad, struct request *rq)
262 elv_rb_del(RQ_RB_ROOT(ad, rq), rq);
266 * IO Scheduler proper
269 #define MAXBACK (1024 * 1024) /*
270 * Maximum distance the disk will go backward
271 * for a request.
274 #define BACK_PENALTY 2
277 * as_choose_req selects the preferred one of two requests of the same data_dir
278 * ignoring time - eg. timeouts, which is the job of as_dispatch_request
280 static struct request *
281 as_choose_req(struct as_data *ad, struct request *rq1, struct request *rq2)
283 int data_dir;
284 sector_t last, s1, s2, d1, d2;
285 int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
286 const sector_t maxback = MAXBACK;
288 if (rq1 == NULL || rq1 == rq2)
289 return rq2;
290 if (rq2 == NULL)
291 return rq1;
293 data_dir = rq_is_sync(rq1);
295 last = ad->last_sector[data_dir];
296 s1 = rq1->sector;
297 s2 = rq2->sector;
299 BUG_ON(data_dir != rq_is_sync(rq2));
302 * Strict one way elevator _except_ in the case where we allow
303 * short backward seeks which are biased as twice the cost of a
304 * similar forward seek.
306 if (s1 >= last)
307 d1 = s1 - last;
308 else if (s1+maxback >= last)
309 d1 = (last - s1)*BACK_PENALTY;
310 else {
311 r1_wrap = 1;
312 d1 = 0; /* shut up, gcc */
315 if (s2 >= last)
316 d2 = s2 - last;
317 else if (s2+maxback >= last)
318 d2 = (last - s2)*BACK_PENALTY;
319 else {
320 r2_wrap = 1;
321 d2 = 0;
324 /* Found required data */
325 if (!r1_wrap && r2_wrap)
326 return rq1;
327 else if (!r2_wrap && r1_wrap)
328 return rq2;
329 else if (r1_wrap && r2_wrap) {
330 /* both behind the head */
331 if (s1 <= s2)
332 return rq1;
333 else
334 return rq2;
337 /* Both requests in front of the head */
338 if (d1 < d2)
339 return rq1;
340 else if (d2 < d1)
341 return rq2;
342 else {
343 if (s1 >= s2)
344 return rq1;
345 else
346 return rq2;
351 * as_find_next_rq finds the next request after @prev in elevator order.
352 * this with as_choose_req form the basis for how the scheduler chooses
353 * what request to process next. Anticipation works on top of this.
355 static struct request *
356 as_find_next_rq(struct as_data *ad, struct request *last)
358 #if 0 // mask by Victor Yu. 02-12-2007
359 struct rb_node *rbnext = rb_next(&last->rb_node);
360 struct rb_node *rbprev = rb_prev(&last->rb_node);
361 #else
362 struct rb_node *rbnext = rb_next(&last->u.rb_node);
363 struct rb_node *rbprev = rb_prev(&last->u.rb_node);
364 #endif
365 struct request *next = NULL, *prev = NULL;
367 #if 0 // mask by Victor Yu. 02-12-2007
368 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
369 #else
370 BUG_ON(RB_EMPTY_NODE(&last->u.rb_node));
371 #endif
373 if (rbprev)
374 prev = rb_entry_rq(rbprev);
376 if (rbnext)
377 next = rb_entry_rq(rbnext);
378 else {
379 const int data_dir = rq_is_sync(last);
381 rbnext = rb_first(&ad->sort_list[data_dir]);
382 #if 0 // mask by Victor Yu. 02-12-2007
383 if (rbnext && rbnext != &last->rb_node)
384 #else
385 if (rbnext && rbnext != &last->u.rb_node)
386 #endif
387 next = rb_entry_rq(rbnext);
390 return as_choose_req(ad, next, prev);
394 * anticipatory scheduling functions follow
398 * as_antic_expired tells us when we have anticipated too long.
399 * The funny "absolute difference" math on the elapsed time is to handle
400 * jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
402 static int as_antic_expired(struct as_data *ad)
404 long delta_jif;
406 delta_jif = jiffies - ad->antic_start;
407 if (unlikely(delta_jif < 0))
408 delta_jif = -delta_jif;
409 if (delta_jif < ad->antic_expire)
410 return 0;
412 return 1;
416 * as_antic_waitnext starts anticipating that a nice request will soon be
417 * submitted. See also as_antic_waitreq
419 static void as_antic_waitnext(struct as_data *ad)
421 unsigned long timeout;
423 BUG_ON(ad->antic_status != ANTIC_OFF
424 && ad->antic_status != ANTIC_WAIT_REQ);
426 timeout = ad->antic_start + ad->antic_expire;
428 mod_timer(&ad->antic_timer, timeout);
430 ad->antic_status = ANTIC_WAIT_NEXT;
434 * as_antic_waitreq starts anticipating. We don't start timing the anticipation
435 * until the request that we're anticipating on has finished. This means we
436 * are timing from when the candidate process wakes up hopefully.
438 static void as_antic_waitreq(struct as_data *ad)
440 BUG_ON(ad->antic_status == ANTIC_FINISHED);
441 if (ad->antic_status == ANTIC_OFF) {
442 if (!ad->io_context || ad->ioc_finished)
443 as_antic_waitnext(ad);
444 else
445 ad->antic_status = ANTIC_WAIT_REQ;
450 * This is called directly by the functions in this file to stop anticipation.
451 * We kill the timer and schedule a call to the request_fn asap.
453 static void as_antic_stop(struct as_data *ad)
455 int status = ad->antic_status;
457 if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
458 if (status == ANTIC_WAIT_NEXT)
459 del_timer(&ad->antic_timer);
460 ad->antic_status = ANTIC_FINISHED;
461 /* see as_work_handler */
462 kblockd_schedule_work(&ad->antic_work);
467 * as_antic_timeout is the timer function set by as_antic_waitnext.
469 static void as_antic_timeout(unsigned long data)
471 struct request_queue *q = (struct request_queue *)data;
472 struct as_data *ad = q->elevator->elevator_data;
473 unsigned long flags;
475 spin_lock_irqsave(q->queue_lock, flags);
476 if (ad->antic_status == ANTIC_WAIT_REQ
477 || ad->antic_status == ANTIC_WAIT_NEXT) {
478 struct as_io_context *aic = ad->io_context->aic;
480 ad->antic_status = ANTIC_FINISHED;
481 kblockd_schedule_work(&ad->antic_work);
483 if (aic->ttime_samples == 0) {
484 /* process anticipated on has exited or timed out*/
485 ad->exit_prob = (7*ad->exit_prob + 256)/8;
487 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
488 /* process not "saved" by a cooperating request */
489 ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
492 spin_unlock_irqrestore(q->queue_lock, flags);
495 static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
496 unsigned long ttime)
498 /* fixed point: 1.0 == 1<<8 */
499 if (aic->ttime_samples == 0) {
500 ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
501 ad->new_ttime_mean = ad->new_ttime_total / 256;
503 ad->exit_prob = (7*ad->exit_prob)/8;
505 aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
506 aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
507 aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
510 static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
511 sector_t sdist)
513 u64 total;
515 if (aic->seek_samples == 0) {
516 ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
517 ad->new_seek_mean = ad->new_seek_total / 256;
521 * Don't allow the seek distance to get too large from the
522 * odd fragment, pagein, etc
524 if (aic->seek_samples <= 60) /* second&third seek */
525 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
526 else
527 sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
529 aic->seek_samples = (7*aic->seek_samples + 256) / 8;
530 aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
531 total = aic->seek_total + (aic->seek_samples/2);
532 do_div(total, aic->seek_samples);
533 aic->seek_mean = (sector_t)total;
537 * as_update_iohist keeps a decaying histogram of IO thinktimes, and
538 * updates @aic->ttime_mean based on that. It is called when a new
539 * request is queued.
541 static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
542 struct request *rq)
544 int data_dir = rq_is_sync(rq);
545 unsigned long thinktime = 0;
546 sector_t seek_dist;
548 if (aic == NULL)
549 return;
551 if (data_dir == REQ_SYNC) {
552 unsigned long in_flight = atomic_read(&aic->nr_queued)
553 + atomic_read(&aic->nr_dispatched);
554 spin_lock(&aic->lock);
555 if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
556 test_bit(AS_TASK_IOSTARTED, &aic->state)) {
557 /* Calculate read -> read thinktime */
558 if (test_bit(AS_TASK_IORUNNING, &aic->state)
559 && in_flight == 0) {
560 thinktime = jiffies - aic->last_end_request;
561 thinktime = min(thinktime, MAX_THINKTIME-1);
563 as_update_thinktime(ad, aic, thinktime);
565 /* Calculate read -> read seek distance */
566 if (aic->last_request_pos < rq->sector)
567 seek_dist = rq->sector - aic->last_request_pos;
568 else
569 seek_dist = aic->last_request_pos - rq->sector;
570 as_update_seekdist(ad, aic, seek_dist);
572 aic->last_request_pos = rq->sector + rq->nr_sectors;
573 set_bit(AS_TASK_IOSTARTED, &aic->state);
574 spin_unlock(&aic->lock);
579 * as_close_req decides if one request is considered "close" to the
580 * previous one issued.
582 static int as_close_req(struct as_data *ad, struct as_io_context *aic,
583 struct request *rq)
585 unsigned long delay; /* milliseconds */
586 sector_t last = ad->last_sector[ad->batch_data_dir];
587 sector_t next = rq->sector;
588 sector_t delta; /* acceptable close offset (in sectors) */
589 sector_t s;
591 if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
592 delay = 0;
593 else
594 delay = ((jiffies - ad->antic_start) * 1000) / HZ;
596 if (delay == 0)
597 delta = 8192;
598 else if (delay <= 20 && delay <= ad->antic_expire)
599 delta = 8192 << delay;
600 else
601 return 1;
603 if ((last <= next + (delta>>1)) && (next <= last + delta))
604 return 1;
606 if (last < next)
607 s = next - last;
608 else
609 s = last - next;
611 if (aic->seek_samples == 0) {
613 * Process has just started IO. Use past statistics to
614 * gauge success possibility
616 if (ad->new_seek_mean > s) {
617 /* this request is better than what we're expecting */
618 return 1;
621 } else {
622 if (aic->seek_mean > s) {
623 /* this request is better than what we're expecting */
624 return 1;
628 return 0;
632 * as_can_break_anticipation returns true if we have been anticipating this
633 * request.
635 * It also returns true if the process against which we are anticipating
636 * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
637 * dispatch it ASAP, because we know that application will not be submitting
638 * any new reads.
640 * If the task which has submitted the request has exited, break anticipation.
642 * If this task has queued some other IO, do not enter enticipation.
644 static int as_can_break_anticipation(struct as_data *ad, struct request *rq)
646 struct io_context *ioc;
647 struct as_io_context *aic;
649 ioc = ad->io_context;
650 BUG_ON(!ioc);
652 if (rq && ioc == RQ_IOC(rq)) {
653 /* request from same process */
654 return 1;
657 if (ad->ioc_finished && as_antic_expired(ad)) {
659 * In this situation status should really be FINISHED,
660 * however the timer hasn't had the chance to run yet.
662 return 1;
665 aic = ioc->aic;
666 if (!aic)
667 return 0;
669 if (atomic_read(&aic->nr_queued) > 0) {
670 /* process has more requests queued */
671 return 1;
674 if (atomic_read(&aic->nr_dispatched) > 0) {
675 /* process has more requests dispatched */
676 return 1;
679 if (rq && rq_is_sync(rq) && as_close_req(ad, aic, rq)) {
681 * Found a close request that is not one of ours.
683 * This makes close requests from another process update
684 * our IO history. Is generally useful when there are
685 * two or more cooperating processes working in the same
686 * area.
688 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
689 if (aic->ttime_samples == 0)
690 ad->exit_prob = (7*ad->exit_prob + 256)/8;
692 ad->exit_no_coop = (7*ad->exit_no_coop)/8;
695 as_update_iohist(ad, aic, rq);
696 return 1;
699 if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
700 /* process anticipated on has exited */
701 if (aic->ttime_samples == 0)
702 ad->exit_prob = (7*ad->exit_prob + 256)/8;
704 if (ad->exit_no_coop > 128)
705 return 1;
708 if (aic->ttime_samples == 0) {
709 if (ad->new_ttime_mean > ad->antic_expire)
710 return 1;
711 if (ad->exit_prob * ad->exit_no_coop > 128*256)
712 return 1;
713 } else if (aic->ttime_mean > ad->antic_expire) {
714 /* the process thinks too much between requests */
715 return 1;
718 return 0;
722 * as_can_anticipate indicates whether we should either run rq
723 * or keep anticipating a better request.
725 static int as_can_anticipate(struct as_data *ad, struct request *rq)
727 if (!ad->io_context)
729 * Last request submitted was a write
731 return 0;
733 if (ad->antic_status == ANTIC_FINISHED)
735 * Don't restart if we have just finished. Run the next request
737 return 0;
739 if (as_can_break_anticipation(ad, rq))
741 * This request is a good candidate. Don't keep anticipating,
742 * run it.
744 return 0;
747 * OK from here, we haven't finished, and don't have a decent request!
748 * Status is either ANTIC_OFF so start waiting,
749 * ANTIC_WAIT_REQ so continue waiting for request to finish
750 * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
753 return 1;
757 * as_update_rq must be called whenever a request (rq) is added to
758 * the sort_list. This function keeps caches up to date, and checks if the
759 * request might be one we are "anticipating"
761 static void as_update_rq(struct as_data *ad, struct request *rq)
763 const int data_dir = rq_is_sync(rq);
765 /* keep the next_rq cache up to date */
766 ad->next_rq[data_dir] = as_choose_req(ad, rq, ad->next_rq[data_dir]);
769 * have we been anticipating this request?
770 * or does it come from the same process as the one we are anticipating
771 * for?
773 if (ad->antic_status == ANTIC_WAIT_REQ
774 || ad->antic_status == ANTIC_WAIT_NEXT) {
775 if (as_can_break_anticipation(ad, rq))
776 as_antic_stop(ad);
781 * Gathers timings and resizes the write batch automatically
783 static void update_write_batch(struct as_data *ad)
785 unsigned long batch = ad->batch_expire[REQ_ASYNC];
786 long write_time;
788 write_time = (jiffies - ad->current_batch_expires) + batch;
789 if (write_time < 0)
790 write_time = 0;
792 if (write_time > batch && !ad->write_batch_idled) {
793 if (write_time > batch * 3)
794 ad->write_batch_count /= 2;
795 else
796 ad->write_batch_count--;
797 } else if (write_time < batch && ad->current_write_count == 0) {
798 if (batch > write_time * 3)
799 ad->write_batch_count *= 2;
800 else
801 ad->write_batch_count++;
804 if (ad->write_batch_count < 1)
805 ad->write_batch_count = 1;
809 * as_completed_request is to be called when a request has completed and
810 * returned something to the requesting process, be it an error or data.
812 static void as_completed_request(request_queue_t *q, struct request *rq)
814 struct as_data *ad = q->elevator->elevator_data;
816 WARN_ON(!list_empty(&rq->queuelist));
818 if (RQ_STATE(rq) != AS_RQ_REMOVED) {
819 printk("rq->state %d\n", RQ_STATE(rq));
820 WARN_ON(1);
821 goto out;
824 if (ad->changed_batch && ad->nr_dispatched == 1) {
825 kblockd_schedule_work(&ad->antic_work);
826 ad->changed_batch = 0;
828 if (ad->batch_data_dir == REQ_SYNC)
829 ad->new_batch = 1;
831 WARN_ON(ad->nr_dispatched == 0);
832 ad->nr_dispatched--;
835 * Start counting the batch from when a request of that direction is
836 * actually serviced. This should help devices with big TCQ windows
837 * and writeback caches
839 if (ad->new_batch && ad->batch_data_dir == rq_is_sync(rq)) {
840 update_write_batch(ad);
841 ad->current_batch_expires = jiffies +
842 ad->batch_expire[REQ_SYNC];
843 ad->new_batch = 0;
846 if (ad->io_context == RQ_IOC(rq) && ad->io_context) {
847 ad->antic_start = jiffies;
848 ad->ioc_finished = 1;
849 if (ad->antic_status == ANTIC_WAIT_REQ) {
851 * We were waiting on this request, now anticipate
852 * the next one
854 as_antic_waitnext(ad);
858 as_put_io_context(rq);
859 out:
860 RQ_SET_STATE(rq, AS_RQ_POSTSCHED);
864 * as_remove_queued_request removes a request from the pre dispatch queue
865 * without updating refcounts. It is expected the caller will drop the
866 * reference unless it replaces the request at somepart of the elevator
867 * (ie. the dispatch queue)
869 static void as_remove_queued_request(request_queue_t *q, struct request *rq)
871 const int data_dir = rq_is_sync(rq);
872 struct as_data *ad = q->elevator->elevator_data;
873 struct io_context *ioc;
875 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
877 ioc = RQ_IOC(rq);
878 if (ioc && ioc->aic) {
879 BUG_ON(!atomic_read(&ioc->aic->nr_queued));
880 atomic_dec(&ioc->aic->nr_queued);
884 * Update the "next_rq" cache if we are about to remove its
885 * entry
887 if (ad->next_rq[data_dir] == rq)
888 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
890 rq_fifo_clear(rq);
891 as_del_rq_rb(ad, rq);
895 * as_fifo_expired returns 0 if there are no expired reads on the fifo,
896 * 1 otherwise. It is ratelimited so that we only perform the check once per
897 * `fifo_expire' interval. Otherwise a large number of expired requests
898 * would create a hopeless seekstorm.
900 * See as_antic_expired comment.
902 static int as_fifo_expired(struct as_data *ad, int adir)
904 struct request *rq;
905 long delta_jif;
907 delta_jif = jiffies - ad->last_check_fifo[adir];
908 if (unlikely(delta_jif < 0))
909 delta_jif = -delta_jif;
910 if (delta_jif < ad->fifo_expire[adir])
911 return 0;
913 ad->last_check_fifo[adir] = jiffies;
915 if (list_empty(&ad->fifo_list[adir]))
916 return 0;
918 rq = rq_entry_fifo(ad->fifo_list[adir].next);
920 return time_after(jiffies, rq_fifo_time(rq));
924 * as_batch_expired returns true if the current batch has expired. A batch
925 * is a set of reads or a set of writes.
927 static inline int as_batch_expired(struct as_data *ad)
929 if (ad->changed_batch || ad->new_batch)
930 return 0;
932 if (ad->batch_data_dir == REQ_SYNC)
933 /* TODO! add a check so a complete fifo gets written? */
934 return time_after(jiffies, ad->current_batch_expires);
936 return time_after(jiffies, ad->current_batch_expires)
937 || ad->current_write_count == 0;
941 * move an entry to dispatch queue
943 static void as_move_to_dispatch(struct as_data *ad, struct request *rq)
945 const int data_dir = rq_is_sync(rq);
947 #if 0 // mask by Victor Yu. 02-12-2007
948 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
949 #else
950 BUG_ON(RB_EMPTY_NODE(&rq->u.rb_node));
951 #endif
953 as_antic_stop(ad);
954 ad->antic_status = ANTIC_OFF;
957 * This has to be set in order to be correctly updated by
958 * as_find_next_rq
960 ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
962 if (data_dir == REQ_SYNC) {
963 struct io_context *ioc = RQ_IOC(rq);
964 /* In case we have to anticipate after this */
965 copy_io_context(&ad->io_context, &ioc);
966 } else {
967 if (ad->io_context) {
968 put_io_context(ad->io_context);
969 ad->io_context = NULL;
972 if (ad->current_write_count != 0)
973 ad->current_write_count--;
975 ad->ioc_finished = 0;
977 ad->next_rq[data_dir] = as_find_next_rq(ad, rq);
980 * take it off the sort and fifo list, add to dispatch queue
982 as_remove_queued_request(ad->q, rq);
983 WARN_ON(RQ_STATE(rq) != AS_RQ_QUEUED);
985 elv_dispatch_sort(ad->q, rq);
987 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
988 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
989 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
990 ad->nr_dispatched++;
994 * as_dispatch_request selects the best request according to
995 * read/write expire, batch expire, etc, and moves it to the dispatch
996 * queue. Returns 1 if a request was found, 0 otherwise.
998 static int as_dispatch_request(request_queue_t *q, int force)
1000 struct as_data *ad = q->elevator->elevator_data;
1001 const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
1002 const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
1003 struct request *rq;
1005 if (unlikely(force)) {
1007 * Forced dispatch, accounting is useless. Reset
1008 * accounting states and dump fifo_lists. Note that
1009 * batch_data_dir is reset to REQ_SYNC to avoid
1010 * screwing write batch accounting as write batch
1011 * accounting occurs on W->R transition.
1013 int dispatched = 0;
1015 ad->batch_data_dir = REQ_SYNC;
1016 ad->changed_batch = 0;
1017 ad->new_batch = 0;
1019 while (ad->next_rq[REQ_SYNC]) {
1020 as_move_to_dispatch(ad, ad->next_rq[REQ_SYNC]);
1021 dispatched++;
1023 ad->last_check_fifo[REQ_SYNC] = jiffies;
1025 while (ad->next_rq[REQ_ASYNC]) {
1026 as_move_to_dispatch(ad, ad->next_rq[REQ_ASYNC]);
1027 dispatched++;
1029 ad->last_check_fifo[REQ_ASYNC] = jiffies;
1031 return dispatched;
1034 /* Signal that the write batch was uncontended, so we can't time it */
1035 if (ad->batch_data_dir == REQ_ASYNC && !reads) {
1036 if (ad->current_write_count == 0 || !writes)
1037 ad->write_batch_idled = 1;
1040 if (!(reads || writes)
1041 || ad->antic_status == ANTIC_WAIT_REQ
1042 || ad->antic_status == ANTIC_WAIT_NEXT
1043 || ad->changed_batch)
1044 return 0;
1046 if (!(reads && writes && as_batch_expired(ad))) {
1048 * batch is still running or no reads or no writes
1050 rq = ad->next_rq[ad->batch_data_dir];
1052 if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
1053 if (as_fifo_expired(ad, REQ_SYNC))
1054 goto fifo_expired;
1056 if (as_can_anticipate(ad, rq)) {
1057 as_antic_waitreq(ad);
1058 return 0;
1062 if (rq) {
1063 /* we have a "next request" */
1064 if (reads && !writes)
1065 ad->current_batch_expires =
1066 jiffies + ad->batch_expire[REQ_SYNC];
1067 goto dispatch_request;
1072 * at this point we are not running a batch. select the appropriate
1073 * data direction (read / write)
1076 if (reads) {
1077 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_SYNC]));
1079 if (writes && ad->batch_data_dir == REQ_SYNC)
1081 * Last batch was a read, switch to writes
1083 goto dispatch_writes;
1085 if (ad->batch_data_dir == REQ_ASYNC) {
1086 WARN_ON(ad->new_batch);
1087 ad->changed_batch = 1;
1089 ad->batch_data_dir = REQ_SYNC;
1090 rq = rq_entry_fifo(ad->fifo_list[REQ_SYNC].next);
1091 ad->last_check_fifo[ad->batch_data_dir] = jiffies;
1092 goto dispatch_request;
1096 * the last batch was a read
1099 if (writes) {
1100 dispatch_writes:
1101 BUG_ON(RB_EMPTY_ROOT(&ad->sort_list[REQ_ASYNC]));
1103 if (ad->batch_data_dir == REQ_SYNC) {
1104 ad->changed_batch = 1;
1107 * new_batch might be 1 when the queue runs out of
1108 * reads. A subsequent submission of a write might
1109 * cause a change of batch before the read is finished.
1111 ad->new_batch = 0;
1113 ad->batch_data_dir = REQ_ASYNC;
1114 ad->current_write_count = ad->write_batch_count;
1115 ad->write_batch_idled = 0;
1116 rq = ad->next_rq[ad->batch_data_dir];
1117 goto dispatch_request;
1120 BUG();
1121 return 0;
1123 dispatch_request:
1125 * If a request has expired, service it.
1128 if (as_fifo_expired(ad, ad->batch_data_dir)) {
1129 fifo_expired:
1130 rq = rq_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
1133 if (ad->changed_batch) {
1134 WARN_ON(ad->new_batch);
1136 if (ad->nr_dispatched)
1137 return 0;
1139 if (ad->batch_data_dir == REQ_ASYNC)
1140 ad->current_batch_expires = jiffies +
1141 ad->batch_expire[REQ_ASYNC];
1142 else
1143 ad->new_batch = 1;
1145 ad->changed_batch = 0;
1149 * rq is the selected appropriate request.
1151 as_move_to_dispatch(ad, rq);
1153 return 1;
1157 * add rq to rbtree and fifo
1159 static void as_add_request(request_queue_t *q, struct request *rq)
1161 struct as_data *ad = q->elevator->elevator_data;
1162 int data_dir;
1164 RQ_SET_STATE(rq, AS_RQ_NEW);
1166 data_dir = rq_is_sync(rq);
1168 rq->elevator_private = as_get_io_context(q->node);
1170 if (RQ_IOC(rq)) {
1171 as_update_iohist(ad, RQ_IOC(rq)->aic, rq);
1172 atomic_inc(&RQ_IOC(rq)->aic->nr_queued);
1175 as_add_rq_rb(ad, rq);
1178 * set expire time (only used for reads) and add to fifo list
1180 rq_set_fifo_time(rq, jiffies + ad->fifo_expire[data_dir]);
1181 list_add_tail(&rq->queuelist, &ad->fifo_list[data_dir]);
1183 as_update_rq(ad, rq); /* keep state machine up to date */
1184 RQ_SET_STATE(rq, AS_RQ_QUEUED);
1187 static void as_activate_request(request_queue_t *q, struct request *rq)
1189 WARN_ON(RQ_STATE(rq) != AS_RQ_DISPATCHED);
1190 RQ_SET_STATE(rq, AS_RQ_REMOVED);
1191 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1192 atomic_dec(&RQ_IOC(rq)->aic->nr_dispatched);
1195 static void as_deactivate_request(request_queue_t *q, struct request *rq)
1197 WARN_ON(RQ_STATE(rq) != AS_RQ_REMOVED);
1198 RQ_SET_STATE(rq, AS_RQ_DISPATCHED);
1199 if (RQ_IOC(rq) && RQ_IOC(rq)->aic)
1200 atomic_inc(&RQ_IOC(rq)->aic->nr_dispatched);
1204 * as_queue_empty tells us if there are requests left in the device. It may
1205 * not be the case that a driver can get the next request even if the queue
1206 * is not empty - it is used in the block layer to check for plugging and
1207 * merging opportunities
1209 static int as_queue_empty(request_queue_t *q)
1211 struct as_data *ad = q->elevator->elevator_data;
1213 return list_empty(&ad->fifo_list[REQ_ASYNC])
1214 && list_empty(&ad->fifo_list[REQ_SYNC]);
1217 static int
1218 as_merge(request_queue_t *q, struct request **req, struct bio *bio)
1220 struct as_data *ad = q->elevator->elevator_data;
1221 sector_t rb_key = bio->bi_sector + bio_sectors(bio);
1222 struct request *__rq;
1225 * check for front merge
1227 __rq = elv_rb_find(&ad->sort_list[bio_data_dir(bio)], rb_key);
1228 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1229 *req = __rq;
1230 return ELEVATOR_FRONT_MERGE;
1233 return ELEVATOR_NO_MERGE;
1236 static void as_merged_request(request_queue_t *q, struct request *req, int type)
1238 struct as_data *ad = q->elevator->elevator_data;
1241 * if the merge was a front merge, we need to reposition request
1243 if (type == ELEVATOR_FRONT_MERGE) {
1244 as_del_rq_rb(ad, req);
1245 as_add_rq_rb(ad, req);
1247 * Note! At this stage of this and the next function, our next
1248 * request may not be optimal - eg the request may have "grown"
1249 * behind the disk head. We currently don't bother adjusting.
1254 static void as_merged_requests(request_queue_t *q, struct request *req,
1255 struct request *next)
1258 * if next expires before rq, assign its expire time to arq
1259 * and move into next position (next will be deleted) in fifo
1261 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
1262 if (time_before(rq_fifo_time(next), rq_fifo_time(req))) {
1263 struct io_context *rioc = RQ_IOC(req);
1264 struct io_context *nioc = RQ_IOC(next);
1266 list_move(&req->queuelist, &next->queuelist);
1267 rq_set_fifo_time(req, rq_fifo_time(next));
1269 * Don't copy here but swap, because when anext is
1270 * removed below, it must contain the unused context
1272 swap_io_context(&rioc, &nioc);
1277 * kill knowledge of next, this one is a goner
1279 as_remove_queued_request(q, next);
1280 as_put_io_context(next);
1282 RQ_SET_STATE(next, AS_RQ_MERGED);
1286 * This is executed in a "deferred" process context, by kblockd. It calls the
1287 * driver's request_fn so the driver can submit that request.
1289 * IMPORTANT! This guy will reenter the elevator, so set up all queue global
1290 * state before calling, and don't rely on any state over calls.
1292 * FIXME! dispatch queue is not a queue at all!
1294 static void as_work_handler(void *data)
1296 struct request_queue *q = data;
1297 unsigned long flags;
1299 spin_lock_irqsave(q->queue_lock, flags);
1300 blk_start_queueing(q);
1301 spin_unlock_irqrestore(q->queue_lock, flags);
1304 static int as_may_queue(request_queue_t *q, int rw)
1306 int ret = ELV_MQUEUE_MAY;
1307 struct as_data *ad = q->elevator->elevator_data;
1308 struct io_context *ioc;
1309 if (ad->antic_status == ANTIC_WAIT_REQ ||
1310 ad->antic_status == ANTIC_WAIT_NEXT) {
1311 ioc = as_get_io_context(q->node);
1312 if (ad->io_context == ioc)
1313 ret = ELV_MQUEUE_MUST;
1314 put_io_context(ioc);
1317 return ret;
1320 static void as_exit_queue(elevator_t *e)
1322 struct as_data *ad = e->elevator_data;
1324 del_timer_sync(&ad->antic_timer);
1325 kblockd_flush();
1327 BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
1328 BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
1330 put_io_context(ad->io_context);
1331 kfree(ad);
1335 * initialize elevator private data (as_data).
1337 static void *as_init_queue(request_queue_t *q, elevator_t *e)
1339 struct as_data *ad;
1341 ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
1342 if (!ad)
1343 return NULL;
1344 memset(ad, 0, sizeof(*ad));
1346 ad->q = q; /* Identify what queue the data belongs to */
1348 /* anticipatory scheduling helpers */
1349 ad->antic_timer.function = as_antic_timeout;
1350 ad->antic_timer.data = (unsigned long)q;
1351 init_timer(&ad->antic_timer);
1352 INIT_WORK(&ad->antic_work, as_work_handler, q);
1354 INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
1355 INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
1356 ad->sort_list[REQ_SYNC] = RB_ROOT;
1357 ad->sort_list[REQ_ASYNC] = RB_ROOT;
1358 ad->fifo_expire[REQ_SYNC] = default_read_expire;
1359 ad->fifo_expire[REQ_ASYNC] = default_write_expire;
1360 ad->antic_expire = default_antic_expire;
1361 ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
1362 ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
1364 ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
1365 ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
1366 if (ad->write_batch_count < 2)
1367 ad->write_batch_count = 2;
1369 return ad;
1373 * sysfs parts below
1376 static ssize_t
1377 as_var_show(unsigned int var, char *page)
1379 return sprintf(page, "%d\n", var);
1382 static ssize_t
1383 as_var_store(unsigned long *var, const char *page, size_t count)
1385 char *p = (char *) page;
1387 *var = simple_strtoul(p, &p, 10);
1388 return count;
1391 static ssize_t est_time_show(elevator_t *e, char *page)
1393 struct as_data *ad = e->elevator_data;
1394 int pos = 0;
1396 pos += sprintf(page+pos, "%lu %% exit probability\n",
1397 100*ad->exit_prob/256);
1398 pos += sprintf(page+pos, "%lu %% probability of exiting without a "
1399 "cooperating process submitting IO\n",
1400 100*ad->exit_no_coop/256);
1401 pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
1402 pos += sprintf(page+pos, "%llu sectors new seek distance\n",
1403 (unsigned long long)ad->new_seek_mean);
1405 return pos;
1408 #define SHOW_FUNCTION(__FUNC, __VAR) \
1409 static ssize_t __FUNC(elevator_t *e, char *page) \
1411 struct as_data *ad = e->elevator_data; \
1412 return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
1414 SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
1415 SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
1416 SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
1417 SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
1418 SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
1419 #undef SHOW_FUNCTION
1421 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
1422 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
1424 struct as_data *ad = e->elevator_data; \
1425 int ret = as_var_store(__PTR, (page), count); \
1426 if (*(__PTR) < (MIN)) \
1427 *(__PTR) = (MIN); \
1428 else if (*(__PTR) > (MAX)) \
1429 *(__PTR) = (MAX); \
1430 *(__PTR) = msecs_to_jiffies(*(__PTR)); \
1431 return ret; \
1433 STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
1434 STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
1435 STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
1436 STORE_FUNCTION(as_read_batch_expire_store,
1437 &ad->batch_expire[REQ_SYNC], 0, INT_MAX);
1438 STORE_FUNCTION(as_write_batch_expire_store,
1439 &ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
1440 #undef STORE_FUNCTION
1442 #define AS_ATTR(name) \
1443 __ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
1445 static struct elv_fs_entry as_attrs[] = {
1446 __ATTR_RO(est_time),
1447 AS_ATTR(read_expire),
1448 AS_ATTR(write_expire),
1449 AS_ATTR(antic_expire),
1450 AS_ATTR(read_batch_expire),
1451 AS_ATTR(write_batch_expire),
1452 __ATTR_NULL
1455 static struct elevator_type iosched_as = {
1456 .ops = {
1457 .elevator_merge_fn = as_merge,
1458 .elevator_merged_fn = as_merged_request,
1459 .elevator_merge_req_fn = as_merged_requests,
1460 .elevator_dispatch_fn = as_dispatch_request,
1461 .elevator_add_req_fn = as_add_request,
1462 .elevator_activate_req_fn = as_activate_request,
1463 .elevator_deactivate_req_fn = as_deactivate_request,
1464 .elevator_queue_empty_fn = as_queue_empty,
1465 .elevator_completed_req_fn = as_completed_request,
1466 .elevator_former_req_fn = elv_rb_former_request,
1467 .elevator_latter_req_fn = elv_rb_latter_request,
1468 .elevator_may_queue_fn = as_may_queue,
1469 .elevator_init_fn = as_init_queue,
1470 .elevator_exit_fn = as_exit_queue,
1471 .trim = as_trim,
1474 .elevator_attrs = as_attrs,
1475 .elevator_name = "anticipatory",
1476 .elevator_owner = THIS_MODULE,
1479 static int __init as_init(void)
1481 int ret;
1483 ret = elv_register(&iosched_as);
1484 if (!ret) {
1486 * don't allow AS to get unregistered, since we would have
1487 * to browse all tasks in the system and release their
1488 * as_io_context first
1490 __module_get(THIS_MODULE);
1491 return 0;
1494 return ret;
1497 static void __exit as_exit(void)
1499 DECLARE_COMPLETION_ONSTACK(all_gone);
1500 elv_unregister(&iosched_as);
1501 ioc_gone = &all_gone;
1502 /* ioc_gone's update must be visible before reading ioc_count */
1503 smp_wmb();
1504 if (elv_ioc_count_read(ioc_count))
1505 wait_for_completion(ioc_gone);
1506 synchronize_rcu();
1509 module_init(as_init);
1510 module_exit(as_exit);
1512 MODULE_AUTHOR("Nick Piggin");
1513 MODULE_LICENSE("GPL");
1514 MODULE_DESCRIPTION("anticipatory IO scheduler");