Xilinx: ARM: USB: Fixed kernel crash with OTG driver.
[linux-2.6-xlnx.git] / fs / btrfs / extent-tree.c
blob6e1d36702ff71c4fc5bde2733cbf166376b726d3
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 enum {
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
58 * Control how reservations are dealt with.
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62 * ENOSPC accounting
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
66 enum {
67 RESERVE_FREE = 0,
68 RESERVE_ALLOC = 1,
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
107 smp_mb();
108 return cache->cached == BTRFS_CACHE_FINISHED;
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
113 return (cache->flags & bits) == bits;
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
118 atomic_inc(&cache->count);
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
127 kfree(cache);
132 * this adds the block group to the fs_info rb tree for the block group
133 * cache
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
138 struct rb_node **p;
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
145 while (*p) {
146 parent = *p;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
148 cache_node);
149 if (block_group->key.objectid < cache->key.objectid) {
150 p = &(*p)->rb_left;
151 } else if (block_group->key.objectid > cache->key.objectid) {
152 p = &(*p)->rb_right;
153 } else {
154 spin_unlock(&info->block_group_cache_lock);
155 return -EEXIST;
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
164 return 0;
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 int contains)
175 struct btrfs_block_group_cache *cache, *ret = NULL;
176 struct rb_node *n;
177 u64 end, start;
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
182 while (n) {
183 cache = rb_entry(n, struct btrfs_block_group_cache,
184 cache_node);
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
190 ret = cache;
191 n = n->rb_left;
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
194 ret = cache;
195 break;
197 n = n->rb_right;
198 } else {
199 ret = cache;
200 break;
203 if (ret)
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
207 return ret;
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
218 return 0;
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
224 u64 start, end;
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
238 u64 bytenr;
239 u64 *logical;
240 int stripe_len;
241 int i, nr, ret;
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
247 stripe_len);
248 BUG_ON(ret); /* -ENOMEM */
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
258 while (nr--) {
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
261 stripe_len);
262 BUG_ON(ret); /* -ENOMEM */
265 kfree(logical);
267 return 0;
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
273 struct btrfs_caching_control *ctl;
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
278 return NULL;
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
284 return NULL;
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
290 return ctl;
293 static void put_caching_control(struct btrfs_caching_control *ctl)
295 if (atomic_dec_and_test(&ctl->count))
296 kfree(ctl);
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
307 u64 extent_start, extent_end, size, total_added = 0;
308 int ret;
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
314 if (ret)
315 break;
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
321 total_added += size;
322 ret = btrfs_add_free_space(block_group, start,
323 size);
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
326 } else {
327 break;
331 if (start < end) {
332 size = end - start;
333 total_added += size;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
338 return total_added;
341 static noinline void caching_thread(struct btrfs_work *work)
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
350 u64 total_found = 0;
351 u64 last = 0;
352 u32 nritems;
353 int ret = 0;
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
360 path = btrfs_alloc_path();
361 if (!path)
362 goto out;
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
374 path->reada = 1;
376 key.objectid = last;
377 key.offset = 0;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 if (ret < 0)
386 goto err;
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
391 while (1) {
392 if (btrfs_fs_closing(fs_info) > 1) {
393 last = (u64)-1;
394 break;
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 } else {
400 ret = find_next_key(path, 0, &key);
401 if (ret)
402 break;
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
410 cond_resched();
411 goto again;
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
415 continue;
418 if (key.objectid < block_group->key.objectid) {
419 path->slots[0]++;
420 continue;
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
425 break;
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
429 fs_info, last,
430 key.objectid);
431 last = key.objectid + key.offset;
433 if (total_found > (1024 * 1024 * 2)) {
434 total_found = 0;
435 wake_up(&caching_ctl->wait);
438 path->slots[0]++;
440 ret = 0;
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
452 err:
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
456 free_excluded_extents(extent_root, block_group);
458 mutex_unlock(&caching_ctl->mutex);
459 out:
460 wake_up(&caching_ctl->wait);
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
469 int load_cache_only)
471 DEFINE_WAIT(wait);
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
474 int ret = 0;
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 if (!caching_ctl)
478 return -ENOMEM;
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
488 spin_lock(&cache->lock);
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
499 * another.
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
509 schedule();
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
518 kfree(caching_ctl);
519 return 0;
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
532 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
533 ret = load_free_space_cache(fs_info, cache);
535 spin_lock(&cache->lock);
536 if (ret == 1) {
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
540 } else {
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
544 } else {
545 cache->cached = BTRFS_CACHE_STARTED;
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
550 if (ret == 1) {
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
553 return 0;
555 } else {
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
564 } else {
565 cache->cached = BTRFS_CACHE_STARTED;
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
573 return 0;
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
581 btrfs_get_block_group(cache);
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585 return ret;
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 struct btrfs_block_group_cache *cache;
596 cache = block_group_cache_tree_search(info, bytenr, 0);
598 return cache;
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
606 u64 bytenr)
608 struct btrfs_block_group_cache *cache;
610 cache = block_group_cache_tree_search(info, bytenr, 1);
612 return cache;
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 u64 flags)
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
623 rcu_read_lock();
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
626 rcu_read_unlock();
627 return found;
630 rcu_read_unlock();
631 return NULL;
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
643 rcu_read_lock();
644 list_for_each_entry_rcu(found, head, list)
645 found->full = 0;
646 rcu_read_unlock();
649 static u64 div_factor(u64 num, int factor)
651 if (factor == 10)
652 return num;
653 num *= factor;
654 do_div(num, 10);
655 return num;
658 static u64 div_factor_fine(u64 num, int factor)
660 if (factor == 100)
661 return num;
662 num *= factor;
663 do_div(num, 100);
664 return num;
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
670 struct btrfs_block_group_cache *cache;
671 u64 used;
672 u64 last = max(search_hint, search_start);
673 u64 group_start = 0;
674 int full_search = 0;
675 int factor = 9;
676 int wrapped = 0;
677 again:
678 while (1) {
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 if (!cache)
681 break;
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
694 goto found;
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
699 cond_resched();
701 if (!wrapped) {
702 last = search_start;
703 wrapped = 1;
704 goto again;
706 if (!full_search && factor < 10) {
707 last = search_start;
708 full_search = 1;
709 factor = 10;
710 goto again;
712 found:
713 return group_start;
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 int ret;
720 struct btrfs_key key;
721 struct btrfs_path *path;
723 path = btrfs_alloc_path();
724 if (!path)
725 return -ENOMEM;
727 key.objectid = start;
728 key.offset = len;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 0, 0);
732 btrfs_free_path(path);
733 return ret;
737 * helper function to lookup reference count and flags of extent.
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
755 u32 item_size;
756 u64 num_refs;
757 u64 extent_flags;
758 int ret;
760 path = btrfs_alloc_path();
761 if (!path)
762 return -ENOMEM;
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
767 if (!trans) {
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
771 again:
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 &key, path, 0, 0);
774 if (ret < 0)
775 goto out_free;
777 if (ret == 0) {
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
785 } else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 BUG();
796 #endif
798 BUG_ON(num_refs == 0);
799 } else {
800 num_refs = 0;
801 extent_flags = 0;
802 ret = 0;
805 if (!trans)
806 goto out;
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
811 if (head) {
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
816 btrfs_release_path(path);
819 * Mutex was contended, block until it's released and try
820 * again
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
825 goto again;
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
829 else
830 BUG_ON(num_refs == 0);
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
835 spin_unlock(&delayed_refs->lock);
836 out:
837 WARN_ON(num_refs == 0);
838 if (refs)
839 *refs = num_refs;
840 if (flags)
841 *flags = extent_flags;
842 out_free:
843 btrfs_free_path(path);
844 return ret;
848 * Back reference rules. Back refs have three main goals:
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
879 * When a tree block is COW'd through a tree, there are four cases:
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
899 * Back Reference Key composing:
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
904 * of back refs.
906 * File extents can be referenced by:
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
912 * The extent ref structure for the implicit back refs has fields for:
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
919 * The key offset for the implicit back refs is hash of the first
920 * three fields.
922 * The extent ref structure for the full back refs has field for:
924 * - number of pointers in the tree leaf
926 * The key offset for the implicit back refs is the first byte of
927 * the tree leaf
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
932 * (root_key.objectid, inode objectid, offset in file, 1)
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 * Btree extents can be referenced by:
941 * - Different subvolumes
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
967 u64 refs;
968 int ret;
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
978 if (owner == (u64)-1) {
979 while (1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
982 if (ret < 0)
983 return ret;
984 BUG_ON(ret > 0); /* Corruption */
985 leaf = path->nodes[0];
987 btrfs_item_key_to_cpu(leaf, &found_key,
988 path->slots[0]);
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 path->slots[0]++;
992 continue;
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
997 break;
1000 btrfs_release_path(path);
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1008 if (ret < 0)
1009 return ret;
1010 BUG_ON(ret); /* Corruption */
1012 btrfs_extend_item(trans, root, path, new_size);
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 } else {
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 btrfs_mark_buffer_dirty(leaf);
1031 return 0;
1033 #endif
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1039 __le64 lenum;
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 return 0;
1067 return 1;
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1074 u64 root_objectid,
1075 u64 owner, u64 offset)
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1080 u32 nritems;
1081 int ret;
1082 int recow;
1083 int err = -ENOENT;
1085 key.objectid = bytenr;
1086 if (parent) {
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1089 } else {
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1092 owner, offset);
1094 again:
1095 recow = 0;
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 if (ret < 0) {
1098 err = ret;
1099 goto fail;
1102 if (parent) {
1103 if (!ret)
1104 return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 if (ret < 0) {
1110 err = ret;
1111 goto fail;
1113 if (!ret)
1114 return 0;
1115 #endif
1116 goto fail;
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1121 while (1) {
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1124 if (ret < 0)
1125 err = ret;
1126 if (ret)
1127 goto fail;
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1131 recow = 1;
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 goto fail;
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1143 owner, offset)) {
1144 if (recow) {
1145 btrfs_release_path(path);
1146 goto again;
1148 err = 0;
1149 break;
1151 path->slots[0]++;
1153 fail:
1154 return err;
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1166 u32 size;
1167 u32 num_refs;
1168 int ret;
1170 key.objectid = bytenr;
1171 if (parent) {
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1175 } else {
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1178 owner, offset);
1179 size = sizeof(struct btrfs_extent_data_ref);
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1184 goto fail;
1186 leaf = path->nodes[0];
1187 if (parent) {
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1191 if (ret == 0) {
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 } else {
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 } else {
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1204 owner, offset))
1205 break;
1206 btrfs_release_path(path);
1207 key.offset++;
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 size);
1210 if (ret && ret != -EEXIST)
1211 goto fail;
1213 leaf = path->nodes[0];
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1219 root_objectid);
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 } else {
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 btrfs_mark_buffer_dirty(leaf);
1230 ret = 0;
1231 fail:
1232 btrfs_release_path(path);
1233 return ret;
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 int refs_to_drop)
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1245 u32 num_refs = 0;
1246 int ret = 0;
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 } else {
1267 BUG();
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1275 } else {
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 else {
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 #endif
1288 btrfs_mark_buffer_dirty(leaf);
1290 return ret;
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1301 u32 num_refs = 0;
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 if (iref) {
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 } else {
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 } else {
1330 WARN_ON(1);
1332 return num_refs;
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1339 u64 root_objectid)
1341 struct btrfs_key key;
1342 int ret;
1344 key.objectid = bytenr;
1345 if (parent) {
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1348 } else {
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 if (ret > 0)
1355 ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 if (ret > 0)
1362 ret = -ENOENT;
1364 #endif
1365 return ret;
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1374 struct btrfs_key key;
1375 int ret;
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1388 return ret;
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1393 int type;
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 if (parent > 0)
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 else
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1399 } else {
1400 if (parent > 0)
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1402 else
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1405 return type;
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1414 break;
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1417 continue;
1418 if (level == 0)
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1421 else
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1424 return 0;
1426 return 1;
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1455 u64 flags;
1456 u64 item_size;
1457 unsigned long ptr;
1458 unsigned long end;
1459 int extra_size;
1460 int type;
1461 int want;
1462 int ret;
1463 int err = 0;
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1469 want = extent_ref_type(parent, owner);
1470 if (insert) {
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1473 } else
1474 extra_size = -1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 if (ret < 0) {
1477 err = ret;
1478 goto out;
1480 if (ret && !insert) {
1481 err = -ENOENT;
1482 goto out;
1484 BUG_ON(ret); /* Corruption */
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 if (item_size < sizeof(*ei)) {
1490 if (!insert) {
1491 err = -ENOENT;
1492 goto out;
1494 ret = convert_extent_item_v0(trans, root, path, owner,
1495 extra_size);
1496 if (ret < 0) {
1497 err = ret;
1498 goto out;
1500 leaf = path->nodes[0];
1501 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1503 #endif
1504 BUG_ON(item_size < sizeof(*ei));
1506 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1507 flags = btrfs_extent_flags(leaf, ei);
1509 ptr = (unsigned long)(ei + 1);
1510 end = (unsigned long)ei + item_size;
1512 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513 ptr += sizeof(struct btrfs_tree_block_info);
1514 BUG_ON(ptr > end);
1515 } else {
1516 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1519 err = -ENOENT;
1520 while (1) {
1521 if (ptr >= end) {
1522 WARN_ON(ptr > end);
1523 break;
1525 iref = (struct btrfs_extent_inline_ref *)ptr;
1526 type = btrfs_extent_inline_ref_type(leaf, iref);
1527 if (want < type)
1528 break;
1529 if (want > type) {
1530 ptr += btrfs_extent_inline_ref_size(type);
1531 continue;
1534 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1535 struct btrfs_extent_data_ref *dref;
1536 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1537 if (match_extent_data_ref(leaf, dref, root_objectid,
1538 owner, offset)) {
1539 err = 0;
1540 break;
1542 if (hash_extent_data_ref_item(leaf, dref) <
1543 hash_extent_data_ref(root_objectid, owner, offset))
1544 break;
1545 } else {
1546 u64 ref_offset;
1547 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1548 if (parent > 0) {
1549 if (parent == ref_offset) {
1550 err = 0;
1551 break;
1553 if (ref_offset < parent)
1554 break;
1555 } else {
1556 if (root_objectid == ref_offset) {
1557 err = 0;
1558 break;
1560 if (ref_offset < root_objectid)
1561 break;
1564 ptr += btrfs_extent_inline_ref_size(type);
1566 if (err == -ENOENT && insert) {
1567 if (item_size + extra_size >=
1568 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1569 err = -EAGAIN;
1570 goto out;
1573 * To add new inline back ref, we have to make sure
1574 * there is no corresponding back ref item.
1575 * For simplicity, we just do not add new inline back
1576 * ref if there is any kind of item for this block
1578 if (find_next_key(path, 0, &key) == 0 &&
1579 key.objectid == bytenr &&
1580 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1581 err = -EAGAIN;
1582 goto out;
1585 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1586 out:
1587 if (insert) {
1588 path->keep_locks = 0;
1589 btrfs_unlock_up_safe(path, 1);
1591 return err;
1595 * helper to add new inline back ref
1597 static noinline_for_stack
1598 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 struct btrfs_path *path,
1601 struct btrfs_extent_inline_ref *iref,
1602 u64 parent, u64 root_objectid,
1603 u64 owner, u64 offset, int refs_to_add,
1604 struct btrfs_delayed_extent_op *extent_op)
1606 struct extent_buffer *leaf;
1607 struct btrfs_extent_item *ei;
1608 unsigned long ptr;
1609 unsigned long end;
1610 unsigned long item_offset;
1611 u64 refs;
1612 int size;
1613 int type;
1615 leaf = path->nodes[0];
1616 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1617 item_offset = (unsigned long)iref - (unsigned long)ei;
1619 type = extent_ref_type(parent, owner);
1620 size = btrfs_extent_inline_ref_size(type);
1622 btrfs_extend_item(trans, root, path, size);
1624 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1625 refs = btrfs_extent_refs(leaf, ei);
1626 refs += refs_to_add;
1627 btrfs_set_extent_refs(leaf, ei, refs);
1628 if (extent_op)
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1631 ptr = (unsigned long)ei + item_offset;
1632 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1633 if (ptr < end - size)
1634 memmove_extent_buffer(leaf, ptr + size, ptr,
1635 end - size - ptr);
1637 iref = (struct btrfs_extent_inline_ref *)ptr;
1638 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1639 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1640 struct btrfs_extent_data_ref *dref;
1641 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1642 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1643 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1644 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1645 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1646 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1647 struct btrfs_shared_data_ref *sref;
1648 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 } else {
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1656 btrfs_mark_buffer_dirty(leaf);
1659 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1660 struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 struct btrfs_extent_inline_ref **ref_ret,
1663 u64 bytenr, u64 num_bytes, u64 parent,
1664 u64 root_objectid, u64 owner, u64 offset)
1666 int ret;
1668 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1669 bytenr, num_bytes, parent,
1670 root_objectid, owner, offset, 0);
1671 if (ret != -ENOENT)
1672 return ret;
1674 btrfs_release_path(path);
1675 *ref_ret = NULL;
1677 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1678 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1679 root_objectid);
1680 } else {
1681 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1682 root_objectid, owner, offset);
1684 return ret;
1688 * helper to update/remove inline back ref
1690 static noinline_for_stack
1691 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct btrfs_extent_inline_ref *iref,
1695 int refs_to_mod,
1696 struct btrfs_delayed_extent_op *extent_op)
1698 struct extent_buffer *leaf;
1699 struct btrfs_extent_item *ei;
1700 struct btrfs_extent_data_ref *dref = NULL;
1701 struct btrfs_shared_data_ref *sref = NULL;
1702 unsigned long ptr;
1703 unsigned long end;
1704 u32 item_size;
1705 int size;
1706 int type;
1707 u64 refs;
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1715 if (extent_op)
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1726 } else {
1727 refs = 1;
1728 BUG_ON(refs_to_mod != -1);
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1734 if (refs > 0) {
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 else
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 } else {
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1746 end - ptr - size);
1747 item_size -= size;
1748 btrfs_truncate_item(trans, root, path, item_size, 1);
1750 btrfs_mark_buffer_dirty(leaf);
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1762 struct btrfs_extent_inline_ref *iref;
1763 int ret;
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1768 if (ret == 0) {
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 setup_inline_extent_backref(trans, root, path, iref, parent,
1774 root_objectid, owner, offset,
1775 refs_to_add, extent_op);
1776 ret = 0;
1778 return ret;
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1787 int ret;
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1792 } else {
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1797 return ret;
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1806 int ret = 0;
1808 BUG_ON(!is_data && refs_to_drop != 1);
1809 if (iref) {
1810 update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 } else {
1815 ret = btrfs_del_item(trans, root, path);
1817 return ret;
1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 u64 start, u64 len)
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1829 int ret;
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 /* Error condition is -ENOMEM */
1838 if (!ret) {
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 int i;
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1845 continue;
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1848 stripe->physical,
1849 stripe->length);
1850 if (!ret)
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1860 ret = 0;
1862 kfree(bbio);
1865 if (actual_bytes)
1866 *actual_bytes = discarded_bytes;
1869 return ret;
1872 /* Can return -ENOMEM */
1873 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 u64 bytenr, u64 num_bytes, u64 parent,
1876 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1878 int ret;
1879 struct btrfs_fs_info *fs_info = root->fs_info;
1881 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1882 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1884 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1885 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1886 num_bytes,
1887 parent, root_objectid, (int)owner,
1888 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1889 } else {
1890 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1891 num_bytes,
1892 parent, root_objectid, owner, offset,
1893 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1895 return ret;
1898 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1899 struct btrfs_root *root,
1900 u64 bytenr, u64 num_bytes,
1901 u64 parent, u64 root_objectid,
1902 u64 owner, u64 offset, int refs_to_add,
1903 struct btrfs_delayed_extent_op *extent_op)
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_extent_item *item;
1908 u64 refs;
1909 int ret;
1910 int err = 0;
1912 path = btrfs_alloc_path();
1913 if (!path)
1914 return -ENOMEM;
1916 path->reada = 1;
1917 path->leave_spinning = 1;
1918 /* this will setup the path even if it fails to insert the back ref */
1919 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1920 path, bytenr, num_bytes, parent,
1921 root_objectid, owner, offset,
1922 refs_to_add, extent_op);
1923 if (ret == 0)
1924 goto out;
1926 if (ret != -EAGAIN) {
1927 err = ret;
1928 goto out;
1931 leaf = path->nodes[0];
1932 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1933 refs = btrfs_extent_refs(leaf, item);
1934 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1935 if (extent_op)
1936 __run_delayed_extent_op(extent_op, leaf, item);
1938 btrfs_mark_buffer_dirty(leaf);
1939 btrfs_release_path(path);
1941 path->reada = 1;
1942 path->leave_spinning = 1;
1944 /* now insert the actual backref */
1945 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1946 path, bytenr, parent, root_objectid,
1947 owner, offset, refs_to_add);
1948 if (ret)
1949 btrfs_abort_transaction(trans, root, ret);
1950 out:
1951 btrfs_free_path(path);
1952 return err;
1955 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 struct btrfs_delayed_ref_node *node,
1958 struct btrfs_delayed_extent_op *extent_op,
1959 int insert_reserved)
1961 int ret = 0;
1962 struct btrfs_delayed_data_ref *ref;
1963 struct btrfs_key ins;
1964 u64 parent = 0;
1965 u64 ref_root = 0;
1966 u64 flags = 0;
1968 ins.objectid = node->bytenr;
1969 ins.offset = node->num_bytes;
1970 ins.type = BTRFS_EXTENT_ITEM_KEY;
1972 ref = btrfs_delayed_node_to_data_ref(node);
1973 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1974 parent = ref->parent;
1975 else
1976 ref_root = ref->root;
1978 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1979 if (extent_op) {
1980 BUG_ON(extent_op->update_key);
1981 flags |= extent_op->flags_to_set;
1983 ret = alloc_reserved_file_extent(trans, root,
1984 parent, ref_root, flags,
1985 ref->objectid, ref->offset,
1986 &ins, node->ref_mod);
1987 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1988 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1992 extent_op);
1993 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1994 ret = __btrfs_free_extent(trans, root, node->bytenr,
1995 node->num_bytes, parent,
1996 ref_root, ref->objectid,
1997 ref->offset, node->ref_mod,
1998 extent_op);
1999 } else {
2000 BUG();
2002 return ret;
2005 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2006 struct extent_buffer *leaf,
2007 struct btrfs_extent_item *ei)
2009 u64 flags = btrfs_extent_flags(leaf, ei);
2010 if (extent_op->update_flags) {
2011 flags |= extent_op->flags_to_set;
2012 btrfs_set_extent_flags(leaf, ei, flags);
2015 if (extent_op->update_key) {
2016 struct btrfs_tree_block_info *bi;
2017 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2018 bi = (struct btrfs_tree_block_info *)(ei + 1);
2019 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2023 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2024 struct btrfs_root *root,
2025 struct btrfs_delayed_ref_node *node,
2026 struct btrfs_delayed_extent_op *extent_op)
2028 struct btrfs_key key;
2029 struct btrfs_path *path;
2030 struct btrfs_extent_item *ei;
2031 struct extent_buffer *leaf;
2032 u32 item_size;
2033 int ret;
2034 int err = 0;
2036 if (trans->aborted)
2037 return 0;
2039 path = btrfs_alloc_path();
2040 if (!path)
2041 return -ENOMEM;
2043 key.objectid = node->bytenr;
2044 key.type = BTRFS_EXTENT_ITEM_KEY;
2045 key.offset = node->num_bytes;
2047 path->reada = 1;
2048 path->leave_spinning = 1;
2049 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2050 path, 0, 1);
2051 if (ret < 0) {
2052 err = ret;
2053 goto out;
2055 if (ret > 0) {
2056 err = -EIO;
2057 goto out;
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 if (item_size < sizeof(*ei)) {
2064 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2065 path, (u64)-1, 0);
2066 if (ret < 0) {
2067 err = ret;
2068 goto out;
2070 leaf = path->nodes[0];
2071 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2073 #endif
2074 BUG_ON(item_size < sizeof(*ei));
2075 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2076 __run_delayed_extent_op(extent_op, leaf, ei);
2078 btrfs_mark_buffer_dirty(leaf);
2079 out:
2080 btrfs_free_path(path);
2081 return err;
2084 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2085 struct btrfs_root *root,
2086 struct btrfs_delayed_ref_node *node,
2087 struct btrfs_delayed_extent_op *extent_op,
2088 int insert_reserved)
2090 int ret = 0;
2091 struct btrfs_delayed_tree_ref *ref;
2092 struct btrfs_key ins;
2093 u64 parent = 0;
2094 u64 ref_root = 0;
2096 ins.objectid = node->bytenr;
2097 ins.offset = node->num_bytes;
2098 ins.type = BTRFS_EXTENT_ITEM_KEY;
2100 ref = btrfs_delayed_node_to_tree_ref(node);
2101 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2102 parent = ref->parent;
2103 else
2104 ref_root = ref->root;
2106 BUG_ON(node->ref_mod != 1);
2107 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2108 BUG_ON(!extent_op || !extent_op->update_flags ||
2109 !extent_op->update_key);
2110 ret = alloc_reserved_tree_block(trans, root,
2111 parent, ref_root,
2112 extent_op->flags_to_set,
2113 &extent_op->key,
2114 ref->level, &ins);
2115 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2116 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2117 node->num_bytes, parent, ref_root,
2118 ref->level, 0, 1, extent_op);
2119 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2120 ret = __btrfs_free_extent(trans, root, node->bytenr,
2121 node->num_bytes, parent, ref_root,
2122 ref->level, 0, 1, extent_op);
2123 } else {
2124 BUG();
2126 return ret;
2129 /* helper function to actually process a single delayed ref entry */
2130 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2131 struct btrfs_root *root,
2132 struct btrfs_delayed_ref_node *node,
2133 struct btrfs_delayed_extent_op *extent_op,
2134 int insert_reserved)
2136 int ret = 0;
2138 if (trans->aborted)
2139 return 0;
2141 if (btrfs_delayed_ref_is_head(node)) {
2142 struct btrfs_delayed_ref_head *head;
2144 * we've hit the end of the chain and we were supposed
2145 * to insert this extent into the tree. But, it got
2146 * deleted before we ever needed to insert it, so all
2147 * we have to do is clean up the accounting
2149 BUG_ON(extent_op);
2150 head = btrfs_delayed_node_to_head(node);
2151 if (insert_reserved) {
2152 btrfs_pin_extent(root, node->bytenr,
2153 node->num_bytes, 1);
2154 if (head->is_data) {
2155 ret = btrfs_del_csums(trans, root,
2156 node->bytenr,
2157 node->num_bytes);
2160 mutex_unlock(&head->mutex);
2161 return ret;
2164 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2165 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2166 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2167 insert_reserved);
2168 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2169 node->type == BTRFS_SHARED_DATA_REF_KEY)
2170 ret = run_delayed_data_ref(trans, root, node, extent_op,
2171 insert_reserved);
2172 else
2173 BUG();
2174 return ret;
2177 static noinline struct btrfs_delayed_ref_node *
2178 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2180 struct rb_node *node;
2181 struct btrfs_delayed_ref_node *ref;
2182 int action = BTRFS_ADD_DELAYED_REF;
2183 again:
2185 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 * this prevents ref count from going down to zero when
2187 * there still are pending delayed ref.
2189 node = rb_prev(&head->node.rb_node);
2190 while (1) {
2191 if (!node)
2192 break;
2193 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2194 rb_node);
2195 if (ref->bytenr != head->node.bytenr)
2196 break;
2197 if (ref->action == action)
2198 return ref;
2199 node = rb_prev(node);
2201 if (action == BTRFS_ADD_DELAYED_REF) {
2202 action = BTRFS_DROP_DELAYED_REF;
2203 goto again;
2205 return NULL;
2209 * Returns 0 on success or if called with an already aborted transaction.
2210 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2212 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root,
2214 struct list_head *cluster)
2216 struct btrfs_delayed_ref_root *delayed_refs;
2217 struct btrfs_delayed_ref_node *ref;
2218 struct btrfs_delayed_ref_head *locked_ref = NULL;
2219 struct btrfs_delayed_extent_op *extent_op;
2220 int ret;
2221 int count = 0;
2222 int must_insert_reserved = 0;
2224 delayed_refs = &trans->transaction->delayed_refs;
2225 while (1) {
2226 if (!locked_ref) {
2227 /* pick a new head ref from the cluster list */
2228 if (list_empty(cluster))
2229 break;
2231 locked_ref = list_entry(cluster->next,
2232 struct btrfs_delayed_ref_head, cluster);
2234 /* grab the lock that says we are going to process
2235 * all the refs for this head */
2236 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2239 * we may have dropped the spin lock to get the head
2240 * mutex lock, and that might have given someone else
2241 * time to free the head. If that's true, it has been
2242 * removed from our list and we can move on.
2244 if (ret == -EAGAIN) {
2245 locked_ref = NULL;
2246 count++;
2247 continue;
2252 * locked_ref is the head node, so we have to go one
2253 * node back for any delayed ref updates
2255 ref = select_delayed_ref(locked_ref);
2257 if (ref && ref->seq &&
2258 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2260 * there are still refs with lower seq numbers in the
2261 * process of being added. Don't run this ref yet.
2263 list_del_init(&locked_ref->cluster);
2264 mutex_unlock(&locked_ref->mutex);
2265 locked_ref = NULL;
2266 delayed_refs->num_heads_ready++;
2267 spin_unlock(&delayed_refs->lock);
2268 cond_resched();
2269 spin_lock(&delayed_refs->lock);
2270 continue;
2274 * record the must insert reserved flag before we
2275 * drop the spin lock.
2277 must_insert_reserved = locked_ref->must_insert_reserved;
2278 locked_ref->must_insert_reserved = 0;
2280 extent_op = locked_ref->extent_op;
2281 locked_ref->extent_op = NULL;
2283 if (!ref) {
2284 /* All delayed refs have been processed, Go ahead
2285 * and send the head node to run_one_delayed_ref,
2286 * so that any accounting fixes can happen
2288 ref = &locked_ref->node;
2290 if (extent_op && must_insert_reserved) {
2291 kfree(extent_op);
2292 extent_op = NULL;
2295 if (extent_op) {
2296 spin_unlock(&delayed_refs->lock);
2298 ret = run_delayed_extent_op(trans, root,
2299 ref, extent_op);
2300 kfree(extent_op);
2302 if (ret) {
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2305 return ret;
2308 goto next;
2311 list_del_init(&locked_ref->cluster);
2312 locked_ref = NULL;
2315 ref->in_tree = 0;
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2319 * we modified num_entries, but as we're currently running
2320 * delayed refs, skip
2321 * wake_up(&delayed_refs->seq_wait);
2322 * here.
2324 spin_unlock(&delayed_refs->lock);
2326 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2327 must_insert_reserved);
2329 btrfs_put_delayed_ref(ref);
2330 kfree(extent_op);
2331 count++;
2333 if (ret) {
2334 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2335 spin_lock(&delayed_refs->lock);
2336 return ret;
2339 next:
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2341 2 * 1024 * 1024,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2344 cond_resched();
2345 spin_lock(&delayed_refs->lock);
2347 return count;
2350 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2351 unsigned long num_refs,
2352 struct list_head *first_seq)
2354 spin_unlock(&delayed_refs->lock);
2355 pr_debug("waiting for more refs (num %ld, first %p)\n",
2356 num_refs, first_seq);
2357 wait_event(delayed_refs->seq_wait,
2358 num_refs != delayed_refs->num_entries ||
2359 delayed_refs->seq_head.next != first_seq);
2360 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2361 delayed_refs->num_entries, delayed_refs->seq_head.next);
2362 spin_lock(&delayed_refs->lock);
2366 * this starts processing the delayed reference count updates and
2367 * extent insertions we have queued up so far. count can be
2368 * 0, which means to process everything in the tree at the start
2369 * of the run (but not newly added entries), or it can be some target
2370 * number you'd like to process.
2372 * Returns 0 on success or if called with an aborted transaction
2373 * Returns <0 on error and aborts the transaction
2375 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2376 struct btrfs_root *root, unsigned long count)
2378 struct rb_node *node;
2379 struct btrfs_delayed_ref_root *delayed_refs;
2380 struct btrfs_delayed_ref_node *ref;
2381 struct list_head cluster;
2382 struct list_head *first_seq = NULL;
2383 int ret;
2384 u64 delayed_start;
2385 int run_all = count == (unsigned long)-1;
2386 int run_most = 0;
2387 unsigned long num_refs = 0;
2388 int consider_waiting;
2390 /* We'll clean this up in btrfs_cleanup_transaction */
2391 if (trans->aborted)
2392 return 0;
2394 if (root == root->fs_info->extent_root)
2395 root = root->fs_info->tree_root;
2397 do_chunk_alloc(trans, root->fs_info->extent_root,
2398 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2399 CHUNK_ALLOC_NO_FORCE);
2401 delayed_refs = &trans->transaction->delayed_refs;
2402 INIT_LIST_HEAD(&cluster);
2403 again:
2404 consider_waiting = 0;
2405 spin_lock(&delayed_refs->lock);
2406 if (count == 0) {
2407 count = delayed_refs->num_entries * 2;
2408 run_most = 1;
2410 while (1) {
2411 if (!(run_all || run_most) &&
2412 delayed_refs->num_heads_ready < 64)
2413 break;
2416 * go find something we can process in the rbtree. We start at
2417 * the beginning of the tree, and then build a cluster
2418 * of refs to process starting at the first one we are able to
2419 * lock
2421 delayed_start = delayed_refs->run_delayed_start;
2422 ret = btrfs_find_ref_cluster(trans, &cluster,
2423 delayed_refs->run_delayed_start);
2424 if (ret)
2425 break;
2427 if (delayed_start >= delayed_refs->run_delayed_start) {
2428 if (consider_waiting == 0) {
2430 * btrfs_find_ref_cluster looped. let's do one
2431 * more cycle. if we don't run any delayed ref
2432 * during that cycle (because we can't because
2433 * all of them are blocked) and if the number of
2434 * refs doesn't change, we avoid busy waiting.
2436 consider_waiting = 1;
2437 num_refs = delayed_refs->num_entries;
2438 first_seq = root->fs_info->tree_mod_seq_list.next;
2439 } else {
2440 wait_for_more_refs(delayed_refs,
2441 num_refs, first_seq);
2443 * after waiting, things have changed. we
2444 * dropped the lock and someone else might have
2445 * run some refs, built new clusters and so on.
2446 * therefore, we restart staleness detection.
2448 consider_waiting = 0;
2452 ret = run_clustered_refs(trans, root, &cluster);
2453 if (ret < 0) {
2454 spin_unlock(&delayed_refs->lock);
2455 btrfs_abort_transaction(trans, root, ret);
2456 return ret;
2459 count -= min_t(unsigned long, ret, count);
2461 if (count == 0)
2462 break;
2464 if (ret || delayed_refs->run_delayed_start == 0) {
2465 /* refs were run, let's reset staleness detection */
2466 consider_waiting = 0;
2470 if (run_all) {
2471 node = rb_first(&delayed_refs->root);
2472 if (!node)
2473 goto out;
2474 count = (unsigned long)-1;
2476 while (node) {
2477 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2478 rb_node);
2479 if (btrfs_delayed_ref_is_head(ref)) {
2480 struct btrfs_delayed_ref_head *head;
2482 head = btrfs_delayed_node_to_head(ref);
2483 atomic_inc(&ref->refs);
2485 spin_unlock(&delayed_refs->lock);
2487 * Mutex was contended, block until it's
2488 * released and try again
2490 mutex_lock(&head->mutex);
2491 mutex_unlock(&head->mutex);
2493 btrfs_put_delayed_ref(ref);
2494 cond_resched();
2495 goto again;
2497 node = rb_next(node);
2499 spin_unlock(&delayed_refs->lock);
2500 schedule_timeout(1);
2501 goto again;
2503 out:
2504 spin_unlock(&delayed_refs->lock);
2505 return 0;
2508 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2509 struct btrfs_root *root,
2510 u64 bytenr, u64 num_bytes, u64 flags,
2511 int is_data)
2513 struct btrfs_delayed_extent_op *extent_op;
2514 int ret;
2516 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2517 if (!extent_op)
2518 return -ENOMEM;
2520 extent_op->flags_to_set = flags;
2521 extent_op->update_flags = 1;
2522 extent_op->update_key = 0;
2523 extent_op->is_data = is_data ? 1 : 0;
2525 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2526 num_bytes, extent_op);
2527 if (ret)
2528 kfree(extent_op);
2529 return ret;
2532 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root,
2534 struct btrfs_path *path,
2535 u64 objectid, u64 offset, u64 bytenr)
2537 struct btrfs_delayed_ref_head *head;
2538 struct btrfs_delayed_ref_node *ref;
2539 struct btrfs_delayed_data_ref *data_ref;
2540 struct btrfs_delayed_ref_root *delayed_refs;
2541 struct rb_node *node;
2542 int ret = 0;
2544 ret = -ENOENT;
2545 delayed_refs = &trans->transaction->delayed_refs;
2546 spin_lock(&delayed_refs->lock);
2547 head = btrfs_find_delayed_ref_head(trans, bytenr);
2548 if (!head)
2549 goto out;
2551 if (!mutex_trylock(&head->mutex)) {
2552 atomic_inc(&head->node.refs);
2553 spin_unlock(&delayed_refs->lock);
2555 btrfs_release_path(path);
2558 * Mutex was contended, block until it's released and let
2559 * caller try again
2561 mutex_lock(&head->mutex);
2562 mutex_unlock(&head->mutex);
2563 btrfs_put_delayed_ref(&head->node);
2564 return -EAGAIN;
2567 node = rb_prev(&head->node.rb_node);
2568 if (!node)
2569 goto out_unlock;
2571 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2573 if (ref->bytenr != bytenr)
2574 goto out_unlock;
2576 ret = 1;
2577 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2578 goto out_unlock;
2580 data_ref = btrfs_delayed_node_to_data_ref(ref);
2582 node = rb_prev(node);
2583 if (node) {
2584 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2585 if (ref->bytenr == bytenr)
2586 goto out_unlock;
2589 if (data_ref->root != root->root_key.objectid ||
2590 data_ref->objectid != objectid || data_ref->offset != offset)
2591 goto out_unlock;
2593 ret = 0;
2594 out_unlock:
2595 mutex_unlock(&head->mutex);
2596 out:
2597 spin_unlock(&delayed_refs->lock);
2598 return ret;
2601 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2602 struct btrfs_root *root,
2603 struct btrfs_path *path,
2604 u64 objectid, u64 offset, u64 bytenr)
2606 struct btrfs_root *extent_root = root->fs_info->extent_root;
2607 struct extent_buffer *leaf;
2608 struct btrfs_extent_data_ref *ref;
2609 struct btrfs_extent_inline_ref *iref;
2610 struct btrfs_extent_item *ei;
2611 struct btrfs_key key;
2612 u32 item_size;
2613 int ret;
2615 key.objectid = bytenr;
2616 key.offset = (u64)-1;
2617 key.type = BTRFS_EXTENT_ITEM_KEY;
2619 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2620 if (ret < 0)
2621 goto out;
2622 BUG_ON(ret == 0); /* Corruption */
2624 ret = -ENOENT;
2625 if (path->slots[0] == 0)
2626 goto out;
2628 path->slots[0]--;
2629 leaf = path->nodes[0];
2630 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2632 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2633 goto out;
2635 ret = 1;
2636 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2638 if (item_size < sizeof(*ei)) {
2639 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2640 goto out;
2642 #endif
2643 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2645 if (item_size != sizeof(*ei) +
2646 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2647 goto out;
2649 if (btrfs_extent_generation(leaf, ei) <=
2650 btrfs_root_last_snapshot(&root->root_item))
2651 goto out;
2653 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2654 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2655 BTRFS_EXTENT_DATA_REF_KEY)
2656 goto out;
2658 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2659 if (btrfs_extent_refs(leaf, ei) !=
2660 btrfs_extent_data_ref_count(leaf, ref) ||
2661 btrfs_extent_data_ref_root(leaf, ref) !=
2662 root->root_key.objectid ||
2663 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2664 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2665 goto out;
2667 ret = 0;
2668 out:
2669 return ret;
2672 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2673 struct btrfs_root *root,
2674 u64 objectid, u64 offset, u64 bytenr)
2676 struct btrfs_path *path;
2677 int ret;
2678 int ret2;
2680 path = btrfs_alloc_path();
2681 if (!path)
2682 return -ENOENT;
2684 do {
2685 ret = check_committed_ref(trans, root, path, objectid,
2686 offset, bytenr);
2687 if (ret && ret != -ENOENT)
2688 goto out;
2690 ret2 = check_delayed_ref(trans, root, path, objectid,
2691 offset, bytenr);
2692 } while (ret2 == -EAGAIN);
2694 if (ret2 && ret2 != -ENOENT) {
2695 ret = ret2;
2696 goto out;
2699 if (ret != -ENOENT || ret2 != -ENOENT)
2700 ret = 0;
2701 out:
2702 btrfs_free_path(path);
2703 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2704 WARN_ON(ret > 0);
2705 return ret;
2708 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2709 struct btrfs_root *root,
2710 struct extent_buffer *buf,
2711 int full_backref, int inc, int for_cow)
2713 u64 bytenr;
2714 u64 num_bytes;
2715 u64 parent;
2716 u64 ref_root;
2717 u32 nritems;
2718 struct btrfs_key key;
2719 struct btrfs_file_extent_item *fi;
2720 int i;
2721 int level;
2722 int ret = 0;
2723 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2724 u64, u64, u64, u64, u64, u64, int);
2726 ref_root = btrfs_header_owner(buf);
2727 nritems = btrfs_header_nritems(buf);
2728 level = btrfs_header_level(buf);
2730 if (!root->ref_cows && level == 0)
2731 return 0;
2733 if (inc)
2734 process_func = btrfs_inc_extent_ref;
2735 else
2736 process_func = btrfs_free_extent;
2738 if (full_backref)
2739 parent = buf->start;
2740 else
2741 parent = 0;
2743 for (i = 0; i < nritems; i++) {
2744 if (level == 0) {
2745 btrfs_item_key_to_cpu(buf, &key, i);
2746 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2747 continue;
2748 fi = btrfs_item_ptr(buf, i,
2749 struct btrfs_file_extent_item);
2750 if (btrfs_file_extent_type(buf, fi) ==
2751 BTRFS_FILE_EXTENT_INLINE)
2752 continue;
2753 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2754 if (bytenr == 0)
2755 continue;
2757 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2758 key.offset -= btrfs_file_extent_offset(buf, fi);
2759 ret = process_func(trans, root, bytenr, num_bytes,
2760 parent, ref_root, key.objectid,
2761 key.offset, for_cow);
2762 if (ret)
2763 goto fail;
2764 } else {
2765 bytenr = btrfs_node_blockptr(buf, i);
2766 num_bytes = btrfs_level_size(root, level - 1);
2767 ret = process_func(trans, root, bytenr, num_bytes,
2768 parent, ref_root, level - 1, 0,
2769 for_cow);
2770 if (ret)
2771 goto fail;
2774 return 0;
2775 fail:
2776 return ret;
2779 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2780 struct extent_buffer *buf, int full_backref, int for_cow)
2782 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2785 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2786 struct extent_buffer *buf, int full_backref, int for_cow)
2788 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2791 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2792 struct btrfs_root *root,
2793 struct btrfs_path *path,
2794 struct btrfs_block_group_cache *cache)
2796 int ret;
2797 struct btrfs_root *extent_root = root->fs_info->extent_root;
2798 unsigned long bi;
2799 struct extent_buffer *leaf;
2801 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2802 if (ret < 0)
2803 goto fail;
2804 BUG_ON(ret); /* Corruption */
2806 leaf = path->nodes[0];
2807 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2808 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2809 btrfs_mark_buffer_dirty(leaf);
2810 btrfs_release_path(path);
2811 fail:
2812 if (ret) {
2813 btrfs_abort_transaction(trans, root, ret);
2814 return ret;
2816 return 0;
2820 static struct btrfs_block_group_cache *
2821 next_block_group(struct btrfs_root *root,
2822 struct btrfs_block_group_cache *cache)
2824 struct rb_node *node;
2825 spin_lock(&root->fs_info->block_group_cache_lock);
2826 node = rb_next(&cache->cache_node);
2827 btrfs_put_block_group(cache);
2828 if (node) {
2829 cache = rb_entry(node, struct btrfs_block_group_cache,
2830 cache_node);
2831 btrfs_get_block_group(cache);
2832 } else
2833 cache = NULL;
2834 spin_unlock(&root->fs_info->block_group_cache_lock);
2835 return cache;
2838 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2839 struct btrfs_trans_handle *trans,
2840 struct btrfs_path *path)
2842 struct btrfs_root *root = block_group->fs_info->tree_root;
2843 struct inode *inode = NULL;
2844 u64 alloc_hint = 0;
2845 int dcs = BTRFS_DC_ERROR;
2846 int num_pages = 0;
2847 int retries = 0;
2848 int ret = 0;
2851 * If this block group is smaller than 100 megs don't bother caching the
2852 * block group.
2854 if (block_group->key.offset < (100 * 1024 * 1024)) {
2855 spin_lock(&block_group->lock);
2856 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2857 spin_unlock(&block_group->lock);
2858 return 0;
2861 again:
2862 inode = lookup_free_space_inode(root, block_group, path);
2863 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2864 ret = PTR_ERR(inode);
2865 btrfs_release_path(path);
2866 goto out;
2869 if (IS_ERR(inode)) {
2870 BUG_ON(retries);
2871 retries++;
2873 if (block_group->ro)
2874 goto out_free;
2876 ret = create_free_space_inode(root, trans, block_group, path);
2877 if (ret)
2878 goto out_free;
2879 goto again;
2882 /* We've already setup this transaction, go ahead and exit */
2883 if (block_group->cache_generation == trans->transid &&
2884 i_size_read(inode)) {
2885 dcs = BTRFS_DC_SETUP;
2886 goto out_put;
2890 * We want to set the generation to 0, that way if anything goes wrong
2891 * from here on out we know not to trust this cache when we load up next
2892 * time.
2894 BTRFS_I(inode)->generation = 0;
2895 ret = btrfs_update_inode(trans, root, inode);
2896 WARN_ON(ret);
2898 if (i_size_read(inode) > 0) {
2899 ret = btrfs_truncate_free_space_cache(root, trans, path,
2900 inode);
2901 if (ret)
2902 goto out_put;
2905 spin_lock(&block_group->lock);
2906 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2907 /* We're not cached, don't bother trying to write stuff out */
2908 dcs = BTRFS_DC_WRITTEN;
2909 spin_unlock(&block_group->lock);
2910 goto out_put;
2912 spin_unlock(&block_group->lock);
2914 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2915 if (!num_pages)
2916 num_pages = 1;
2919 * Just to make absolutely sure we have enough space, we're going to
2920 * preallocate 12 pages worth of space for each block group. In
2921 * practice we ought to use at most 8, but we need extra space so we can
2922 * add our header and have a terminator between the extents and the
2923 * bitmaps.
2925 num_pages *= 16;
2926 num_pages *= PAGE_CACHE_SIZE;
2928 ret = btrfs_check_data_free_space(inode, num_pages);
2929 if (ret)
2930 goto out_put;
2932 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2933 num_pages, num_pages,
2934 &alloc_hint);
2935 if (!ret)
2936 dcs = BTRFS_DC_SETUP;
2937 btrfs_free_reserved_data_space(inode, num_pages);
2939 out_put:
2940 iput(inode);
2941 out_free:
2942 btrfs_release_path(path);
2943 out:
2944 spin_lock(&block_group->lock);
2945 if (!ret && dcs == BTRFS_DC_SETUP)
2946 block_group->cache_generation = trans->transid;
2947 block_group->disk_cache_state = dcs;
2948 spin_unlock(&block_group->lock);
2950 return ret;
2953 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2954 struct btrfs_root *root)
2956 struct btrfs_block_group_cache *cache;
2957 int err = 0;
2958 struct btrfs_path *path;
2959 u64 last = 0;
2961 path = btrfs_alloc_path();
2962 if (!path)
2963 return -ENOMEM;
2965 again:
2966 while (1) {
2967 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2968 while (cache) {
2969 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2970 break;
2971 cache = next_block_group(root, cache);
2973 if (!cache) {
2974 if (last == 0)
2975 break;
2976 last = 0;
2977 continue;
2979 err = cache_save_setup(cache, trans, path);
2980 last = cache->key.objectid + cache->key.offset;
2981 btrfs_put_block_group(cache);
2984 while (1) {
2985 if (last == 0) {
2986 err = btrfs_run_delayed_refs(trans, root,
2987 (unsigned long)-1);
2988 if (err) /* File system offline */
2989 goto out;
2992 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2993 while (cache) {
2994 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2995 btrfs_put_block_group(cache);
2996 goto again;
2999 if (cache->dirty)
3000 break;
3001 cache = next_block_group(root, cache);
3003 if (!cache) {
3004 if (last == 0)
3005 break;
3006 last = 0;
3007 continue;
3010 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3011 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3012 cache->dirty = 0;
3013 last = cache->key.objectid + cache->key.offset;
3015 err = write_one_cache_group(trans, root, path, cache);
3016 if (err) /* File system offline */
3017 goto out;
3019 btrfs_put_block_group(cache);
3022 while (1) {
3024 * I don't think this is needed since we're just marking our
3025 * preallocated extent as written, but just in case it can't
3026 * hurt.
3028 if (last == 0) {
3029 err = btrfs_run_delayed_refs(trans, root,
3030 (unsigned long)-1);
3031 if (err) /* File system offline */
3032 goto out;
3035 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3036 while (cache) {
3038 * Really this shouldn't happen, but it could if we
3039 * couldn't write the entire preallocated extent and
3040 * splitting the extent resulted in a new block.
3042 if (cache->dirty) {
3043 btrfs_put_block_group(cache);
3044 goto again;
3046 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3047 break;
3048 cache = next_block_group(root, cache);
3050 if (!cache) {
3051 if (last == 0)
3052 break;
3053 last = 0;
3054 continue;
3057 err = btrfs_write_out_cache(root, trans, cache, path);
3060 * If we didn't have an error then the cache state is still
3061 * NEED_WRITE, so we can set it to WRITTEN.
3063 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3064 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3065 last = cache->key.objectid + cache->key.offset;
3066 btrfs_put_block_group(cache);
3068 out:
3070 btrfs_free_path(path);
3071 return err;
3074 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3076 struct btrfs_block_group_cache *block_group;
3077 int readonly = 0;
3079 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3080 if (!block_group || block_group->ro)
3081 readonly = 1;
3082 if (block_group)
3083 btrfs_put_block_group(block_group);
3084 return readonly;
3087 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3088 u64 total_bytes, u64 bytes_used,
3089 struct btrfs_space_info **space_info)
3091 struct btrfs_space_info *found;
3092 int i;
3093 int factor;
3095 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3096 BTRFS_BLOCK_GROUP_RAID10))
3097 factor = 2;
3098 else
3099 factor = 1;
3101 found = __find_space_info(info, flags);
3102 if (found) {
3103 spin_lock(&found->lock);
3104 found->total_bytes += total_bytes;
3105 found->disk_total += total_bytes * factor;
3106 found->bytes_used += bytes_used;
3107 found->disk_used += bytes_used * factor;
3108 found->full = 0;
3109 spin_unlock(&found->lock);
3110 *space_info = found;
3111 return 0;
3113 found = kzalloc(sizeof(*found), GFP_NOFS);
3114 if (!found)
3115 return -ENOMEM;
3117 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3118 INIT_LIST_HEAD(&found->block_groups[i]);
3119 init_rwsem(&found->groups_sem);
3120 spin_lock_init(&found->lock);
3121 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3122 found->total_bytes = total_bytes;
3123 found->disk_total = total_bytes * factor;
3124 found->bytes_used = bytes_used;
3125 found->disk_used = bytes_used * factor;
3126 found->bytes_pinned = 0;
3127 found->bytes_reserved = 0;
3128 found->bytes_readonly = 0;
3129 found->bytes_may_use = 0;
3130 found->full = 0;
3131 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3132 found->chunk_alloc = 0;
3133 found->flush = 0;
3134 init_waitqueue_head(&found->wait);
3135 *space_info = found;
3136 list_add_rcu(&found->list, &info->space_info);
3137 return 0;
3140 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3142 u64 extra_flags = chunk_to_extended(flags) &
3143 BTRFS_EXTENDED_PROFILE_MASK;
3145 if (flags & BTRFS_BLOCK_GROUP_DATA)
3146 fs_info->avail_data_alloc_bits |= extra_flags;
3147 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3148 fs_info->avail_metadata_alloc_bits |= extra_flags;
3149 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3150 fs_info->avail_system_alloc_bits |= extra_flags;
3154 * returns target flags in extended format or 0 if restripe for this
3155 * chunk_type is not in progress
3157 * should be called with either volume_mutex or balance_lock held
3159 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3161 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3162 u64 target = 0;
3164 if (!bctl)
3165 return 0;
3167 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3168 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3169 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3170 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3171 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3172 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3173 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3174 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3175 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3178 return target;
3182 * @flags: available profiles in extended format (see ctree.h)
3184 * Returns reduced profile in chunk format. If profile changing is in
3185 * progress (either running or paused) picks the target profile (if it's
3186 * already available), otherwise falls back to plain reducing.
3188 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3191 * we add in the count of missing devices because we want
3192 * to make sure that any RAID levels on a degraded FS
3193 * continue to be honored.
3195 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3196 root->fs_info->fs_devices->missing_devices;
3197 u64 target;
3200 * see if restripe for this chunk_type is in progress, if so
3201 * try to reduce to the target profile
3203 spin_lock(&root->fs_info->balance_lock);
3204 target = get_restripe_target(root->fs_info, flags);
3205 if (target) {
3206 /* pick target profile only if it's already available */
3207 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3208 spin_unlock(&root->fs_info->balance_lock);
3209 return extended_to_chunk(target);
3212 spin_unlock(&root->fs_info->balance_lock);
3214 if (num_devices == 1)
3215 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3216 if (num_devices < 4)
3217 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3219 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3220 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3221 BTRFS_BLOCK_GROUP_RAID10))) {
3222 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3225 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3226 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3227 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3230 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3231 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3232 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3233 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3234 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3237 return extended_to_chunk(flags);
3240 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3242 if (flags & BTRFS_BLOCK_GROUP_DATA)
3243 flags |= root->fs_info->avail_data_alloc_bits;
3244 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3245 flags |= root->fs_info->avail_system_alloc_bits;
3246 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3247 flags |= root->fs_info->avail_metadata_alloc_bits;
3249 return btrfs_reduce_alloc_profile(root, flags);
3252 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3254 u64 flags;
3256 if (data)
3257 flags = BTRFS_BLOCK_GROUP_DATA;
3258 else if (root == root->fs_info->chunk_root)
3259 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3260 else
3261 flags = BTRFS_BLOCK_GROUP_METADATA;
3263 return get_alloc_profile(root, flags);
3266 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3268 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3269 BTRFS_BLOCK_GROUP_DATA);
3273 * This will check the space that the inode allocates from to make sure we have
3274 * enough space for bytes.
3276 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3278 struct btrfs_space_info *data_sinfo;
3279 struct btrfs_root *root = BTRFS_I(inode)->root;
3280 u64 used;
3281 int ret = 0, committed = 0, alloc_chunk = 1;
3283 /* make sure bytes are sectorsize aligned */
3284 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3286 if (root == root->fs_info->tree_root ||
3287 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3288 alloc_chunk = 0;
3289 committed = 1;
3292 data_sinfo = BTRFS_I(inode)->space_info;
3293 if (!data_sinfo)
3294 goto alloc;
3296 again:
3297 /* make sure we have enough space to handle the data first */
3298 spin_lock(&data_sinfo->lock);
3299 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3300 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3301 data_sinfo->bytes_may_use;
3303 if (used + bytes > data_sinfo->total_bytes) {
3304 struct btrfs_trans_handle *trans;
3307 * if we don't have enough free bytes in this space then we need
3308 * to alloc a new chunk.
3310 if (!data_sinfo->full && alloc_chunk) {
3311 u64 alloc_target;
3313 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3314 spin_unlock(&data_sinfo->lock);
3315 alloc:
3316 alloc_target = btrfs_get_alloc_profile(root, 1);
3317 trans = btrfs_join_transaction(root);
3318 if (IS_ERR(trans))
3319 return PTR_ERR(trans);
3321 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3322 bytes + 2 * 1024 * 1024,
3323 alloc_target,
3324 CHUNK_ALLOC_NO_FORCE);
3325 btrfs_end_transaction(trans, root);
3326 if (ret < 0) {
3327 if (ret != -ENOSPC)
3328 return ret;
3329 else
3330 goto commit_trans;
3333 if (!data_sinfo) {
3334 btrfs_set_inode_space_info(root, inode);
3335 data_sinfo = BTRFS_I(inode)->space_info;
3337 goto again;
3341 * If we have less pinned bytes than we want to allocate then
3342 * don't bother committing the transaction, it won't help us.
3344 if (data_sinfo->bytes_pinned < bytes)
3345 committed = 1;
3346 spin_unlock(&data_sinfo->lock);
3348 /* commit the current transaction and try again */
3349 commit_trans:
3350 if (!committed &&
3351 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3352 committed = 1;
3353 trans = btrfs_join_transaction(root);
3354 if (IS_ERR(trans))
3355 return PTR_ERR(trans);
3356 ret = btrfs_commit_transaction(trans, root);
3357 if (ret)
3358 return ret;
3359 goto again;
3362 return -ENOSPC;
3364 data_sinfo->bytes_may_use += bytes;
3365 trace_btrfs_space_reservation(root->fs_info, "space_info",
3366 data_sinfo->flags, bytes, 1);
3367 spin_unlock(&data_sinfo->lock);
3369 return 0;
3373 * Called if we need to clear a data reservation for this inode.
3375 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3377 struct btrfs_root *root = BTRFS_I(inode)->root;
3378 struct btrfs_space_info *data_sinfo;
3380 /* make sure bytes are sectorsize aligned */
3381 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3383 data_sinfo = BTRFS_I(inode)->space_info;
3384 spin_lock(&data_sinfo->lock);
3385 data_sinfo->bytes_may_use -= bytes;
3386 trace_btrfs_space_reservation(root->fs_info, "space_info",
3387 data_sinfo->flags, bytes, 0);
3388 spin_unlock(&data_sinfo->lock);
3391 static void force_metadata_allocation(struct btrfs_fs_info *info)
3393 struct list_head *head = &info->space_info;
3394 struct btrfs_space_info *found;
3396 rcu_read_lock();
3397 list_for_each_entry_rcu(found, head, list) {
3398 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3399 found->force_alloc = CHUNK_ALLOC_FORCE;
3401 rcu_read_unlock();
3404 static int should_alloc_chunk(struct btrfs_root *root,
3405 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3406 int force)
3408 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3409 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3410 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3411 u64 thresh;
3413 if (force == CHUNK_ALLOC_FORCE)
3414 return 1;
3417 * We need to take into account the global rsv because for all intents
3418 * and purposes it's used space. Don't worry about locking the
3419 * global_rsv, it doesn't change except when the transaction commits.
3421 num_allocated += global_rsv->size;
3424 * in limited mode, we want to have some free space up to
3425 * about 1% of the FS size.
3427 if (force == CHUNK_ALLOC_LIMITED) {
3428 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3429 thresh = max_t(u64, 64 * 1024 * 1024,
3430 div_factor_fine(thresh, 1));
3432 if (num_bytes - num_allocated < thresh)
3433 return 1;
3435 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3437 /* 256MB or 2% of the FS */
3438 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3439 /* system chunks need a much small threshold */
3440 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3441 thresh = 32 * 1024 * 1024;
3443 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3444 return 0;
3445 return 1;
3448 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3450 u64 num_dev;
3452 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3453 type & BTRFS_BLOCK_GROUP_RAID0)
3454 num_dev = root->fs_info->fs_devices->rw_devices;
3455 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3456 num_dev = 2;
3457 else
3458 num_dev = 1; /* DUP or single */
3460 /* metadata for updaing devices and chunk tree */
3461 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3464 static void check_system_chunk(struct btrfs_trans_handle *trans,
3465 struct btrfs_root *root, u64 type)
3467 struct btrfs_space_info *info;
3468 u64 left;
3469 u64 thresh;
3471 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3472 spin_lock(&info->lock);
3473 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3474 info->bytes_reserved - info->bytes_readonly;
3475 spin_unlock(&info->lock);
3477 thresh = get_system_chunk_thresh(root, type);
3478 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3479 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3480 left, thresh, type);
3481 dump_space_info(info, 0, 0);
3484 if (left < thresh) {
3485 u64 flags;
3487 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3488 btrfs_alloc_chunk(trans, root, flags);
3492 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3493 struct btrfs_root *extent_root, u64 alloc_bytes,
3494 u64 flags, int force)
3496 struct btrfs_space_info *space_info;
3497 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3498 int wait_for_alloc = 0;
3499 int ret = 0;
3501 space_info = __find_space_info(extent_root->fs_info, flags);
3502 if (!space_info) {
3503 ret = update_space_info(extent_root->fs_info, flags,
3504 0, 0, &space_info);
3505 BUG_ON(ret); /* -ENOMEM */
3507 BUG_ON(!space_info); /* Logic error */
3509 again:
3510 spin_lock(&space_info->lock);
3511 if (force < space_info->force_alloc)
3512 force = space_info->force_alloc;
3513 if (space_info->full) {
3514 spin_unlock(&space_info->lock);
3515 return 0;
3518 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3519 spin_unlock(&space_info->lock);
3520 return 0;
3521 } else if (space_info->chunk_alloc) {
3522 wait_for_alloc = 1;
3523 } else {
3524 space_info->chunk_alloc = 1;
3527 spin_unlock(&space_info->lock);
3529 mutex_lock(&fs_info->chunk_mutex);
3532 * The chunk_mutex is held throughout the entirety of a chunk
3533 * allocation, so once we've acquired the chunk_mutex we know that the
3534 * other guy is done and we need to recheck and see if we should
3535 * allocate.
3537 if (wait_for_alloc) {
3538 mutex_unlock(&fs_info->chunk_mutex);
3539 wait_for_alloc = 0;
3540 goto again;
3544 * If we have mixed data/metadata chunks we want to make sure we keep
3545 * allocating mixed chunks instead of individual chunks.
3547 if (btrfs_mixed_space_info(space_info))
3548 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3551 * if we're doing a data chunk, go ahead and make sure that
3552 * we keep a reasonable number of metadata chunks allocated in the
3553 * FS as well.
3555 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3556 fs_info->data_chunk_allocations++;
3557 if (!(fs_info->data_chunk_allocations %
3558 fs_info->metadata_ratio))
3559 force_metadata_allocation(fs_info);
3563 * Check if we have enough space in SYSTEM chunk because we may need
3564 * to update devices.
3566 check_system_chunk(trans, extent_root, flags);
3568 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3569 if (ret < 0 && ret != -ENOSPC)
3570 goto out;
3572 spin_lock(&space_info->lock);
3573 if (ret)
3574 space_info->full = 1;
3575 else
3576 ret = 1;
3578 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3579 space_info->chunk_alloc = 0;
3580 spin_unlock(&space_info->lock);
3581 out:
3582 mutex_unlock(&fs_info->chunk_mutex);
3583 return ret;
3587 * shrink metadata reservation for delalloc
3589 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3590 bool wait_ordered)
3592 struct btrfs_block_rsv *block_rsv;
3593 struct btrfs_space_info *space_info;
3594 struct btrfs_trans_handle *trans;
3595 u64 reserved;
3596 u64 max_reclaim;
3597 u64 reclaimed = 0;
3598 long time_left;
3599 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3600 int loops = 0;
3601 unsigned long progress;
3603 trans = (struct btrfs_trans_handle *)current->journal_info;
3604 block_rsv = &root->fs_info->delalloc_block_rsv;
3605 space_info = block_rsv->space_info;
3607 smp_mb();
3608 reserved = space_info->bytes_may_use;
3609 progress = space_info->reservation_progress;
3611 if (reserved == 0)
3612 return 0;
3614 smp_mb();
3615 if (root->fs_info->delalloc_bytes == 0) {
3616 if (trans)
3617 return 0;
3618 btrfs_wait_ordered_extents(root, 0, 0);
3619 return 0;
3622 max_reclaim = min(reserved, to_reclaim);
3623 nr_pages = max_t(unsigned long, nr_pages,
3624 max_reclaim >> PAGE_CACHE_SHIFT);
3625 while (loops < 1024) {
3626 /* have the flusher threads jump in and do some IO */
3627 smp_mb();
3628 nr_pages = min_t(unsigned long, nr_pages,
3629 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3630 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3631 WB_REASON_FS_FREE_SPACE);
3633 spin_lock(&space_info->lock);
3634 if (reserved > space_info->bytes_may_use)
3635 reclaimed += reserved - space_info->bytes_may_use;
3636 reserved = space_info->bytes_may_use;
3637 spin_unlock(&space_info->lock);
3639 loops++;
3641 if (reserved == 0 || reclaimed >= max_reclaim)
3642 break;
3644 if (trans && trans->transaction->blocked)
3645 return -EAGAIN;
3647 if (wait_ordered && !trans) {
3648 btrfs_wait_ordered_extents(root, 0, 0);
3649 } else {
3650 time_left = schedule_timeout_interruptible(1);
3652 /* We were interrupted, exit */
3653 if (time_left)
3654 break;
3657 /* we've kicked the IO a few times, if anything has been freed,
3658 * exit. There is no sense in looping here for a long time
3659 * when we really need to commit the transaction, or there are
3660 * just too many writers without enough free space
3663 if (loops > 3) {
3664 smp_mb();
3665 if (progress != space_info->reservation_progress)
3666 break;
3671 return reclaimed >= to_reclaim;
3675 * maybe_commit_transaction - possibly commit the transaction if its ok to
3676 * @root - the root we're allocating for
3677 * @bytes - the number of bytes we want to reserve
3678 * @force - force the commit
3680 * This will check to make sure that committing the transaction will actually
3681 * get us somewhere and then commit the transaction if it does. Otherwise it
3682 * will return -ENOSPC.
3684 static int may_commit_transaction(struct btrfs_root *root,
3685 struct btrfs_space_info *space_info,
3686 u64 bytes, int force)
3688 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3689 struct btrfs_trans_handle *trans;
3691 trans = (struct btrfs_trans_handle *)current->journal_info;
3692 if (trans)
3693 return -EAGAIN;
3695 if (force)
3696 goto commit;
3698 /* See if there is enough pinned space to make this reservation */
3699 spin_lock(&space_info->lock);
3700 if (space_info->bytes_pinned >= bytes) {
3701 spin_unlock(&space_info->lock);
3702 goto commit;
3704 spin_unlock(&space_info->lock);
3707 * See if there is some space in the delayed insertion reservation for
3708 * this reservation.
3710 if (space_info != delayed_rsv->space_info)
3711 return -ENOSPC;
3713 spin_lock(&space_info->lock);
3714 spin_lock(&delayed_rsv->lock);
3715 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3716 spin_unlock(&delayed_rsv->lock);
3717 spin_unlock(&space_info->lock);
3718 return -ENOSPC;
3720 spin_unlock(&delayed_rsv->lock);
3721 spin_unlock(&space_info->lock);
3723 commit:
3724 trans = btrfs_join_transaction(root);
3725 if (IS_ERR(trans))
3726 return -ENOSPC;
3728 return btrfs_commit_transaction(trans, root);
3732 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3733 * @root - the root we're allocating for
3734 * @block_rsv - the block_rsv we're allocating for
3735 * @orig_bytes - the number of bytes we want
3736 * @flush - wether or not we can flush to make our reservation
3738 * This will reserve orgi_bytes number of bytes from the space info associated
3739 * with the block_rsv. If there is not enough space it will make an attempt to
3740 * flush out space to make room. It will do this by flushing delalloc if
3741 * possible or committing the transaction. If flush is 0 then no attempts to
3742 * regain reservations will be made and this will fail if there is not enough
3743 * space already.
3745 static int reserve_metadata_bytes(struct btrfs_root *root,
3746 struct btrfs_block_rsv *block_rsv,
3747 u64 orig_bytes, int flush)
3749 struct btrfs_space_info *space_info = block_rsv->space_info;
3750 u64 used;
3751 u64 num_bytes = orig_bytes;
3752 int retries = 0;
3753 int ret = 0;
3754 bool committed = false;
3755 bool flushing = false;
3756 bool wait_ordered = false;
3758 again:
3759 ret = 0;
3760 spin_lock(&space_info->lock);
3762 * We only want to wait if somebody other than us is flushing and we are
3763 * actually alloed to flush.
3765 while (flush && !flushing && space_info->flush) {
3766 spin_unlock(&space_info->lock);
3768 * If we have a trans handle we can't wait because the flusher
3769 * may have to commit the transaction, which would mean we would
3770 * deadlock since we are waiting for the flusher to finish, but
3771 * hold the current transaction open.
3773 if (current->journal_info)
3774 return -EAGAIN;
3775 ret = wait_event_killable(space_info->wait, !space_info->flush);
3776 /* Must have been killed, return */
3777 if (ret)
3778 return -EINTR;
3780 spin_lock(&space_info->lock);
3783 ret = -ENOSPC;
3784 used = space_info->bytes_used + space_info->bytes_reserved +
3785 space_info->bytes_pinned + space_info->bytes_readonly +
3786 space_info->bytes_may_use;
3789 * The idea here is that we've not already over-reserved the block group
3790 * then we can go ahead and save our reservation first and then start
3791 * flushing if we need to. Otherwise if we've already overcommitted
3792 * lets start flushing stuff first and then come back and try to make
3793 * our reservation.
3795 if (used <= space_info->total_bytes) {
3796 if (used + orig_bytes <= space_info->total_bytes) {
3797 space_info->bytes_may_use += orig_bytes;
3798 trace_btrfs_space_reservation(root->fs_info,
3799 "space_info", space_info->flags, orig_bytes, 1);
3800 ret = 0;
3801 } else {
3803 * Ok set num_bytes to orig_bytes since we aren't
3804 * overocmmitted, this way we only try and reclaim what
3805 * we need.
3807 num_bytes = orig_bytes;
3809 } else {
3811 * Ok we're over committed, set num_bytes to the overcommitted
3812 * amount plus the amount of bytes that we need for this
3813 * reservation.
3815 wait_ordered = true;
3816 num_bytes = used - space_info->total_bytes +
3817 (orig_bytes * (retries + 1));
3820 if (ret) {
3821 u64 profile = btrfs_get_alloc_profile(root, 0);
3822 u64 avail;
3825 * If we have a lot of space that's pinned, don't bother doing
3826 * the overcommit dance yet and just commit the transaction.
3828 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3829 do_div(avail, 10);
3830 if (space_info->bytes_pinned >= avail && flush && !committed) {
3831 space_info->flush = 1;
3832 flushing = true;
3833 spin_unlock(&space_info->lock);
3834 ret = may_commit_transaction(root, space_info,
3835 orig_bytes, 1);
3836 if (ret)
3837 goto out;
3838 committed = true;
3839 goto again;
3842 spin_lock(&root->fs_info->free_chunk_lock);
3843 avail = root->fs_info->free_chunk_space;
3846 * If we have dup, raid1 or raid10 then only half of the free
3847 * space is actually useable.
3849 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3850 BTRFS_BLOCK_GROUP_RAID1 |
3851 BTRFS_BLOCK_GROUP_RAID10))
3852 avail >>= 1;
3855 * If we aren't flushing don't let us overcommit too much, say
3856 * 1/8th of the space. If we can flush, let it overcommit up to
3857 * 1/2 of the space.
3859 if (flush)
3860 avail >>= 3;
3861 else
3862 avail >>= 1;
3863 spin_unlock(&root->fs_info->free_chunk_lock);
3865 if (used + num_bytes < space_info->total_bytes + avail) {
3866 space_info->bytes_may_use += orig_bytes;
3867 trace_btrfs_space_reservation(root->fs_info,
3868 "space_info", space_info->flags, orig_bytes, 1);
3869 ret = 0;
3870 } else {
3871 wait_ordered = true;
3876 * Couldn't make our reservation, save our place so while we're trying
3877 * to reclaim space we can actually use it instead of somebody else
3878 * stealing it from us.
3880 if (ret && flush) {
3881 flushing = true;
3882 space_info->flush = 1;
3885 spin_unlock(&space_info->lock);
3887 if (!ret || !flush)
3888 goto out;
3891 * We do synchronous shrinking since we don't actually unreserve
3892 * metadata until after the IO is completed.
3894 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3895 if (ret < 0)
3896 goto out;
3898 ret = 0;
3901 * So if we were overcommitted it's possible that somebody else flushed
3902 * out enough space and we simply didn't have enough space to reclaim,
3903 * so go back around and try again.
3905 if (retries < 2) {
3906 wait_ordered = true;
3907 retries++;
3908 goto again;
3911 ret = -ENOSPC;
3912 if (committed)
3913 goto out;
3915 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3916 if (!ret) {
3917 committed = true;
3918 goto again;
3921 out:
3922 if (flushing) {
3923 spin_lock(&space_info->lock);
3924 space_info->flush = 0;
3925 wake_up_all(&space_info->wait);
3926 spin_unlock(&space_info->lock);
3928 return ret;
3931 static struct btrfs_block_rsv *get_block_rsv(
3932 const struct btrfs_trans_handle *trans,
3933 const struct btrfs_root *root)
3935 struct btrfs_block_rsv *block_rsv = NULL;
3937 if (root->ref_cows || root == root->fs_info->csum_root)
3938 block_rsv = trans->block_rsv;
3940 if (!block_rsv)
3941 block_rsv = root->block_rsv;
3943 if (!block_rsv)
3944 block_rsv = &root->fs_info->empty_block_rsv;
3946 return block_rsv;
3949 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3950 u64 num_bytes)
3952 int ret = -ENOSPC;
3953 spin_lock(&block_rsv->lock);
3954 if (block_rsv->reserved >= num_bytes) {
3955 block_rsv->reserved -= num_bytes;
3956 if (block_rsv->reserved < block_rsv->size)
3957 block_rsv->full = 0;
3958 ret = 0;
3960 spin_unlock(&block_rsv->lock);
3961 return ret;
3964 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3965 u64 num_bytes, int update_size)
3967 spin_lock(&block_rsv->lock);
3968 block_rsv->reserved += num_bytes;
3969 if (update_size)
3970 block_rsv->size += num_bytes;
3971 else if (block_rsv->reserved >= block_rsv->size)
3972 block_rsv->full = 1;
3973 spin_unlock(&block_rsv->lock);
3976 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3977 struct btrfs_block_rsv *block_rsv,
3978 struct btrfs_block_rsv *dest, u64 num_bytes)
3980 struct btrfs_space_info *space_info = block_rsv->space_info;
3982 spin_lock(&block_rsv->lock);
3983 if (num_bytes == (u64)-1)
3984 num_bytes = block_rsv->size;
3985 block_rsv->size -= num_bytes;
3986 if (block_rsv->reserved >= block_rsv->size) {
3987 num_bytes = block_rsv->reserved - block_rsv->size;
3988 block_rsv->reserved = block_rsv->size;
3989 block_rsv->full = 1;
3990 } else {
3991 num_bytes = 0;
3993 spin_unlock(&block_rsv->lock);
3995 if (num_bytes > 0) {
3996 if (dest) {
3997 spin_lock(&dest->lock);
3998 if (!dest->full) {
3999 u64 bytes_to_add;
4001 bytes_to_add = dest->size - dest->reserved;
4002 bytes_to_add = min(num_bytes, bytes_to_add);
4003 dest->reserved += bytes_to_add;
4004 if (dest->reserved >= dest->size)
4005 dest->full = 1;
4006 num_bytes -= bytes_to_add;
4008 spin_unlock(&dest->lock);
4010 if (num_bytes) {
4011 spin_lock(&space_info->lock);
4012 space_info->bytes_may_use -= num_bytes;
4013 trace_btrfs_space_reservation(fs_info, "space_info",
4014 space_info->flags, num_bytes, 0);
4015 space_info->reservation_progress++;
4016 spin_unlock(&space_info->lock);
4021 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4022 struct btrfs_block_rsv *dst, u64 num_bytes)
4024 int ret;
4026 ret = block_rsv_use_bytes(src, num_bytes);
4027 if (ret)
4028 return ret;
4030 block_rsv_add_bytes(dst, num_bytes, 1);
4031 return 0;
4034 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4036 memset(rsv, 0, sizeof(*rsv));
4037 spin_lock_init(&rsv->lock);
4040 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4042 struct btrfs_block_rsv *block_rsv;
4043 struct btrfs_fs_info *fs_info = root->fs_info;
4045 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4046 if (!block_rsv)
4047 return NULL;
4049 btrfs_init_block_rsv(block_rsv);
4050 block_rsv->space_info = __find_space_info(fs_info,
4051 BTRFS_BLOCK_GROUP_METADATA);
4052 return block_rsv;
4055 void btrfs_free_block_rsv(struct btrfs_root *root,
4056 struct btrfs_block_rsv *rsv)
4058 btrfs_block_rsv_release(root, rsv, (u64)-1);
4059 kfree(rsv);
4062 static inline int __block_rsv_add(struct btrfs_root *root,
4063 struct btrfs_block_rsv *block_rsv,
4064 u64 num_bytes, int flush)
4066 int ret;
4068 if (num_bytes == 0)
4069 return 0;
4071 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4072 if (!ret) {
4073 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4074 return 0;
4077 return ret;
4080 int btrfs_block_rsv_add(struct btrfs_root *root,
4081 struct btrfs_block_rsv *block_rsv,
4082 u64 num_bytes)
4084 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4087 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4088 struct btrfs_block_rsv *block_rsv,
4089 u64 num_bytes)
4091 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4094 int btrfs_block_rsv_check(struct btrfs_root *root,
4095 struct btrfs_block_rsv *block_rsv, int min_factor)
4097 u64 num_bytes = 0;
4098 int ret = -ENOSPC;
4100 if (!block_rsv)
4101 return 0;
4103 spin_lock(&block_rsv->lock);
4104 num_bytes = div_factor(block_rsv->size, min_factor);
4105 if (block_rsv->reserved >= num_bytes)
4106 ret = 0;
4107 spin_unlock(&block_rsv->lock);
4109 return ret;
4112 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4113 struct btrfs_block_rsv *block_rsv,
4114 u64 min_reserved, int flush)
4116 u64 num_bytes = 0;
4117 int ret = -ENOSPC;
4119 if (!block_rsv)
4120 return 0;
4122 spin_lock(&block_rsv->lock);
4123 num_bytes = min_reserved;
4124 if (block_rsv->reserved >= num_bytes)
4125 ret = 0;
4126 else
4127 num_bytes -= block_rsv->reserved;
4128 spin_unlock(&block_rsv->lock);
4130 if (!ret)
4131 return 0;
4133 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4134 if (!ret) {
4135 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4136 return 0;
4139 return ret;
4142 int btrfs_block_rsv_refill(struct btrfs_root *root,
4143 struct btrfs_block_rsv *block_rsv,
4144 u64 min_reserved)
4146 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4149 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4150 struct btrfs_block_rsv *block_rsv,
4151 u64 min_reserved)
4153 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4156 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4157 struct btrfs_block_rsv *dst_rsv,
4158 u64 num_bytes)
4160 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4163 void btrfs_block_rsv_release(struct btrfs_root *root,
4164 struct btrfs_block_rsv *block_rsv,
4165 u64 num_bytes)
4167 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4168 if (global_rsv->full || global_rsv == block_rsv ||
4169 block_rsv->space_info != global_rsv->space_info)
4170 global_rsv = NULL;
4171 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4172 num_bytes);
4176 * helper to calculate size of global block reservation.
4177 * the desired value is sum of space used by extent tree,
4178 * checksum tree and root tree
4180 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4182 struct btrfs_space_info *sinfo;
4183 u64 num_bytes;
4184 u64 meta_used;
4185 u64 data_used;
4186 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4188 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4189 spin_lock(&sinfo->lock);
4190 data_used = sinfo->bytes_used;
4191 spin_unlock(&sinfo->lock);
4193 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4194 spin_lock(&sinfo->lock);
4195 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4196 data_used = 0;
4197 meta_used = sinfo->bytes_used;
4198 spin_unlock(&sinfo->lock);
4200 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4201 csum_size * 2;
4202 num_bytes += div64_u64(data_used + meta_used, 50);
4204 if (num_bytes * 3 > meta_used)
4205 num_bytes = div64_u64(meta_used, 3);
4207 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4210 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4212 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4213 struct btrfs_space_info *sinfo = block_rsv->space_info;
4214 u64 num_bytes;
4216 num_bytes = calc_global_metadata_size(fs_info);
4218 spin_lock(&sinfo->lock);
4219 spin_lock(&block_rsv->lock);
4221 block_rsv->size = num_bytes;
4223 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4224 sinfo->bytes_reserved + sinfo->bytes_readonly +
4225 sinfo->bytes_may_use;
4227 if (sinfo->total_bytes > num_bytes) {
4228 num_bytes = sinfo->total_bytes - num_bytes;
4229 block_rsv->reserved += num_bytes;
4230 sinfo->bytes_may_use += num_bytes;
4231 trace_btrfs_space_reservation(fs_info, "space_info",
4232 sinfo->flags, num_bytes, 1);
4235 if (block_rsv->reserved >= block_rsv->size) {
4236 num_bytes = block_rsv->reserved - block_rsv->size;
4237 sinfo->bytes_may_use -= num_bytes;
4238 trace_btrfs_space_reservation(fs_info, "space_info",
4239 sinfo->flags, num_bytes, 0);
4240 sinfo->reservation_progress++;
4241 block_rsv->reserved = block_rsv->size;
4242 block_rsv->full = 1;
4245 spin_unlock(&block_rsv->lock);
4246 spin_unlock(&sinfo->lock);
4249 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4251 struct btrfs_space_info *space_info;
4253 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4254 fs_info->chunk_block_rsv.space_info = space_info;
4256 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4257 fs_info->global_block_rsv.space_info = space_info;
4258 fs_info->delalloc_block_rsv.space_info = space_info;
4259 fs_info->trans_block_rsv.space_info = space_info;
4260 fs_info->empty_block_rsv.space_info = space_info;
4261 fs_info->delayed_block_rsv.space_info = space_info;
4263 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4264 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4265 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4266 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4267 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4269 update_global_block_rsv(fs_info);
4272 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4274 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4275 (u64)-1);
4276 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4277 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4278 WARN_ON(fs_info->trans_block_rsv.size > 0);
4279 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4280 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4281 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4282 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4283 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4286 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4287 struct btrfs_root *root)
4289 if (!trans->bytes_reserved)
4290 return;
4292 trace_btrfs_space_reservation(root->fs_info, "transaction",
4293 trans->transid, trans->bytes_reserved, 0);
4294 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4295 trans->bytes_reserved = 0;
4298 /* Can only return 0 or -ENOSPC */
4299 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4300 struct inode *inode)
4302 struct btrfs_root *root = BTRFS_I(inode)->root;
4303 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4304 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4307 * We need to hold space in order to delete our orphan item once we've
4308 * added it, so this takes the reservation so we can release it later
4309 * when we are truly done with the orphan item.
4311 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4312 trace_btrfs_space_reservation(root->fs_info, "orphan",
4313 btrfs_ino(inode), num_bytes, 1);
4314 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4317 void btrfs_orphan_release_metadata(struct inode *inode)
4319 struct btrfs_root *root = BTRFS_I(inode)->root;
4320 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4321 trace_btrfs_space_reservation(root->fs_info, "orphan",
4322 btrfs_ino(inode), num_bytes, 0);
4323 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4326 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4327 struct btrfs_pending_snapshot *pending)
4329 struct btrfs_root *root = pending->root;
4330 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4331 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4333 * two for root back/forward refs, two for directory entries
4334 * and one for root of the snapshot.
4336 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4337 dst_rsv->space_info = src_rsv->space_info;
4338 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4342 * drop_outstanding_extent - drop an outstanding extent
4343 * @inode: the inode we're dropping the extent for
4345 * This is called when we are freeing up an outstanding extent, either called
4346 * after an error or after an extent is written. This will return the number of
4347 * reserved extents that need to be freed. This must be called with
4348 * BTRFS_I(inode)->lock held.
4350 static unsigned drop_outstanding_extent(struct inode *inode)
4352 unsigned drop_inode_space = 0;
4353 unsigned dropped_extents = 0;
4355 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4356 BTRFS_I(inode)->outstanding_extents--;
4358 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4359 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4360 &BTRFS_I(inode)->runtime_flags))
4361 drop_inode_space = 1;
4364 * If we have more or the same amount of outsanding extents than we have
4365 * reserved then we need to leave the reserved extents count alone.
4367 if (BTRFS_I(inode)->outstanding_extents >=
4368 BTRFS_I(inode)->reserved_extents)
4369 return drop_inode_space;
4371 dropped_extents = BTRFS_I(inode)->reserved_extents -
4372 BTRFS_I(inode)->outstanding_extents;
4373 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4374 return dropped_extents + drop_inode_space;
4378 * calc_csum_metadata_size - return the amount of metada space that must be
4379 * reserved/free'd for the given bytes.
4380 * @inode: the inode we're manipulating
4381 * @num_bytes: the number of bytes in question
4382 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4384 * This adjusts the number of csum_bytes in the inode and then returns the
4385 * correct amount of metadata that must either be reserved or freed. We
4386 * calculate how many checksums we can fit into one leaf and then divide the
4387 * number of bytes that will need to be checksumed by this value to figure out
4388 * how many checksums will be required. If we are adding bytes then the number
4389 * may go up and we will return the number of additional bytes that must be
4390 * reserved. If it is going down we will return the number of bytes that must
4391 * be freed.
4393 * This must be called with BTRFS_I(inode)->lock held.
4395 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4396 int reserve)
4398 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 u64 csum_size;
4400 int num_csums_per_leaf;
4401 int num_csums;
4402 int old_csums;
4404 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4405 BTRFS_I(inode)->csum_bytes == 0)
4406 return 0;
4408 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4409 if (reserve)
4410 BTRFS_I(inode)->csum_bytes += num_bytes;
4411 else
4412 BTRFS_I(inode)->csum_bytes -= num_bytes;
4413 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4414 num_csums_per_leaf = (int)div64_u64(csum_size,
4415 sizeof(struct btrfs_csum_item) +
4416 sizeof(struct btrfs_disk_key));
4417 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4418 num_csums = num_csums + num_csums_per_leaf - 1;
4419 num_csums = num_csums / num_csums_per_leaf;
4421 old_csums = old_csums + num_csums_per_leaf - 1;
4422 old_csums = old_csums / num_csums_per_leaf;
4424 /* No change, no need to reserve more */
4425 if (old_csums == num_csums)
4426 return 0;
4428 if (reserve)
4429 return btrfs_calc_trans_metadata_size(root,
4430 num_csums - old_csums);
4432 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4435 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4437 struct btrfs_root *root = BTRFS_I(inode)->root;
4438 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4439 u64 to_reserve = 0;
4440 u64 csum_bytes;
4441 unsigned nr_extents = 0;
4442 int extra_reserve = 0;
4443 int flush = 1;
4444 int ret;
4446 /* Need to be holding the i_mutex here if we aren't free space cache */
4447 if (btrfs_is_free_space_inode(root, inode))
4448 flush = 0;
4450 if (flush && btrfs_transaction_in_commit(root->fs_info))
4451 schedule_timeout(1);
4453 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4454 num_bytes = ALIGN(num_bytes, root->sectorsize);
4456 spin_lock(&BTRFS_I(inode)->lock);
4457 BTRFS_I(inode)->outstanding_extents++;
4459 if (BTRFS_I(inode)->outstanding_extents >
4460 BTRFS_I(inode)->reserved_extents)
4461 nr_extents = BTRFS_I(inode)->outstanding_extents -
4462 BTRFS_I(inode)->reserved_extents;
4465 * Add an item to reserve for updating the inode when we complete the
4466 * delalloc io.
4468 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4469 &BTRFS_I(inode)->runtime_flags)) {
4470 nr_extents++;
4471 extra_reserve = 1;
4474 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4475 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4476 csum_bytes = BTRFS_I(inode)->csum_bytes;
4477 spin_unlock(&BTRFS_I(inode)->lock);
4479 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4480 if (ret) {
4481 u64 to_free = 0;
4482 unsigned dropped;
4484 spin_lock(&BTRFS_I(inode)->lock);
4485 dropped = drop_outstanding_extent(inode);
4487 * If the inodes csum_bytes is the same as the original
4488 * csum_bytes then we know we haven't raced with any free()ers
4489 * so we can just reduce our inodes csum bytes and carry on.
4490 * Otherwise we have to do the normal free thing to account for
4491 * the case that the free side didn't free up its reserve
4492 * because of this outstanding reservation.
4494 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4495 calc_csum_metadata_size(inode, num_bytes, 0);
4496 else
4497 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4498 spin_unlock(&BTRFS_I(inode)->lock);
4499 if (dropped)
4500 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4502 if (to_free) {
4503 btrfs_block_rsv_release(root, block_rsv, to_free);
4504 trace_btrfs_space_reservation(root->fs_info,
4505 "delalloc",
4506 btrfs_ino(inode),
4507 to_free, 0);
4509 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4510 return ret;
4513 spin_lock(&BTRFS_I(inode)->lock);
4514 if (extra_reserve) {
4515 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4516 &BTRFS_I(inode)->runtime_flags);
4517 nr_extents--;
4519 BTRFS_I(inode)->reserved_extents += nr_extents;
4520 spin_unlock(&BTRFS_I(inode)->lock);
4521 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4523 if (to_reserve)
4524 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4525 btrfs_ino(inode), to_reserve, 1);
4526 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4528 return 0;
4532 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4533 * @inode: the inode to release the reservation for
4534 * @num_bytes: the number of bytes we're releasing
4536 * This will release the metadata reservation for an inode. This can be called
4537 * once we complete IO for a given set of bytes to release their metadata
4538 * reservations.
4540 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4542 struct btrfs_root *root = BTRFS_I(inode)->root;
4543 u64 to_free = 0;
4544 unsigned dropped;
4546 num_bytes = ALIGN(num_bytes, root->sectorsize);
4547 spin_lock(&BTRFS_I(inode)->lock);
4548 dropped = drop_outstanding_extent(inode);
4550 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4551 spin_unlock(&BTRFS_I(inode)->lock);
4552 if (dropped > 0)
4553 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4555 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4556 btrfs_ino(inode), to_free, 0);
4557 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4558 to_free);
4562 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4563 * @inode: inode we're writing to
4564 * @num_bytes: the number of bytes we want to allocate
4566 * This will do the following things
4568 * o reserve space in the data space info for num_bytes
4569 * o reserve space in the metadata space info based on number of outstanding
4570 * extents and how much csums will be needed
4571 * o add to the inodes ->delalloc_bytes
4572 * o add it to the fs_info's delalloc inodes list.
4574 * This will return 0 for success and -ENOSPC if there is no space left.
4576 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4578 int ret;
4580 ret = btrfs_check_data_free_space(inode, num_bytes);
4581 if (ret)
4582 return ret;
4584 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4585 if (ret) {
4586 btrfs_free_reserved_data_space(inode, num_bytes);
4587 return ret;
4590 return 0;
4594 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4595 * @inode: inode we're releasing space for
4596 * @num_bytes: the number of bytes we want to free up
4598 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4599 * called in the case that we don't need the metadata AND data reservations
4600 * anymore. So if there is an error or we insert an inline extent.
4602 * This function will release the metadata space that was not used and will
4603 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4604 * list if there are no delalloc bytes left.
4606 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4608 btrfs_delalloc_release_metadata(inode, num_bytes);
4609 btrfs_free_reserved_data_space(inode, num_bytes);
4612 static int update_block_group(struct btrfs_trans_handle *trans,
4613 struct btrfs_root *root,
4614 u64 bytenr, u64 num_bytes, int alloc)
4616 struct btrfs_block_group_cache *cache = NULL;
4617 struct btrfs_fs_info *info = root->fs_info;
4618 u64 total = num_bytes;
4619 u64 old_val;
4620 u64 byte_in_group;
4621 int factor;
4623 /* block accounting for super block */
4624 spin_lock(&info->delalloc_lock);
4625 old_val = btrfs_super_bytes_used(info->super_copy);
4626 if (alloc)
4627 old_val += num_bytes;
4628 else
4629 old_val -= num_bytes;
4630 btrfs_set_super_bytes_used(info->super_copy, old_val);
4631 spin_unlock(&info->delalloc_lock);
4633 while (total) {
4634 cache = btrfs_lookup_block_group(info, bytenr);
4635 if (!cache)
4636 return -ENOENT;
4637 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4638 BTRFS_BLOCK_GROUP_RAID1 |
4639 BTRFS_BLOCK_GROUP_RAID10))
4640 factor = 2;
4641 else
4642 factor = 1;
4644 * If this block group has free space cache written out, we
4645 * need to make sure to load it if we are removing space. This
4646 * is because we need the unpinning stage to actually add the
4647 * space back to the block group, otherwise we will leak space.
4649 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4650 cache_block_group(cache, trans, NULL, 1);
4652 byte_in_group = bytenr - cache->key.objectid;
4653 WARN_ON(byte_in_group > cache->key.offset);
4655 spin_lock(&cache->space_info->lock);
4656 spin_lock(&cache->lock);
4658 if (btrfs_test_opt(root, SPACE_CACHE) &&
4659 cache->disk_cache_state < BTRFS_DC_CLEAR)
4660 cache->disk_cache_state = BTRFS_DC_CLEAR;
4662 cache->dirty = 1;
4663 old_val = btrfs_block_group_used(&cache->item);
4664 num_bytes = min(total, cache->key.offset - byte_in_group);
4665 if (alloc) {
4666 old_val += num_bytes;
4667 btrfs_set_block_group_used(&cache->item, old_val);
4668 cache->reserved -= num_bytes;
4669 cache->space_info->bytes_reserved -= num_bytes;
4670 cache->space_info->bytes_used += num_bytes;
4671 cache->space_info->disk_used += num_bytes * factor;
4672 spin_unlock(&cache->lock);
4673 spin_unlock(&cache->space_info->lock);
4674 } else {
4675 old_val -= num_bytes;
4676 btrfs_set_block_group_used(&cache->item, old_val);
4677 cache->pinned += num_bytes;
4678 cache->space_info->bytes_pinned += num_bytes;
4679 cache->space_info->bytes_used -= num_bytes;
4680 cache->space_info->disk_used -= num_bytes * factor;
4681 spin_unlock(&cache->lock);
4682 spin_unlock(&cache->space_info->lock);
4684 set_extent_dirty(info->pinned_extents,
4685 bytenr, bytenr + num_bytes - 1,
4686 GFP_NOFS | __GFP_NOFAIL);
4688 btrfs_put_block_group(cache);
4689 total -= num_bytes;
4690 bytenr += num_bytes;
4692 return 0;
4695 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4697 struct btrfs_block_group_cache *cache;
4698 u64 bytenr;
4700 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4701 if (!cache)
4702 return 0;
4704 bytenr = cache->key.objectid;
4705 btrfs_put_block_group(cache);
4707 return bytenr;
4710 static int pin_down_extent(struct btrfs_root *root,
4711 struct btrfs_block_group_cache *cache,
4712 u64 bytenr, u64 num_bytes, int reserved)
4714 spin_lock(&cache->space_info->lock);
4715 spin_lock(&cache->lock);
4716 cache->pinned += num_bytes;
4717 cache->space_info->bytes_pinned += num_bytes;
4718 if (reserved) {
4719 cache->reserved -= num_bytes;
4720 cache->space_info->bytes_reserved -= num_bytes;
4722 spin_unlock(&cache->lock);
4723 spin_unlock(&cache->space_info->lock);
4725 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4726 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4727 return 0;
4731 * this function must be called within transaction
4733 int btrfs_pin_extent(struct btrfs_root *root,
4734 u64 bytenr, u64 num_bytes, int reserved)
4736 struct btrfs_block_group_cache *cache;
4738 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4739 BUG_ON(!cache); /* Logic error */
4741 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4743 btrfs_put_block_group(cache);
4744 return 0;
4748 * this function must be called within transaction
4750 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4751 struct btrfs_root *root,
4752 u64 bytenr, u64 num_bytes)
4754 struct btrfs_block_group_cache *cache;
4756 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4757 BUG_ON(!cache); /* Logic error */
4760 * pull in the free space cache (if any) so that our pin
4761 * removes the free space from the cache. We have load_only set
4762 * to one because the slow code to read in the free extents does check
4763 * the pinned extents.
4765 cache_block_group(cache, trans, root, 1);
4767 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4769 /* remove us from the free space cache (if we're there at all) */
4770 btrfs_remove_free_space(cache, bytenr, num_bytes);
4771 btrfs_put_block_group(cache);
4772 return 0;
4776 * btrfs_update_reserved_bytes - update the block_group and space info counters
4777 * @cache: The cache we are manipulating
4778 * @num_bytes: The number of bytes in question
4779 * @reserve: One of the reservation enums
4781 * This is called by the allocator when it reserves space, or by somebody who is
4782 * freeing space that was never actually used on disk. For example if you
4783 * reserve some space for a new leaf in transaction A and before transaction A
4784 * commits you free that leaf, you call this with reserve set to 0 in order to
4785 * clear the reservation.
4787 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4788 * ENOSPC accounting. For data we handle the reservation through clearing the
4789 * delalloc bits in the io_tree. We have to do this since we could end up
4790 * allocating less disk space for the amount of data we have reserved in the
4791 * case of compression.
4793 * If this is a reservation and the block group has become read only we cannot
4794 * make the reservation and return -EAGAIN, otherwise this function always
4795 * succeeds.
4797 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4798 u64 num_bytes, int reserve)
4800 struct btrfs_space_info *space_info = cache->space_info;
4801 int ret = 0;
4803 spin_lock(&space_info->lock);
4804 spin_lock(&cache->lock);
4805 if (reserve != RESERVE_FREE) {
4806 if (cache->ro) {
4807 ret = -EAGAIN;
4808 } else {
4809 cache->reserved += num_bytes;
4810 space_info->bytes_reserved += num_bytes;
4811 if (reserve == RESERVE_ALLOC) {
4812 trace_btrfs_space_reservation(cache->fs_info,
4813 "space_info", space_info->flags,
4814 num_bytes, 0);
4815 space_info->bytes_may_use -= num_bytes;
4818 } else {
4819 if (cache->ro)
4820 space_info->bytes_readonly += num_bytes;
4821 cache->reserved -= num_bytes;
4822 space_info->bytes_reserved -= num_bytes;
4823 space_info->reservation_progress++;
4825 spin_unlock(&cache->lock);
4826 spin_unlock(&space_info->lock);
4827 return ret;
4830 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4831 struct btrfs_root *root)
4833 struct btrfs_fs_info *fs_info = root->fs_info;
4834 struct btrfs_caching_control *next;
4835 struct btrfs_caching_control *caching_ctl;
4836 struct btrfs_block_group_cache *cache;
4838 down_write(&fs_info->extent_commit_sem);
4840 list_for_each_entry_safe(caching_ctl, next,
4841 &fs_info->caching_block_groups, list) {
4842 cache = caching_ctl->block_group;
4843 if (block_group_cache_done(cache)) {
4844 cache->last_byte_to_unpin = (u64)-1;
4845 list_del_init(&caching_ctl->list);
4846 put_caching_control(caching_ctl);
4847 } else {
4848 cache->last_byte_to_unpin = caching_ctl->progress;
4852 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4853 fs_info->pinned_extents = &fs_info->freed_extents[1];
4854 else
4855 fs_info->pinned_extents = &fs_info->freed_extents[0];
4857 up_write(&fs_info->extent_commit_sem);
4859 update_global_block_rsv(fs_info);
4862 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4864 struct btrfs_fs_info *fs_info = root->fs_info;
4865 struct btrfs_block_group_cache *cache = NULL;
4866 u64 len;
4868 while (start <= end) {
4869 if (!cache ||
4870 start >= cache->key.objectid + cache->key.offset) {
4871 if (cache)
4872 btrfs_put_block_group(cache);
4873 cache = btrfs_lookup_block_group(fs_info, start);
4874 BUG_ON(!cache); /* Logic error */
4877 len = cache->key.objectid + cache->key.offset - start;
4878 len = min(len, end + 1 - start);
4880 if (start < cache->last_byte_to_unpin) {
4881 len = min(len, cache->last_byte_to_unpin - start);
4882 btrfs_add_free_space(cache, start, len);
4885 start += len;
4887 spin_lock(&cache->space_info->lock);
4888 spin_lock(&cache->lock);
4889 cache->pinned -= len;
4890 cache->space_info->bytes_pinned -= len;
4891 if (cache->ro)
4892 cache->space_info->bytes_readonly += len;
4893 spin_unlock(&cache->lock);
4894 spin_unlock(&cache->space_info->lock);
4897 if (cache)
4898 btrfs_put_block_group(cache);
4899 return 0;
4902 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4903 struct btrfs_root *root)
4905 struct btrfs_fs_info *fs_info = root->fs_info;
4906 struct extent_io_tree *unpin;
4907 u64 start;
4908 u64 end;
4909 int ret;
4911 if (trans->aborted)
4912 return 0;
4914 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4915 unpin = &fs_info->freed_extents[1];
4916 else
4917 unpin = &fs_info->freed_extents[0];
4919 while (1) {
4920 ret = find_first_extent_bit(unpin, 0, &start, &end,
4921 EXTENT_DIRTY);
4922 if (ret)
4923 break;
4925 if (btrfs_test_opt(root, DISCARD))
4926 ret = btrfs_discard_extent(root, start,
4927 end + 1 - start, NULL);
4929 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4930 unpin_extent_range(root, start, end);
4931 cond_resched();
4934 return 0;
4937 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4938 struct btrfs_root *root,
4939 u64 bytenr, u64 num_bytes, u64 parent,
4940 u64 root_objectid, u64 owner_objectid,
4941 u64 owner_offset, int refs_to_drop,
4942 struct btrfs_delayed_extent_op *extent_op)
4944 struct btrfs_key key;
4945 struct btrfs_path *path;
4946 struct btrfs_fs_info *info = root->fs_info;
4947 struct btrfs_root *extent_root = info->extent_root;
4948 struct extent_buffer *leaf;
4949 struct btrfs_extent_item *ei;
4950 struct btrfs_extent_inline_ref *iref;
4951 int ret;
4952 int is_data;
4953 int extent_slot = 0;
4954 int found_extent = 0;
4955 int num_to_del = 1;
4956 u32 item_size;
4957 u64 refs;
4959 path = btrfs_alloc_path();
4960 if (!path)
4961 return -ENOMEM;
4963 path->reada = 1;
4964 path->leave_spinning = 1;
4966 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4967 BUG_ON(!is_data && refs_to_drop != 1);
4969 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4970 bytenr, num_bytes, parent,
4971 root_objectid, owner_objectid,
4972 owner_offset);
4973 if (ret == 0) {
4974 extent_slot = path->slots[0];
4975 while (extent_slot >= 0) {
4976 btrfs_item_key_to_cpu(path->nodes[0], &key,
4977 extent_slot);
4978 if (key.objectid != bytenr)
4979 break;
4980 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4981 key.offset == num_bytes) {
4982 found_extent = 1;
4983 break;
4985 if (path->slots[0] - extent_slot > 5)
4986 break;
4987 extent_slot--;
4989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4990 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4991 if (found_extent && item_size < sizeof(*ei))
4992 found_extent = 0;
4993 #endif
4994 if (!found_extent) {
4995 BUG_ON(iref);
4996 ret = remove_extent_backref(trans, extent_root, path,
4997 NULL, refs_to_drop,
4998 is_data);
4999 if (ret)
5000 goto abort;
5001 btrfs_release_path(path);
5002 path->leave_spinning = 1;
5004 key.objectid = bytenr;
5005 key.type = BTRFS_EXTENT_ITEM_KEY;
5006 key.offset = num_bytes;
5008 ret = btrfs_search_slot(trans, extent_root,
5009 &key, path, -1, 1);
5010 if (ret) {
5011 printk(KERN_ERR "umm, got %d back from search"
5012 ", was looking for %llu\n", ret,
5013 (unsigned long long)bytenr);
5014 if (ret > 0)
5015 btrfs_print_leaf(extent_root,
5016 path->nodes[0]);
5018 if (ret < 0)
5019 goto abort;
5020 extent_slot = path->slots[0];
5022 } else if (ret == -ENOENT) {
5023 btrfs_print_leaf(extent_root, path->nodes[0]);
5024 WARN_ON(1);
5025 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5026 "parent %llu root %llu owner %llu offset %llu\n",
5027 (unsigned long long)bytenr,
5028 (unsigned long long)parent,
5029 (unsigned long long)root_objectid,
5030 (unsigned long long)owner_objectid,
5031 (unsigned long long)owner_offset);
5032 } else {
5033 goto abort;
5036 leaf = path->nodes[0];
5037 item_size = btrfs_item_size_nr(leaf, extent_slot);
5038 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5039 if (item_size < sizeof(*ei)) {
5040 BUG_ON(found_extent || extent_slot != path->slots[0]);
5041 ret = convert_extent_item_v0(trans, extent_root, path,
5042 owner_objectid, 0);
5043 if (ret < 0)
5044 goto abort;
5046 btrfs_release_path(path);
5047 path->leave_spinning = 1;
5049 key.objectid = bytenr;
5050 key.type = BTRFS_EXTENT_ITEM_KEY;
5051 key.offset = num_bytes;
5053 ret = btrfs_search_slot(trans, extent_root, &key, path,
5054 -1, 1);
5055 if (ret) {
5056 printk(KERN_ERR "umm, got %d back from search"
5057 ", was looking for %llu\n", ret,
5058 (unsigned long long)bytenr);
5059 btrfs_print_leaf(extent_root, path->nodes[0]);
5061 if (ret < 0)
5062 goto abort;
5063 extent_slot = path->slots[0];
5064 leaf = path->nodes[0];
5065 item_size = btrfs_item_size_nr(leaf, extent_slot);
5067 #endif
5068 BUG_ON(item_size < sizeof(*ei));
5069 ei = btrfs_item_ptr(leaf, extent_slot,
5070 struct btrfs_extent_item);
5071 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5072 struct btrfs_tree_block_info *bi;
5073 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5074 bi = (struct btrfs_tree_block_info *)(ei + 1);
5075 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5078 refs = btrfs_extent_refs(leaf, ei);
5079 BUG_ON(refs < refs_to_drop);
5080 refs -= refs_to_drop;
5082 if (refs > 0) {
5083 if (extent_op)
5084 __run_delayed_extent_op(extent_op, leaf, ei);
5086 * In the case of inline back ref, reference count will
5087 * be updated by remove_extent_backref
5089 if (iref) {
5090 BUG_ON(!found_extent);
5091 } else {
5092 btrfs_set_extent_refs(leaf, ei, refs);
5093 btrfs_mark_buffer_dirty(leaf);
5095 if (found_extent) {
5096 ret = remove_extent_backref(trans, extent_root, path,
5097 iref, refs_to_drop,
5098 is_data);
5099 if (ret)
5100 goto abort;
5102 } else {
5103 if (found_extent) {
5104 BUG_ON(is_data && refs_to_drop !=
5105 extent_data_ref_count(root, path, iref));
5106 if (iref) {
5107 BUG_ON(path->slots[0] != extent_slot);
5108 } else {
5109 BUG_ON(path->slots[0] != extent_slot + 1);
5110 path->slots[0] = extent_slot;
5111 num_to_del = 2;
5115 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5116 num_to_del);
5117 if (ret)
5118 goto abort;
5119 btrfs_release_path(path);
5121 if (is_data) {
5122 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5123 if (ret)
5124 goto abort;
5127 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5128 if (ret)
5129 goto abort;
5131 out:
5132 btrfs_free_path(path);
5133 return ret;
5135 abort:
5136 btrfs_abort_transaction(trans, extent_root, ret);
5137 goto out;
5141 * when we free an block, it is possible (and likely) that we free the last
5142 * delayed ref for that extent as well. This searches the delayed ref tree for
5143 * a given extent, and if there are no other delayed refs to be processed, it
5144 * removes it from the tree.
5146 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5147 struct btrfs_root *root, u64 bytenr)
5149 struct btrfs_delayed_ref_head *head;
5150 struct btrfs_delayed_ref_root *delayed_refs;
5151 struct btrfs_delayed_ref_node *ref;
5152 struct rb_node *node;
5153 int ret = 0;
5155 delayed_refs = &trans->transaction->delayed_refs;
5156 spin_lock(&delayed_refs->lock);
5157 head = btrfs_find_delayed_ref_head(trans, bytenr);
5158 if (!head)
5159 goto out;
5161 node = rb_prev(&head->node.rb_node);
5162 if (!node)
5163 goto out;
5165 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5167 /* there are still entries for this ref, we can't drop it */
5168 if (ref->bytenr == bytenr)
5169 goto out;
5171 if (head->extent_op) {
5172 if (!head->must_insert_reserved)
5173 goto out;
5174 kfree(head->extent_op);
5175 head->extent_op = NULL;
5179 * waiting for the lock here would deadlock. If someone else has it
5180 * locked they are already in the process of dropping it anyway
5182 if (!mutex_trylock(&head->mutex))
5183 goto out;
5186 * at this point we have a head with no other entries. Go
5187 * ahead and process it.
5189 head->node.in_tree = 0;
5190 rb_erase(&head->node.rb_node, &delayed_refs->root);
5192 delayed_refs->num_entries--;
5193 if (waitqueue_active(&delayed_refs->seq_wait))
5194 wake_up(&delayed_refs->seq_wait);
5197 * we don't take a ref on the node because we're removing it from the
5198 * tree, so we just steal the ref the tree was holding.
5200 delayed_refs->num_heads--;
5201 if (list_empty(&head->cluster))
5202 delayed_refs->num_heads_ready--;
5204 list_del_init(&head->cluster);
5205 spin_unlock(&delayed_refs->lock);
5207 BUG_ON(head->extent_op);
5208 if (head->must_insert_reserved)
5209 ret = 1;
5211 mutex_unlock(&head->mutex);
5212 btrfs_put_delayed_ref(&head->node);
5213 return ret;
5214 out:
5215 spin_unlock(&delayed_refs->lock);
5216 return 0;
5219 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5220 struct btrfs_root *root,
5221 struct extent_buffer *buf,
5222 u64 parent, int last_ref)
5224 struct btrfs_block_group_cache *cache = NULL;
5225 int ret;
5227 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5228 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5229 buf->start, buf->len,
5230 parent, root->root_key.objectid,
5231 btrfs_header_level(buf),
5232 BTRFS_DROP_DELAYED_REF, NULL, 0);
5233 BUG_ON(ret); /* -ENOMEM */
5236 if (!last_ref)
5237 return;
5239 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5241 if (btrfs_header_generation(buf) == trans->transid) {
5242 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5243 ret = check_ref_cleanup(trans, root, buf->start);
5244 if (!ret)
5245 goto out;
5248 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5249 pin_down_extent(root, cache, buf->start, buf->len, 1);
5250 goto out;
5253 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5255 btrfs_add_free_space(cache, buf->start, buf->len);
5256 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5258 out:
5260 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5261 * anymore.
5263 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5264 btrfs_put_block_group(cache);
5267 /* Can return -ENOMEM */
5268 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5269 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5270 u64 owner, u64 offset, int for_cow)
5272 int ret;
5273 struct btrfs_fs_info *fs_info = root->fs_info;
5276 * tree log blocks never actually go into the extent allocation
5277 * tree, just update pinning info and exit early.
5279 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5280 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5281 /* unlocks the pinned mutex */
5282 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5283 ret = 0;
5284 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5285 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5286 num_bytes,
5287 parent, root_objectid, (int)owner,
5288 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5289 } else {
5290 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5291 num_bytes,
5292 parent, root_objectid, owner,
5293 offset, BTRFS_DROP_DELAYED_REF,
5294 NULL, for_cow);
5296 return ret;
5299 static u64 stripe_align(struct btrfs_root *root, u64 val)
5301 u64 mask = ((u64)root->stripesize - 1);
5302 u64 ret = (val + mask) & ~mask;
5303 return ret;
5307 * when we wait for progress in the block group caching, its because
5308 * our allocation attempt failed at least once. So, we must sleep
5309 * and let some progress happen before we try again.
5311 * This function will sleep at least once waiting for new free space to
5312 * show up, and then it will check the block group free space numbers
5313 * for our min num_bytes. Another option is to have it go ahead
5314 * and look in the rbtree for a free extent of a given size, but this
5315 * is a good start.
5317 static noinline int
5318 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5319 u64 num_bytes)
5321 struct btrfs_caching_control *caching_ctl;
5322 DEFINE_WAIT(wait);
5324 caching_ctl = get_caching_control(cache);
5325 if (!caching_ctl)
5326 return 0;
5328 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5329 (cache->free_space_ctl->free_space >= num_bytes));
5331 put_caching_control(caching_ctl);
5332 return 0;
5335 static noinline int
5336 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5338 struct btrfs_caching_control *caching_ctl;
5339 DEFINE_WAIT(wait);
5341 caching_ctl = get_caching_control(cache);
5342 if (!caching_ctl)
5343 return 0;
5345 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5347 put_caching_control(caching_ctl);
5348 return 0;
5351 static int __get_block_group_index(u64 flags)
5353 int index;
5355 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5356 index = 0;
5357 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5358 index = 1;
5359 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5360 index = 2;
5361 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5362 index = 3;
5363 else
5364 index = 4;
5366 return index;
5369 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5371 return __get_block_group_index(cache->flags);
5374 enum btrfs_loop_type {
5375 LOOP_CACHING_NOWAIT = 0,
5376 LOOP_CACHING_WAIT = 1,
5377 LOOP_ALLOC_CHUNK = 2,
5378 LOOP_NO_EMPTY_SIZE = 3,
5382 * walks the btree of allocated extents and find a hole of a given size.
5383 * The key ins is changed to record the hole:
5384 * ins->objectid == block start
5385 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5386 * ins->offset == number of blocks
5387 * Any available blocks before search_start are skipped.
5389 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5390 struct btrfs_root *orig_root,
5391 u64 num_bytes, u64 empty_size,
5392 u64 hint_byte, struct btrfs_key *ins,
5393 u64 data)
5395 int ret = 0;
5396 struct btrfs_root *root = orig_root->fs_info->extent_root;
5397 struct btrfs_free_cluster *last_ptr = NULL;
5398 struct btrfs_block_group_cache *block_group = NULL;
5399 struct btrfs_block_group_cache *used_block_group;
5400 u64 search_start = 0;
5401 int empty_cluster = 2 * 1024 * 1024;
5402 int allowed_chunk_alloc = 0;
5403 int done_chunk_alloc = 0;
5404 struct btrfs_space_info *space_info;
5405 int loop = 0;
5406 int index = 0;
5407 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5408 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5409 bool found_uncached_bg = false;
5410 bool failed_cluster_refill = false;
5411 bool failed_alloc = false;
5412 bool use_cluster = true;
5413 bool have_caching_bg = false;
5415 WARN_ON(num_bytes < root->sectorsize);
5416 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5417 ins->objectid = 0;
5418 ins->offset = 0;
5420 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5422 space_info = __find_space_info(root->fs_info, data);
5423 if (!space_info) {
5424 printk(KERN_ERR "No space info for %llu\n", data);
5425 return -ENOSPC;
5429 * If the space info is for both data and metadata it means we have a
5430 * small filesystem and we can't use the clustering stuff.
5432 if (btrfs_mixed_space_info(space_info))
5433 use_cluster = false;
5435 if (orig_root->ref_cows || empty_size)
5436 allowed_chunk_alloc = 1;
5438 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5439 last_ptr = &root->fs_info->meta_alloc_cluster;
5440 if (!btrfs_test_opt(root, SSD))
5441 empty_cluster = 64 * 1024;
5444 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5445 btrfs_test_opt(root, SSD)) {
5446 last_ptr = &root->fs_info->data_alloc_cluster;
5449 if (last_ptr) {
5450 spin_lock(&last_ptr->lock);
5451 if (last_ptr->block_group)
5452 hint_byte = last_ptr->window_start;
5453 spin_unlock(&last_ptr->lock);
5456 search_start = max(search_start, first_logical_byte(root, 0));
5457 search_start = max(search_start, hint_byte);
5459 if (!last_ptr)
5460 empty_cluster = 0;
5462 if (search_start == hint_byte) {
5463 block_group = btrfs_lookup_block_group(root->fs_info,
5464 search_start);
5465 used_block_group = block_group;
5467 * we don't want to use the block group if it doesn't match our
5468 * allocation bits, or if its not cached.
5470 * However if we are re-searching with an ideal block group
5471 * picked out then we don't care that the block group is cached.
5473 if (block_group && block_group_bits(block_group, data) &&
5474 block_group->cached != BTRFS_CACHE_NO) {
5475 down_read(&space_info->groups_sem);
5476 if (list_empty(&block_group->list) ||
5477 block_group->ro) {
5479 * someone is removing this block group,
5480 * we can't jump into the have_block_group
5481 * target because our list pointers are not
5482 * valid
5484 btrfs_put_block_group(block_group);
5485 up_read(&space_info->groups_sem);
5486 } else {
5487 index = get_block_group_index(block_group);
5488 goto have_block_group;
5490 } else if (block_group) {
5491 btrfs_put_block_group(block_group);
5494 search:
5495 have_caching_bg = false;
5496 down_read(&space_info->groups_sem);
5497 list_for_each_entry(block_group, &space_info->block_groups[index],
5498 list) {
5499 u64 offset;
5500 int cached;
5502 used_block_group = block_group;
5503 btrfs_get_block_group(block_group);
5504 search_start = block_group->key.objectid;
5507 * this can happen if we end up cycling through all the
5508 * raid types, but we want to make sure we only allocate
5509 * for the proper type.
5511 if (!block_group_bits(block_group, data)) {
5512 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5513 BTRFS_BLOCK_GROUP_RAID1 |
5514 BTRFS_BLOCK_GROUP_RAID10;
5517 * if they asked for extra copies and this block group
5518 * doesn't provide them, bail. This does allow us to
5519 * fill raid0 from raid1.
5521 if ((data & extra) && !(block_group->flags & extra))
5522 goto loop;
5525 have_block_group:
5526 cached = block_group_cache_done(block_group);
5527 if (unlikely(!cached)) {
5528 found_uncached_bg = true;
5529 ret = cache_block_group(block_group, trans,
5530 orig_root, 0);
5531 BUG_ON(ret < 0);
5532 ret = 0;
5535 if (unlikely(block_group->ro))
5536 goto loop;
5539 * Ok we want to try and use the cluster allocator, so
5540 * lets look there
5542 if (last_ptr) {
5544 * the refill lock keeps out other
5545 * people trying to start a new cluster
5547 spin_lock(&last_ptr->refill_lock);
5548 used_block_group = last_ptr->block_group;
5549 if (used_block_group != block_group &&
5550 (!used_block_group ||
5551 used_block_group->ro ||
5552 !block_group_bits(used_block_group, data))) {
5553 used_block_group = block_group;
5554 goto refill_cluster;
5557 if (used_block_group != block_group)
5558 btrfs_get_block_group(used_block_group);
5560 offset = btrfs_alloc_from_cluster(used_block_group,
5561 last_ptr, num_bytes, used_block_group->key.objectid);
5562 if (offset) {
5563 /* we have a block, we're done */
5564 spin_unlock(&last_ptr->refill_lock);
5565 trace_btrfs_reserve_extent_cluster(root,
5566 block_group, search_start, num_bytes);
5567 goto checks;
5570 WARN_ON(last_ptr->block_group != used_block_group);
5571 if (used_block_group != block_group) {
5572 btrfs_put_block_group(used_block_group);
5573 used_block_group = block_group;
5575 refill_cluster:
5576 BUG_ON(used_block_group != block_group);
5577 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5578 * set up a new clusters, so lets just skip it
5579 * and let the allocator find whatever block
5580 * it can find. If we reach this point, we
5581 * will have tried the cluster allocator
5582 * plenty of times and not have found
5583 * anything, so we are likely way too
5584 * fragmented for the clustering stuff to find
5585 * anything.
5587 * However, if the cluster is taken from the
5588 * current block group, release the cluster
5589 * first, so that we stand a better chance of
5590 * succeeding in the unclustered
5591 * allocation. */
5592 if (loop >= LOOP_NO_EMPTY_SIZE &&
5593 last_ptr->block_group != block_group) {
5594 spin_unlock(&last_ptr->refill_lock);
5595 goto unclustered_alloc;
5599 * this cluster didn't work out, free it and
5600 * start over
5602 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5604 if (loop >= LOOP_NO_EMPTY_SIZE) {
5605 spin_unlock(&last_ptr->refill_lock);
5606 goto unclustered_alloc;
5609 /* allocate a cluster in this block group */
5610 ret = btrfs_find_space_cluster(trans, root,
5611 block_group, last_ptr,
5612 search_start, num_bytes,
5613 empty_cluster + empty_size);
5614 if (ret == 0) {
5616 * now pull our allocation out of this
5617 * cluster
5619 offset = btrfs_alloc_from_cluster(block_group,
5620 last_ptr, num_bytes,
5621 search_start);
5622 if (offset) {
5623 /* we found one, proceed */
5624 spin_unlock(&last_ptr->refill_lock);
5625 trace_btrfs_reserve_extent_cluster(root,
5626 block_group, search_start,
5627 num_bytes);
5628 goto checks;
5630 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5631 && !failed_cluster_refill) {
5632 spin_unlock(&last_ptr->refill_lock);
5634 failed_cluster_refill = true;
5635 wait_block_group_cache_progress(block_group,
5636 num_bytes + empty_cluster + empty_size);
5637 goto have_block_group;
5641 * at this point we either didn't find a cluster
5642 * or we weren't able to allocate a block from our
5643 * cluster. Free the cluster we've been trying
5644 * to use, and go to the next block group
5646 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5647 spin_unlock(&last_ptr->refill_lock);
5648 goto loop;
5651 unclustered_alloc:
5652 spin_lock(&block_group->free_space_ctl->tree_lock);
5653 if (cached &&
5654 block_group->free_space_ctl->free_space <
5655 num_bytes + empty_cluster + empty_size) {
5656 spin_unlock(&block_group->free_space_ctl->tree_lock);
5657 goto loop;
5659 spin_unlock(&block_group->free_space_ctl->tree_lock);
5661 offset = btrfs_find_space_for_alloc(block_group, search_start,
5662 num_bytes, empty_size);
5664 * If we didn't find a chunk, and we haven't failed on this
5665 * block group before, and this block group is in the middle of
5666 * caching and we are ok with waiting, then go ahead and wait
5667 * for progress to be made, and set failed_alloc to true.
5669 * If failed_alloc is true then we've already waited on this
5670 * block group once and should move on to the next block group.
5672 if (!offset && !failed_alloc && !cached &&
5673 loop > LOOP_CACHING_NOWAIT) {
5674 wait_block_group_cache_progress(block_group,
5675 num_bytes + empty_size);
5676 failed_alloc = true;
5677 goto have_block_group;
5678 } else if (!offset) {
5679 if (!cached)
5680 have_caching_bg = true;
5681 goto loop;
5683 checks:
5684 search_start = stripe_align(root, offset);
5686 /* move on to the next group */
5687 if (search_start + num_bytes >
5688 used_block_group->key.objectid + used_block_group->key.offset) {
5689 btrfs_add_free_space(used_block_group, offset, num_bytes);
5690 goto loop;
5693 if (offset < search_start)
5694 btrfs_add_free_space(used_block_group, offset,
5695 search_start - offset);
5696 BUG_ON(offset > search_start);
5698 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5699 alloc_type);
5700 if (ret == -EAGAIN) {
5701 btrfs_add_free_space(used_block_group, offset, num_bytes);
5702 goto loop;
5705 /* we are all good, lets return */
5706 ins->objectid = search_start;
5707 ins->offset = num_bytes;
5709 trace_btrfs_reserve_extent(orig_root, block_group,
5710 search_start, num_bytes);
5711 if (offset < search_start)
5712 btrfs_add_free_space(used_block_group, offset,
5713 search_start - offset);
5714 BUG_ON(offset > search_start);
5715 if (used_block_group != block_group)
5716 btrfs_put_block_group(used_block_group);
5717 btrfs_put_block_group(block_group);
5718 break;
5719 loop:
5720 failed_cluster_refill = false;
5721 failed_alloc = false;
5722 BUG_ON(index != get_block_group_index(block_group));
5723 if (used_block_group != block_group)
5724 btrfs_put_block_group(used_block_group);
5725 btrfs_put_block_group(block_group);
5727 up_read(&space_info->groups_sem);
5729 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5730 goto search;
5732 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5733 goto search;
5736 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5737 * caching kthreads as we move along
5738 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5739 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5740 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5741 * again
5743 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5744 index = 0;
5745 loop++;
5746 if (loop == LOOP_ALLOC_CHUNK) {
5747 if (allowed_chunk_alloc) {
5748 ret = do_chunk_alloc(trans, root, num_bytes +
5749 2 * 1024 * 1024, data,
5750 CHUNK_ALLOC_LIMITED);
5751 if (ret < 0) {
5752 btrfs_abort_transaction(trans,
5753 root, ret);
5754 goto out;
5756 allowed_chunk_alloc = 0;
5757 if (ret == 1)
5758 done_chunk_alloc = 1;
5759 } else if (!done_chunk_alloc &&
5760 space_info->force_alloc ==
5761 CHUNK_ALLOC_NO_FORCE) {
5762 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5766 * We didn't allocate a chunk, go ahead and drop the
5767 * empty size and loop again.
5769 if (!done_chunk_alloc)
5770 loop = LOOP_NO_EMPTY_SIZE;
5773 if (loop == LOOP_NO_EMPTY_SIZE) {
5774 empty_size = 0;
5775 empty_cluster = 0;
5778 goto search;
5779 } else if (!ins->objectid) {
5780 ret = -ENOSPC;
5781 } else if (ins->objectid) {
5782 ret = 0;
5784 out:
5786 return ret;
5789 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5790 int dump_block_groups)
5792 struct btrfs_block_group_cache *cache;
5793 int index = 0;
5795 spin_lock(&info->lock);
5796 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5797 (unsigned long long)info->flags,
5798 (unsigned long long)(info->total_bytes - info->bytes_used -
5799 info->bytes_pinned - info->bytes_reserved -
5800 info->bytes_readonly),
5801 (info->full) ? "" : "not ");
5802 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5803 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5804 (unsigned long long)info->total_bytes,
5805 (unsigned long long)info->bytes_used,
5806 (unsigned long long)info->bytes_pinned,
5807 (unsigned long long)info->bytes_reserved,
5808 (unsigned long long)info->bytes_may_use,
5809 (unsigned long long)info->bytes_readonly);
5810 spin_unlock(&info->lock);
5812 if (!dump_block_groups)
5813 return;
5815 down_read(&info->groups_sem);
5816 again:
5817 list_for_each_entry(cache, &info->block_groups[index], list) {
5818 spin_lock(&cache->lock);
5819 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5820 "%llu pinned %llu reserved\n",
5821 (unsigned long long)cache->key.objectid,
5822 (unsigned long long)cache->key.offset,
5823 (unsigned long long)btrfs_block_group_used(&cache->item),
5824 (unsigned long long)cache->pinned,
5825 (unsigned long long)cache->reserved);
5826 btrfs_dump_free_space(cache, bytes);
5827 spin_unlock(&cache->lock);
5829 if (++index < BTRFS_NR_RAID_TYPES)
5830 goto again;
5831 up_read(&info->groups_sem);
5834 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5835 struct btrfs_root *root,
5836 u64 num_bytes, u64 min_alloc_size,
5837 u64 empty_size, u64 hint_byte,
5838 struct btrfs_key *ins, u64 data)
5840 bool final_tried = false;
5841 int ret;
5843 data = btrfs_get_alloc_profile(root, data);
5844 again:
5846 * the only place that sets empty_size is btrfs_realloc_node, which
5847 * is not called recursively on allocations
5849 if (empty_size || root->ref_cows) {
5850 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5851 num_bytes + 2 * 1024 * 1024, data,
5852 CHUNK_ALLOC_NO_FORCE);
5853 if (ret < 0 && ret != -ENOSPC) {
5854 btrfs_abort_transaction(trans, root, ret);
5855 return ret;
5859 WARN_ON(num_bytes < root->sectorsize);
5860 ret = find_free_extent(trans, root, num_bytes, empty_size,
5861 hint_byte, ins, data);
5863 if (ret == -ENOSPC) {
5864 if (!final_tried) {
5865 num_bytes = num_bytes >> 1;
5866 num_bytes = num_bytes & ~(root->sectorsize - 1);
5867 num_bytes = max(num_bytes, min_alloc_size);
5868 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5869 num_bytes, data, CHUNK_ALLOC_FORCE);
5870 if (ret < 0 && ret != -ENOSPC) {
5871 btrfs_abort_transaction(trans, root, ret);
5872 return ret;
5874 if (num_bytes == min_alloc_size)
5875 final_tried = true;
5876 goto again;
5877 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5878 struct btrfs_space_info *sinfo;
5880 sinfo = __find_space_info(root->fs_info, data);
5881 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5882 "wanted %llu\n", (unsigned long long)data,
5883 (unsigned long long)num_bytes);
5884 if (sinfo)
5885 dump_space_info(sinfo, num_bytes, 1);
5889 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5891 return ret;
5894 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5895 u64 start, u64 len, int pin)
5897 struct btrfs_block_group_cache *cache;
5898 int ret = 0;
5900 cache = btrfs_lookup_block_group(root->fs_info, start);
5901 if (!cache) {
5902 printk(KERN_ERR "Unable to find block group for %llu\n",
5903 (unsigned long long)start);
5904 return -ENOSPC;
5907 if (btrfs_test_opt(root, DISCARD))
5908 ret = btrfs_discard_extent(root, start, len, NULL);
5910 if (pin)
5911 pin_down_extent(root, cache, start, len, 1);
5912 else {
5913 btrfs_add_free_space(cache, start, len);
5914 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5916 btrfs_put_block_group(cache);
5918 trace_btrfs_reserved_extent_free(root, start, len);
5920 return ret;
5923 int btrfs_free_reserved_extent(struct btrfs_root *root,
5924 u64 start, u64 len)
5926 return __btrfs_free_reserved_extent(root, start, len, 0);
5929 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5930 u64 start, u64 len)
5932 return __btrfs_free_reserved_extent(root, start, len, 1);
5935 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5936 struct btrfs_root *root,
5937 u64 parent, u64 root_objectid,
5938 u64 flags, u64 owner, u64 offset,
5939 struct btrfs_key *ins, int ref_mod)
5941 int ret;
5942 struct btrfs_fs_info *fs_info = root->fs_info;
5943 struct btrfs_extent_item *extent_item;
5944 struct btrfs_extent_inline_ref *iref;
5945 struct btrfs_path *path;
5946 struct extent_buffer *leaf;
5947 int type;
5948 u32 size;
5950 if (parent > 0)
5951 type = BTRFS_SHARED_DATA_REF_KEY;
5952 else
5953 type = BTRFS_EXTENT_DATA_REF_KEY;
5955 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5957 path = btrfs_alloc_path();
5958 if (!path)
5959 return -ENOMEM;
5961 path->leave_spinning = 1;
5962 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5963 ins, size);
5964 if (ret) {
5965 btrfs_free_path(path);
5966 return ret;
5969 leaf = path->nodes[0];
5970 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5971 struct btrfs_extent_item);
5972 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5973 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5974 btrfs_set_extent_flags(leaf, extent_item,
5975 flags | BTRFS_EXTENT_FLAG_DATA);
5977 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5978 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5979 if (parent > 0) {
5980 struct btrfs_shared_data_ref *ref;
5981 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5982 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5983 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5984 } else {
5985 struct btrfs_extent_data_ref *ref;
5986 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5987 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5988 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5989 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5990 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5993 btrfs_mark_buffer_dirty(path->nodes[0]);
5994 btrfs_free_path(path);
5996 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5997 if (ret) { /* -ENOENT, logic error */
5998 printk(KERN_ERR "btrfs update block group failed for %llu "
5999 "%llu\n", (unsigned long long)ins->objectid,
6000 (unsigned long long)ins->offset);
6001 BUG();
6003 return ret;
6006 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *root,
6008 u64 parent, u64 root_objectid,
6009 u64 flags, struct btrfs_disk_key *key,
6010 int level, struct btrfs_key *ins)
6012 int ret;
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct btrfs_extent_item *extent_item;
6015 struct btrfs_tree_block_info *block_info;
6016 struct btrfs_extent_inline_ref *iref;
6017 struct btrfs_path *path;
6018 struct extent_buffer *leaf;
6019 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6021 path = btrfs_alloc_path();
6022 if (!path)
6023 return -ENOMEM;
6025 path->leave_spinning = 1;
6026 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6027 ins, size);
6028 if (ret) {
6029 btrfs_free_path(path);
6030 return ret;
6033 leaf = path->nodes[0];
6034 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6035 struct btrfs_extent_item);
6036 btrfs_set_extent_refs(leaf, extent_item, 1);
6037 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6038 btrfs_set_extent_flags(leaf, extent_item,
6039 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6040 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6042 btrfs_set_tree_block_key(leaf, block_info, key);
6043 btrfs_set_tree_block_level(leaf, block_info, level);
6045 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6046 if (parent > 0) {
6047 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6048 btrfs_set_extent_inline_ref_type(leaf, iref,
6049 BTRFS_SHARED_BLOCK_REF_KEY);
6050 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6051 } else {
6052 btrfs_set_extent_inline_ref_type(leaf, iref,
6053 BTRFS_TREE_BLOCK_REF_KEY);
6054 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6057 btrfs_mark_buffer_dirty(leaf);
6058 btrfs_free_path(path);
6060 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6061 if (ret) { /* -ENOENT, logic error */
6062 printk(KERN_ERR "btrfs update block group failed for %llu "
6063 "%llu\n", (unsigned long long)ins->objectid,
6064 (unsigned long long)ins->offset);
6065 BUG();
6067 return ret;
6070 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6071 struct btrfs_root *root,
6072 u64 root_objectid, u64 owner,
6073 u64 offset, struct btrfs_key *ins)
6075 int ret;
6077 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6079 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6080 ins->offset, 0,
6081 root_objectid, owner, offset,
6082 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6083 return ret;
6087 * this is used by the tree logging recovery code. It records that
6088 * an extent has been allocated and makes sure to clear the free
6089 * space cache bits as well
6091 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6092 struct btrfs_root *root,
6093 u64 root_objectid, u64 owner, u64 offset,
6094 struct btrfs_key *ins)
6096 int ret;
6097 struct btrfs_block_group_cache *block_group;
6098 struct btrfs_caching_control *caching_ctl;
6099 u64 start = ins->objectid;
6100 u64 num_bytes = ins->offset;
6102 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6103 cache_block_group(block_group, trans, NULL, 0);
6104 caching_ctl = get_caching_control(block_group);
6106 if (!caching_ctl) {
6107 BUG_ON(!block_group_cache_done(block_group));
6108 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6109 BUG_ON(ret); /* -ENOMEM */
6110 } else {
6111 mutex_lock(&caching_ctl->mutex);
6113 if (start >= caching_ctl->progress) {
6114 ret = add_excluded_extent(root, start, num_bytes);
6115 BUG_ON(ret); /* -ENOMEM */
6116 } else if (start + num_bytes <= caching_ctl->progress) {
6117 ret = btrfs_remove_free_space(block_group,
6118 start, num_bytes);
6119 BUG_ON(ret); /* -ENOMEM */
6120 } else {
6121 num_bytes = caching_ctl->progress - start;
6122 ret = btrfs_remove_free_space(block_group,
6123 start, num_bytes);
6124 BUG_ON(ret); /* -ENOMEM */
6126 start = caching_ctl->progress;
6127 num_bytes = ins->objectid + ins->offset -
6128 caching_ctl->progress;
6129 ret = add_excluded_extent(root, start, num_bytes);
6130 BUG_ON(ret); /* -ENOMEM */
6133 mutex_unlock(&caching_ctl->mutex);
6134 put_caching_control(caching_ctl);
6137 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6138 RESERVE_ALLOC_NO_ACCOUNT);
6139 BUG_ON(ret); /* logic error */
6140 btrfs_put_block_group(block_group);
6141 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6142 0, owner, offset, ins, 1);
6143 return ret;
6146 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6147 struct btrfs_root *root,
6148 u64 bytenr, u32 blocksize,
6149 int level)
6151 struct extent_buffer *buf;
6153 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6154 if (!buf)
6155 return ERR_PTR(-ENOMEM);
6156 btrfs_set_header_generation(buf, trans->transid);
6157 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6158 btrfs_tree_lock(buf);
6159 clean_tree_block(trans, root, buf);
6160 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6162 btrfs_set_lock_blocking(buf);
6163 btrfs_set_buffer_uptodate(buf);
6165 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6167 * we allow two log transactions at a time, use different
6168 * EXENT bit to differentiate dirty pages.
6170 if (root->log_transid % 2 == 0)
6171 set_extent_dirty(&root->dirty_log_pages, buf->start,
6172 buf->start + buf->len - 1, GFP_NOFS);
6173 else
6174 set_extent_new(&root->dirty_log_pages, buf->start,
6175 buf->start + buf->len - 1, GFP_NOFS);
6176 } else {
6177 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6178 buf->start + buf->len - 1, GFP_NOFS);
6180 trans->blocks_used++;
6181 /* this returns a buffer locked for blocking */
6182 return buf;
6185 static struct btrfs_block_rsv *
6186 use_block_rsv(struct btrfs_trans_handle *trans,
6187 struct btrfs_root *root, u32 blocksize)
6189 struct btrfs_block_rsv *block_rsv;
6190 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6191 int ret;
6193 block_rsv = get_block_rsv(trans, root);
6195 if (block_rsv->size == 0) {
6196 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6198 * If we couldn't reserve metadata bytes try and use some from
6199 * the global reserve.
6201 if (ret && block_rsv != global_rsv) {
6202 ret = block_rsv_use_bytes(global_rsv, blocksize);
6203 if (!ret)
6204 return global_rsv;
6205 return ERR_PTR(ret);
6206 } else if (ret) {
6207 return ERR_PTR(ret);
6209 return block_rsv;
6212 ret = block_rsv_use_bytes(block_rsv, blocksize);
6213 if (!ret)
6214 return block_rsv;
6215 if (ret) {
6216 static DEFINE_RATELIMIT_STATE(_rs,
6217 DEFAULT_RATELIMIT_INTERVAL,
6218 /*DEFAULT_RATELIMIT_BURST*/ 2);
6219 if (__ratelimit(&_rs)) {
6220 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6221 WARN_ON(1);
6223 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6224 if (!ret) {
6225 return block_rsv;
6226 } else if (ret && block_rsv != global_rsv) {
6227 ret = block_rsv_use_bytes(global_rsv, blocksize);
6228 if (!ret)
6229 return global_rsv;
6233 return ERR_PTR(-ENOSPC);
6236 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6237 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6239 block_rsv_add_bytes(block_rsv, blocksize, 0);
6240 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6244 * finds a free extent and does all the dirty work required for allocation
6245 * returns the key for the extent through ins, and a tree buffer for
6246 * the first block of the extent through buf.
6248 * returns the tree buffer or NULL.
6250 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6251 struct btrfs_root *root, u32 blocksize,
6252 u64 parent, u64 root_objectid,
6253 struct btrfs_disk_key *key, int level,
6254 u64 hint, u64 empty_size)
6256 struct btrfs_key ins;
6257 struct btrfs_block_rsv *block_rsv;
6258 struct extent_buffer *buf;
6259 u64 flags = 0;
6260 int ret;
6263 block_rsv = use_block_rsv(trans, root, blocksize);
6264 if (IS_ERR(block_rsv))
6265 return ERR_CAST(block_rsv);
6267 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6268 empty_size, hint, &ins, 0);
6269 if (ret) {
6270 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6271 return ERR_PTR(ret);
6274 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6275 blocksize, level);
6276 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6278 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6279 if (parent == 0)
6280 parent = ins.objectid;
6281 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6282 } else
6283 BUG_ON(parent > 0);
6285 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6286 struct btrfs_delayed_extent_op *extent_op;
6287 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6288 BUG_ON(!extent_op); /* -ENOMEM */
6289 if (key)
6290 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6291 else
6292 memset(&extent_op->key, 0, sizeof(extent_op->key));
6293 extent_op->flags_to_set = flags;
6294 extent_op->update_key = 1;
6295 extent_op->update_flags = 1;
6296 extent_op->is_data = 0;
6298 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6299 ins.objectid,
6300 ins.offset, parent, root_objectid,
6301 level, BTRFS_ADD_DELAYED_EXTENT,
6302 extent_op, 0);
6303 BUG_ON(ret); /* -ENOMEM */
6305 return buf;
6308 struct walk_control {
6309 u64 refs[BTRFS_MAX_LEVEL];
6310 u64 flags[BTRFS_MAX_LEVEL];
6311 struct btrfs_key update_progress;
6312 int stage;
6313 int level;
6314 int shared_level;
6315 int update_ref;
6316 int keep_locks;
6317 int reada_slot;
6318 int reada_count;
6319 int for_reloc;
6322 #define DROP_REFERENCE 1
6323 #define UPDATE_BACKREF 2
6325 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6326 struct btrfs_root *root,
6327 struct walk_control *wc,
6328 struct btrfs_path *path)
6330 u64 bytenr;
6331 u64 generation;
6332 u64 refs;
6333 u64 flags;
6334 u32 nritems;
6335 u32 blocksize;
6336 struct btrfs_key key;
6337 struct extent_buffer *eb;
6338 int ret;
6339 int slot;
6340 int nread = 0;
6342 if (path->slots[wc->level] < wc->reada_slot) {
6343 wc->reada_count = wc->reada_count * 2 / 3;
6344 wc->reada_count = max(wc->reada_count, 2);
6345 } else {
6346 wc->reada_count = wc->reada_count * 3 / 2;
6347 wc->reada_count = min_t(int, wc->reada_count,
6348 BTRFS_NODEPTRS_PER_BLOCK(root));
6351 eb = path->nodes[wc->level];
6352 nritems = btrfs_header_nritems(eb);
6353 blocksize = btrfs_level_size(root, wc->level - 1);
6355 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6356 if (nread >= wc->reada_count)
6357 break;
6359 cond_resched();
6360 bytenr = btrfs_node_blockptr(eb, slot);
6361 generation = btrfs_node_ptr_generation(eb, slot);
6363 if (slot == path->slots[wc->level])
6364 goto reada;
6366 if (wc->stage == UPDATE_BACKREF &&
6367 generation <= root->root_key.offset)
6368 continue;
6370 /* We don't lock the tree block, it's OK to be racy here */
6371 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6372 &refs, &flags);
6373 /* We don't care about errors in readahead. */
6374 if (ret < 0)
6375 continue;
6376 BUG_ON(refs == 0);
6378 if (wc->stage == DROP_REFERENCE) {
6379 if (refs == 1)
6380 goto reada;
6382 if (wc->level == 1 &&
6383 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6384 continue;
6385 if (!wc->update_ref ||
6386 generation <= root->root_key.offset)
6387 continue;
6388 btrfs_node_key_to_cpu(eb, &key, slot);
6389 ret = btrfs_comp_cpu_keys(&key,
6390 &wc->update_progress);
6391 if (ret < 0)
6392 continue;
6393 } else {
6394 if (wc->level == 1 &&
6395 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6396 continue;
6398 reada:
6399 ret = readahead_tree_block(root, bytenr, blocksize,
6400 generation);
6401 if (ret)
6402 break;
6403 nread++;
6405 wc->reada_slot = slot;
6409 * hepler to process tree block while walking down the tree.
6411 * when wc->stage == UPDATE_BACKREF, this function updates
6412 * back refs for pointers in the block.
6414 * NOTE: return value 1 means we should stop walking down.
6416 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6417 struct btrfs_root *root,
6418 struct btrfs_path *path,
6419 struct walk_control *wc, int lookup_info)
6421 int level = wc->level;
6422 struct extent_buffer *eb = path->nodes[level];
6423 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6424 int ret;
6426 if (wc->stage == UPDATE_BACKREF &&
6427 btrfs_header_owner(eb) != root->root_key.objectid)
6428 return 1;
6431 * when reference count of tree block is 1, it won't increase
6432 * again. once full backref flag is set, we never clear it.
6434 if (lookup_info &&
6435 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6436 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6437 BUG_ON(!path->locks[level]);
6438 ret = btrfs_lookup_extent_info(trans, root,
6439 eb->start, eb->len,
6440 &wc->refs[level],
6441 &wc->flags[level]);
6442 BUG_ON(ret == -ENOMEM);
6443 if (ret)
6444 return ret;
6445 BUG_ON(wc->refs[level] == 0);
6448 if (wc->stage == DROP_REFERENCE) {
6449 if (wc->refs[level] > 1)
6450 return 1;
6452 if (path->locks[level] && !wc->keep_locks) {
6453 btrfs_tree_unlock_rw(eb, path->locks[level]);
6454 path->locks[level] = 0;
6456 return 0;
6459 /* wc->stage == UPDATE_BACKREF */
6460 if (!(wc->flags[level] & flag)) {
6461 BUG_ON(!path->locks[level]);
6462 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6463 BUG_ON(ret); /* -ENOMEM */
6464 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6465 BUG_ON(ret); /* -ENOMEM */
6466 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6467 eb->len, flag, 0);
6468 BUG_ON(ret); /* -ENOMEM */
6469 wc->flags[level] |= flag;
6473 * the block is shared by multiple trees, so it's not good to
6474 * keep the tree lock
6476 if (path->locks[level] && level > 0) {
6477 btrfs_tree_unlock_rw(eb, path->locks[level]);
6478 path->locks[level] = 0;
6480 return 0;
6484 * hepler to process tree block pointer.
6486 * when wc->stage == DROP_REFERENCE, this function checks
6487 * reference count of the block pointed to. if the block
6488 * is shared and we need update back refs for the subtree
6489 * rooted at the block, this function changes wc->stage to
6490 * UPDATE_BACKREF. if the block is shared and there is no
6491 * need to update back, this function drops the reference
6492 * to the block.
6494 * NOTE: return value 1 means we should stop walking down.
6496 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6497 struct btrfs_root *root,
6498 struct btrfs_path *path,
6499 struct walk_control *wc, int *lookup_info)
6501 u64 bytenr;
6502 u64 generation;
6503 u64 parent;
6504 u32 blocksize;
6505 struct btrfs_key key;
6506 struct extent_buffer *next;
6507 int level = wc->level;
6508 int reada = 0;
6509 int ret = 0;
6511 generation = btrfs_node_ptr_generation(path->nodes[level],
6512 path->slots[level]);
6514 * if the lower level block was created before the snapshot
6515 * was created, we know there is no need to update back refs
6516 * for the subtree
6518 if (wc->stage == UPDATE_BACKREF &&
6519 generation <= root->root_key.offset) {
6520 *lookup_info = 1;
6521 return 1;
6524 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6525 blocksize = btrfs_level_size(root, level - 1);
6527 next = btrfs_find_tree_block(root, bytenr, blocksize);
6528 if (!next) {
6529 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6530 if (!next)
6531 return -ENOMEM;
6532 reada = 1;
6534 btrfs_tree_lock(next);
6535 btrfs_set_lock_blocking(next);
6537 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6538 &wc->refs[level - 1],
6539 &wc->flags[level - 1]);
6540 if (ret < 0) {
6541 btrfs_tree_unlock(next);
6542 return ret;
6545 BUG_ON(wc->refs[level - 1] == 0);
6546 *lookup_info = 0;
6548 if (wc->stage == DROP_REFERENCE) {
6549 if (wc->refs[level - 1] > 1) {
6550 if (level == 1 &&
6551 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6552 goto skip;
6554 if (!wc->update_ref ||
6555 generation <= root->root_key.offset)
6556 goto skip;
6558 btrfs_node_key_to_cpu(path->nodes[level], &key,
6559 path->slots[level]);
6560 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6561 if (ret < 0)
6562 goto skip;
6564 wc->stage = UPDATE_BACKREF;
6565 wc->shared_level = level - 1;
6567 } else {
6568 if (level == 1 &&
6569 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6570 goto skip;
6573 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6574 btrfs_tree_unlock(next);
6575 free_extent_buffer(next);
6576 next = NULL;
6577 *lookup_info = 1;
6580 if (!next) {
6581 if (reada && level == 1)
6582 reada_walk_down(trans, root, wc, path);
6583 next = read_tree_block(root, bytenr, blocksize, generation);
6584 if (!next)
6585 return -EIO;
6586 btrfs_tree_lock(next);
6587 btrfs_set_lock_blocking(next);
6590 level--;
6591 BUG_ON(level != btrfs_header_level(next));
6592 path->nodes[level] = next;
6593 path->slots[level] = 0;
6594 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6595 wc->level = level;
6596 if (wc->level == 1)
6597 wc->reada_slot = 0;
6598 return 0;
6599 skip:
6600 wc->refs[level - 1] = 0;
6601 wc->flags[level - 1] = 0;
6602 if (wc->stage == DROP_REFERENCE) {
6603 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6604 parent = path->nodes[level]->start;
6605 } else {
6606 BUG_ON(root->root_key.objectid !=
6607 btrfs_header_owner(path->nodes[level]));
6608 parent = 0;
6611 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6612 root->root_key.objectid, level - 1, 0, 0);
6613 BUG_ON(ret); /* -ENOMEM */
6615 btrfs_tree_unlock(next);
6616 free_extent_buffer(next);
6617 *lookup_info = 1;
6618 return 1;
6622 * hepler to process tree block while walking up the tree.
6624 * when wc->stage == DROP_REFERENCE, this function drops
6625 * reference count on the block.
6627 * when wc->stage == UPDATE_BACKREF, this function changes
6628 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6629 * to UPDATE_BACKREF previously while processing the block.
6631 * NOTE: return value 1 means we should stop walking up.
6633 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6634 struct btrfs_root *root,
6635 struct btrfs_path *path,
6636 struct walk_control *wc)
6638 int ret;
6639 int level = wc->level;
6640 struct extent_buffer *eb = path->nodes[level];
6641 u64 parent = 0;
6643 if (wc->stage == UPDATE_BACKREF) {
6644 BUG_ON(wc->shared_level < level);
6645 if (level < wc->shared_level)
6646 goto out;
6648 ret = find_next_key(path, level + 1, &wc->update_progress);
6649 if (ret > 0)
6650 wc->update_ref = 0;
6652 wc->stage = DROP_REFERENCE;
6653 wc->shared_level = -1;
6654 path->slots[level] = 0;
6657 * check reference count again if the block isn't locked.
6658 * we should start walking down the tree again if reference
6659 * count is one.
6661 if (!path->locks[level]) {
6662 BUG_ON(level == 0);
6663 btrfs_tree_lock(eb);
6664 btrfs_set_lock_blocking(eb);
6665 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6667 ret = btrfs_lookup_extent_info(trans, root,
6668 eb->start, eb->len,
6669 &wc->refs[level],
6670 &wc->flags[level]);
6671 if (ret < 0) {
6672 btrfs_tree_unlock_rw(eb, path->locks[level]);
6673 return ret;
6675 BUG_ON(wc->refs[level] == 0);
6676 if (wc->refs[level] == 1) {
6677 btrfs_tree_unlock_rw(eb, path->locks[level]);
6678 return 1;
6683 /* wc->stage == DROP_REFERENCE */
6684 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6686 if (wc->refs[level] == 1) {
6687 if (level == 0) {
6688 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6689 ret = btrfs_dec_ref(trans, root, eb, 1,
6690 wc->for_reloc);
6691 else
6692 ret = btrfs_dec_ref(trans, root, eb, 0,
6693 wc->for_reloc);
6694 BUG_ON(ret); /* -ENOMEM */
6696 /* make block locked assertion in clean_tree_block happy */
6697 if (!path->locks[level] &&
6698 btrfs_header_generation(eb) == trans->transid) {
6699 btrfs_tree_lock(eb);
6700 btrfs_set_lock_blocking(eb);
6701 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6703 clean_tree_block(trans, root, eb);
6706 if (eb == root->node) {
6707 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6708 parent = eb->start;
6709 else
6710 BUG_ON(root->root_key.objectid !=
6711 btrfs_header_owner(eb));
6712 } else {
6713 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6714 parent = path->nodes[level + 1]->start;
6715 else
6716 BUG_ON(root->root_key.objectid !=
6717 btrfs_header_owner(path->nodes[level + 1]));
6720 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6721 out:
6722 wc->refs[level] = 0;
6723 wc->flags[level] = 0;
6724 return 0;
6727 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6728 struct btrfs_root *root,
6729 struct btrfs_path *path,
6730 struct walk_control *wc)
6732 int level = wc->level;
6733 int lookup_info = 1;
6734 int ret;
6736 while (level >= 0) {
6737 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6738 if (ret > 0)
6739 break;
6741 if (level == 0)
6742 break;
6744 if (path->slots[level] >=
6745 btrfs_header_nritems(path->nodes[level]))
6746 break;
6748 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6749 if (ret > 0) {
6750 path->slots[level]++;
6751 continue;
6752 } else if (ret < 0)
6753 return ret;
6754 level = wc->level;
6756 return 0;
6759 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6760 struct btrfs_root *root,
6761 struct btrfs_path *path,
6762 struct walk_control *wc, int max_level)
6764 int level = wc->level;
6765 int ret;
6767 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6768 while (level < max_level && path->nodes[level]) {
6769 wc->level = level;
6770 if (path->slots[level] + 1 <
6771 btrfs_header_nritems(path->nodes[level])) {
6772 path->slots[level]++;
6773 return 0;
6774 } else {
6775 ret = walk_up_proc(trans, root, path, wc);
6776 if (ret > 0)
6777 return 0;
6779 if (path->locks[level]) {
6780 btrfs_tree_unlock_rw(path->nodes[level],
6781 path->locks[level]);
6782 path->locks[level] = 0;
6784 free_extent_buffer(path->nodes[level]);
6785 path->nodes[level] = NULL;
6786 level++;
6789 return 1;
6793 * drop a subvolume tree.
6795 * this function traverses the tree freeing any blocks that only
6796 * referenced by the tree.
6798 * when a shared tree block is found. this function decreases its
6799 * reference count by one. if update_ref is true, this function
6800 * also make sure backrefs for the shared block and all lower level
6801 * blocks are properly updated.
6803 int btrfs_drop_snapshot(struct btrfs_root *root,
6804 struct btrfs_block_rsv *block_rsv, int update_ref,
6805 int for_reloc)
6807 struct btrfs_path *path;
6808 struct btrfs_trans_handle *trans;
6809 struct btrfs_root *tree_root = root->fs_info->tree_root;
6810 struct btrfs_root_item *root_item = &root->root_item;
6811 struct walk_control *wc;
6812 struct btrfs_key key;
6813 int err = 0;
6814 int ret;
6815 int level;
6817 path = btrfs_alloc_path();
6818 if (!path) {
6819 err = -ENOMEM;
6820 goto out;
6823 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6824 if (!wc) {
6825 btrfs_free_path(path);
6826 err = -ENOMEM;
6827 goto out;
6830 trans = btrfs_start_transaction(tree_root, 0);
6831 if (IS_ERR(trans)) {
6832 err = PTR_ERR(trans);
6833 goto out_free;
6836 if (block_rsv)
6837 trans->block_rsv = block_rsv;
6839 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6840 level = btrfs_header_level(root->node);
6841 path->nodes[level] = btrfs_lock_root_node(root);
6842 btrfs_set_lock_blocking(path->nodes[level]);
6843 path->slots[level] = 0;
6844 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6845 memset(&wc->update_progress, 0,
6846 sizeof(wc->update_progress));
6847 } else {
6848 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6849 memcpy(&wc->update_progress, &key,
6850 sizeof(wc->update_progress));
6852 level = root_item->drop_level;
6853 BUG_ON(level == 0);
6854 path->lowest_level = level;
6855 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6856 path->lowest_level = 0;
6857 if (ret < 0) {
6858 err = ret;
6859 goto out_end_trans;
6861 WARN_ON(ret > 0);
6864 * unlock our path, this is safe because only this
6865 * function is allowed to delete this snapshot
6867 btrfs_unlock_up_safe(path, 0);
6869 level = btrfs_header_level(root->node);
6870 while (1) {
6871 btrfs_tree_lock(path->nodes[level]);
6872 btrfs_set_lock_blocking(path->nodes[level]);
6874 ret = btrfs_lookup_extent_info(trans, root,
6875 path->nodes[level]->start,
6876 path->nodes[level]->len,
6877 &wc->refs[level],
6878 &wc->flags[level]);
6879 if (ret < 0) {
6880 err = ret;
6881 goto out_end_trans;
6883 BUG_ON(wc->refs[level] == 0);
6885 if (level == root_item->drop_level)
6886 break;
6888 btrfs_tree_unlock(path->nodes[level]);
6889 WARN_ON(wc->refs[level] != 1);
6890 level--;
6894 wc->level = level;
6895 wc->shared_level = -1;
6896 wc->stage = DROP_REFERENCE;
6897 wc->update_ref = update_ref;
6898 wc->keep_locks = 0;
6899 wc->for_reloc = for_reloc;
6900 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6902 while (1) {
6903 ret = walk_down_tree(trans, root, path, wc);
6904 if (ret < 0) {
6905 err = ret;
6906 break;
6909 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6910 if (ret < 0) {
6911 err = ret;
6912 break;
6915 if (ret > 0) {
6916 BUG_ON(wc->stage != DROP_REFERENCE);
6917 break;
6920 if (wc->stage == DROP_REFERENCE) {
6921 level = wc->level;
6922 btrfs_node_key(path->nodes[level],
6923 &root_item->drop_progress,
6924 path->slots[level]);
6925 root_item->drop_level = level;
6928 BUG_ON(wc->level == 0);
6929 if (btrfs_should_end_transaction(trans, tree_root)) {
6930 ret = btrfs_update_root(trans, tree_root,
6931 &root->root_key,
6932 root_item);
6933 if (ret) {
6934 btrfs_abort_transaction(trans, tree_root, ret);
6935 err = ret;
6936 goto out_end_trans;
6939 btrfs_end_transaction_throttle(trans, tree_root);
6940 trans = btrfs_start_transaction(tree_root, 0);
6941 if (IS_ERR(trans)) {
6942 err = PTR_ERR(trans);
6943 goto out_free;
6945 if (block_rsv)
6946 trans->block_rsv = block_rsv;
6949 btrfs_release_path(path);
6950 if (err)
6951 goto out_end_trans;
6953 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6954 if (ret) {
6955 btrfs_abort_transaction(trans, tree_root, ret);
6956 goto out_end_trans;
6959 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6960 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6961 NULL, NULL);
6962 if (ret < 0) {
6963 btrfs_abort_transaction(trans, tree_root, ret);
6964 err = ret;
6965 goto out_end_trans;
6966 } else if (ret > 0) {
6967 /* if we fail to delete the orphan item this time
6968 * around, it'll get picked up the next time.
6970 * The most common failure here is just -ENOENT.
6972 btrfs_del_orphan_item(trans, tree_root,
6973 root->root_key.objectid);
6977 if (root->in_radix) {
6978 btrfs_free_fs_root(tree_root->fs_info, root);
6979 } else {
6980 free_extent_buffer(root->node);
6981 free_extent_buffer(root->commit_root);
6982 kfree(root);
6984 out_end_trans:
6985 btrfs_end_transaction_throttle(trans, tree_root);
6986 out_free:
6987 kfree(wc);
6988 btrfs_free_path(path);
6989 out:
6990 if (err)
6991 btrfs_std_error(root->fs_info, err);
6992 return err;
6996 * drop subtree rooted at tree block 'node'.
6998 * NOTE: this function will unlock and release tree block 'node'
6999 * only used by relocation code
7001 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7002 struct btrfs_root *root,
7003 struct extent_buffer *node,
7004 struct extent_buffer *parent)
7006 struct btrfs_path *path;
7007 struct walk_control *wc;
7008 int level;
7009 int parent_level;
7010 int ret = 0;
7011 int wret;
7013 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7015 path = btrfs_alloc_path();
7016 if (!path)
7017 return -ENOMEM;
7019 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7020 if (!wc) {
7021 btrfs_free_path(path);
7022 return -ENOMEM;
7025 btrfs_assert_tree_locked(parent);
7026 parent_level = btrfs_header_level(parent);
7027 extent_buffer_get(parent);
7028 path->nodes[parent_level] = parent;
7029 path->slots[parent_level] = btrfs_header_nritems(parent);
7031 btrfs_assert_tree_locked(node);
7032 level = btrfs_header_level(node);
7033 path->nodes[level] = node;
7034 path->slots[level] = 0;
7035 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7037 wc->refs[parent_level] = 1;
7038 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 wc->level = level;
7040 wc->shared_level = -1;
7041 wc->stage = DROP_REFERENCE;
7042 wc->update_ref = 0;
7043 wc->keep_locks = 1;
7044 wc->for_reloc = 1;
7045 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7047 while (1) {
7048 wret = walk_down_tree(trans, root, path, wc);
7049 if (wret < 0) {
7050 ret = wret;
7051 break;
7054 wret = walk_up_tree(trans, root, path, wc, parent_level);
7055 if (wret < 0)
7056 ret = wret;
7057 if (wret != 0)
7058 break;
7061 kfree(wc);
7062 btrfs_free_path(path);
7063 return ret;
7066 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7068 u64 num_devices;
7069 u64 stripped;
7072 * if restripe for this chunk_type is on pick target profile and
7073 * return, otherwise do the usual balance
7075 stripped = get_restripe_target(root->fs_info, flags);
7076 if (stripped)
7077 return extended_to_chunk(stripped);
7080 * we add in the count of missing devices because we want
7081 * to make sure that any RAID levels on a degraded FS
7082 * continue to be honored.
7084 num_devices = root->fs_info->fs_devices->rw_devices +
7085 root->fs_info->fs_devices->missing_devices;
7087 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7088 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7090 if (num_devices == 1) {
7091 stripped |= BTRFS_BLOCK_GROUP_DUP;
7092 stripped = flags & ~stripped;
7094 /* turn raid0 into single device chunks */
7095 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7096 return stripped;
7098 /* turn mirroring into duplication */
7099 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7100 BTRFS_BLOCK_GROUP_RAID10))
7101 return stripped | BTRFS_BLOCK_GROUP_DUP;
7102 } else {
7103 /* they already had raid on here, just return */
7104 if (flags & stripped)
7105 return flags;
7107 stripped |= BTRFS_BLOCK_GROUP_DUP;
7108 stripped = flags & ~stripped;
7110 /* switch duplicated blocks with raid1 */
7111 if (flags & BTRFS_BLOCK_GROUP_DUP)
7112 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7114 /* this is drive concat, leave it alone */
7117 return flags;
7120 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7122 struct btrfs_space_info *sinfo = cache->space_info;
7123 u64 num_bytes;
7124 u64 min_allocable_bytes;
7125 int ret = -ENOSPC;
7129 * We need some metadata space and system metadata space for
7130 * allocating chunks in some corner cases until we force to set
7131 * it to be readonly.
7133 if ((sinfo->flags &
7134 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7135 !force)
7136 min_allocable_bytes = 1 * 1024 * 1024;
7137 else
7138 min_allocable_bytes = 0;
7140 spin_lock(&sinfo->lock);
7141 spin_lock(&cache->lock);
7143 if (cache->ro) {
7144 ret = 0;
7145 goto out;
7148 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7149 cache->bytes_super - btrfs_block_group_used(&cache->item);
7151 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7152 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7153 min_allocable_bytes <= sinfo->total_bytes) {
7154 sinfo->bytes_readonly += num_bytes;
7155 cache->ro = 1;
7156 ret = 0;
7158 out:
7159 spin_unlock(&cache->lock);
7160 spin_unlock(&sinfo->lock);
7161 return ret;
7164 int btrfs_set_block_group_ro(struct btrfs_root *root,
7165 struct btrfs_block_group_cache *cache)
7168 struct btrfs_trans_handle *trans;
7169 u64 alloc_flags;
7170 int ret;
7172 BUG_ON(cache->ro);
7174 trans = btrfs_join_transaction(root);
7175 if (IS_ERR(trans))
7176 return PTR_ERR(trans);
7178 alloc_flags = update_block_group_flags(root, cache->flags);
7179 if (alloc_flags != cache->flags) {
7180 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7181 CHUNK_ALLOC_FORCE);
7182 if (ret < 0)
7183 goto out;
7186 ret = set_block_group_ro(cache, 0);
7187 if (!ret)
7188 goto out;
7189 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7190 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7191 CHUNK_ALLOC_FORCE);
7192 if (ret < 0)
7193 goto out;
7194 ret = set_block_group_ro(cache, 0);
7195 out:
7196 btrfs_end_transaction(trans, root);
7197 return ret;
7200 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7201 struct btrfs_root *root, u64 type)
7203 u64 alloc_flags = get_alloc_profile(root, type);
7204 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7205 CHUNK_ALLOC_FORCE);
7209 * helper to account the unused space of all the readonly block group in the
7210 * list. takes mirrors into account.
7212 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7214 struct btrfs_block_group_cache *block_group;
7215 u64 free_bytes = 0;
7216 int factor;
7218 list_for_each_entry(block_group, groups_list, list) {
7219 spin_lock(&block_group->lock);
7221 if (!block_group->ro) {
7222 spin_unlock(&block_group->lock);
7223 continue;
7226 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7227 BTRFS_BLOCK_GROUP_RAID10 |
7228 BTRFS_BLOCK_GROUP_DUP))
7229 factor = 2;
7230 else
7231 factor = 1;
7233 free_bytes += (block_group->key.offset -
7234 btrfs_block_group_used(&block_group->item)) *
7235 factor;
7237 spin_unlock(&block_group->lock);
7240 return free_bytes;
7244 * helper to account the unused space of all the readonly block group in the
7245 * space_info. takes mirrors into account.
7247 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7249 int i;
7250 u64 free_bytes = 0;
7252 spin_lock(&sinfo->lock);
7254 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7255 if (!list_empty(&sinfo->block_groups[i]))
7256 free_bytes += __btrfs_get_ro_block_group_free_space(
7257 &sinfo->block_groups[i]);
7259 spin_unlock(&sinfo->lock);
7261 return free_bytes;
7264 void btrfs_set_block_group_rw(struct btrfs_root *root,
7265 struct btrfs_block_group_cache *cache)
7267 struct btrfs_space_info *sinfo = cache->space_info;
7268 u64 num_bytes;
7270 BUG_ON(!cache->ro);
7272 spin_lock(&sinfo->lock);
7273 spin_lock(&cache->lock);
7274 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7275 cache->bytes_super - btrfs_block_group_used(&cache->item);
7276 sinfo->bytes_readonly -= num_bytes;
7277 cache->ro = 0;
7278 spin_unlock(&cache->lock);
7279 spin_unlock(&sinfo->lock);
7283 * checks to see if its even possible to relocate this block group.
7285 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7286 * ok to go ahead and try.
7288 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7290 struct btrfs_block_group_cache *block_group;
7291 struct btrfs_space_info *space_info;
7292 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7293 struct btrfs_device *device;
7294 u64 min_free;
7295 u64 dev_min = 1;
7296 u64 dev_nr = 0;
7297 u64 target;
7298 int index;
7299 int full = 0;
7300 int ret = 0;
7302 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7304 /* odd, couldn't find the block group, leave it alone */
7305 if (!block_group)
7306 return -1;
7308 min_free = btrfs_block_group_used(&block_group->item);
7310 /* no bytes used, we're good */
7311 if (!min_free)
7312 goto out;
7314 space_info = block_group->space_info;
7315 spin_lock(&space_info->lock);
7317 full = space_info->full;
7320 * if this is the last block group we have in this space, we can't
7321 * relocate it unless we're able to allocate a new chunk below.
7323 * Otherwise, we need to make sure we have room in the space to handle
7324 * all of the extents from this block group. If we can, we're good
7326 if ((space_info->total_bytes != block_group->key.offset) &&
7327 (space_info->bytes_used + space_info->bytes_reserved +
7328 space_info->bytes_pinned + space_info->bytes_readonly +
7329 min_free < space_info->total_bytes)) {
7330 spin_unlock(&space_info->lock);
7331 goto out;
7333 spin_unlock(&space_info->lock);
7336 * ok we don't have enough space, but maybe we have free space on our
7337 * devices to allocate new chunks for relocation, so loop through our
7338 * alloc devices and guess if we have enough space. if this block
7339 * group is going to be restriped, run checks against the target
7340 * profile instead of the current one.
7342 ret = -1;
7345 * index:
7346 * 0: raid10
7347 * 1: raid1
7348 * 2: dup
7349 * 3: raid0
7350 * 4: single
7352 target = get_restripe_target(root->fs_info, block_group->flags);
7353 if (target) {
7354 index = __get_block_group_index(extended_to_chunk(target));
7355 } else {
7357 * this is just a balance, so if we were marked as full
7358 * we know there is no space for a new chunk
7360 if (full)
7361 goto out;
7363 index = get_block_group_index(block_group);
7366 if (index == 0) {
7367 dev_min = 4;
7368 /* Divide by 2 */
7369 min_free >>= 1;
7370 } else if (index == 1) {
7371 dev_min = 2;
7372 } else if (index == 2) {
7373 /* Multiply by 2 */
7374 min_free <<= 1;
7375 } else if (index == 3) {
7376 dev_min = fs_devices->rw_devices;
7377 do_div(min_free, dev_min);
7380 mutex_lock(&root->fs_info->chunk_mutex);
7381 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7382 u64 dev_offset;
7385 * check to make sure we can actually find a chunk with enough
7386 * space to fit our block group in.
7388 if (device->total_bytes > device->bytes_used + min_free) {
7389 ret = find_free_dev_extent(device, min_free,
7390 &dev_offset, NULL);
7391 if (!ret)
7392 dev_nr++;
7394 if (dev_nr >= dev_min)
7395 break;
7397 ret = -1;
7400 mutex_unlock(&root->fs_info->chunk_mutex);
7401 out:
7402 btrfs_put_block_group(block_group);
7403 return ret;
7406 static int find_first_block_group(struct btrfs_root *root,
7407 struct btrfs_path *path, struct btrfs_key *key)
7409 int ret = 0;
7410 struct btrfs_key found_key;
7411 struct extent_buffer *leaf;
7412 int slot;
7414 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7415 if (ret < 0)
7416 goto out;
7418 while (1) {
7419 slot = path->slots[0];
7420 leaf = path->nodes[0];
7421 if (slot >= btrfs_header_nritems(leaf)) {
7422 ret = btrfs_next_leaf(root, path);
7423 if (ret == 0)
7424 continue;
7425 if (ret < 0)
7426 goto out;
7427 break;
7429 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7431 if (found_key.objectid >= key->objectid &&
7432 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7433 ret = 0;
7434 goto out;
7436 path->slots[0]++;
7438 out:
7439 return ret;
7442 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7444 struct btrfs_block_group_cache *block_group;
7445 u64 last = 0;
7447 while (1) {
7448 struct inode *inode;
7450 block_group = btrfs_lookup_first_block_group(info, last);
7451 while (block_group) {
7452 spin_lock(&block_group->lock);
7453 if (block_group->iref)
7454 break;
7455 spin_unlock(&block_group->lock);
7456 block_group = next_block_group(info->tree_root,
7457 block_group);
7459 if (!block_group) {
7460 if (last == 0)
7461 break;
7462 last = 0;
7463 continue;
7466 inode = block_group->inode;
7467 block_group->iref = 0;
7468 block_group->inode = NULL;
7469 spin_unlock(&block_group->lock);
7470 iput(inode);
7471 last = block_group->key.objectid + block_group->key.offset;
7472 btrfs_put_block_group(block_group);
7476 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7478 struct btrfs_block_group_cache *block_group;
7479 struct btrfs_space_info *space_info;
7480 struct btrfs_caching_control *caching_ctl;
7481 struct rb_node *n;
7483 down_write(&info->extent_commit_sem);
7484 while (!list_empty(&info->caching_block_groups)) {
7485 caching_ctl = list_entry(info->caching_block_groups.next,
7486 struct btrfs_caching_control, list);
7487 list_del(&caching_ctl->list);
7488 put_caching_control(caching_ctl);
7490 up_write(&info->extent_commit_sem);
7492 spin_lock(&info->block_group_cache_lock);
7493 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7494 block_group = rb_entry(n, struct btrfs_block_group_cache,
7495 cache_node);
7496 rb_erase(&block_group->cache_node,
7497 &info->block_group_cache_tree);
7498 spin_unlock(&info->block_group_cache_lock);
7500 down_write(&block_group->space_info->groups_sem);
7501 list_del(&block_group->list);
7502 up_write(&block_group->space_info->groups_sem);
7504 if (block_group->cached == BTRFS_CACHE_STARTED)
7505 wait_block_group_cache_done(block_group);
7508 * We haven't cached this block group, which means we could
7509 * possibly have excluded extents on this block group.
7511 if (block_group->cached == BTRFS_CACHE_NO)
7512 free_excluded_extents(info->extent_root, block_group);
7514 btrfs_remove_free_space_cache(block_group);
7515 btrfs_put_block_group(block_group);
7517 spin_lock(&info->block_group_cache_lock);
7519 spin_unlock(&info->block_group_cache_lock);
7521 /* now that all the block groups are freed, go through and
7522 * free all the space_info structs. This is only called during
7523 * the final stages of unmount, and so we know nobody is
7524 * using them. We call synchronize_rcu() once before we start,
7525 * just to be on the safe side.
7527 synchronize_rcu();
7529 release_global_block_rsv(info);
7531 while(!list_empty(&info->space_info)) {
7532 space_info = list_entry(info->space_info.next,
7533 struct btrfs_space_info,
7534 list);
7535 if (space_info->bytes_pinned > 0 ||
7536 space_info->bytes_reserved > 0 ||
7537 space_info->bytes_may_use > 0) {
7538 WARN_ON(1);
7539 dump_space_info(space_info, 0, 0);
7541 list_del(&space_info->list);
7542 kfree(space_info);
7544 return 0;
7547 static void __link_block_group(struct btrfs_space_info *space_info,
7548 struct btrfs_block_group_cache *cache)
7550 int index = get_block_group_index(cache);
7552 down_write(&space_info->groups_sem);
7553 list_add_tail(&cache->list, &space_info->block_groups[index]);
7554 up_write(&space_info->groups_sem);
7557 int btrfs_read_block_groups(struct btrfs_root *root)
7559 struct btrfs_path *path;
7560 int ret;
7561 struct btrfs_block_group_cache *cache;
7562 struct btrfs_fs_info *info = root->fs_info;
7563 struct btrfs_space_info *space_info;
7564 struct btrfs_key key;
7565 struct btrfs_key found_key;
7566 struct extent_buffer *leaf;
7567 int need_clear = 0;
7568 u64 cache_gen;
7570 root = info->extent_root;
7571 key.objectid = 0;
7572 key.offset = 0;
7573 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7574 path = btrfs_alloc_path();
7575 if (!path)
7576 return -ENOMEM;
7577 path->reada = 1;
7579 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7580 if (btrfs_test_opt(root, SPACE_CACHE) &&
7581 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7582 need_clear = 1;
7583 if (btrfs_test_opt(root, CLEAR_CACHE))
7584 need_clear = 1;
7586 while (1) {
7587 ret = find_first_block_group(root, path, &key);
7588 if (ret > 0)
7589 break;
7590 if (ret != 0)
7591 goto error;
7592 leaf = path->nodes[0];
7593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7594 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7595 if (!cache) {
7596 ret = -ENOMEM;
7597 goto error;
7599 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7600 GFP_NOFS);
7601 if (!cache->free_space_ctl) {
7602 kfree(cache);
7603 ret = -ENOMEM;
7604 goto error;
7607 atomic_set(&cache->count, 1);
7608 spin_lock_init(&cache->lock);
7609 cache->fs_info = info;
7610 INIT_LIST_HEAD(&cache->list);
7611 INIT_LIST_HEAD(&cache->cluster_list);
7613 if (need_clear)
7614 cache->disk_cache_state = BTRFS_DC_CLEAR;
7616 read_extent_buffer(leaf, &cache->item,
7617 btrfs_item_ptr_offset(leaf, path->slots[0]),
7618 sizeof(cache->item));
7619 memcpy(&cache->key, &found_key, sizeof(found_key));
7621 key.objectid = found_key.objectid + found_key.offset;
7622 btrfs_release_path(path);
7623 cache->flags = btrfs_block_group_flags(&cache->item);
7624 cache->sectorsize = root->sectorsize;
7626 btrfs_init_free_space_ctl(cache);
7629 * We need to exclude the super stripes now so that the space
7630 * info has super bytes accounted for, otherwise we'll think
7631 * we have more space than we actually do.
7633 exclude_super_stripes(root, cache);
7636 * check for two cases, either we are full, and therefore
7637 * don't need to bother with the caching work since we won't
7638 * find any space, or we are empty, and we can just add all
7639 * the space in and be done with it. This saves us _alot_ of
7640 * time, particularly in the full case.
7642 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7643 cache->last_byte_to_unpin = (u64)-1;
7644 cache->cached = BTRFS_CACHE_FINISHED;
7645 free_excluded_extents(root, cache);
7646 } else if (btrfs_block_group_used(&cache->item) == 0) {
7647 cache->last_byte_to_unpin = (u64)-1;
7648 cache->cached = BTRFS_CACHE_FINISHED;
7649 add_new_free_space(cache, root->fs_info,
7650 found_key.objectid,
7651 found_key.objectid +
7652 found_key.offset);
7653 free_excluded_extents(root, cache);
7656 ret = update_space_info(info, cache->flags, found_key.offset,
7657 btrfs_block_group_used(&cache->item),
7658 &space_info);
7659 BUG_ON(ret); /* -ENOMEM */
7660 cache->space_info = space_info;
7661 spin_lock(&cache->space_info->lock);
7662 cache->space_info->bytes_readonly += cache->bytes_super;
7663 spin_unlock(&cache->space_info->lock);
7665 __link_block_group(space_info, cache);
7667 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7668 BUG_ON(ret); /* Logic error */
7670 set_avail_alloc_bits(root->fs_info, cache->flags);
7671 if (btrfs_chunk_readonly(root, cache->key.objectid))
7672 set_block_group_ro(cache, 1);
7675 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7676 if (!(get_alloc_profile(root, space_info->flags) &
7677 (BTRFS_BLOCK_GROUP_RAID10 |
7678 BTRFS_BLOCK_GROUP_RAID1 |
7679 BTRFS_BLOCK_GROUP_DUP)))
7680 continue;
7682 * avoid allocating from un-mirrored block group if there are
7683 * mirrored block groups.
7685 list_for_each_entry(cache, &space_info->block_groups[3], list)
7686 set_block_group_ro(cache, 1);
7687 list_for_each_entry(cache, &space_info->block_groups[4], list)
7688 set_block_group_ro(cache, 1);
7691 init_global_block_rsv(info);
7692 ret = 0;
7693 error:
7694 btrfs_free_path(path);
7695 return ret;
7698 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7699 struct btrfs_root *root, u64 bytes_used,
7700 u64 type, u64 chunk_objectid, u64 chunk_offset,
7701 u64 size)
7703 int ret;
7704 struct btrfs_root *extent_root;
7705 struct btrfs_block_group_cache *cache;
7707 extent_root = root->fs_info->extent_root;
7709 root->fs_info->last_trans_log_full_commit = trans->transid;
7711 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7712 if (!cache)
7713 return -ENOMEM;
7714 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7715 GFP_NOFS);
7716 if (!cache->free_space_ctl) {
7717 kfree(cache);
7718 return -ENOMEM;
7721 cache->key.objectid = chunk_offset;
7722 cache->key.offset = size;
7723 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7724 cache->sectorsize = root->sectorsize;
7725 cache->fs_info = root->fs_info;
7727 atomic_set(&cache->count, 1);
7728 spin_lock_init(&cache->lock);
7729 INIT_LIST_HEAD(&cache->list);
7730 INIT_LIST_HEAD(&cache->cluster_list);
7732 btrfs_init_free_space_ctl(cache);
7734 btrfs_set_block_group_used(&cache->item, bytes_used);
7735 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7736 cache->flags = type;
7737 btrfs_set_block_group_flags(&cache->item, type);
7739 cache->last_byte_to_unpin = (u64)-1;
7740 cache->cached = BTRFS_CACHE_FINISHED;
7741 exclude_super_stripes(root, cache);
7743 add_new_free_space(cache, root->fs_info, chunk_offset,
7744 chunk_offset + size);
7746 free_excluded_extents(root, cache);
7748 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7749 &cache->space_info);
7750 BUG_ON(ret); /* -ENOMEM */
7751 update_global_block_rsv(root->fs_info);
7753 spin_lock(&cache->space_info->lock);
7754 cache->space_info->bytes_readonly += cache->bytes_super;
7755 spin_unlock(&cache->space_info->lock);
7757 __link_block_group(cache->space_info, cache);
7759 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7760 BUG_ON(ret); /* Logic error */
7762 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7763 sizeof(cache->item));
7764 if (ret) {
7765 btrfs_abort_transaction(trans, extent_root, ret);
7766 return ret;
7769 set_avail_alloc_bits(extent_root->fs_info, type);
7771 return 0;
7774 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7776 u64 extra_flags = chunk_to_extended(flags) &
7777 BTRFS_EXTENDED_PROFILE_MASK;
7779 if (flags & BTRFS_BLOCK_GROUP_DATA)
7780 fs_info->avail_data_alloc_bits &= ~extra_flags;
7781 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7782 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7783 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7784 fs_info->avail_system_alloc_bits &= ~extra_flags;
7787 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7788 struct btrfs_root *root, u64 group_start)
7790 struct btrfs_path *path;
7791 struct btrfs_block_group_cache *block_group;
7792 struct btrfs_free_cluster *cluster;
7793 struct btrfs_root *tree_root = root->fs_info->tree_root;
7794 struct btrfs_key key;
7795 struct inode *inode;
7796 int ret;
7797 int index;
7798 int factor;
7800 root = root->fs_info->extent_root;
7802 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7803 BUG_ON(!block_group);
7804 BUG_ON(!block_group->ro);
7807 * Free the reserved super bytes from this block group before
7808 * remove it.
7810 free_excluded_extents(root, block_group);
7812 memcpy(&key, &block_group->key, sizeof(key));
7813 index = get_block_group_index(block_group);
7814 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7815 BTRFS_BLOCK_GROUP_RAID1 |
7816 BTRFS_BLOCK_GROUP_RAID10))
7817 factor = 2;
7818 else
7819 factor = 1;
7821 /* make sure this block group isn't part of an allocation cluster */
7822 cluster = &root->fs_info->data_alloc_cluster;
7823 spin_lock(&cluster->refill_lock);
7824 btrfs_return_cluster_to_free_space(block_group, cluster);
7825 spin_unlock(&cluster->refill_lock);
7828 * make sure this block group isn't part of a metadata
7829 * allocation cluster
7831 cluster = &root->fs_info->meta_alloc_cluster;
7832 spin_lock(&cluster->refill_lock);
7833 btrfs_return_cluster_to_free_space(block_group, cluster);
7834 spin_unlock(&cluster->refill_lock);
7836 path = btrfs_alloc_path();
7837 if (!path) {
7838 ret = -ENOMEM;
7839 goto out;
7842 inode = lookup_free_space_inode(tree_root, block_group, path);
7843 if (!IS_ERR(inode)) {
7844 ret = btrfs_orphan_add(trans, inode);
7845 if (ret) {
7846 btrfs_add_delayed_iput(inode);
7847 goto out;
7849 clear_nlink(inode);
7850 /* One for the block groups ref */
7851 spin_lock(&block_group->lock);
7852 if (block_group->iref) {
7853 block_group->iref = 0;
7854 block_group->inode = NULL;
7855 spin_unlock(&block_group->lock);
7856 iput(inode);
7857 } else {
7858 spin_unlock(&block_group->lock);
7860 /* One for our lookup ref */
7861 btrfs_add_delayed_iput(inode);
7864 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7865 key.offset = block_group->key.objectid;
7866 key.type = 0;
7868 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7869 if (ret < 0)
7870 goto out;
7871 if (ret > 0)
7872 btrfs_release_path(path);
7873 if (ret == 0) {
7874 ret = btrfs_del_item(trans, tree_root, path);
7875 if (ret)
7876 goto out;
7877 btrfs_release_path(path);
7880 spin_lock(&root->fs_info->block_group_cache_lock);
7881 rb_erase(&block_group->cache_node,
7882 &root->fs_info->block_group_cache_tree);
7883 spin_unlock(&root->fs_info->block_group_cache_lock);
7885 down_write(&block_group->space_info->groups_sem);
7887 * we must use list_del_init so people can check to see if they
7888 * are still on the list after taking the semaphore
7890 list_del_init(&block_group->list);
7891 if (list_empty(&block_group->space_info->block_groups[index]))
7892 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7893 up_write(&block_group->space_info->groups_sem);
7895 if (block_group->cached == BTRFS_CACHE_STARTED)
7896 wait_block_group_cache_done(block_group);
7898 btrfs_remove_free_space_cache(block_group);
7900 spin_lock(&block_group->space_info->lock);
7901 block_group->space_info->total_bytes -= block_group->key.offset;
7902 block_group->space_info->bytes_readonly -= block_group->key.offset;
7903 block_group->space_info->disk_total -= block_group->key.offset * factor;
7904 spin_unlock(&block_group->space_info->lock);
7906 memcpy(&key, &block_group->key, sizeof(key));
7908 btrfs_clear_space_info_full(root->fs_info);
7910 btrfs_put_block_group(block_group);
7911 btrfs_put_block_group(block_group);
7913 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7914 if (ret > 0)
7915 ret = -EIO;
7916 if (ret < 0)
7917 goto out;
7919 ret = btrfs_del_item(trans, root, path);
7920 out:
7921 btrfs_free_path(path);
7922 return ret;
7925 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7927 struct btrfs_space_info *space_info;
7928 struct btrfs_super_block *disk_super;
7929 u64 features;
7930 u64 flags;
7931 int mixed = 0;
7932 int ret;
7934 disk_super = fs_info->super_copy;
7935 if (!btrfs_super_root(disk_super))
7936 return 1;
7938 features = btrfs_super_incompat_flags(disk_super);
7939 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7940 mixed = 1;
7942 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7943 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7944 if (ret)
7945 goto out;
7947 if (mixed) {
7948 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7949 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7950 } else {
7951 flags = BTRFS_BLOCK_GROUP_METADATA;
7952 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7953 if (ret)
7954 goto out;
7956 flags = BTRFS_BLOCK_GROUP_DATA;
7957 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7959 out:
7960 return ret;
7963 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7965 return unpin_extent_range(root, start, end);
7968 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7969 u64 num_bytes, u64 *actual_bytes)
7971 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7974 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7976 struct btrfs_fs_info *fs_info = root->fs_info;
7977 struct btrfs_block_group_cache *cache = NULL;
7978 u64 group_trimmed;
7979 u64 start;
7980 u64 end;
7981 u64 trimmed = 0;
7982 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7983 int ret = 0;
7986 * try to trim all FS space, our block group may start from non-zero.
7988 if (range->len == total_bytes)
7989 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7990 else
7991 cache = btrfs_lookup_block_group(fs_info, range->start);
7993 while (cache) {
7994 if (cache->key.objectid >= (range->start + range->len)) {
7995 btrfs_put_block_group(cache);
7996 break;
7999 start = max(range->start, cache->key.objectid);
8000 end = min(range->start + range->len,
8001 cache->key.objectid + cache->key.offset);
8003 if (end - start >= range->minlen) {
8004 if (!block_group_cache_done(cache)) {
8005 ret = cache_block_group(cache, NULL, root, 0);
8006 if (!ret)
8007 wait_block_group_cache_done(cache);
8009 ret = btrfs_trim_block_group(cache,
8010 &group_trimmed,
8011 start,
8012 end,
8013 range->minlen);
8015 trimmed += group_trimmed;
8016 if (ret) {
8017 btrfs_put_block_group(cache);
8018 break;
8022 cache = next_block_group(fs_info->tree_root, cache);
8025 range->len = trimmed;
8026 return ret;