2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 CHUNK_ALLOC_NO_FORCE
= 0,
53 CHUNK_ALLOC_LIMITED
= 1,
54 CHUNK_ALLOC_FORCE
= 2,
58 * Control how reservations are dealt with.
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 RESERVE_ALLOC_NO_ACCOUNT
= 2,
72 static int update_block_group(struct btrfs_trans_handle
*trans
,
73 struct btrfs_root
*root
,
74 u64 bytenr
, u64 num_bytes
, int alloc
);
75 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
76 struct btrfs_root
*root
,
77 u64 bytenr
, u64 num_bytes
, u64 parent
,
78 u64 root_objectid
, u64 owner_objectid
,
79 u64 owner_offset
, int refs_to_drop
,
80 struct btrfs_delayed_extent_op
*extra_op
);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
82 struct extent_buffer
*leaf
,
83 struct btrfs_extent_item
*ei
);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
85 struct btrfs_root
*root
,
86 u64 parent
, u64 root_objectid
,
87 u64 flags
, u64 owner
, u64 offset
,
88 struct btrfs_key
*ins
, int ref_mod
);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, struct btrfs_disk_key
*key
,
93 int level
, struct btrfs_key
*ins
);
94 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
96 u64 flags
, int force
);
97 static int find_next_key(struct btrfs_path
*path
, int level
,
98 struct btrfs_key
*key
);
99 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
100 int dump_block_groups
);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
102 u64 num_bytes
, int reserve
);
105 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
108 return cache
->cached
== BTRFS_CACHE_FINISHED
;
111 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
113 return (cache
->flags
& bits
) == bits
;
116 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
118 atomic_inc(&cache
->count
);
121 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
123 if (atomic_dec_and_test(&cache
->count
)) {
124 WARN_ON(cache
->pinned
> 0);
125 WARN_ON(cache
->reserved
> 0);
126 kfree(cache
->free_space_ctl
);
132 * this adds the block group to the fs_info rb tree for the block group
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
136 struct btrfs_block_group_cache
*block_group
)
139 struct rb_node
*parent
= NULL
;
140 struct btrfs_block_group_cache
*cache
;
142 spin_lock(&info
->block_group_cache_lock
);
143 p
= &info
->block_group_cache_tree
.rb_node
;
147 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
149 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
151 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
154 spin_unlock(&info
->block_group_cache_lock
);
159 rb_link_node(&block_group
->cache_node
, parent
, p
);
160 rb_insert_color(&block_group
->cache_node
,
161 &info
->block_group_cache_tree
);
162 spin_unlock(&info
->block_group_cache_lock
);
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
171 static struct btrfs_block_group_cache
*
172 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
175 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
179 spin_lock(&info
->block_group_cache_lock
);
180 n
= info
->block_group_cache_tree
.rb_node
;
183 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
185 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
186 start
= cache
->key
.objectid
;
188 if (bytenr
< start
) {
189 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
192 } else if (bytenr
> start
) {
193 if (contains
&& bytenr
<= end
) {
204 btrfs_get_block_group(ret
);
205 spin_unlock(&info
->block_group_cache_lock
);
210 static int add_excluded_extent(struct btrfs_root
*root
,
211 u64 start
, u64 num_bytes
)
213 u64 end
= start
+ num_bytes
- 1;
214 set_extent_bits(&root
->fs_info
->freed_extents
[0],
215 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
216 set_extent_bits(&root
->fs_info
->freed_extents
[1],
217 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
221 static void free_excluded_extents(struct btrfs_root
*root
,
222 struct btrfs_block_group_cache
*cache
)
226 start
= cache
->key
.objectid
;
227 end
= start
+ cache
->key
.offset
- 1;
229 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
230 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
231 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
232 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
235 static int exclude_super_stripes(struct btrfs_root
*root
,
236 struct btrfs_block_group_cache
*cache
)
243 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
244 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
245 cache
->bytes_super
+= stripe_len
;
246 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
248 BUG_ON(ret
); /* -ENOMEM */
251 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
252 bytenr
= btrfs_sb_offset(i
);
253 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
254 cache
->key
.objectid
, bytenr
,
255 0, &logical
, &nr
, &stripe_len
);
256 BUG_ON(ret
); /* -ENOMEM */
259 cache
->bytes_super
+= stripe_len
;
260 ret
= add_excluded_extent(root
, logical
[nr
],
262 BUG_ON(ret
); /* -ENOMEM */
270 static struct btrfs_caching_control
*
271 get_caching_control(struct btrfs_block_group_cache
*cache
)
273 struct btrfs_caching_control
*ctl
;
275 spin_lock(&cache
->lock
);
276 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
277 spin_unlock(&cache
->lock
);
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache
->caching_ctl
) {
283 spin_unlock(&cache
->lock
);
287 ctl
= cache
->caching_ctl
;
288 atomic_inc(&ctl
->count
);
289 spin_unlock(&cache
->lock
);
293 static void put_caching_control(struct btrfs_caching_control
*ctl
)
295 if (atomic_dec_and_test(&ctl
->count
))
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
304 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
305 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
307 u64 extent_start
, extent_end
, size
, total_added
= 0;
310 while (start
< end
) {
311 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
312 &extent_start
, &extent_end
,
313 EXTENT_DIRTY
| EXTENT_UPTODATE
);
317 if (extent_start
<= start
) {
318 start
= extent_end
+ 1;
319 } else if (extent_start
> start
&& extent_start
< end
) {
320 size
= extent_start
- start
;
322 ret
= btrfs_add_free_space(block_group
, start
,
324 BUG_ON(ret
); /* -ENOMEM or logic error */
325 start
= extent_end
+ 1;
334 ret
= btrfs_add_free_space(block_group
, start
, size
);
335 BUG_ON(ret
); /* -ENOMEM or logic error */
341 static noinline
void caching_thread(struct btrfs_work
*work
)
343 struct btrfs_block_group_cache
*block_group
;
344 struct btrfs_fs_info
*fs_info
;
345 struct btrfs_caching_control
*caching_ctl
;
346 struct btrfs_root
*extent_root
;
347 struct btrfs_path
*path
;
348 struct extent_buffer
*leaf
;
349 struct btrfs_key key
;
355 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
356 block_group
= caching_ctl
->block_group
;
357 fs_info
= block_group
->fs_info
;
358 extent_root
= fs_info
->extent_root
;
360 path
= btrfs_alloc_path();
364 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
372 path
->skip_locking
= 1;
373 path
->search_commit_root
= 1;
378 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
380 mutex_lock(&caching_ctl
->mutex
);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info
->extent_commit_sem
);
384 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
388 leaf
= path
->nodes
[0];
389 nritems
= btrfs_header_nritems(leaf
);
392 if (btrfs_fs_closing(fs_info
) > 1) {
397 if (path
->slots
[0] < nritems
) {
398 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
400 ret
= find_next_key(path
, 0, &key
);
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root
, path
)) {
406 caching_ctl
->progress
= last
;
407 btrfs_release_path(path
);
408 up_read(&fs_info
->extent_commit_sem
);
409 mutex_unlock(&caching_ctl
->mutex
);
413 leaf
= path
->nodes
[0];
414 nritems
= btrfs_header_nritems(leaf
);
418 if (key
.objectid
< block_group
->key
.objectid
) {
423 if (key
.objectid
>= block_group
->key
.objectid
+
424 block_group
->key
.offset
)
427 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
428 total_found
+= add_new_free_space(block_group
,
431 last
= key
.objectid
+ key
.offset
;
433 if (total_found
> (1024 * 1024 * 2)) {
435 wake_up(&caching_ctl
->wait
);
442 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
443 block_group
->key
.objectid
+
444 block_group
->key
.offset
);
445 caching_ctl
->progress
= (u64
)-1;
447 spin_lock(&block_group
->lock
);
448 block_group
->caching_ctl
= NULL
;
449 block_group
->cached
= BTRFS_CACHE_FINISHED
;
450 spin_unlock(&block_group
->lock
);
453 btrfs_free_path(path
);
454 up_read(&fs_info
->extent_commit_sem
);
456 free_excluded_extents(extent_root
, block_group
);
458 mutex_unlock(&caching_ctl
->mutex
);
460 wake_up(&caching_ctl
->wait
);
462 put_caching_control(caching_ctl
);
463 btrfs_put_block_group(block_group
);
466 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
467 struct btrfs_trans_handle
*trans
,
468 struct btrfs_root
*root
,
472 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
473 struct btrfs_caching_control
*caching_ctl
;
476 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
480 INIT_LIST_HEAD(&caching_ctl
->list
);
481 mutex_init(&caching_ctl
->mutex
);
482 init_waitqueue_head(&caching_ctl
->wait
);
483 caching_ctl
->block_group
= cache
;
484 caching_ctl
->progress
= cache
->key
.objectid
;
485 atomic_set(&caching_ctl
->count
, 1);
486 caching_ctl
->work
.func
= caching_thread
;
488 spin_lock(&cache
->lock
);
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
501 while (cache
->cached
== BTRFS_CACHE_FAST
) {
502 struct btrfs_caching_control
*ctl
;
504 ctl
= cache
->caching_ctl
;
505 atomic_inc(&ctl
->count
);
506 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
507 spin_unlock(&cache
->lock
);
511 finish_wait(&ctl
->wait
, &wait
);
512 put_caching_control(ctl
);
513 spin_lock(&cache
->lock
);
516 if (cache
->cached
!= BTRFS_CACHE_NO
) {
517 spin_unlock(&cache
->lock
);
521 WARN_ON(cache
->caching_ctl
);
522 cache
->caching_ctl
= caching_ctl
;
523 cache
->cached
= BTRFS_CACHE_FAST
;
524 spin_unlock(&cache
->lock
);
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
532 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
533 ret
= load_free_space_cache(fs_info
, cache
);
535 spin_lock(&cache
->lock
);
537 cache
->caching_ctl
= NULL
;
538 cache
->cached
= BTRFS_CACHE_FINISHED
;
539 cache
->last_byte_to_unpin
= (u64
)-1;
541 if (load_cache_only
) {
542 cache
->caching_ctl
= NULL
;
543 cache
->cached
= BTRFS_CACHE_NO
;
545 cache
->cached
= BTRFS_CACHE_STARTED
;
548 spin_unlock(&cache
->lock
);
549 wake_up(&caching_ctl
->wait
);
551 put_caching_control(caching_ctl
);
552 free_excluded_extents(fs_info
->extent_root
, cache
);
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache
->lock
);
561 if (load_cache_only
) {
562 cache
->caching_ctl
= NULL
;
563 cache
->cached
= BTRFS_CACHE_NO
;
565 cache
->cached
= BTRFS_CACHE_STARTED
;
567 spin_unlock(&cache
->lock
);
568 wake_up(&caching_ctl
->wait
);
571 if (load_cache_only
) {
572 put_caching_control(caching_ctl
);
576 down_write(&fs_info
->extent_commit_sem
);
577 atomic_inc(&caching_ctl
->count
);
578 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
579 up_write(&fs_info
->extent_commit_sem
);
581 btrfs_get_block_group(cache
);
583 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache
*
592 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
594 struct btrfs_block_group_cache
*cache
;
596 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
605 struct btrfs_fs_info
*info
,
608 struct btrfs_block_group_cache
*cache
;
610 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
615 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
618 struct list_head
*head
= &info
->space_info
;
619 struct btrfs_space_info
*found
;
621 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
624 list_for_each_entry_rcu(found
, head
, list
) {
625 if (found
->flags
& flags
) {
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
638 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
640 struct list_head
*head
= &info
->space_info
;
641 struct btrfs_space_info
*found
;
644 list_for_each_entry_rcu(found
, head
, list
)
649 static u64
div_factor(u64 num
, int factor
)
658 static u64
div_factor_fine(u64 num
, int factor
)
667 u64
btrfs_find_block_group(struct btrfs_root
*root
,
668 u64 search_start
, u64 search_hint
, int owner
)
670 struct btrfs_block_group_cache
*cache
;
672 u64 last
= max(search_hint
, search_start
);
679 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
683 spin_lock(&cache
->lock
);
684 last
= cache
->key
.objectid
+ cache
->key
.offset
;
685 used
= btrfs_block_group_used(&cache
->item
);
687 if ((full_search
|| !cache
->ro
) &&
688 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
689 if (used
+ cache
->pinned
+ cache
->reserved
<
690 div_factor(cache
->key
.offset
, factor
)) {
691 group_start
= cache
->key
.objectid
;
692 spin_unlock(&cache
->lock
);
693 btrfs_put_block_group(cache
);
697 spin_unlock(&cache
->lock
);
698 btrfs_put_block_group(cache
);
706 if (!full_search
&& factor
< 10) {
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
720 struct btrfs_key key
;
721 struct btrfs_path
*path
;
723 path
= btrfs_alloc_path();
727 key
.objectid
= start
;
729 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
730 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
732 btrfs_free_path(path
);
737 * helper function to lookup reference count and flags of extent.
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
746 struct btrfs_root
*root
, u64 bytenr
,
747 u64 num_bytes
, u64
*refs
, u64
*flags
)
749 struct btrfs_delayed_ref_head
*head
;
750 struct btrfs_delayed_ref_root
*delayed_refs
;
751 struct btrfs_path
*path
;
752 struct btrfs_extent_item
*ei
;
753 struct extent_buffer
*leaf
;
754 struct btrfs_key key
;
760 path
= btrfs_alloc_path();
764 key
.objectid
= bytenr
;
765 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
766 key
.offset
= num_bytes
;
768 path
->skip_locking
= 1;
769 path
->search_commit_root
= 1;
772 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
778 leaf
= path
->nodes
[0];
779 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
780 if (item_size
>= sizeof(*ei
)) {
781 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
782 struct btrfs_extent_item
);
783 num_refs
= btrfs_extent_refs(leaf
, ei
);
784 extent_flags
= btrfs_extent_flags(leaf
, ei
);
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0
*ei0
;
788 BUG_ON(item_size
!= sizeof(*ei0
));
789 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
790 struct btrfs_extent_item_v0
);
791 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
792 /* FIXME: this isn't correct for data */
793 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
798 BUG_ON(num_refs
== 0);
808 delayed_refs
= &trans
->transaction
->delayed_refs
;
809 spin_lock(&delayed_refs
->lock
);
810 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
812 if (!mutex_trylock(&head
->mutex
)) {
813 atomic_inc(&head
->node
.refs
);
814 spin_unlock(&delayed_refs
->lock
);
816 btrfs_release_path(path
);
819 * Mutex was contended, block until it's released and try
822 mutex_lock(&head
->mutex
);
823 mutex_unlock(&head
->mutex
);
824 btrfs_put_delayed_ref(&head
->node
);
827 if (head
->extent_op
&& head
->extent_op
->update_flags
)
828 extent_flags
|= head
->extent_op
->flags_to_set
;
830 BUG_ON(num_refs
== 0);
832 num_refs
+= head
->node
.ref_mod
;
833 mutex_unlock(&head
->mutex
);
835 spin_unlock(&delayed_refs
->lock
);
837 WARN_ON(num_refs
== 0);
841 *flags
= extent_flags
;
843 btrfs_free_path(path
);
848 * Back reference rules. Back refs have three main goals:
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
879 * When a tree block is COW'd through a tree, there are four cases:
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
899 * Back Reference Key composing:
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
906 * File extents can be referenced by:
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
912 * The extent ref structure for the implicit back refs has fields for:
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
919 * The key offset for the implicit back refs is hash of the first
922 * The extent ref structure for the full back refs has field for:
924 * - number of pointers in the tree leaf
926 * The key offset for the implicit back refs is the first byte of
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
932 * (root_key.objectid, inode objectid, offset in file, 1)
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 * Btree extents can be referenced by:
941 * - Different subvolumes
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
955 struct btrfs_root
*root
,
956 struct btrfs_path
*path
,
957 u64 owner
, u32 extra_size
)
959 struct btrfs_extent_item
*item
;
960 struct btrfs_extent_item_v0
*ei0
;
961 struct btrfs_extent_ref_v0
*ref0
;
962 struct btrfs_tree_block_info
*bi
;
963 struct extent_buffer
*leaf
;
964 struct btrfs_key key
;
965 struct btrfs_key found_key
;
966 u32 new_size
= sizeof(*item
);
970 leaf
= path
->nodes
[0];
971 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
973 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
974 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
975 struct btrfs_extent_item_v0
);
976 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
978 if (owner
== (u64
)-1) {
980 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
981 ret
= btrfs_next_leaf(root
, path
);
984 BUG_ON(ret
> 0); /* Corruption */
985 leaf
= path
->nodes
[0];
987 btrfs_item_key_to_cpu(leaf
, &found_key
,
989 BUG_ON(key
.objectid
!= found_key
.objectid
);
990 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
994 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
995 struct btrfs_extent_ref_v0
);
996 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1000 btrfs_release_path(path
);
1002 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1003 new_size
+= sizeof(*bi
);
1005 new_size
-= sizeof(*ei0
);
1006 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1007 new_size
+ extra_size
, 1);
1010 BUG_ON(ret
); /* Corruption */
1012 btrfs_extend_item(trans
, root
, path
, new_size
);
1014 leaf
= path
->nodes
[0];
1015 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1016 btrfs_set_extent_refs(leaf
, item
, refs
);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf
, item
, 0);
1019 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1020 btrfs_set_extent_flags(leaf
, item
,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1023 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1026 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1028 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1030 btrfs_mark_buffer_dirty(leaf
);
1035 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1037 u32 high_crc
= ~(u32
)0;
1038 u32 low_crc
= ~(u32
)0;
1041 lenum
= cpu_to_le64(root_objectid
);
1042 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
1043 lenum
= cpu_to_le64(owner
);
1044 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1045 lenum
= cpu_to_le64(offset
);
1046 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
1048 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1051 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1052 struct btrfs_extent_data_ref
*ref
)
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1055 btrfs_extent_data_ref_objectid(leaf
, ref
),
1056 btrfs_extent_data_ref_offset(leaf
, ref
));
1059 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1060 struct btrfs_extent_data_ref
*ref
,
1061 u64 root_objectid
, u64 owner
, u64 offset
)
1063 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1064 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1065 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1070 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_root
*root
,
1072 struct btrfs_path
*path
,
1073 u64 bytenr
, u64 parent
,
1075 u64 owner
, u64 offset
)
1077 struct btrfs_key key
;
1078 struct btrfs_extent_data_ref
*ref
;
1079 struct extent_buffer
*leaf
;
1085 key
.objectid
= bytenr
;
1087 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1088 key
.offset
= parent
;
1090 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1091 key
.offset
= hash_extent_data_ref(root_objectid
,
1096 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1107 btrfs_release_path(path
);
1108 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1119 leaf
= path
->nodes
[0];
1120 nritems
= btrfs_header_nritems(leaf
);
1122 if (path
->slots
[0] >= nritems
) {
1123 ret
= btrfs_next_leaf(root
, path
);
1129 leaf
= path
->nodes
[0];
1130 nritems
= btrfs_header_nritems(leaf
);
1134 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1135 if (key
.objectid
!= bytenr
||
1136 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1139 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1140 struct btrfs_extent_data_ref
);
1142 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1145 btrfs_release_path(path
);
1157 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1158 struct btrfs_root
*root
,
1159 struct btrfs_path
*path
,
1160 u64 bytenr
, u64 parent
,
1161 u64 root_objectid
, u64 owner
,
1162 u64 offset
, int refs_to_add
)
1164 struct btrfs_key key
;
1165 struct extent_buffer
*leaf
;
1170 key
.objectid
= bytenr
;
1172 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1173 key
.offset
= parent
;
1174 size
= sizeof(struct btrfs_shared_data_ref
);
1176 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1177 key
.offset
= hash_extent_data_ref(root_objectid
,
1179 size
= sizeof(struct btrfs_extent_data_ref
);
1182 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1183 if (ret
&& ret
!= -EEXIST
)
1186 leaf
= path
->nodes
[0];
1188 struct btrfs_shared_data_ref
*ref
;
1189 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1190 struct btrfs_shared_data_ref
);
1192 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1194 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1195 num_refs
+= refs_to_add
;
1196 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1199 struct btrfs_extent_data_ref
*ref
;
1200 while (ret
== -EEXIST
) {
1201 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1202 struct btrfs_extent_data_ref
);
1203 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1206 btrfs_release_path(path
);
1208 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1210 if (ret
&& ret
!= -EEXIST
)
1213 leaf
= path
->nodes
[0];
1215 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1216 struct btrfs_extent_data_ref
);
1218 btrfs_set_extent_data_ref_root(leaf
, ref
,
1220 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1221 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1222 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1224 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1225 num_refs
+= refs_to_add
;
1226 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1229 btrfs_mark_buffer_dirty(leaf
);
1232 btrfs_release_path(path
);
1236 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1237 struct btrfs_root
*root
,
1238 struct btrfs_path
*path
,
1241 struct btrfs_key key
;
1242 struct btrfs_extent_data_ref
*ref1
= NULL
;
1243 struct btrfs_shared_data_ref
*ref2
= NULL
;
1244 struct extent_buffer
*leaf
;
1248 leaf
= path
->nodes
[0];
1249 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1251 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1252 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1253 struct btrfs_extent_data_ref
);
1254 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1255 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1256 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1257 struct btrfs_shared_data_ref
);
1258 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1261 struct btrfs_extent_ref_v0
*ref0
;
1262 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1263 struct btrfs_extent_ref_v0
);
1264 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1270 BUG_ON(num_refs
< refs_to_drop
);
1271 num_refs
-= refs_to_drop
;
1273 if (num_refs
== 0) {
1274 ret
= btrfs_del_item(trans
, root
, path
);
1276 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1277 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1278 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1279 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 struct btrfs_extent_ref_v0
*ref0
;
1283 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1284 struct btrfs_extent_ref_v0
);
1285 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1288 btrfs_mark_buffer_dirty(leaf
);
1293 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1294 struct btrfs_path
*path
,
1295 struct btrfs_extent_inline_ref
*iref
)
1297 struct btrfs_key key
;
1298 struct extent_buffer
*leaf
;
1299 struct btrfs_extent_data_ref
*ref1
;
1300 struct btrfs_shared_data_ref
*ref2
;
1303 leaf
= path
->nodes
[0];
1304 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1306 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1307 BTRFS_EXTENT_DATA_REF_KEY
) {
1308 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1309 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1311 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1312 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1314 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1315 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1316 struct btrfs_extent_data_ref
);
1317 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1318 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1319 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1320 struct btrfs_shared_data_ref
);
1321 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1324 struct btrfs_extent_ref_v0
*ref0
;
1325 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1326 struct btrfs_extent_ref_v0
);
1327 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1335 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1336 struct btrfs_root
*root
,
1337 struct btrfs_path
*path
,
1338 u64 bytenr
, u64 parent
,
1341 struct btrfs_key key
;
1344 key
.objectid
= bytenr
;
1346 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1347 key
.offset
= parent
;
1349 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1350 key
.offset
= root_objectid
;
1353 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret
== -ENOENT
&& parent
) {
1358 btrfs_release_path(path
);
1359 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1360 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1368 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1369 struct btrfs_root
*root
,
1370 struct btrfs_path
*path
,
1371 u64 bytenr
, u64 parent
,
1374 struct btrfs_key key
;
1377 key
.objectid
= bytenr
;
1379 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1380 key
.offset
= parent
;
1382 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1383 key
.offset
= root_objectid
;
1386 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1387 btrfs_release_path(path
);
1391 static inline int extent_ref_type(u64 parent
, u64 owner
)
1394 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1396 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1398 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1401 type
= BTRFS_SHARED_DATA_REF_KEY
;
1403 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1408 static int find_next_key(struct btrfs_path
*path
, int level
,
1409 struct btrfs_key
*key
)
1412 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1413 if (!path
->nodes
[level
])
1415 if (path
->slots
[level
] + 1 >=
1416 btrfs_header_nritems(path
->nodes
[level
]))
1419 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1420 path
->slots
[level
] + 1);
1422 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1423 path
->slots
[level
] + 1);
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1444 struct btrfs_root
*root
,
1445 struct btrfs_path
*path
,
1446 struct btrfs_extent_inline_ref
**ref_ret
,
1447 u64 bytenr
, u64 num_bytes
,
1448 u64 parent
, u64 root_objectid
,
1449 u64 owner
, u64 offset
, int insert
)
1451 struct btrfs_key key
;
1452 struct extent_buffer
*leaf
;
1453 struct btrfs_extent_item
*ei
;
1454 struct btrfs_extent_inline_ref
*iref
;
1465 key
.objectid
= bytenr
;
1466 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1467 key
.offset
= num_bytes
;
1469 want
= extent_ref_type(parent
, owner
);
1471 extra_size
= btrfs_extent_inline_ref_size(want
);
1472 path
->keep_locks
= 1;
1475 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1480 if (ret
&& !insert
) {
1484 BUG_ON(ret
); /* Corruption */
1486 leaf
= path
->nodes
[0];
1487 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1488 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 if (item_size
< sizeof(*ei
)) {
1494 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1500 leaf
= path
->nodes
[0];
1501 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1504 BUG_ON(item_size
< sizeof(*ei
));
1506 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1507 flags
= btrfs_extent_flags(leaf
, ei
);
1509 ptr
= (unsigned long)(ei
+ 1);
1510 end
= (unsigned long)ei
+ item_size
;
1512 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1513 ptr
+= sizeof(struct btrfs_tree_block_info
);
1516 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1525 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1526 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1530 ptr
+= btrfs_extent_inline_ref_size(type
);
1534 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1535 struct btrfs_extent_data_ref
*dref
;
1536 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1537 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1542 if (hash_extent_data_ref_item(leaf
, dref
) <
1543 hash_extent_data_ref(root_objectid
, owner
, offset
))
1547 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1549 if (parent
== ref_offset
) {
1553 if (ref_offset
< parent
)
1556 if (root_objectid
== ref_offset
) {
1560 if (ref_offset
< root_objectid
)
1564 ptr
+= btrfs_extent_inline_ref_size(type
);
1566 if (err
== -ENOENT
&& insert
) {
1567 if (item_size
+ extra_size
>=
1568 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1573 * To add new inline back ref, we have to make sure
1574 * there is no corresponding back ref item.
1575 * For simplicity, we just do not add new inline back
1576 * ref if there is any kind of item for this block
1578 if (find_next_key(path
, 0, &key
) == 0 &&
1579 key
.objectid
== bytenr
&&
1580 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1585 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1588 path
->keep_locks
= 0;
1589 btrfs_unlock_up_safe(path
, 1);
1595 * helper to add new inline back ref
1597 static noinline_for_stack
1598 void setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1599 struct btrfs_root
*root
,
1600 struct btrfs_path
*path
,
1601 struct btrfs_extent_inline_ref
*iref
,
1602 u64 parent
, u64 root_objectid
,
1603 u64 owner
, u64 offset
, int refs_to_add
,
1604 struct btrfs_delayed_extent_op
*extent_op
)
1606 struct extent_buffer
*leaf
;
1607 struct btrfs_extent_item
*ei
;
1610 unsigned long item_offset
;
1615 leaf
= path
->nodes
[0];
1616 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1617 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1619 type
= extent_ref_type(parent
, owner
);
1620 size
= btrfs_extent_inline_ref_size(type
);
1622 btrfs_extend_item(trans
, root
, path
, size
);
1624 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1625 refs
= btrfs_extent_refs(leaf
, ei
);
1626 refs
+= refs_to_add
;
1627 btrfs_set_extent_refs(leaf
, ei
, refs
);
1629 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1631 ptr
= (unsigned long)ei
+ item_offset
;
1632 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1633 if (ptr
< end
- size
)
1634 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1637 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1638 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1639 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1640 struct btrfs_extent_data_ref
*dref
;
1641 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1642 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1643 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1644 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1645 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1646 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1647 struct btrfs_shared_data_ref
*sref
;
1648 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1649 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1650 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1651 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1652 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1654 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1656 btrfs_mark_buffer_dirty(leaf
);
1659 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1660 struct btrfs_root
*root
,
1661 struct btrfs_path
*path
,
1662 struct btrfs_extent_inline_ref
**ref_ret
,
1663 u64 bytenr
, u64 num_bytes
, u64 parent
,
1664 u64 root_objectid
, u64 owner
, u64 offset
)
1668 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1669 bytenr
, num_bytes
, parent
,
1670 root_objectid
, owner
, offset
, 0);
1674 btrfs_release_path(path
);
1677 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1678 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1681 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1682 root_objectid
, owner
, offset
);
1688 * helper to update/remove inline back ref
1690 static noinline_for_stack
1691 void update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1692 struct btrfs_root
*root
,
1693 struct btrfs_path
*path
,
1694 struct btrfs_extent_inline_ref
*iref
,
1696 struct btrfs_delayed_extent_op
*extent_op
)
1698 struct extent_buffer
*leaf
;
1699 struct btrfs_extent_item
*ei
;
1700 struct btrfs_extent_data_ref
*dref
= NULL
;
1701 struct btrfs_shared_data_ref
*sref
= NULL
;
1709 leaf
= path
->nodes
[0];
1710 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1711 refs
= btrfs_extent_refs(leaf
, ei
);
1712 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1713 refs
+= refs_to_mod
;
1714 btrfs_set_extent_refs(leaf
, ei
, refs
);
1716 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1718 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1720 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1721 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1722 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1723 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1724 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1725 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1728 BUG_ON(refs_to_mod
!= -1);
1731 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1732 refs
+= refs_to_mod
;
1735 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1736 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1738 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1740 size
= btrfs_extent_inline_ref_size(type
);
1741 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1742 ptr
= (unsigned long)iref
;
1743 end
= (unsigned long)ei
+ item_size
;
1744 if (ptr
+ size
< end
)
1745 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1748 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1750 btrfs_mark_buffer_dirty(leaf
);
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1755 struct btrfs_root
*root
,
1756 struct btrfs_path
*path
,
1757 u64 bytenr
, u64 num_bytes
, u64 parent
,
1758 u64 root_objectid
, u64 owner
,
1759 u64 offset
, int refs_to_add
,
1760 struct btrfs_delayed_extent_op
*extent_op
)
1762 struct btrfs_extent_inline_ref
*iref
;
1765 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1766 bytenr
, num_bytes
, parent
,
1767 root_objectid
, owner
, offset
, 1);
1769 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1770 update_inline_extent_backref(trans
, root
, path
, iref
,
1771 refs_to_add
, extent_op
);
1772 } else if (ret
== -ENOENT
) {
1773 setup_inline_extent_backref(trans
, root
, path
, iref
, parent
,
1774 root_objectid
, owner
, offset
,
1775 refs_to_add
, extent_op
);
1781 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1782 struct btrfs_root
*root
,
1783 struct btrfs_path
*path
,
1784 u64 bytenr
, u64 parent
, u64 root_objectid
,
1785 u64 owner
, u64 offset
, int refs_to_add
)
1788 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1789 BUG_ON(refs_to_add
!= 1);
1790 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1791 parent
, root_objectid
);
1793 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1794 parent
, root_objectid
,
1795 owner
, offset
, refs_to_add
);
1800 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1801 struct btrfs_root
*root
,
1802 struct btrfs_path
*path
,
1803 struct btrfs_extent_inline_ref
*iref
,
1804 int refs_to_drop
, int is_data
)
1808 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1810 update_inline_extent_backref(trans
, root
, path
, iref
,
1811 -refs_to_drop
, NULL
);
1812 } else if (is_data
) {
1813 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1815 ret
= btrfs_del_item(trans
, root
, path
);
1820 static int btrfs_issue_discard(struct block_device
*bdev
,
1823 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1826 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1827 u64 num_bytes
, u64
*actual_bytes
)
1830 u64 discarded_bytes
= 0;
1831 struct btrfs_bio
*bbio
= NULL
;
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1836 bytenr
, &num_bytes
, &bbio
, 0);
1837 /* Error condition is -ENOMEM */
1839 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1843 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1844 if (!stripe
->dev
->can_discard
)
1847 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1851 discarded_bytes
+= stripe
->length
;
1852 else if (ret
!= -EOPNOTSUPP
)
1853 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1866 *actual_bytes
= discarded_bytes
;
1872 /* Can return -ENOMEM */
1873 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1874 struct btrfs_root
*root
,
1875 u64 bytenr
, u64 num_bytes
, u64 parent
,
1876 u64 root_objectid
, u64 owner
, u64 offset
, int for_cow
)
1879 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1881 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1882 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1884 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1885 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1887 parent
, root_objectid
, (int)owner
,
1888 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1890 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1892 parent
, root_objectid
, owner
, offset
,
1893 BTRFS_ADD_DELAYED_REF
, NULL
, for_cow
);
1898 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1899 struct btrfs_root
*root
,
1900 u64 bytenr
, u64 num_bytes
,
1901 u64 parent
, u64 root_objectid
,
1902 u64 owner
, u64 offset
, int refs_to_add
,
1903 struct btrfs_delayed_extent_op
*extent_op
)
1905 struct btrfs_path
*path
;
1906 struct extent_buffer
*leaf
;
1907 struct btrfs_extent_item
*item
;
1912 path
= btrfs_alloc_path();
1917 path
->leave_spinning
= 1;
1918 /* this will setup the path even if it fails to insert the back ref */
1919 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1920 path
, bytenr
, num_bytes
, parent
,
1921 root_objectid
, owner
, offset
,
1922 refs_to_add
, extent_op
);
1926 if (ret
!= -EAGAIN
) {
1931 leaf
= path
->nodes
[0];
1932 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1933 refs
= btrfs_extent_refs(leaf
, item
);
1934 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1936 __run_delayed_extent_op(extent_op
, leaf
, item
);
1938 btrfs_mark_buffer_dirty(leaf
);
1939 btrfs_release_path(path
);
1942 path
->leave_spinning
= 1;
1944 /* now insert the actual backref */
1945 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1946 path
, bytenr
, parent
, root_objectid
,
1947 owner
, offset
, refs_to_add
);
1949 btrfs_abort_transaction(trans
, root
, ret
);
1951 btrfs_free_path(path
);
1955 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1956 struct btrfs_root
*root
,
1957 struct btrfs_delayed_ref_node
*node
,
1958 struct btrfs_delayed_extent_op
*extent_op
,
1959 int insert_reserved
)
1962 struct btrfs_delayed_data_ref
*ref
;
1963 struct btrfs_key ins
;
1968 ins
.objectid
= node
->bytenr
;
1969 ins
.offset
= node
->num_bytes
;
1970 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1972 ref
= btrfs_delayed_node_to_data_ref(node
);
1973 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1974 parent
= ref
->parent
;
1976 ref_root
= ref
->root
;
1978 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1980 BUG_ON(extent_op
->update_key
);
1981 flags
|= extent_op
->flags_to_set
;
1983 ret
= alloc_reserved_file_extent(trans
, root
,
1984 parent
, ref_root
, flags
,
1985 ref
->objectid
, ref
->offset
,
1986 &ins
, node
->ref_mod
);
1987 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1988 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1989 node
->num_bytes
, parent
,
1990 ref_root
, ref
->objectid
,
1991 ref
->offset
, node
->ref_mod
,
1993 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1994 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1995 node
->num_bytes
, parent
,
1996 ref_root
, ref
->objectid
,
1997 ref
->offset
, node
->ref_mod
,
2005 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2006 struct extent_buffer
*leaf
,
2007 struct btrfs_extent_item
*ei
)
2009 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2010 if (extent_op
->update_flags
) {
2011 flags
|= extent_op
->flags_to_set
;
2012 btrfs_set_extent_flags(leaf
, ei
, flags
);
2015 if (extent_op
->update_key
) {
2016 struct btrfs_tree_block_info
*bi
;
2017 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2018 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2019 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2023 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2024 struct btrfs_root
*root
,
2025 struct btrfs_delayed_ref_node
*node
,
2026 struct btrfs_delayed_extent_op
*extent_op
)
2028 struct btrfs_key key
;
2029 struct btrfs_path
*path
;
2030 struct btrfs_extent_item
*ei
;
2031 struct extent_buffer
*leaf
;
2039 path
= btrfs_alloc_path();
2043 key
.objectid
= node
->bytenr
;
2044 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2045 key
.offset
= node
->num_bytes
;
2048 path
->leave_spinning
= 1;
2049 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2060 leaf
= path
->nodes
[0];
2061 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2062 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 if (item_size
< sizeof(*ei
)) {
2064 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2070 leaf
= path
->nodes
[0];
2071 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2074 BUG_ON(item_size
< sizeof(*ei
));
2075 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2076 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2078 btrfs_mark_buffer_dirty(leaf
);
2080 btrfs_free_path(path
);
2084 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2085 struct btrfs_root
*root
,
2086 struct btrfs_delayed_ref_node
*node
,
2087 struct btrfs_delayed_extent_op
*extent_op
,
2088 int insert_reserved
)
2091 struct btrfs_delayed_tree_ref
*ref
;
2092 struct btrfs_key ins
;
2096 ins
.objectid
= node
->bytenr
;
2097 ins
.offset
= node
->num_bytes
;
2098 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2100 ref
= btrfs_delayed_node_to_tree_ref(node
);
2101 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2102 parent
= ref
->parent
;
2104 ref_root
= ref
->root
;
2106 BUG_ON(node
->ref_mod
!= 1);
2107 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2108 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2109 !extent_op
->update_key
);
2110 ret
= alloc_reserved_tree_block(trans
, root
,
2112 extent_op
->flags_to_set
,
2115 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2116 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2117 node
->num_bytes
, parent
, ref_root
,
2118 ref
->level
, 0, 1, extent_op
);
2119 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2120 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2121 node
->num_bytes
, parent
, ref_root
,
2122 ref
->level
, 0, 1, extent_op
);
2129 /* helper function to actually process a single delayed ref entry */
2130 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2131 struct btrfs_root
*root
,
2132 struct btrfs_delayed_ref_node
*node
,
2133 struct btrfs_delayed_extent_op
*extent_op
,
2134 int insert_reserved
)
2141 if (btrfs_delayed_ref_is_head(node
)) {
2142 struct btrfs_delayed_ref_head
*head
;
2144 * we've hit the end of the chain and we were supposed
2145 * to insert this extent into the tree. But, it got
2146 * deleted before we ever needed to insert it, so all
2147 * we have to do is clean up the accounting
2150 head
= btrfs_delayed_node_to_head(node
);
2151 if (insert_reserved
) {
2152 btrfs_pin_extent(root
, node
->bytenr
,
2153 node
->num_bytes
, 1);
2154 if (head
->is_data
) {
2155 ret
= btrfs_del_csums(trans
, root
,
2160 mutex_unlock(&head
->mutex
);
2164 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2165 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2166 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2168 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2169 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2170 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2177 static noinline
struct btrfs_delayed_ref_node
*
2178 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2180 struct rb_node
*node
;
2181 struct btrfs_delayed_ref_node
*ref
;
2182 int action
= BTRFS_ADD_DELAYED_REF
;
2185 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 * this prevents ref count from going down to zero when
2187 * there still are pending delayed ref.
2189 node
= rb_prev(&head
->node
.rb_node
);
2193 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2195 if (ref
->bytenr
!= head
->node
.bytenr
)
2197 if (ref
->action
== action
)
2199 node
= rb_prev(node
);
2201 if (action
== BTRFS_ADD_DELAYED_REF
) {
2202 action
= BTRFS_DROP_DELAYED_REF
;
2209 * Returns 0 on success or if called with an already aborted transaction.
2210 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2212 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2213 struct btrfs_root
*root
,
2214 struct list_head
*cluster
)
2216 struct btrfs_delayed_ref_root
*delayed_refs
;
2217 struct btrfs_delayed_ref_node
*ref
;
2218 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2219 struct btrfs_delayed_extent_op
*extent_op
;
2222 int must_insert_reserved
= 0;
2224 delayed_refs
= &trans
->transaction
->delayed_refs
;
2227 /* pick a new head ref from the cluster list */
2228 if (list_empty(cluster
))
2231 locked_ref
= list_entry(cluster
->next
,
2232 struct btrfs_delayed_ref_head
, cluster
);
2234 /* grab the lock that says we are going to process
2235 * all the refs for this head */
2236 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2239 * we may have dropped the spin lock to get the head
2240 * mutex lock, and that might have given someone else
2241 * time to free the head. If that's true, it has been
2242 * removed from our list and we can move on.
2244 if (ret
== -EAGAIN
) {
2252 * locked_ref is the head node, so we have to go one
2253 * node back for any delayed ref updates
2255 ref
= select_delayed_ref(locked_ref
);
2257 if (ref
&& ref
->seq
&&
2258 btrfs_check_delayed_seq(delayed_refs
, ref
->seq
)) {
2260 * there are still refs with lower seq numbers in the
2261 * process of being added. Don't run this ref yet.
2263 list_del_init(&locked_ref
->cluster
);
2264 mutex_unlock(&locked_ref
->mutex
);
2266 delayed_refs
->num_heads_ready
++;
2267 spin_unlock(&delayed_refs
->lock
);
2269 spin_lock(&delayed_refs
->lock
);
2274 * record the must insert reserved flag before we
2275 * drop the spin lock.
2277 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2278 locked_ref
->must_insert_reserved
= 0;
2280 extent_op
= locked_ref
->extent_op
;
2281 locked_ref
->extent_op
= NULL
;
2284 /* All delayed refs have been processed, Go ahead
2285 * and send the head node to run_one_delayed_ref,
2286 * so that any accounting fixes can happen
2288 ref
= &locked_ref
->node
;
2290 if (extent_op
&& must_insert_reserved
) {
2296 spin_unlock(&delayed_refs
->lock
);
2298 ret
= run_delayed_extent_op(trans
, root
,
2303 printk(KERN_DEBUG
"btrfs: run_delayed_extent_op returned %d\n", ret
);
2304 spin_lock(&delayed_refs
->lock
);
2311 list_del_init(&locked_ref
->cluster
);
2316 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2317 delayed_refs
->num_entries
--;
2319 * we modified num_entries, but as we're currently running
2320 * delayed refs, skip
2321 * wake_up(&delayed_refs->seq_wait);
2324 spin_unlock(&delayed_refs
->lock
);
2326 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2327 must_insert_reserved
);
2329 btrfs_put_delayed_ref(ref
);
2334 printk(KERN_DEBUG
"btrfs: run_one_delayed_ref returned %d\n", ret
);
2335 spin_lock(&delayed_refs
->lock
);
2340 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2342 btrfs_get_alloc_profile(root
, 0),
2343 CHUNK_ALLOC_NO_FORCE
);
2345 spin_lock(&delayed_refs
->lock
);
2350 static void wait_for_more_refs(struct btrfs_delayed_ref_root
*delayed_refs
,
2351 unsigned long num_refs
,
2352 struct list_head
*first_seq
)
2354 spin_unlock(&delayed_refs
->lock
);
2355 pr_debug("waiting for more refs (num %ld, first %p)\n",
2356 num_refs
, first_seq
);
2357 wait_event(delayed_refs
->seq_wait
,
2358 num_refs
!= delayed_refs
->num_entries
||
2359 delayed_refs
->seq_head
.next
!= first_seq
);
2360 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2361 delayed_refs
->num_entries
, delayed_refs
->seq_head
.next
);
2362 spin_lock(&delayed_refs
->lock
);
2366 * this starts processing the delayed reference count updates and
2367 * extent insertions we have queued up so far. count can be
2368 * 0, which means to process everything in the tree at the start
2369 * of the run (but not newly added entries), or it can be some target
2370 * number you'd like to process.
2372 * Returns 0 on success or if called with an aborted transaction
2373 * Returns <0 on error and aborts the transaction
2375 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2376 struct btrfs_root
*root
, unsigned long count
)
2378 struct rb_node
*node
;
2379 struct btrfs_delayed_ref_root
*delayed_refs
;
2380 struct btrfs_delayed_ref_node
*ref
;
2381 struct list_head cluster
;
2382 struct list_head
*first_seq
= NULL
;
2385 int run_all
= count
== (unsigned long)-1;
2387 unsigned long num_refs
= 0;
2388 int consider_waiting
;
2390 /* We'll clean this up in btrfs_cleanup_transaction */
2394 if (root
== root
->fs_info
->extent_root
)
2395 root
= root
->fs_info
->tree_root
;
2397 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
2398 2 * 1024 * 1024, btrfs_get_alloc_profile(root
, 0),
2399 CHUNK_ALLOC_NO_FORCE
);
2401 delayed_refs
= &trans
->transaction
->delayed_refs
;
2402 INIT_LIST_HEAD(&cluster
);
2404 consider_waiting
= 0;
2405 spin_lock(&delayed_refs
->lock
);
2407 count
= delayed_refs
->num_entries
* 2;
2411 if (!(run_all
|| run_most
) &&
2412 delayed_refs
->num_heads_ready
< 64)
2416 * go find something we can process in the rbtree. We start at
2417 * the beginning of the tree, and then build a cluster
2418 * of refs to process starting at the first one we are able to
2421 delayed_start
= delayed_refs
->run_delayed_start
;
2422 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2423 delayed_refs
->run_delayed_start
);
2427 if (delayed_start
>= delayed_refs
->run_delayed_start
) {
2428 if (consider_waiting
== 0) {
2430 * btrfs_find_ref_cluster looped. let's do one
2431 * more cycle. if we don't run any delayed ref
2432 * during that cycle (because we can't because
2433 * all of them are blocked) and if the number of
2434 * refs doesn't change, we avoid busy waiting.
2436 consider_waiting
= 1;
2437 num_refs
= delayed_refs
->num_entries
;
2438 first_seq
= root
->fs_info
->tree_mod_seq_list
.next
;
2440 wait_for_more_refs(delayed_refs
,
2441 num_refs
, first_seq
);
2443 * after waiting, things have changed. we
2444 * dropped the lock and someone else might have
2445 * run some refs, built new clusters and so on.
2446 * therefore, we restart staleness detection.
2448 consider_waiting
= 0;
2452 ret
= run_clustered_refs(trans
, root
, &cluster
);
2454 spin_unlock(&delayed_refs
->lock
);
2455 btrfs_abort_transaction(trans
, root
, ret
);
2459 count
-= min_t(unsigned long, ret
, count
);
2464 if (ret
|| delayed_refs
->run_delayed_start
== 0) {
2465 /* refs were run, let's reset staleness detection */
2466 consider_waiting
= 0;
2471 node
= rb_first(&delayed_refs
->root
);
2474 count
= (unsigned long)-1;
2477 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2479 if (btrfs_delayed_ref_is_head(ref
)) {
2480 struct btrfs_delayed_ref_head
*head
;
2482 head
= btrfs_delayed_node_to_head(ref
);
2483 atomic_inc(&ref
->refs
);
2485 spin_unlock(&delayed_refs
->lock
);
2487 * Mutex was contended, block until it's
2488 * released and try again
2490 mutex_lock(&head
->mutex
);
2491 mutex_unlock(&head
->mutex
);
2493 btrfs_put_delayed_ref(ref
);
2497 node
= rb_next(node
);
2499 spin_unlock(&delayed_refs
->lock
);
2500 schedule_timeout(1);
2504 spin_unlock(&delayed_refs
->lock
);
2508 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2509 struct btrfs_root
*root
,
2510 u64 bytenr
, u64 num_bytes
, u64 flags
,
2513 struct btrfs_delayed_extent_op
*extent_op
;
2516 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2520 extent_op
->flags_to_set
= flags
;
2521 extent_op
->update_flags
= 1;
2522 extent_op
->update_key
= 0;
2523 extent_op
->is_data
= is_data
? 1 : 0;
2525 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2526 num_bytes
, extent_op
);
2532 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2533 struct btrfs_root
*root
,
2534 struct btrfs_path
*path
,
2535 u64 objectid
, u64 offset
, u64 bytenr
)
2537 struct btrfs_delayed_ref_head
*head
;
2538 struct btrfs_delayed_ref_node
*ref
;
2539 struct btrfs_delayed_data_ref
*data_ref
;
2540 struct btrfs_delayed_ref_root
*delayed_refs
;
2541 struct rb_node
*node
;
2545 delayed_refs
= &trans
->transaction
->delayed_refs
;
2546 spin_lock(&delayed_refs
->lock
);
2547 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2551 if (!mutex_trylock(&head
->mutex
)) {
2552 atomic_inc(&head
->node
.refs
);
2553 spin_unlock(&delayed_refs
->lock
);
2555 btrfs_release_path(path
);
2558 * Mutex was contended, block until it's released and let
2561 mutex_lock(&head
->mutex
);
2562 mutex_unlock(&head
->mutex
);
2563 btrfs_put_delayed_ref(&head
->node
);
2567 node
= rb_prev(&head
->node
.rb_node
);
2571 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2573 if (ref
->bytenr
!= bytenr
)
2577 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2580 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2582 node
= rb_prev(node
);
2584 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2585 if (ref
->bytenr
== bytenr
)
2589 if (data_ref
->root
!= root
->root_key
.objectid
||
2590 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2595 mutex_unlock(&head
->mutex
);
2597 spin_unlock(&delayed_refs
->lock
);
2601 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2602 struct btrfs_root
*root
,
2603 struct btrfs_path
*path
,
2604 u64 objectid
, u64 offset
, u64 bytenr
)
2606 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2607 struct extent_buffer
*leaf
;
2608 struct btrfs_extent_data_ref
*ref
;
2609 struct btrfs_extent_inline_ref
*iref
;
2610 struct btrfs_extent_item
*ei
;
2611 struct btrfs_key key
;
2615 key
.objectid
= bytenr
;
2616 key
.offset
= (u64
)-1;
2617 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2619 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2622 BUG_ON(ret
== 0); /* Corruption */
2625 if (path
->slots
[0] == 0)
2629 leaf
= path
->nodes
[0];
2630 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2632 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2636 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2638 if (item_size
< sizeof(*ei
)) {
2639 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2643 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2645 if (item_size
!= sizeof(*ei
) +
2646 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2649 if (btrfs_extent_generation(leaf
, ei
) <=
2650 btrfs_root_last_snapshot(&root
->root_item
))
2653 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2654 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2655 BTRFS_EXTENT_DATA_REF_KEY
)
2658 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2659 if (btrfs_extent_refs(leaf
, ei
) !=
2660 btrfs_extent_data_ref_count(leaf
, ref
) ||
2661 btrfs_extent_data_ref_root(leaf
, ref
) !=
2662 root
->root_key
.objectid
||
2663 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2664 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2672 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2673 struct btrfs_root
*root
,
2674 u64 objectid
, u64 offset
, u64 bytenr
)
2676 struct btrfs_path
*path
;
2680 path
= btrfs_alloc_path();
2685 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2687 if (ret
&& ret
!= -ENOENT
)
2690 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2692 } while (ret2
== -EAGAIN
);
2694 if (ret2
&& ret2
!= -ENOENT
) {
2699 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2702 btrfs_free_path(path
);
2703 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2708 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2709 struct btrfs_root
*root
,
2710 struct extent_buffer
*buf
,
2711 int full_backref
, int inc
, int for_cow
)
2718 struct btrfs_key key
;
2719 struct btrfs_file_extent_item
*fi
;
2723 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2724 u64
, u64
, u64
, u64
, u64
, u64
, int);
2726 ref_root
= btrfs_header_owner(buf
);
2727 nritems
= btrfs_header_nritems(buf
);
2728 level
= btrfs_header_level(buf
);
2730 if (!root
->ref_cows
&& level
== 0)
2734 process_func
= btrfs_inc_extent_ref
;
2736 process_func
= btrfs_free_extent
;
2739 parent
= buf
->start
;
2743 for (i
= 0; i
< nritems
; i
++) {
2745 btrfs_item_key_to_cpu(buf
, &key
, i
);
2746 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2748 fi
= btrfs_item_ptr(buf
, i
,
2749 struct btrfs_file_extent_item
);
2750 if (btrfs_file_extent_type(buf
, fi
) ==
2751 BTRFS_FILE_EXTENT_INLINE
)
2753 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2757 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2758 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2759 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2760 parent
, ref_root
, key
.objectid
,
2761 key
.offset
, for_cow
);
2765 bytenr
= btrfs_node_blockptr(buf
, i
);
2766 num_bytes
= btrfs_level_size(root
, level
- 1);
2767 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2768 parent
, ref_root
, level
- 1, 0,
2779 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2780 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2782 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1, for_cow
);
2785 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2786 struct extent_buffer
*buf
, int full_backref
, int for_cow
)
2788 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0, for_cow
);
2791 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2792 struct btrfs_root
*root
,
2793 struct btrfs_path
*path
,
2794 struct btrfs_block_group_cache
*cache
)
2797 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2799 struct extent_buffer
*leaf
;
2801 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2804 BUG_ON(ret
); /* Corruption */
2806 leaf
= path
->nodes
[0];
2807 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2808 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2809 btrfs_mark_buffer_dirty(leaf
);
2810 btrfs_release_path(path
);
2813 btrfs_abort_transaction(trans
, root
, ret
);
2820 static struct btrfs_block_group_cache
*
2821 next_block_group(struct btrfs_root
*root
,
2822 struct btrfs_block_group_cache
*cache
)
2824 struct rb_node
*node
;
2825 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2826 node
= rb_next(&cache
->cache_node
);
2827 btrfs_put_block_group(cache
);
2829 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2831 btrfs_get_block_group(cache
);
2834 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2838 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2839 struct btrfs_trans_handle
*trans
,
2840 struct btrfs_path
*path
)
2842 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2843 struct inode
*inode
= NULL
;
2845 int dcs
= BTRFS_DC_ERROR
;
2851 * If this block group is smaller than 100 megs don't bother caching the
2854 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2855 spin_lock(&block_group
->lock
);
2856 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2857 spin_unlock(&block_group
->lock
);
2862 inode
= lookup_free_space_inode(root
, block_group
, path
);
2863 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2864 ret
= PTR_ERR(inode
);
2865 btrfs_release_path(path
);
2869 if (IS_ERR(inode
)) {
2873 if (block_group
->ro
)
2876 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2882 /* We've already setup this transaction, go ahead and exit */
2883 if (block_group
->cache_generation
== trans
->transid
&&
2884 i_size_read(inode
)) {
2885 dcs
= BTRFS_DC_SETUP
;
2890 * We want to set the generation to 0, that way if anything goes wrong
2891 * from here on out we know not to trust this cache when we load up next
2894 BTRFS_I(inode
)->generation
= 0;
2895 ret
= btrfs_update_inode(trans
, root
, inode
);
2898 if (i_size_read(inode
) > 0) {
2899 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2905 spin_lock(&block_group
->lock
);
2906 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2907 /* We're not cached, don't bother trying to write stuff out */
2908 dcs
= BTRFS_DC_WRITTEN
;
2909 spin_unlock(&block_group
->lock
);
2912 spin_unlock(&block_group
->lock
);
2914 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2919 * Just to make absolutely sure we have enough space, we're going to
2920 * preallocate 12 pages worth of space for each block group. In
2921 * practice we ought to use at most 8, but we need extra space so we can
2922 * add our header and have a terminator between the extents and the
2926 num_pages
*= PAGE_CACHE_SIZE
;
2928 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2932 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2933 num_pages
, num_pages
,
2936 dcs
= BTRFS_DC_SETUP
;
2937 btrfs_free_reserved_data_space(inode
, num_pages
);
2942 btrfs_release_path(path
);
2944 spin_lock(&block_group
->lock
);
2945 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
2946 block_group
->cache_generation
= trans
->transid
;
2947 block_group
->disk_cache_state
= dcs
;
2948 spin_unlock(&block_group
->lock
);
2953 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2954 struct btrfs_root
*root
)
2956 struct btrfs_block_group_cache
*cache
;
2958 struct btrfs_path
*path
;
2961 path
= btrfs_alloc_path();
2967 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2969 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2971 cache
= next_block_group(root
, cache
);
2979 err
= cache_save_setup(cache
, trans
, path
);
2980 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2981 btrfs_put_block_group(cache
);
2986 err
= btrfs_run_delayed_refs(trans
, root
,
2988 if (err
) /* File system offline */
2992 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2994 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2995 btrfs_put_block_group(cache
);
3001 cache
= next_block_group(root
, cache
);
3010 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3011 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
3013 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3015 err
= write_one_cache_group(trans
, root
, path
, cache
);
3016 if (err
) /* File system offline */
3019 btrfs_put_block_group(cache
);
3024 * I don't think this is needed since we're just marking our
3025 * preallocated extent as written, but just in case it can't
3029 err
= btrfs_run_delayed_refs(trans
, root
,
3031 if (err
) /* File system offline */
3035 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3038 * Really this shouldn't happen, but it could if we
3039 * couldn't write the entire preallocated extent and
3040 * splitting the extent resulted in a new block.
3043 btrfs_put_block_group(cache
);
3046 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3048 cache
= next_block_group(root
, cache
);
3057 err
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3060 * If we didn't have an error then the cache state is still
3061 * NEED_WRITE, so we can set it to WRITTEN.
3063 if (!err
&& cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3064 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3065 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3066 btrfs_put_block_group(cache
);
3070 btrfs_free_path(path
);
3074 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3076 struct btrfs_block_group_cache
*block_group
;
3079 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3080 if (!block_group
|| block_group
->ro
)
3083 btrfs_put_block_group(block_group
);
3087 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3088 u64 total_bytes
, u64 bytes_used
,
3089 struct btrfs_space_info
**space_info
)
3091 struct btrfs_space_info
*found
;
3095 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3096 BTRFS_BLOCK_GROUP_RAID10
))
3101 found
= __find_space_info(info
, flags
);
3103 spin_lock(&found
->lock
);
3104 found
->total_bytes
+= total_bytes
;
3105 found
->disk_total
+= total_bytes
* factor
;
3106 found
->bytes_used
+= bytes_used
;
3107 found
->disk_used
+= bytes_used
* factor
;
3109 spin_unlock(&found
->lock
);
3110 *space_info
= found
;
3113 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3117 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3118 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3119 init_rwsem(&found
->groups_sem
);
3120 spin_lock_init(&found
->lock
);
3121 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3122 found
->total_bytes
= total_bytes
;
3123 found
->disk_total
= total_bytes
* factor
;
3124 found
->bytes_used
= bytes_used
;
3125 found
->disk_used
= bytes_used
* factor
;
3126 found
->bytes_pinned
= 0;
3127 found
->bytes_reserved
= 0;
3128 found
->bytes_readonly
= 0;
3129 found
->bytes_may_use
= 0;
3131 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3132 found
->chunk_alloc
= 0;
3134 init_waitqueue_head(&found
->wait
);
3135 *space_info
= found
;
3136 list_add_rcu(&found
->list
, &info
->space_info
);
3140 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3142 u64 extra_flags
= chunk_to_extended(flags
) &
3143 BTRFS_EXTENDED_PROFILE_MASK
;
3145 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3146 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3147 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3148 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3149 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3150 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3154 * returns target flags in extended format or 0 if restripe for this
3155 * chunk_type is not in progress
3157 * should be called with either volume_mutex or balance_lock held
3159 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3161 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3167 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3168 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3169 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3170 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3171 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3172 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3173 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3174 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3175 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3182 * @flags: available profiles in extended format (see ctree.h)
3184 * Returns reduced profile in chunk format. If profile changing is in
3185 * progress (either running or paused) picks the target profile (if it's
3186 * already available), otherwise falls back to plain reducing.
3188 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3191 * we add in the count of missing devices because we want
3192 * to make sure that any RAID levels on a degraded FS
3193 * continue to be honored.
3195 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3196 root
->fs_info
->fs_devices
->missing_devices
;
3200 * see if restripe for this chunk_type is in progress, if so
3201 * try to reduce to the target profile
3203 spin_lock(&root
->fs_info
->balance_lock
);
3204 target
= get_restripe_target(root
->fs_info
, flags
);
3206 /* pick target profile only if it's already available */
3207 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3208 spin_unlock(&root
->fs_info
->balance_lock
);
3209 return extended_to_chunk(target
);
3212 spin_unlock(&root
->fs_info
->balance_lock
);
3214 if (num_devices
== 1)
3215 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3216 if (num_devices
< 4)
3217 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3219 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3220 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3221 BTRFS_BLOCK_GROUP_RAID10
))) {
3222 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3225 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3226 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3227 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3230 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3231 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3232 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3233 (flags
& BTRFS_BLOCK_GROUP_DUP
))) {
3234 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3237 return extended_to_chunk(flags
);
3240 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3242 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3243 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3244 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3245 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3246 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3247 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3249 return btrfs_reduce_alloc_profile(root
, flags
);
3252 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3257 flags
= BTRFS_BLOCK_GROUP_DATA
;
3258 else if (root
== root
->fs_info
->chunk_root
)
3259 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3261 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3263 return get_alloc_profile(root
, flags
);
3266 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3268 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3269 BTRFS_BLOCK_GROUP_DATA
);
3273 * This will check the space that the inode allocates from to make sure we have
3274 * enough space for bytes.
3276 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3278 struct btrfs_space_info
*data_sinfo
;
3279 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3281 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3283 /* make sure bytes are sectorsize aligned */
3284 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3286 if (root
== root
->fs_info
->tree_root
||
3287 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3292 data_sinfo
= BTRFS_I(inode
)->space_info
;
3297 /* make sure we have enough space to handle the data first */
3298 spin_lock(&data_sinfo
->lock
);
3299 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3300 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3301 data_sinfo
->bytes_may_use
;
3303 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3304 struct btrfs_trans_handle
*trans
;
3307 * if we don't have enough free bytes in this space then we need
3308 * to alloc a new chunk.
3310 if (!data_sinfo
->full
&& alloc_chunk
) {
3313 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3314 spin_unlock(&data_sinfo
->lock
);
3316 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3317 trans
= btrfs_join_transaction(root
);
3319 return PTR_ERR(trans
);
3321 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3322 bytes
+ 2 * 1024 * 1024,
3324 CHUNK_ALLOC_NO_FORCE
);
3325 btrfs_end_transaction(trans
, root
);
3334 btrfs_set_inode_space_info(root
, inode
);
3335 data_sinfo
= BTRFS_I(inode
)->space_info
;
3341 * If we have less pinned bytes than we want to allocate then
3342 * don't bother committing the transaction, it won't help us.
3344 if (data_sinfo
->bytes_pinned
< bytes
)
3346 spin_unlock(&data_sinfo
->lock
);
3348 /* commit the current transaction and try again */
3351 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3353 trans
= btrfs_join_transaction(root
);
3355 return PTR_ERR(trans
);
3356 ret
= btrfs_commit_transaction(trans
, root
);
3364 data_sinfo
->bytes_may_use
+= bytes
;
3365 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3366 data_sinfo
->flags
, bytes
, 1);
3367 spin_unlock(&data_sinfo
->lock
);
3373 * Called if we need to clear a data reservation for this inode.
3375 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3377 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3378 struct btrfs_space_info
*data_sinfo
;
3380 /* make sure bytes are sectorsize aligned */
3381 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3383 data_sinfo
= BTRFS_I(inode
)->space_info
;
3384 spin_lock(&data_sinfo
->lock
);
3385 data_sinfo
->bytes_may_use
-= bytes
;
3386 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3387 data_sinfo
->flags
, bytes
, 0);
3388 spin_unlock(&data_sinfo
->lock
);
3391 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3393 struct list_head
*head
= &info
->space_info
;
3394 struct btrfs_space_info
*found
;
3397 list_for_each_entry_rcu(found
, head
, list
) {
3398 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3399 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3404 static int should_alloc_chunk(struct btrfs_root
*root
,
3405 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3408 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3409 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3410 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3413 if (force
== CHUNK_ALLOC_FORCE
)
3417 * We need to take into account the global rsv because for all intents
3418 * and purposes it's used space. Don't worry about locking the
3419 * global_rsv, it doesn't change except when the transaction commits.
3421 num_allocated
+= global_rsv
->size
;
3424 * in limited mode, we want to have some free space up to
3425 * about 1% of the FS size.
3427 if (force
== CHUNK_ALLOC_LIMITED
) {
3428 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3429 thresh
= max_t(u64
, 64 * 1024 * 1024,
3430 div_factor_fine(thresh
, 1));
3432 if (num_bytes
- num_allocated
< thresh
)
3435 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3437 /* 256MB or 2% of the FS */
3438 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 2));
3439 /* system chunks need a much small threshold */
3440 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3441 thresh
= 32 * 1024 * 1024;
3443 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 8))
3448 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3452 if (type
& BTRFS_BLOCK_GROUP_RAID10
||
3453 type
& BTRFS_BLOCK_GROUP_RAID0
)
3454 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3455 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3458 num_dev
= 1; /* DUP or single */
3460 /* metadata for updaing devices and chunk tree */
3461 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3464 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3465 struct btrfs_root
*root
, u64 type
)
3467 struct btrfs_space_info
*info
;
3471 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3472 spin_lock(&info
->lock
);
3473 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3474 info
->bytes_reserved
- info
->bytes_readonly
;
3475 spin_unlock(&info
->lock
);
3477 thresh
= get_system_chunk_thresh(root
, type
);
3478 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3479 printk(KERN_INFO
"left=%llu, need=%llu, flags=%llu\n",
3480 left
, thresh
, type
);
3481 dump_space_info(info
, 0, 0);
3484 if (left
< thresh
) {
3487 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3488 btrfs_alloc_chunk(trans
, root
, flags
);
3492 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3493 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3494 u64 flags
, int force
)
3496 struct btrfs_space_info
*space_info
;
3497 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3498 int wait_for_alloc
= 0;
3501 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3503 ret
= update_space_info(extent_root
->fs_info
, flags
,
3505 BUG_ON(ret
); /* -ENOMEM */
3507 BUG_ON(!space_info
); /* Logic error */
3510 spin_lock(&space_info
->lock
);
3511 if (force
< space_info
->force_alloc
)
3512 force
= space_info
->force_alloc
;
3513 if (space_info
->full
) {
3514 spin_unlock(&space_info
->lock
);
3518 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3519 spin_unlock(&space_info
->lock
);
3521 } else if (space_info
->chunk_alloc
) {
3524 space_info
->chunk_alloc
= 1;
3527 spin_unlock(&space_info
->lock
);
3529 mutex_lock(&fs_info
->chunk_mutex
);
3532 * The chunk_mutex is held throughout the entirety of a chunk
3533 * allocation, so once we've acquired the chunk_mutex we know that the
3534 * other guy is done and we need to recheck and see if we should
3537 if (wait_for_alloc
) {
3538 mutex_unlock(&fs_info
->chunk_mutex
);
3544 * If we have mixed data/metadata chunks we want to make sure we keep
3545 * allocating mixed chunks instead of individual chunks.
3547 if (btrfs_mixed_space_info(space_info
))
3548 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3551 * if we're doing a data chunk, go ahead and make sure that
3552 * we keep a reasonable number of metadata chunks allocated in the
3555 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3556 fs_info
->data_chunk_allocations
++;
3557 if (!(fs_info
->data_chunk_allocations
%
3558 fs_info
->metadata_ratio
))
3559 force_metadata_allocation(fs_info
);
3563 * Check if we have enough space in SYSTEM chunk because we may need
3564 * to update devices.
3566 check_system_chunk(trans
, extent_root
, flags
);
3568 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3569 if (ret
< 0 && ret
!= -ENOSPC
)
3572 spin_lock(&space_info
->lock
);
3574 space_info
->full
= 1;
3578 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3579 space_info
->chunk_alloc
= 0;
3580 spin_unlock(&space_info
->lock
);
3582 mutex_unlock(&fs_info
->chunk_mutex
);
3587 * shrink metadata reservation for delalloc
3589 static int shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
,
3592 struct btrfs_block_rsv
*block_rsv
;
3593 struct btrfs_space_info
*space_info
;
3594 struct btrfs_trans_handle
*trans
;
3599 unsigned long nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3601 unsigned long progress
;
3603 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3604 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3605 space_info
= block_rsv
->space_info
;
3608 reserved
= space_info
->bytes_may_use
;
3609 progress
= space_info
->reservation_progress
;
3615 if (root
->fs_info
->delalloc_bytes
== 0) {
3618 btrfs_wait_ordered_extents(root
, 0, 0);
3622 max_reclaim
= min(reserved
, to_reclaim
);
3623 nr_pages
= max_t(unsigned long, nr_pages
,
3624 max_reclaim
>> PAGE_CACHE_SHIFT
);
3625 while (loops
< 1024) {
3626 /* have the flusher threads jump in and do some IO */
3628 nr_pages
= min_t(unsigned long, nr_pages
,
3629 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3630 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
,
3631 WB_REASON_FS_FREE_SPACE
);
3633 spin_lock(&space_info
->lock
);
3634 if (reserved
> space_info
->bytes_may_use
)
3635 reclaimed
+= reserved
- space_info
->bytes_may_use
;
3636 reserved
= space_info
->bytes_may_use
;
3637 spin_unlock(&space_info
->lock
);
3641 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3644 if (trans
&& trans
->transaction
->blocked
)
3647 if (wait_ordered
&& !trans
) {
3648 btrfs_wait_ordered_extents(root
, 0, 0);
3650 time_left
= schedule_timeout_interruptible(1);
3652 /* We were interrupted, exit */
3657 /* we've kicked the IO a few times, if anything has been freed,
3658 * exit. There is no sense in looping here for a long time
3659 * when we really need to commit the transaction, or there are
3660 * just too many writers without enough free space
3665 if (progress
!= space_info
->reservation_progress
)
3671 return reclaimed
>= to_reclaim
;
3675 * maybe_commit_transaction - possibly commit the transaction if its ok to
3676 * @root - the root we're allocating for
3677 * @bytes - the number of bytes we want to reserve
3678 * @force - force the commit
3680 * This will check to make sure that committing the transaction will actually
3681 * get us somewhere and then commit the transaction if it does. Otherwise it
3682 * will return -ENOSPC.
3684 static int may_commit_transaction(struct btrfs_root
*root
,
3685 struct btrfs_space_info
*space_info
,
3686 u64 bytes
, int force
)
3688 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
3689 struct btrfs_trans_handle
*trans
;
3691 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
3698 /* See if there is enough pinned space to make this reservation */
3699 spin_lock(&space_info
->lock
);
3700 if (space_info
->bytes_pinned
>= bytes
) {
3701 spin_unlock(&space_info
->lock
);
3704 spin_unlock(&space_info
->lock
);
3707 * See if there is some space in the delayed insertion reservation for
3710 if (space_info
!= delayed_rsv
->space_info
)
3713 spin_lock(&space_info
->lock
);
3714 spin_lock(&delayed_rsv
->lock
);
3715 if (space_info
->bytes_pinned
+ delayed_rsv
->size
< bytes
) {
3716 spin_unlock(&delayed_rsv
->lock
);
3717 spin_unlock(&space_info
->lock
);
3720 spin_unlock(&delayed_rsv
->lock
);
3721 spin_unlock(&space_info
->lock
);
3724 trans
= btrfs_join_transaction(root
);
3728 return btrfs_commit_transaction(trans
, root
);
3732 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3733 * @root - the root we're allocating for
3734 * @block_rsv - the block_rsv we're allocating for
3735 * @orig_bytes - the number of bytes we want
3736 * @flush - wether or not we can flush to make our reservation
3738 * This will reserve orgi_bytes number of bytes from the space info associated
3739 * with the block_rsv. If there is not enough space it will make an attempt to
3740 * flush out space to make room. It will do this by flushing delalloc if
3741 * possible or committing the transaction. If flush is 0 then no attempts to
3742 * regain reservations will be made and this will fail if there is not enough
3745 static int reserve_metadata_bytes(struct btrfs_root
*root
,
3746 struct btrfs_block_rsv
*block_rsv
,
3747 u64 orig_bytes
, int flush
)
3749 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3751 u64 num_bytes
= orig_bytes
;
3754 bool committed
= false;
3755 bool flushing
= false;
3756 bool wait_ordered
= false;
3760 spin_lock(&space_info
->lock
);
3762 * We only want to wait if somebody other than us is flushing and we are
3763 * actually alloed to flush.
3765 while (flush
&& !flushing
&& space_info
->flush
) {
3766 spin_unlock(&space_info
->lock
);
3768 * If we have a trans handle we can't wait because the flusher
3769 * may have to commit the transaction, which would mean we would
3770 * deadlock since we are waiting for the flusher to finish, but
3771 * hold the current transaction open.
3773 if (current
->journal_info
)
3775 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
3776 /* Must have been killed, return */
3780 spin_lock(&space_info
->lock
);
3784 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3785 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3786 space_info
->bytes_may_use
;
3789 * The idea here is that we've not already over-reserved the block group
3790 * then we can go ahead and save our reservation first and then start
3791 * flushing if we need to. Otherwise if we've already overcommitted
3792 * lets start flushing stuff first and then come back and try to make
3795 if (used
<= space_info
->total_bytes
) {
3796 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
3797 space_info
->bytes_may_use
+= orig_bytes
;
3798 trace_btrfs_space_reservation(root
->fs_info
,
3799 "space_info", space_info
->flags
, orig_bytes
, 1);
3803 * Ok set num_bytes to orig_bytes since we aren't
3804 * overocmmitted, this way we only try and reclaim what
3807 num_bytes
= orig_bytes
;
3811 * Ok we're over committed, set num_bytes to the overcommitted
3812 * amount plus the amount of bytes that we need for this
3815 wait_ordered
= true;
3816 num_bytes
= used
- space_info
->total_bytes
+
3817 (orig_bytes
* (retries
+ 1));
3821 u64 profile
= btrfs_get_alloc_profile(root
, 0);
3825 * If we have a lot of space that's pinned, don't bother doing
3826 * the overcommit dance yet and just commit the transaction.
3828 avail
= (space_info
->total_bytes
- space_info
->bytes_used
) * 8;
3830 if (space_info
->bytes_pinned
>= avail
&& flush
&& !committed
) {
3831 space_info
->flush
= 1;
3833 spin_unlock(&space_info
->lock
);
3834 ret
= may_commit_transaction(root
, space_info
,
3842 spin_lock(&root
->fs_info
->free_chunk_lock
);
3843 avail
= root
->fs_info
->free_chunk_space
;
3846 * If we have dup, raid1 or raid10 then only half of the free
3847 * space is actually useable.
3849 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
3850 BTRFS_BLOCK_GROUP_RAID1
|
3851 BTRFS_BLOCK_GROUP_RAID10
))
3855 * If we aren't flushing don't let us overcommit too much, say
3856 * 1/8th of the space. If we can flush, let it overcommit up to
3863 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3865 if (used
+ num_bytes
< space_info
->total_bytes
+ avail
) {
3866 space_info
->bytes_may_use
+= orig_bytes
;
3867 trace_btrfs_space_reservation(root
->fs_info
,
3868 "space_info", space_info
->flags
, orig_bytes
, 1);
3871 wait_ordered
= true;
3876 * Couldn't make our reservation, save our place so while we're trying
3877 * to reclaim space we can actually use it instead of somebody else
3878 * stealing it from us.
3882 space_info
->flush
= 1;
3885 spin_unlock(&space_info
->lock
);
3891 * We do synchronous shrinking since we don't actually unreserve
3892 * metadata until after the IO is completed.
3894 ret
= shrink_delalloc(root
, num_bytes
, wait_ordered
);
3901 * So if we were overcommitted it's possible that somebody else flushed
3902 * out enough space and we simply didn't have enough space to reclaim,
3903 * so go back around and try again.
3906 wait_ordered
= true;
3915 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
3923 spin_lock(&space_info
->lock
);
3924 space_info
->flush
= 0;
3925 wake_up_all(&space_info
->wait
);
3926 spin_unlock(&space_info
->lock
);
3931 static struct btrfs_block_rsv
*get_block_rsv(
3932 const struct btrfs_trans_handle
*trans
,
3933 const struct btrfs_root
*root
)
3935 struct btrfs_block_rsv
*block_rsv
= NULL
;
3937 if (root
->ref_cows
|| root
== root
->fs_info
->csum_root
)
3938 block_rsv
= trans
->block_rsv
;
3941 block_rsv
= root
->block_rsv
;
3944 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3949 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3953 spin_lock(&block_rsv
->lock
);
3954 if (block_rsv
->reserved
>= num_bytes
) {
3955 block_rsv
->reserved
-= num_bytes
;
3956 if (block_rsv
->reserved
< block_rsv
->size
)
3957 block_rsv
->full
= 0;
3960 spin_unlock(&block_rsv
->lock
);
3964 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3965 u64 num_bytes
, int update_size
)
3967 spin_lock(&block_rsv
->lock
);
3968 block_rsv
->reserved
+= num_bytes
;
3970 block_rsv
->size
+= num_bytes
;
3971 else if (block_rsv
->reserved
>= block_rsv
->size
)
3972 block_rsv
->full
= 1;
3973 spin_unlock(&block_rsv
->lock
);
3976 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
3977 struct btrfs_block_rsv
*block_rsv
,
3978 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3980 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3982 spin_lock(&block_rsv
->lock
);
3983 if (num_bytes
== (u64
)-1)
3984 num_bytes
= block_rsv
->size
;
3985 block_rsv
->size
-= num_bytes
;
3986 if (block_rsv
->reserved
>= block_rsv
->size
) {
3987 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3988 block_rsv
->reserved
= block_rsv
->size
;
3989 block_rsv
->full
= 1;
3993 spin_unlock(&block_rsv
->lock
);
3995 if (num_bytes
> 0) {
3997 spin_lock(&dest
->lock
);
4001 bytes_to_add
= dest
->size
- dest
->reserved
;
4002 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4003 dest
->reserved
+= bytes_to_add
;
4004 if (dest
->reserved
>= dest
->size
)
4006 num_bytes
-= bytes_to_add
;
4008 spin_unlock(&dest
->lock
);
4011 spin_lock(&space_info
->lock
);
4012 space_info
->bytes_may_use
-= num_bytes
;
4013 trace_btrfs_space_reservation(fs_info
, "space_info",
4014 space_info
->flags
, num_bytes
, 0);
4015 space_info
->reservation_progress
++;
4016 spin_unlock(&space_info
->lock
);
4021 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4022 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4026 ret
= block_rsv_use_bytes(src
, num_bytes
);
4030 block_rsv_add_bytes(dst
, num_bytes
, 1);
4034 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
4036 memset(rsv
, 0, sizeof(*rsv
));
4037 spin_lock_init(&rsv
->lock
);
4040 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
4042 struct btrfs_block_rsv
*block_rsv
;
4043 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4045 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4049 btrfs_init_block_rsv(block_rsv
);
4050 block_rsv
->space_info
= __find_space_info(fs_info
,
4051 BTRFS_BLOCK_GROUP_METADATA
);
4055 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4056 struct btrfs_block_rsv
*rsv
)
4058 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4062 static inline int __block_rsv_add(struct btrfs_root
*root
,
4063 struct btrfs_block_rsv
*block_rsv
,
4064 u64 num_bytes
, int flush
)
4071 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4073 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4080 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4081 struct btrfs_block_rsv
*block_rsv
,
4084 return __block_rsv_add(root
, block_rsv
, num_bytes
, 1);
4087 int btrfs_block_rsv_add_noflush(struct btrfs_root
*root
,
4088 struct btrfs_block_rsv
*block_rsv
,
4091 return __block_rsv_add(root
, block_rsv
, num_bytes
, 0);
4094 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4095 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4103 spin_lock(&block_rsv
->lock
);
4104 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4105 if (block_rsv
->reserved
>= num_bytes
)
4107 spin_unlock(&block_rsv
->lock
);
4112 static inline int __btrfs_block_rsv_refill(struct btrfs_root
*root
,
4113 struct btrfs_block_rsv
*block_rsv
,
4114 u64 min_reserved
, int flush
)
4122 spin_lock(&block_rsv
->lock
);
4123 num_bytes
= min_reserved
;
4124 if (block_rsv
->reserved
>= num_bytes
)
4127 num_bytes
-= block_rsv
->reserved
;
4128 spin_unlock(&block_rsv
->lock
);
4133 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4135 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4142 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4143 struct btrfs_block_rsv
*block_rsv
,
4146 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 1);
4149 int btrfs_block_rsv_refill_noflush(struct btrfs_root
*root
,
4150 struct btrfs_block_rsv
*block_rsv
,
4153 return __btrfs_block_rsv_refill(root
, block_rsv
, min_reserved
, 0);
4156 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4157 struct btrfs_block_rsv
*dst_rsv
,
4160 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4163 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4164 struct btrfs_block_rsv
*block_rsv
,
4167 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4168 if (global_rsv
->full
|| global_rsv
== block_rsv
||
4169 block_rsv
->space_info
!= global_rsv
->space_info
)
4171 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4176 * helper to calculate size of global block reservation.
4177 * the desired value is sum of space used by extent tree,
4178 * checksum tree and root tree
4180 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4182 struct btrfs_space_info
*sinfo
;
4186 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4188 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4189 spin_lock(&sinfo
->lock
);
4190 data_used
= sinfo
->bytes_used
;
4191 spin_unlock(&sinfo
->lock
);
4193 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4194 spin_lock(&sinfo
->lock
);
4195 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4197 meta_used
= sinfo
->bytes_used
;
4198 spin_unlock(&sinfo
->lock
);
4200 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4202 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4204 if (num_bytes
* 3 > meta_used
)
4205 num_bytes
= div64_u64(meta_used
, 3);
4207 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
4210 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4212 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4213 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4216 num_bytes
= calc_global_metadata_size(fs_info
);
4218 spin_lock(&sinfo
->lock
);
4219 spin_lock(&block_rsv
->lock
);
4221 block_rsv
->size
= num_bytes
;
4223 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4224 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4225 sinfo
->bytes_may_use
;
4227 if (sinfo
->total_bytes
> num_bytes
) {
4228 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4229 block_rsv
->reserved
+= num_bytes
;
4230 sinfo
->bytes_may_use
+= num_bytes
;
4231 trace_btrfs_space_reservation(fs_info
, "space_info",
4232 sinfo
->flags
, num_bytes
, 1);
4235 if (block_rsv
->reserved
>= block_rsv
->size
) {
4236 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4237 sinfo
->bytes_may_use
-= num_bytes
;
4238 trace_btrfs_space_reservation(fs_info
, "space_info",
4239 sinfo
->flags
, num_bytes
, 0);
4240 sinfo
->reservation_progress
++;
4241 block_rsv
->reserved
= block_rsv
->size
;
4242 block_rsv
->full
= 1;
4245 spin_unlock(&block_rsv
->lock
);
4246 spin_unlock(&sinfo
->lock
);
4249 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4251 struct btrfs_space_info
*space_info
;
4253 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4254 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4256 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4257 fs_info
->global_block_rsv
.space_info
= space_info
;
4258 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4259 fs_info
->trans_block_rsv
.space_info
= space_info
;
4260 fs_info
->empty_block_rsv
.space_info
= space_info
;
4261 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4263 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4264 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4265 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4266 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4267 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4269 update_global_block_rsv(fs_info
);
4272 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4274 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4276 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4277 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4278 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4279 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4280 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4281 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4282 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4283 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4286 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4287 struct btrfs_root
*root
)
4289 if (!trans
->bytes_reserved
)
4292 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4293 trans
->transid
, trans
->bytes_reserved
, 0);
4294 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4295 trans
->bytes_reserved
= 0;
4298 /* Can only return 0 or -ENOSPC */
4299 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4300 struct inode
*inode
)
4302 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4303 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4304 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4307 * We need to hold space in order to delete our orphan item once we've
4308 * added it, so this takes the reservation so we can release it later
4309 * when we are truly done with the orphan item.
4311 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4312 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4313 btrfs_ino(inode
), num_bytes
, 1);
4314 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4317 void btrfs_orphan_release_metadata(struct inode
*inode
)
4319 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4320 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4321 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4322 btrfs_ino(inode
), num_bytes
, 0);
4323 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4326 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
4327 struct btrfs_pending_snapshot
*pending
)
4329 struct btrfs_root
*root
= pending
->root
;
4330 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4331 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
4333 * two for root back/forward refs, two for directory entries
4334 * and one for root of the snapshot.
4336 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
4337 dst_rsv
->space_info
= src_rsv
->space_info
;
4338 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4342 * drop_outstanding_extent - drop an outstanding extent
4343 * @inode: the inode we're dropping the extent for
4345 * This is called when we are freeing up an outstanding extent, either called
4346 * after an error or after an extent is written. This will return the number of
4347 * reserved extents that need to be freed. This must be called with
4348 * BTRFS_I(inode)->lock held.
4350 static unsigned drop_outstanding_extent(struct inode
*inode
)
4352 unsigned drop_inode_space
= 0;
4353 unsigned dropped_extents
= 0;
4355 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
4356 BTRFS_I(inode
)->outstanding_extents
--;
4358 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
4359 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4360 &BTRFS_I(inode
)->runtime_flags
))
4361 drop_inode_space
= 1;
4364 * If we have more or the same amount of outsanding extents than we have
4365 * reserved then we need to leave the reserved extents count alone.
4367 if (BTRFS_I(inode
)->outstanding_extents
>=
4368 BTRFS_I(inode
)->reserved_extents
)
4369 return drop_inode_space
;
4371 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
4372 BTRFS_I(inode
)->outstanding_extents
;
4373 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
4374 return dropped_extents
+ drop_inode_space
;
4378 * calc_csum_metadata_size - return the amount of metada space that must be
4379 * reserved/free'd for the given bytes.
4380 * @inode: the inode we're manipulating
4381 * @num_bytes: the number of bytes in question
4382 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4384 * This adjusts the number of csum_bytes in the inode and then returns the
4385 * correct amount of metadata that must either be reserved or freed. We
4386 * calculate how many checksums we can fit into one leaf and then divide the
4387 * number of bytes that will need to be checksumed by this value to figure out
4388 * how many checksums will be required. If we are adding bytes then the number
4389 * may go up and we will return the number of additional bytes that must be
4390 * reserved. If it is going down we will return the number of bytes that must
4393 * This must be called with BTRFS_I(inode)->lock held.
4395 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
4398 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4400 int num_csums_per_leaf
;
4404 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
4405 BTRFS_I(inode
)->csum_bytes
== 0)
4408 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4410 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
4412 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
4413 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
4414 num_csums_per_leaf
= (int)div64_u64(csum_size
,
4415 sizeof(struct btrfs_csum_item
) +
4416 sizeof(struct btrfs_disk_key
));
4417 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
4418 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
4419 num_csums
= num_csums
/ num_csums_per_leaf
;
4421 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
4422 old_csums
= old_csums
/ num_csums_per_leaf
;
4424 /* No change, no need to reserve more */
4425 if (old_csums
== num_csums
)
4429 return btrfs_calc_trans_metadata_size(root
,
4430 num_csums
- old_csums
);
4432 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
4435 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
4437 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4438 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4441 unsigned nr_extents
= 0;
4442 int extra_reserve
= 0;
4446 /* Need to be holding the i_mutex here if we aren't free space cache */
4447 if (btrfs_is_free_space_inode(root
, inode
))
4450 if (flush
&& btrfs_transaction_in_commit(root
->fs_info
))
4451 schedule_timeout(1);
4453 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
4454 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4456 spin_lock(&BTRFS_I(inode
)->lock
);
4457 BTRFS_I(inode
)->outstanding_extents
++;
4459 if (BTRFS_I(inode
)->outstanding_extents
>
4460 BTRFS_I(inode
)->reserved_extents
)
4461 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4462 BTRFS_I(inode
)->reserved_extents
;
4465 * Add an item to reserve for updating the inode when we complete the
4468 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4469 &BTRFS_I(inode
)->runtime_flags
)) {
4474 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4475 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
4476 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
4477 spin_unlock(&BTRFS_I(inode
)->lock
);
4479 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
4484 spin_lock(&BTRFS_I(inode
)->lock
);
4485 dropped
= drop_outstanding_extent(inode
);
4487 * If the inodes csum_bytes is the same as the original
4488 * csum_bytes then we know we haven't raced with any free()ers
4489 * so we can just reduce our inodes csum bytes and carry on.
4490 * Otherwise we have to do the normal free thing to account for
4491 * the case that the free side didn't free up its reserve
4492 * because of this outstanding reservation.
4494 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
)
4495 calc_csum_metadata_size(inode
, num_bytes
, 0);
4497 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4498 spin_unlock(&BTRFS_I(inode
)->lock
);
4500 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4503 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
4504 trace_btrfs_space_reservation(root
->fs_info
,
4509 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4513 spin_lock(&BTRFS_I(inode
)->lock
);
4514 if (extra_reserve
) {
4515 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
4516 &BTRFS_I(inode
)->runtime_flags
);
4519 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4520 spin_unlock(&BTRFS_I(inode
)->lock
);
4521 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
4524 trace_btrfs_space_reservation(root
->fs_info
,"delalloc",
4525 btrfs_ino(inode
), to_reserve
, 1);
4526 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4532 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4533 * @inode: the inode to release the reservation for
4534 * @num_bytes: the number of bytes we're releasing
4536 * This will release the metadata reservation for an inode. This can be called
4537 * once we complete IO for a given set of bytes to release their metadata
4540 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4542 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4546 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4547 spin_lock(&BTRFS_I(inode
)->lock
);
4548 dropped
= drop_outstanding_extent(inode
);
4550 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
4551 spin_unlock(&BTRFS_I(inode
)->lock
);
4553 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4555 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
4556 btrfs_ino(inode
), to_free
, 0);
4557 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4562 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4563 * @inode: inode we're writing to
4564 * @num_bytes: the number of bytes we want to allocate
4566 * This will do the following things
4568 * o reserve space in the data space info for num_bytes
4569 * o reserve space in the metadata space info based on number of outstanding
4570 * extents and how much csums will be needed
4571 * o add to the inodes ->delalloc_bytes
4572 * o add it to the fs_info's delalloc inodes list.
4574 * This will return 0 for success and -ENOSPC if there is no space left.
4576 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4580 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4584 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4586 btrfs_free_reserved_data_space(inode
, num_bytes
);
4594 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4595 * @inode: inode we're releasing space for
4596 * @num_bytes: the number of bytes we want to free up
4598 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4599 * called in the case that we don't need the metadata AND data reservations
4600 * anymore. So if there is an error or we insert an inline extent.
4602 * This function will release the metadata space that was not used and will
4603 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4604 * list if there are no delalloc bytes left.
4606 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4608 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4609 btrfs_free_reserved_data_space(inode
, num_bytes
);
4612 static int update_block_group(struct btrfs_trans_handle
*trans
,
4613 struct btrfs_root
*root
,
4614 u64 bytenr
, u64 num_bytes
, int alloc
)
4616 struct btrfs_block_group_cache
*cache
= NULL
;
4617 struct btrfs_fs_info
*info
= root
->fs_info
;
4618 u64 total
= num_bytes
;
4623 /* block accounting for super block */
4624 spin_lock(&info
->delalloc_lock
);
4625 old_val
= btrfs_super_bytes_used(info
->super_copy
);
4627 old_val
+= num_bytes
;
4629 old_val
-= num_bytes
;
4630 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
4631 spin_unlock(&info
->delalloc_lock
);
4634 cache
= btrfs_lookup_block_group(info
, bytenr
);
4637 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4638 BTRFS_BLOCK_GROUP_RAID1
|
4639 BTRFS_BLOCK_GROUP_RAID10
))
4644 * If this block group has free space cache written out, we
4645 * need to make sure to load it if we are removing space. This
4646 * is because we need the unpinning stage to actually add the
4647 * space back to the block group, otherwise we will leak space.
4649 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4650 cache_block_group(cache
, trans
, NULL
, 1);
4652 byte_in_group
= bytenr
- cache
->key
.objectid
;
4653 WARN_ON(byte_in_group
> cache
->key
.offset
);
4655 spin_lock(&cache
->space_info
->lock
);
4656 spin_lock(&cache
->lock
);
4658 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
4659 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4660 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4663 old_val
= btrfs_block_group_used(&cache
->item
);
4664 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4666 old_val
+= num_bytes
;
4667 btrfs_set_block_group_used(&cache
->item
, old_val
);
4668 cache
->reserved
-= num_bytes
;
4669 cache
->space_info
->bytes_reserved
-= num_bytes
;
4670 cache
->space_info
->bytes_used
+= num_bytes
;
4671 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4672 spin_unlock(&cache
->lock
);
4673 spin_unlock(&cache
->space_info
->lock
);
4675 old_val
-= num_bytes
;
4676 btrfs_set_block_group_used(&cache
->item
, old_val
);
4677 cache
->pinned
+= num_bytes
;
4678 cache
->space_info
->bytes_pinned
+= num_bytes
;
4679 cache
->space_info
->bytes_used
-= num_bytes
;
4680 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4681 spin_unlock(&cache
->lock
);
4682 spin_unlock(&cache
->space_info
->lock
);
4684 set_extent_dirty(info
->pinned_extents
,
4685 bytenr
, bytenr
+ num_bytes
- 1,
4686 GFP_NOFS
| __GFP_NOFAIL
);
4688 btrfs_put_block_group(cache
);
4690 bytenr
+= num_bytes
;
4695 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4697 struct btrfs_block_group_cache
*cache
;
4700 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4704 bytenr
= cache
->key
.objectid
;
4705 btrfs_put_block_group(cache
);
4710 static int pin_down_extent(struct btrfs_root
*root
,
4711 struct btrfs_block_group_cache
*cache
,
4712 u64 bytenr
, u64 num_bytes
, int reserved
)
4714 spin_lock(&cache
->space_info
->lock
);
4715 spin_lock(&cache
->lock
);
4716 cache
->pinned
+= num_bytes
;
4717 cache
->space_info
->bytes_pinned
+= num_bytes
;
4719 cache
->reserved
-= num_bytes
;
4720 cache
->space_info
->bytes_reserved
-= num_bytes
;
4722 spin_unlock(&cache
->lock
);
4723 spin_unlock(&cache
->space_info
->lock
);
4725 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4726 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4731 * this function must be called within transaction
4733 int btrfs_pin_extent(struct btrfs_root
*root
,
4734 u64 bytenr
, u64 num_bytes
, int reserved
)
4736 struct btrfs_block_group_cache
*cache
;
4738 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4739 BUG_ON(!cache
); /* Logic error */
4741 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4743 btrfs_put_block_group(cache
);
4748 * this function must be called within transaction
4750 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
4751 struct btrfs_root
*root
,
4752 u64 bytenr
, u64 num_bytes
)
4754 struct btrfs_block_group_cache
*cache
;
4756 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4757 BUG_ON(!cache
); /* Logic error */
4760 * pull in the free space cache (if any) so that our pin
4761 * removes the free space from the cache. We have load_only set
4762 * to one because the slow code to read in the free extents does check
4763 * the pinned extents.
4765 cache_block_group(cache
, trans
, root
, 1);
4767 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
4769 /* remove us from the free space cache (if we're there at all) */
4770 btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
4771 btrfs_put_block_group(cache
);
4776 * btrfs_update_reserved_bytes - update the block_group and space info counters
4777 * @cache: The cache we are manipulating
4778 * @num_bytes: The number of bytes in question
4779 * @reserve: One of the reservation enums
4781 * This is called by the allocator when it reserves space, or by somebody who is
4782 * freeing space that was never actually used on disk. For example if you
4783 * reserve some space for a new leaf in transaction A and before transaction A
4784 * commits you free that leaf, you call this with reserve set to 0 in order to
4785 * clear the reservation.
4787 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4788 * ENOSPC accounting. For data we handle the reservation through clearing the
4789 * delalloc bits in the io_tree. We have to do this since we could end up
4790 * allocating less disk space for the amount of data we have reserved in the
4791 * case of compression.
4793 * If this is a reservation and the block group has become read only we cannot
4794 * make the reservation and return -EAGAIN, otherwise this function always
4797 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4798 u64 num_bytes
, int reserve
)
4800 struct btrfs_space_info
*space_info
= cache
->space_info
;
4803 spin_lock(&space_info
->lock
);
4804 spin_lock(&cache
->lock
);
4805 if (reserve
!= RESERVE_FREE
) {
4809 cache
->reserved
+= num_bytes
;
4810 space_info
->bytes_reserved
+= num_bytes
;
4811 if (reserve
== RESERVE_ALLOC
) {
4812 trace_btrfs_space_reservation(cache
->fs_info
,
4813 "space_info", space_info
->flags
,
4815 space_info
->bytes_may_use
-= num_bytes
;
4820 space_info
->bytes_readonly
+= num_bytes
;
4821 cache
->reserved
-= num_bytes
;
4822 space_info
->bytes_reserved
-= num_bytes
;
4823 space_info
->reservation_progress
++;
4825 spin_unlock(&cache
->lock
);
4826 spin_unlock(&space_info
->lock
);
4830 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4831 struct btrfs_root
*root
)
4833 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4834 struct btrfs_caching_control
*next
;
4835 struct btrfs_caching_control
*caching_ctl
;
4836 struct btrfs_block_group_cache
*cache
;
4838 down_write(&fs_info
->extent_commit_sem
);
4840 list_for_each_entry_safe(caching_ctl
, next
,
4841 &fs_info
->caching_block_groups
, list
) {
4842 cache
= caching_ctl
->block_group
;
4843 if (block_group_cache_done(cache
)) {
4844 cache
->last_byte_to_unpin
= (u64
)-1;
4845 list_del_init(&caching_ctl
->list
);
4846 put_caching_control(caching_ctl
);
4848 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4852 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4853 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4855 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4857 up_write(&fs_info
->extent_commit_sem
);
4859 update_global_block_rsv(fs_info
);
4862 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4864 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4865 struct btrfs_block_group_cache
*cache
= NULL
;
4868 while (start
<= end
) {
4870 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4872 btrfs_put_block_group(cache
);
4873 cache
= btrfs_lookup_block_group(fs_info
, start
);
4874 BUG_ON(!cache
); /* Logic error */
4877 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4878 len
= min(len
, end
+ 1 - start
);
4880 if (start
< cache
->last_byte_to_unpin
) {
4881 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4882 btrfs_add_free_space(cache
, start
, len
);
4887 spin_lock(&cache
->space_info
->lock
);
4888 spin_lock(&cache
->lock
);
4889 cache
->pinned
-= len
;
4890 cache
->space_info
->bytes_pinned
-= len
;
4892 cache
->space_info
->bytes_readonly
+= len
;
4893 spin_unlock(&cache
->lock
);
4894 spin_unlock(&cache
->space_info
->lock
);
4898 btrfs_put_block_group(cache
);
4902 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4903 struct btrfs_root
*root
)
4905 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4906 struct extent_io_tree
*unpin
;
4914 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4915 unpin
= &fs_info
->freed_extents
[1];
4917 unpin
= &fs_info
->freed_extents
[0];
4920 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4925 if (btrfs_test_opt(root
, DISCARD
))
4926 ret
= btrfs_discard_extent(root
, start
,
4927 end
+ 1 - start
, NULL
);
4929 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4930 unpin_extent_range(root
, start
, end
);
4937 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4938 struct btrfs_root
*root
,
4939 u64 bytenr
, u64 num_bytes
, u64 parent
,
4940 u64 root_objectid
, u64 owner_objectid
,
4941 u64 owner_offset
, int refs_to_drop
,
4942 struct btrfs_delayed_extent_op
*extent_op
)
4944 struct btrfs_key key
;
4945 struct btrfs_path
*path
;
4946 struct btrfs_fs_info
*info
= root
->fs_info
;
4947 struct btrfs_root
*extent_root
= info
->extent_root
;
4948 struct extent_buffer
*leaf
;
4949 struct btrfs_extent_item
*ei
;
4950 struct btrfs_extent_inline_ref
*iref
;
4953 int extent_slot
= 0;
4954 int found_extent
= 0;
4959 path
= btrfs_alloc_path();
4964 path
->leave_spinning
= 1;
4966 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4967 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4969 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4970 bytenr
, num_bytes
, parent
,
4971 root_objectid
, owner_objectid
,
4974 extent_slot
= path
->slots
[0];
4975 while (extent_slot
>= 0) {
4976 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4978 if (key
.objectid
!= bytenr
)
4980 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4981 key
.offset
== num_bytes
) {
4985 if (path
->slots
[0] - extent_slot
> 5)
4989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4990 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4991 if (found_extent
&& item_size
< sizeof(*ei
))
4994 if (!found_extent
) {
4996 ret
= remove_extent_backref(trans
, extent_root
, path
,
5001 btrfs_release_path(path
);
5002 path
->leave_spinning
= 1;
5004 key
.objectid
= bytenr
;
5005 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5006 key
.offset
= num_bytes
;
5008 ret
= btrfs_search_slot(trans
, extent_root
,
5011 printk(KERN_ERR
"umm, got %d back from search"
5012 ", was looking for %llu\n", ret
,
5013 (unsigned long long)bytenr
);
5015 btrfs_print_leaf(extent_root
,
5020 extent_slot
= path
->slots
[0];
5022 } else if (ret
== -ENOENT
) {
5023 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5025 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
5026 "parent %llu root %llu owner %llu offset %llu\n",
5027 (unsigned long long)bytenr
,
5028 (unsigned long long)parent
,
5029 (unsigned long long)root_objectid
,
5030 (unsigned long long)owner_objectid
,
5031 (unsigned long long)owner_offset
);
5036 leaf
= path
->nodes
[0];
5037 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5038 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5039 if (item_size
< sizeof(*ei
)) {
5040 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5041 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5046 btrfs_release_path(path
);
5047 path
->leave_spinning
= 1;
5049 key
.objectid
= bytenr
;
5050 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5051 key
.offset
= num_bytes
;
5053 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
5056 printk(KERN_ERR
"umm, got %d back from search"
5057 ", was looking for %llu\n", ret
,
5058 (unsigned long long)bytenr
);
5059 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5063 extent_slot
= path
->slots
[0];
5064 leaf
= path
->nodes
[0];
5065 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5068 BUG_ON(item_size
< sizeof(*ei
));
5069 ei
= btrfs_item_ptr(leaf
, extent_slot
,
5070 struct btrfs_extent_item
);
5071 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
5072 struct btrfs_tree_block_info
*bi
;
5073 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
5074 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
5075 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
5078 refs
= btrfs_extent_refs(leaf
, ei
);
5079 BUG_ON(refs
< refs_to_drop
);
5080 refs
-= refs_to_drop
;
5084 __run_delayed_extent_op(extent_op
, leaf
, ei
);
5086 * In the case of inline back ref, reference count will
5087 * be updated by remove_extent_backref
5090 BUG_ON(!found_extent
);
5092 btrfs_set_extent_refs(leaf
, ei
, refs
);
5093 btrfs_mark_buffer_dirty(leaf
);
5096 ret
= remove_extent_backref(trans
, extent_root
, path
,
5104 BUG_ON(is_data
&& refs_to_drop
!=
5105 extent_data_ref_count(root
, path
, iref
));
5107 BUG_ON(path
->slots
[0] != extent_slot
);
5109 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
5110 path
->slots
[0] = extent_slot
;
5115 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
5119 btrfs_release_path(path
);
5122 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
5127 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
5132 btrfs_free_path(path
);
5136 btrfs_abort_transaction(trans
, extent_root
, ret
);
5141 * when we free an block, it is possible (and likely) that we free the last
5142 * delayed ref for that extent as well. This searches the delayed ref tree for
5143 * a given extent, and if there are no other delayed refs to be processed, it
5144 * removes it from the tree.
5146 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
5147 struct btrfs_root
*root
, u64 bytenr
)
5149 struct btrfs_delayed_ref_head
*head
;
5150 struct btrfs_delayed_ref_root
*delayed_refs
;
5151 struct btrfs_delayed_ref_node
*ref
;
5152 struct rb_node
*node
;
5155 delayed_refs
= &trans
->transaction
->delayed_refs
;
5156 spin_lock(&delayed_refs
->lock
);
5157 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
5161 node
= rb_prev(&head
->node
.rb_node
);
5165 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
5167 /* there are still entries for this ref, we can't drop it */
5168 if (ref
->bytenr
== bytenr
)
5171 if (head
->extent_op
) {
5172 if (!head
->must_insert_reserved
)
5174 kfree(head
->extent_op
);
5175 head
->extent_op
= NULL
;
5179 * waiting for the lock here would deadlock. If someone else has it
5180 * locked they are already in the process of dropping it anyway
5182 if (!mutex_trylock(&head
->mutex
))
5186 * at this point we have a head with no other entries. Go
5187 * ahead and process it.
5189 head
->node
.in_tree
= 0;
5190 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
5192 delayed_refs
->num_entries
--;
5193 if (waitqueue_active(&delayed_refs
->seq_wait
))
5194 wake_up(&delayed_refs
->seq_wait
);
5197 * we don't take a ref on the node because we're removing it from the
5198 * tree, so we just steal the ref the tree was holding.
5200 delayed_refs
->num_heads
--;
5201 if (list_empty(&head
->cluster
))
5202 delayed_refs
->num_heads_ready
--;
5204 list_del_init(&head
->cluster
);
5205 spin_unlock(&delayed_refs
->lock
);
5207 BUG_ON(head
->extent_op
);
5208 if (head
->must_insert_reserved
)
5211 mutex_unlock(&head
->mutex
);
5212 btrfs_put_delayed_ref(&head
->node
);
5215 spin_unlock(&delayed_refs
->lock
);
5219 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
5220 struct btrfs_root
*root
,
5221 struct extent_buffer
*buf
,
5222 u64 parent
, int last_ref
)
5224 struct btrfs_block_group_cache
*cache
= NULL
;
5227 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5228 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
5229 buf
->start
, buf
->len
,
5230 parent
, root
->root_key
.objectid
,
5231 btrfs_header_level(buf
),
5232 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
5233 BUG_ON(ret
); /* -ENOMEM */
5239 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
5241 if (btrfs_header_generation(buf
) == trans
->transid
) {
5242 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5243 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
5248 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
5249 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
5253 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
5255 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
5256 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
);
5260 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5263 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
5264 btrfs_put_block_group(cache
);
5267 /* Can return -ENOMEM */
5268 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
5269 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
5270 u64 owner
, u64 offset
, int for_cow
)
5273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5276 * tree log blocks never actually go into the extent allocation
5277 * tree, just update pinning info and exit early.
5279 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5280 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
5281 /* unlocks the pinned mutex */
5282 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
5284 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5285 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
5287 parent
, root_objectid
, (int)owner
,
5288 BTRFS_DROP_DELAYED_REF
, NULL
, for_cow
);
5290 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
5292 parent
, root_objectid
, owner
,
5293 offset
, BTRFS_DROP_DELAYED_REF
,
5299 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
5301 u64 mask
= ((u64
)root
->stripesize
- 1);
5302 u64 ret
= (val
+ mask
) & ~mask
;
5307 * when we wait for progress in the block group caching, its because
5308 * our allocation attempt failed at least once. So, we must sleep
5309 * and let some progress happen before we try again.
5311 * This function will sleep at least once waiting for new free space to
5312 * show up, and then it will check the block group free space numbers
5313 * for our min num_bytes. Another option is to have it go ahead
5314 * and look in the rbtree for a free extent of a given size, but this
5318 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
5321 struct btrfs_caching_control
*caching_ctl
;
5324 caching_ctl
= get_caching_control(cache
);
5328 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
5329 (cache
->free_space_ctl
->free_space
>= num_bytes
));
5331 put_caching_control(caching_ctl
);
5336 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
5338 struct btrfs_caching_control
*caching_ctl
;
5341 caching_ctl
= get_caching_control(cache
);
5345 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
5347 put_caching_control(caching_ctl
);
5351 static int __get_block_group_index(u64 flags
)
5355 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
5357 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
5359 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
5361 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
5369 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
5371 return __get_block_group_index(cache
->flags
);
5374 enum btrfs_loop_type
{
5375 LOOP_CACHING_NOWAIT
= 0,
5376 LOOP_CACHING_WAIT
= 1,
5377 LOOP_ALLOC_CHUNK
= 2,
5378 LOOP_NO_EMPTY_SIZE
= 3,
5382 * walks the btree of allocated extents and find a hole of a given size.
5383 * The key ins is changed to record the hole:
5384 * ins->objectid == block start
5385 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5386 * ins->offset == number of blocks
5387 * Any available blocks before search_start are skipped.
5389 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
5390 struct btrfs_root
*orig_root
,
5391 u64 num_bytes
, u64 empty_size
,
5392 u64 hint_byte
, struct btrfs_key
*ins
,
5396 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
5397 struct btrfs_free_cluster
*last_ptr
= NULL
;
5398 struct btrfs_block_group_cache
*block_group
= NULL
;
5399 struct btrfs_block_group_cache
*used_block_group
;
5400 u64 search_start
= 0;
5401 int empty_cluster
= 2 * 1024 * 1024;
5402 int allowed_chunk_alloc
= 0;
5403 int done_chunk_alloc
= 0;
5404 struct btrfs_space_info
*space_info
;
5407 int alloc_type
= (data
& BTRFS_BLOCK_GROUP_DATA
) ?
5408 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
5409 bool found_uncached_bg
= false;
5410 bool failed_cluster_refill
= false;
5411 bool failed_alloc
= false;
5412 bool use_cluster
= true;
5413 bool have_caching_bg
= false;
5415 WARN_ON(num_bytes
< root
->sectorsize
);
5416 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
5420 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, data
);
5422 space_info
= __find_space_info(root
->fs_info
, data
);
5424 printk(KERN_ERR
"No space info for %llu\n", data
);
5429 * If the space info is for both data and metadata it means we have a
5430 * small filesystem and we can't use the clustering stuff.
5432 if (btrfs_mixed_space_info(space_info
))
5433 use_cluster
= false;
5435 if (orig_root
->ref_cows
|| empty_size
)
5436 allowed_chunk_alloc
= 1;
5438 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
5439 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
5440 if (!btrfs_test_opt(root
, SSD
))
5441 empty_cluster
= 64 * 1024;
5444 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
5445 btrfs_test_opt(root
, SSD
)) {
5446 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
5450 spin_lock(&last_ptr
->lock
);
5451 if (last_ptr
->block_group
)
5452 hint_byte
= last_ptr
->window_start
;
5453 spin_unlock(&last_ptr
->lock
);
5456 search_start
= max(search_start
, first_logical_byte(root
, 0));
5457 search_start
= max(search_start
, hint_byte
);
5462 if (search_start
== hint_byte
) {
5463 block_group
= btrfs_lookup_block_group(root
->fs_info
,
5465 used_block_group
= block_group
;
5467 * we don't want to use the block group if it doesn't match our
5468 * allocation bits, or if its not cached.
5470 * However if we are re-searching with an ideal block group
5471 * picked out then we don't care that the block group is cached.
5473 if (block_group
&& block_group_bits(block_group
, data
) &&
5474 block_group
->cached
!= BTRFS_CACHE_NO
) {
5475 down_read(&space_info
->groups_sem
);
5476 if (list_empty(&block_group
->list
) ||
5479 * someone is removing this block group,
5480 * we can't jump into the have_block_group
5481 * target because our list pointers are not
5484 btrfs_put_block_group(block_group
);
5485 up_read(&space_info
->groups_sem
);
5487 index
= get_block_group_index(block_group
);
5488 goto have_block_group
;
5490 } else if (block_group
) {
5491 btrfs_put_block_group(block_group
);
5495 have_caching_bg
= false;
5496 down_read(&space_info
->groups_sem
);
5497 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
5502 used_block_group
= block_group
;
5503 btrfs_get_block_group(block_group
);
5504 search_start
= block_group
->key
.objectid
;
5507 * this can happen if we end up cycling through all the
5508 * raid types, but we want to make sure we only allocate
5509 * for the proper type.
5511 if (!block_group_bits(block_group
, data
)) {
5512 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
5513 BTRFS_BLOCK_GROUP_RAID1
|
5514 BTRFS_BLOCK_GROUP_RAID10
;
5517 * if they asked for extra copies and this block group
5518 * doesn't provide them, bail. This does allow us to
5519 * fill raid0 from raid1.
5521 if ((data
& extra
) && !(block_group
->flags
& extra
))
5526 cached
= block_group_cache_done(block_group
);
5527 if (unlikely(!cached
)) {
5528 found_uncached_bg
= true;
5529 ret
= cache_block_group(block_group
, trans
,
5535 if (unlikely(block_group
->ro
))
5539 * Ok we want to try and use the cluster allocator, so
5544 * the refill lock keeps out other
5545 * people trying to start a new cluster
5547 spin_lock(&last_ptr
->refill_lock
);
5548 used_block_group
= last_ptr
->block_group
;
5549 if (used_block_group
!= block_group
&&
5550 (!used_block_group
||
5551 used_block_group
->ro
||
5552 !block_group_bits(used_block_group
, data
))) {
5553 used_block_group
= block_group
;
5554 goto refill_cluster
;
5557 if (used_block_group
!= block_group
)
5558 btrfs_get_block_group(used_block_group
);
5560 offset
= btrfs_alloc_from_cluster(used_block_group
,
5561 last_ptr
, num_bytes
, used_block_group
->key
.objectid
);
5563 /* we have a block, we're done */
5564 spin_unlock(&last_ptr
->refill_lock
);
5565 trace_btrfs_reserve_extent_cluster(root
,
5566 block_group
, search_start
, num_bytes
);
5570 WARN_ON(last_ptr
->block_group
!= used_block_group
);
5571 if (used_block_group
!= block_group
) {
5572 btrfs_put_block_group(used_block_group
);
5573 used_block_group
= block_group
;
5576 BUG_ON(used_block_group
!= block_group
);
5577 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5578 * set up a new clusters, so lets just skip it
5579 * and let the allocator find whatever block
5580 * it can find. If we reach this point, we
5581 * will have tried the cluster allocator
5582 * plenty of times and not have found
5583 * anything, so we are likely way too
5584 * fragmented for the clustering stuff to find
5587 * However, if the cluster is taken from the
5588 * current block group, release the cluster
5589 * first, so that we stand a better chance of
5590 * succeeding in the unclustered
5592 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
5593 last_ptr
->block_group
!= block_group
) {
5594 spin_unlock(&last_ptr
->refill_lock
);
5595 goto unclustered_alloc
;
5599 * this cluster didn't work out, free it and
5602 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5604 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
5605 spin_unlock(&last_ptr
->refill_lock
);
5606 goto unclustered_alloc
;
5609 /* allocate a cluster in this block group */
5610 ret
= btrfs_find_space_cluster(trans
, root
,
5611 block_group
, last_ptr
,
5612 search_start
, num_bytes
,
5613 empty_cluster
+ empty_size
);
5616 * now pull our allocation out of this
5619 offset
= btrfs_alloc_from_cluster(block_group
,
5620 last_ptr
, num_bytes
,
5623 /* we found one, proceed */
5624 spin_unlock(&last_ptr
->refill_lock
);
5625 trace_btrfs_reserve_extent_cluster(root
,
5626 block_group
, search_start
,
5630 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5631 && !failed_cluster_refill
) {
5632 spin_unlock(&last_ptr
->refill_lock
);
5634 failed_cluster_refill
= true;
5635 wait_block_group_cache_progress(block_group
,
5636 num_bytes
+ empty_cluster
+ empty_size
);
5637 goto have_block_group
;
5641 * at this point we either didn't find a cluster
5642 * or we weren't able to allocate a block from our
5643 * cluster. Free the cluster we've been trying
5644 * to use, and go to the next block group
5646 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5647 spin_unlock(&last_ptr
->refill_lock
);
5652 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5654 block_group
->free_space_ctl
->free_space
<
5655 num_bytes
+ empty_cluster
+ empty_size
) {
5656 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5659 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5661 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5662 num_bytes
, empty_size
);
5664 * If we didn't find a chunk, and we haven't failed on this
5665 * block group before, and this block group is in the middle of
5666 * caching and we are ok with waiting, then go ahead and wait
5667 * for progress to be made, and set failed_alloc to true.
5669 * If failed_alloc is true then we've already waited on this
5670 * block group once and should move on to the next block group.
5672 if (!offset
&& !failed_alloc
&& !cached
&&
5673 loop
> LOOP_CACHING_NOWAIT
) {
5674 wait_block_group_cache_progress(block_group
,
5675 num_bytes
+ empty_size
);
5676 failed_alloc
= true;
5677 goto have_block_group
;
5678 } else if (!offset
) {
5680 have_caching_bg
= true;
5684 search_start
= stripe_align(root
, offset
);
5686 /* move on to the next group */
5687 if (search_start
+ num_bytes
>
5688 used_block_group
->key
.objectid
+ used_block_group
->key
.offset
) {
5689 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5693 if (offset
< search_start
)
5694 btrfs_add_free_space(used_block_group
, offset
,
5695 search_start
- offset
);
5696 BUG_ON(offset
> search_start
);
5698 ret
= btrfs_update_reserved_bytes(used_block_group
, num_bytes
,
5700 if (ret
== -EAGAIN
) {
5701 btrfs_add_free_space(used_block_group
, offset
, num_bytes
);
5705 /* we are all good, lets return */
5706 ins
->objectid
= search_start
;
5707 ins
->offset
= num_bytes
;
5709 trace_btrfs_reserve_extent(orig_root
, block_group
,
5710 search_start
, num_bytes
);
5711 if (offset
< search_start
)
5712 btrfs_add_free_space(used_block_group
, offset
,
5713 search_start
- offset
);
5714 BUG_ON(offset
> search_start
);
5715 if (used_block_group
!= block_group
)
5716 btrfs_put_block_group(used_block_group
);
5717 btrfs_put_block_group(block_group
);
5720 failed_cluster_refill
= false;
5721 failed_alloc
= false;
5722 BUG_ON(index
!= get_block_group_index(block_group
));
5723 if (used_block_group
!= block_group
)
5724 btrfs_put_block_group(used_block_group
);
5725 btrfs_put_block_group(block_group
);
5727 up_read(&space_info
->groups_sem
);
5729 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
5732 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5736 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5737 * caching kthreads as we move along
5738 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5739 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5740 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5743 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5746 if (loop
== LOOP_ALLOC_CHUNK
) {
5747 if (allowed_chunk_alloc
) {
5748 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5749 2 * 1024 * 1024, data
,
5750 CHUNK_ALLOC_LIMITED
);
5752 btrfs_abort_transaction(trans
,
5756 allowed_chunk_alloc
= 0;
5758 done_chunk_alloc
= 1;
5759 } else if (!done_chunk_alloc
&&
5760 space_info
->force_alloc
==
5761 CHUNK_ALLOC_NO_FORCE
) {
5762 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5766 * We didn't allocate a chunk, go ahead and drop the
5767 * empty size and loop again.
5769 if (!done_chunk_alloc
)
5770 loop
= LOOP_NO_EMPTY_SIZE
;
5773 if (loop
== LOOP_NO_EMPTY_SIZE
) {
5779 } else if (!ins
->objectid
) {
5781 } else if (ins
->objectid
) {
5789 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5790 int dump_block_groups
)
5792 struct btrfs_block_group_cache
*cache
;
5795 spin_lock(&info
->lock
);
5796 printk(KERN_INFO
"space_info %llu has %llu free, is %sfull\n",
5797 (unsigned long long)info
->flags
,
5798 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5799 info
->bytes_pinned
- info
->bytes_reserved
-
5800 info
->bytes_readonly
),
5801 (info
->full
) ? "" : "not ");
5802 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5803 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5804 (unsigned long long)info
->total_bytes
,
5805 (unsigned long long)info
->bytes_used
,
5806 (unsigned long long)info
->bytes_pinned
,
5807 (unsigned long long)info
->bytes_reserved
,
5808 (unsigned long long)info
->bytes_may_use
,
5809 (unsigned long long)info
->bytes_readonly
);
5810 spin_unlock(&info
->lock
);
5812 if (!dump_block_groups
)
5815 down_read(&info
->groups_sem
);
5817 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5818 spin_lock(&cache
->lock
);
5819 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5820 "%llu pinned %llu reserved\n",
5821 (unsigned long long)cache
->key
.objectid
,
5822 (unsigned long long)cache
->key
.offset
,
5823 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5824 (unsigned long long)cache
->pinned
,
5825 (unsigned long long)cache
->reserved
);
5826 btrfs_dump_free_space(cache
, bytes
);
5827 spin_unlock(&cache
->lock
);
5829 if (++index
< BTRFS_NR_RAID_TYPES
)
5831 up_read(&info
->groups_sem
);
5834 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5835 struct btrfs_root
*root
,
5836 u64 num_bytes
, u64 min_alloc_size
,
5837 u64 empty_size
, u64 hint_byte
,
5838 struct btrfs_key
*ins
, u64 data
)
5840 bool final_tried
= false;
5843 data
= btrfs_get_alloc_profile(root
, data
);
5846 * the only place that sets empty_size is btrfs_realloc_node, which
5847 * is not called recursively on allocations
5849 if (empty_size
|| root
->ref_cows
) {
5850 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5851 num_bytes
+ 2 * 1024 * 1024, data
,
5852 CHUNK_ALLOC_NO_FORCE
);
5853 if (ret
< 0 && ret
!= -ENOSPC
) {
5854 btrfs_abort_transaction(trans
, root
, ret
);
5859 WARN_ON(num_bytes
< root
->sectorsize
);
5860 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5861 hint_byte
, ins
, data
);
5863 if (ret
== -ENOSPC
) {
5865 num_bytes
= num_bytes
>> 1;
5866 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5867 num_bytes
= max(num_bytes
, min_alloc_size
);
5868 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5869 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5870 if (ret
< 0 && ret
!= -ENOSPC
) {
5871 btrfs_abort_transaction(trans
, root
, ret
);
5874 if (num_bytes
== min_alloc_size
)
5877 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5878 struct btrfs_space_info
*sinfo
;
5880 sinfo
= __find_space_info(root
->fs_info
, data
);
5881 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5882 "wanted %llu\n", (unsigned long long)data
,
5883 (unsigned long long)num_bytes
);
5885 dump_space_info(sinfo
, num_bytes
, 1);
5889 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5894 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
5895 u64 start
, u64 len
, int pin
)
5897 struct btrfs_block_group_cache
*cache
;
5900 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5902 printk(KERN_ERR
"Unable to find block group for %llu\n",
5903 (unsigned long long)start
);
5907 if (btrfs_test_opt(root
, DISCARD
))
5908 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5911 pin_down_extent(root
, cache
, start
, len
, 1);
5913 btrfs_add_free_space(cache
, start
, len
);
5914 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
);
5916 btrfs_put_block_group(cache
);
5918 trace_btrfs_reserved_extent_free(root
, start
, len
);
5923 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
5926 return __btrfs_free_reserved_extent(root
, start
, len
, 0);
5929 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
5932 return __btrfs_free_reserved_extent(root
, start
, len
, 1);
5935 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5936 struct btrfs_root
*root
,
5937 u64 parent
, u64 root_objectid
,
5938 u64 flags
, u64 owner
, u64 offset
,
5939 struct btrfs_key
*ins
, int ref_mod
)
5942 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5943 struct btrfs_extent_item
*extent_item
;
5944 struct btrfs_extent_inline_ref
*iref
;
5945 struct btrfs_path
*path
;
5946 struct extent_buffer
*leaf
;
5951 type
= BTRFS_SHARED_DATA_REF_KEY
;
5953 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5955 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5957 path
= btrfs_alloc_path();
5961 path
->leave_spinning
= 1;
5962 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5965 btrfs_free_path(path
);
5969 leaf
= path
->nodes
[0];
5970 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5971 struct btrfs_extent_item
);
5972 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5973 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5974 btrfs_set_extent_flags(leaf
, extent_item
,
5975 flags
| BTRFS_EXTENT_FLAG_DATA
);
5977 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5978 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5980 struct btrfs_shared_data_ref
*ref
;
5981 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5982 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5983 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5985 struct btrfs_extent_data_ref
*ref
;
5986 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5987 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5988 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5989 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5990 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5993 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5994 btrfs_free_path(path
);
5996 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5997 if (ret
) { /* -ENOENT, logic error */
5998 printk(KERN_ERR
"btrfs update block group failed for %llu "
5999 "%llu\n", (unsigned long long)ins
->objectid
,
6000 (unsigned long long)ins
->offset
);
6006 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
6007 struct btrfs_root
*root
,
6008 u64 parent
, u64 root_objectid
,
6009 u64 flags
, struct btrfs_disk_key
*key
,
6010 int level
, struct btrfs_key
*ins
)
6013 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6014 struct btrfs_extent_item
*extent_item
;
6015 struct btrfs_tree_block_info
*block_info
;
6016 struct btrfs_extent_inline_ref
*iref
;
6017 struct btrfs_path
*path
;
6018 struct extent_buffer
*leaf
;
6019 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
6021 path
= btrfs_alloc_path();
6025 path
->leave_spinning
= 1;
6026 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
6029 btrfs_free_path(path
);
6033 leaf
= path
->nodes
[0];
6034 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6035 struct btrfs_extent_item
);
6036 btrfs_set_extent_refs(leaf
, extent_item
, 1);
6037 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
6038 btrfs_set_extent_flags(leaf
, extent_item
,
6039 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
6040 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
6042 btrfs_set_tree_block_key(leaf
, block_info
, key
);
6043 btrfs_set_tree_block_level(leaf
, block_info
, level
);
6045 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
6047 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
6048 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6049 BTRFS_SHARED_BLOCK_REF_KEY
);
6050 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
6052 btrfs_set_extent_inline_ref_type(leaf
, iref
,
6053 BTRFS_TREE_BLOCK_REF_KEY
);
6054 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
6057 btrfs_mark_buffer_dirty(leaf
);
6058 btrfs_free_path(path
);
6060 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
6061 if (ret
) { /* -ENOENT, logic error */
6062 printk(KERN_ERR
"btrfs update block group failed for %llu "
6063 "%llu\n", (unsigned long long)ins
->objectid
,
6064 (unsigned long long)ins
->offset
);
6070 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6071 struct btrfs_root
*root
,
6072 u64 root_objectid
, u64 owner
,
6073 u64 offset
, struct btrfs_key
*ins
)
6077 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
6079 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
6081 root_objectid
, owner
, offset
,
6082 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
6087 * this is used by the tree logging recovery code. It records that
6088 * an extent has been allocated and makes sure to clear the free
6089 * space cache bits as well
6091 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
6092 struct btrfs_root
*root
,
6093 u64 root_objectid
, u64 owner
, u64 offset
,
6094 struct btrfs_key
*ins
)
6097 struct btrfs_block_group_cache
*block_group
;
6098 struct btrfs_caching_control
*caching_ctl
;
6099 u64 start
= ins
->objectid
;
6100 u64 num_bytes
= ins
->offset
;
6102 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
6103 cache_block_group(block_group
, trans
, NULL
, 0);
6104 caching_ctl
= get_caching_control(block_group
);
6107 BUG_ON(!block_group_cache_done(block_group
));
6108 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6109 BUG_ON(ret
); /* -ENOMEM */
6111 mutex_lock(&caching_ctl
->mutex
);
6113 if (start
>= caching_ctl
->progress
) {
6114 ret
= add_excluded_extent(root
, start
, num_bytes
);
6115 BUG_ON(ret
); /* -ENOMEM */
6116 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6117 ret
= btrfs_remove_free_space(block_group
,
6119 BUG_ON(ret
); /* -ENOMEM */
6121 num_bytes
= caching_ctl
->progress
- start
;
6122 ret
= btrfs_remove_free_space(block_group
,
6124 BUG_ON(ret
); /* -ENOMEM */
6126 start
= caching_ctl
->progress
;
6127 num_bytes
= ins
->objectid
+ ins
->offset
-
6128 caching_ctl
->progress
;
6129 ret
= add_excluded_extent(root
, start
, num_bytes
);
6130 BUG_ON(ret
); /* -ENOMEM */
6133 mutex_unlock(&caching_ctl
->mutex
);
6134 put_caching_control(caching_ctl
);
6137 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
6138 RESERVE_ALLOC_NO_ACCOUNT
);
6139 BUG_ON(ret
); /* logic error */
6140 btrfs_put_block_group(block_group
);
6141 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
6142 0, owner
, offset
, ins
, 1);
6146 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
6147 struct btrfs_root
*root
,
6148 u64 bytenr
, u32 blocksize
,
6151 struct extent_buffer
*buf
;
6153 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6155 return ERR_PTR(-ENOMEM
);
6156 btrfs_set_header_generation(buf
, trans
->transid
);
6157 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
6158 btrfs_tree_lock(buf
);
6159 clean_tree_block(trans
, root
, buf
);
6160 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
6162 btrfs_set_lock_blocking(buf
);
6163 btrfs_set_buffer_uptodate(buf
);
6165 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6167 * we allow two log transactions at a time, use different
6168 * EXENT bit to differentiate dirty pages.
6170 if (root
->log_transid
% 2 == 0)
6171 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
6172 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6174 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
6175 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6177 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
6178 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
6180 trans
->blocks_used
++;
6181 /* this returns a buffer locked for blocking */
6185 static struct btrfs_block_rsv
*
6186 use_block_rsv(struct btrfs_trans_handle
*trans
,
6187 struct btrfs_root
*root
, u32 blocksize
)
6189 struct btrfs_block_rsv
*block_rsv
;
6190 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
6193 block_rsv
= get_block_rsv(trans
, root
);
6195 if (block_rsv
->size
== 0) {
6196 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6198 * If we couldn't reserve metadata bytes try and use some from
6199 * the global reserve.
6201 if (ret
&& block_rsv
!= global_rsv
) {
6202 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6205 return ERR_PTR(ret
);
6207 return ERR_PTR(ret
);
6212 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
6216 static DEFINE_RATELIMIT_STATE(_rs
,
6217 DEFAULT_RATELIMIT_INTERVAL
,
6218 /*DEFAULT_RATELIMIT_BURST*/ 2);
6219 if (__ratelimit(&_rs
)) {
6220 printk(KERN_DEBUG
"btrfs: block rsv returned %d\n", ret
);
6223 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
, 0);
6226 } else if (ret
&& block_rsv
!= global_rsv
) {
6227 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
6233 return ERR_PTR(-ENOSPC
);
6236 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
6237 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
6239 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
6240 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
6244 * finds a free extent and does all the dirty work required for allocation
6245 * returns the key for the extent through ins, and a tree buffer for
6246 * the first block of the extent through buf.
6248 * returns the tree buffer or NULL.
6250 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
6251 struct btrfs_root
*root
, u32 blocksize
,
6252 u64 parent
, u64 root_objectid
,
6253 struct btrfs_disk_key
*key
, int level
,
6254 u64 hint
, u64 empty_size
)
6256 struct btrfs_key ins
;
6257 struct btrfs_block_rsv
*block_rsv
;
6258 struct extent_buffer
*buf
;
6263 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
6264 if (IS_ERR(block_rsv
))
6265 return ERR_CAST(block_rsv
);
6267 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
6268 empty_size
, hint
, &ins
, 0);
6270 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
6271 return ERR_PTR(ret
);
6274 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
6276 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
6278 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
6280 parent
= ins
.objectid
;
6281 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6285 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6286 struct btrfs_delayed_extent_op
*extent_op
;
6287 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
6288 BUG_ON(!extent_op
); /* -ENOMEM */
6290 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
6292 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
6293 extent_op
->flags_to_set
= flags
;
6294 extent_op
->update_key
= 1;
6295 extent_op
->update_flags
= 1;
6296 extent_op
->is_data
= 0;
6298 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6300 ins
.offset
, parent
, root_objectid
,
6301 level
, BTRFS_ADD_DELAYED_EXTENT
,
6303 BUG_ON(ret
); /* -ENOMEM */
6308 struct walk_control
{
6309 u64 refs
[BTRFS_MAX_LEVEL
];
6310 u64 flags
[BTRFS_MAX_LEVEL
];
6311 struct btrfs_key update_progress
;
6322 #define DROP_REFERENCE 1
6323 #define UPDATE_BACKREF 2
6325 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
6326 struct btrfs_root
*root
,
6327 struct walk_control
*wc
,
6328 struct btrfs_path
*path
)
6336 struct btrfs_key key
;
6337 struct extent_buffer
*eb
;
6342 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
6343 wc
->reada_count
= wc
->reada_count
* 2 / 3;
6344 wc
->reada_count
= max(wc
->reada_count
, 2);
6346 wc
->reada_count
= wc
->reada_count
* 3 / 2;
6347 wc
->reada_count
= min_t(int, wc
->reada_count
,
6348 BTRFS_NODEPTRS_PER_BLOCK(root
));
6351 eb
= path
->nodes
[wc
->level
];
6352 nritems
= btrfs_header_nritems(eb
);
6353 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
6355 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
6356 if (nread
>= wc
->reada_count
)
6360 bytenr
= btrfs_node_blockptr(eb
, slot
);
6361 generation
= btrfs_node_ptr_generation(eb
, slot
);
6363 if (slot
== path
->slots
[wc
->level
])
6366 if (wc
->stage
== UPDATE_BACKREF
&&
6367 generation
<= root
->root_key
.offset
)
6370 /* We don't lock the tree block, it's OK to be racy here */
6371 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6373 /* We don't care about errors in readahead. */
6378 if (wc
->stage
== DROP_REFERENCE
) {
6382 if (wc
->level
== 1 &&
6383 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6385 if (!wc
->update_ref
||
6386 generation
<= root
->root_key
.offset
)
6388 btrfs_node_key_to_cpu(eb
, &key
, slot
);
6389 ret
= btrfs_comp_cpu_keys(&key
,
6390 &wc
->update_progress
);
6394 if (wc
->level
== 1 &&
6395 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6399 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
6405 wc
->reada_slot
= slot
;
6409 * hepler to process tree block while walking down the tree.
6411 * when wc->stage == UPDATE_BACKREF, this function updates
6412 * back refs for pointers in the block.
6414 * NOTE: return value 1 means we should stop walking down.
6416 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
6417 struct btrfs_root
*root
,
6418 struct btrfs_path
*path
,
6419 struct walk_control
*wc
, int lookup_info
)
6421 int level
= wc
->level
;
6422 struct extent_buffer
*eb
= path
->nodes
[level
];
6423 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6426 if (wc
->stage
== UPDATE_BACKREF
&&
6427 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
6431 * when reference count of tree block is 1, it won't increase
6432 * again. once full backref flag is set, we never clear it.
6435 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
6436 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
6437 BUG_ON(!path
->locks
[level
]);
6438 ret
= btrfs_lookup_extent_info(trans
, root
,
6442 BUG_ON(ret
== -ENOMEM
);
6445 BUG_ON(wc
->refs
[level
] == 0);
6448 if (wc
->stage
== DROP_REFERENCE
) {
6449 if (wc
->refs
[level
] > 1)
6452 if (path
->locks
[level
] && !wc
->keep_locks
) {
6453 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6454 path
->locks
[level
] = 0;
6459 /* wc->stage == UPDATE_BACKREF */
6460 if (!(wc
->flags
[level
] & flag
)) {
6461 BUG_ON(!path
->locks
[level
]);
6462 ret
= btrfs_inc_ref(trans
, root
, eb
, 1, wc
->for_reloc
);
6463 BUG_ON(ret
); /* -ENOMEM */
6464 ret
= btrfs_dec_ref(trans
, root
, eb
, 0, wc
->for_reloc
);
6465 BUG_ON(ret
); /* -ENOMEM */
6466 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
6468 BUG_ON(ret
); /* -ENOMEM */
6469 wc
->flags
[level
] |= flag
;
6473 * the block is shared by multiple trees, so it's not good to
6474 * keep the tree lock
6476 if (path
->locks
[level
] && level
> 0) {
6477 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6478 path
->locks
[level
] = 0;
6484 * hepler to process tree block pointer.
6486 * when wc->stage == DROP_REFERENCE, this function checks
6487 * reference count of the block pointed to. if the block
6488 * is shared and we need update back refs for the subtree
6489 * rooted at the block, this function changes wc->stage to
6490 * UPDATE_BACKREF. if the block is shared and there is no
6491 * need to update back, this function drops the reference
6494 * NOTE: return value 1 means we should stop walking down.
6496 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
6497 struct btrfs_root
*root
,
6498 struct btrfs_path
*path
,
6499 struct walk_control
*wc
, int *lookup_info
)
6505 struct btrfs_key key
;
6506 struct extent_buffer
*next
;
6507 int level
= wc
->level
;
6511 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
6512 path
->slots
[level
]);
6514 * if the lower level block was created before the snapshot
6515 * was created, we know there is no need to update back refs
6518 if (wc
->stage
== UPDATE_BACKREF
&&
6519 generation
<= root
->root_key
.offset
) {
6524 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6525 blocksize
= btrfs_level_size(root
, level
- 1);
6527 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6529 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6534 btrfs_tree_lock(next
);
6535 btrfs_set_lock_blocking(next
);
6537 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6538 &wc
->refs
[level
- 1],
6539 &wc
->flags
[level
- 1]);
6541 btrfs_tree_unlock(next
);
6545 BUG_ON(wc
->refs
[level
- 1] == 0);
6548 if (wc
->stage
== DROP_REFERENCE
) {
6549 if (wc
->refs
[level
- 1] > 1) {
6551 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6554 if (!wc
->update_ref
||
6555 generation
<= root
->root_key
.offset
)
6558 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6559 path
->slots
[level
]);
6560 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6564 wc
->stage
= UPDATE_BACKREF
;
6565 wc
->shared_level
= level
- 1;
6569 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6573 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
6574 btrfs_tree_unlock(next
);
6575 free_extent_buffer(next
);
6581 if (reada
&& level
== 1)
6582 reada_walk_down(trans
, root
, wc
, path
);
6583 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6586 btrfs_tree_lock(next
);
6587 btrfs_set_lock_blocking(next
);
6591 BUG_ON(level
!= btrfs_header_level(next
));
6592 path
->nodes
[level
] = next
;
6593 path
->slots
[level
] = 0;
6594 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6600 wc
->refs
[level
- 1] = 0;
6601 wc
->flags
[level
- 1] = 0;
6602 if (wc
->stage
== DROP_REFERENCE
) {
6603 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6604 parent
= path
->nodes
[level
]->start
;
6606 BUG_ON(root
->root_key
.objectid
!=
6607 btrfs_header_owner(path
->nodes
[level
]));
6611 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6612 root
->root_key
.objectid
, level
- 1, 0, 0);
6613 BUG_ON(ret
); /* -ENOMEM */
6615 btrfs_tree_unlock(next
);
6616 free_extent_buffer(next
);
6622 * hepler to process tree block while walking up the tree.
6624 * when wc->stage == DROP_REFERENCE, this function drops
6625 * reference count on the block.
6627 * when wc->stage == UPDATE_BACKREF, this function changes
6628 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6629 * to UPDATE_BACKREF previously while processing the block.
6631 * NOTE: return value 1 means we should stop walking up.
6633 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6634 struct btrfs_root
*root
,
6635 struct btrfs_path
*path
,
6636 struct walk_control
*wc
)
6639 int level
= wc
->level
;
6640 struct extent_buffer
*eb
= path
->nodes
[level
];
6643 if (wc
->stage
== UPDATE_BACKREF
) {
6644 BUG_ON(wc
->shared_level
< level
);
6645 if (level
< wc
->shared_level
)
6648 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6652 wc
->stage
= DROP_REFERENCE
;
6653 wc
->shared_level
= -1;
6654 path
->slots
[level
] = 0;
6657 * check reference count again if the block isn't locked.
6658 * we should start walking down the tree again if reference
6661 if (!path
->locks
[level
]) {
6663 btrfs_tree_lock(eb
);
6664 btrfs_set_lock_blocking(eb
);
6665 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6667 ret
= btrfs_lookup_extent_info(trans
, root
,
6672 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6675 BUG_ON(wc
->refs
[level
] == 0);
6676 if (wc
->refs
[level
] == 1) {
6677 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6683 /* wc->stage == DROP_REFERENCE */
6684 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6686 if (wc
->refs
[level
] == 1) {
6688 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6689 ret
= btrfs_dec_ref(trans
, root
, eb
, 1,
6692 ret
= btrfs_dec_ref(trans
, root
, eb
, 0,
6694 BUG_ON(ret
); /* -ENOMEM */
6696 /* make block locked assertion in clean_tree_block happy */
6697 if (!path
->locks
[level
] &&
6698 btrfs_header_generation(eb
) == trans
->transid
) {
6699 btrfs_tree_lock(eb
);
6700 btrfs_set_lock_blocking(eb
);
6701 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6703 clean_tree_block(trans
, root
, eb
);
6706 if (eb
== root
->node
) {
6707 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6710 BUG_ON(root
->root_key
.objectid
!=
6711 btrfs_header_owner(eb
));
6713 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6714 parent
= path
->nodes
[level
+ 1]->start
;
6716 BUG_ON(root
->root_key
.objectid
!=
6717 btrfs_header_owner(path
->nodes
[level
+ 1]));
6720 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6722 wc
->refs
[level
] = 0;
6723 wc
->flags
[level
] = 0;
6727 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6728 struct btrfs_root
*root
,
6729 struct btrfs_path
*path
,
6730 struct walk_control
*wc
)
6732 int level
= wc
->level
;
6733 int lookup_info
= 1;
6736 while (level
>= 0) {
6737 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6744 if (path
->slots
[level
] >=
6745 btrfs_header_nritems(path
->nodes
[level
]))
6748 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6750 path
->slots
[level
]++;
6759 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6760 struct btrfs_root
*root
,
6761 struct btrfs_path
*path
,
6762 struct walk_control
*wc
, int max_level
)
6764 int level
= wc
->level
;
6767 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6768 while (level
< max_level
&& path
->nodes
[level
]) {
6770 if (path
->slots
[level
] + 1 <
6771 btrfs_header_nritems(path
->nodes
[level
])) {
6772 path
->slots
[level
]++;
6775 ret
= walk_up_proc(trans
, root
, path
, wc
);
6779 if (path
->locks
[level
]) {
6780 btrfs_tree_unlock_rw(path
->nodes
[level
],
6781 path
->locks
[level
]);
6782 path
->locks
[level
] = 0;
6784 free_extent_buffer(path
->nodes
[level
]);
6785 path
->nodes
[level
] = NULL
;
6793 * drop a subvolume tree.
6795 * this function traverses the tree freeing any blocks that only
6796 * referenced by the tree.
6798 * when a shared tree block is found. this function decreases its
6799 * reference count by one. if update_ref is true, this function
6800 * also make sure backrefs for the shared block and all lower level
6801 * blocks are properly updated.
6803 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6804 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
6807 struct btrfs_path
*path
;
6808 struct btrfs_trans_handle
*trans
;
6809 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6810 struct btrfs_root_item
*root_item
= &root
->root_item
;
6811 struct walk_control
*wc
;
6812 struct btrfs_key key
;
6817 path
= btrfs_alloc_path();
6823 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6825 btrfs_free_path(path
);
6830 trans
= btrfs_start_transaction(tree_root
, 0);
6831 if (IS_ERR(trans
)) {
6832 err
= PTR_ERR(trans
);
6837 trans
->block_rsv
= block_rsv
;
6839 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6840 level
= btrfs_header_level(root
->node
);
6841 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6842 btrfs_set_lock_blocking(path
->nodes
[level
]);
6843 path
->slots
[level
] = 0;
6844 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6845 memset(&wc
->update_progress
, 0,
6846 sizeof(wc
->update_progress
));
6848 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6849 memcpy(&wc
->update_progress
, &key
,
6850 sizeof(wc
->update_progress
));
6852 level
= root_item
->drop_level
;
6854 path
->lowest_level
= level
;
6855 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6856 path
->lowest_level
= 0;
6864 * unlock our path, this is safe because only this
6865 * function is allowed to delete this snapshot
6867 btrfs_unlock_up_safe(path
, 0);
6869 level
= btrfs_header_level(root
->node
);
6871 btrfs_tree_lock(path
->nodes
[level
]);
6872 btrfs_set_lock_blocking(path
->nodes
[level
]);
6874 ret
= btrfs_lookup_extent_info(trans
, root
,
6875 path
->nodes
[level
]->start
,
6876 path
->nodes
[level
]->len
,
6883 BUG_ON(wc
->refs
[level
] == 0);
6885 if (level
== root_item
->drop_level
)
6888 btrfs_tree_unlock(path
->nodes
[level
]);
6889 WARN_ON(wc
->refs
[level
] != 1);
6895 wc
->shared_level
= -1;
6896 wc
->stage
= DROP_REFERENCE
;
6897 wc
->update_ref
= update_ref
;
6899 wc
->for_reloc
= for_reloc
;
6900 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6903 ret
= walk_down_tree(trans
, root
, path
, wc
);
6909 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6916 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6920 if (wc
->stage
== DROP_REFERENCE
) {
6922 btrfs_node_key(path
->nodes
[level
],
6923 &root_item
->drop_progress
,
6924 path
->slots
[level
]);
6925 root_item
->drop_level
= level
;
6928 BUG_ON(wc
->level
== 0);
6929 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6930 ret
= btrfs_update_root(trans
, tree_root
,
6934 btrfs_abort_transaction(trans
, tree_root
, ret
);
6939 btrfs_end_transaction_throttle(trans
, tree_root
);
6940 trans
= btrfs_start_transaction(tree_root
, 0);
6941 if (IS_ERR(trans
)) {
6942 err
= PTR_ERR(trans
);
6946 trans
->block_rsv
= block_rsv
;
6949 btrfs_release_path(path
);
6953 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6955 btrfs_abort_transaction(trans
, tree_root
, ret
);
6959 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6960 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6963 btrfs_abort_transaction(trans
, tree_root
, ret
);
6966 } else if (ret
> 0) {
6967 /* if we fail to delete the orphan item this time
6968 * around, it'll get picked up the next time.
6970 * The most common failure here is just -ENOENT.
6972 btrfs_del_orphan_item(trans
, tree_root
,
6973 root
->root_key
.objectid
);
6977 if (root
->in_radix
) {
6978 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6980 free_extent_buffer(root
->node
);
6981 free_extent_buffer(root
->commit_root
);
6985 btrfs_end_transaction_throttle(trans
, tree_root
);
6988 btrfs_free_path(path
);
6991 btrfs_std_error(root
->fs_info
, err
);
6996 * drop subtree rooted at tree block 'node'.
6998 * NOTE: this function will unlock and release tree block 'node'
6999 * only used by relocation code
7001 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
7002 struct btrfs_root
*root
,
7003 struct extent_buffer
*node
,
7004 struct extent_buffer
*parent
)
7006 struct btrfs_path
*path
;
7007 struct walk_control
*wc
;
7013 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7015 path
= btrfs_alloc_path();
7019 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
7021 btrfs_free_path(path
);
7025 btrfs_assert_tree_locked(parent
);
7026 parent_level
= btrfs_header_level(parent
);
7027 extent_buffer_get(parent
);
7028 path
->nodes
[parent_level
] = parent
;
7029 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
7031 btrfs_assert_tree_locked(node
);
7032 level
= btrfs_header_level(node
);
7033 path
->nodes
[level
] = node
;
7034 path
->slots
[level
] = 0;
7035 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7037 wc
->refs
[parent_level
] = 1;
7038 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7040 wc
->shared_level
= -1;
7041 wc
->stage
= DROP_REFERENCE
;
7045 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
7048 wret
= walk_down_tree(trans
, root
, path
, wc
);
7054 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
7062 btrfs_free_path(path
);
7066 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7072 * if restripe for this chunk_type is on pick target profile and
7073 * return, otherwise do the usual balance
7075 stripped
= get_restripe_target(root
->fs_info
, flags
);
7077 return extended_to_chunk(stripped
);
7080 * we add in the count of missing devices because we want
7081 * to make sure that any RAID levels on a degraded FS
7082 * continue to be honored.
7084 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7085 root
->fs_info
->fs_devices
->missing_devices
;
7087 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7088 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7090 if (num_devices
== 1) {
7091 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7092 stripped
= flags
& ~stripped
;
7094 /* turn raid0 into single device chunks */
7095 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7098 /* turn mirroring into duplication */
7099 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7100 BTRFS_BLOCK_GROUP_RAID10
))
7101 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7103 /* they already had raid on here, just return */
7104 if (flags
& stripped
)
7107 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7108 stripped
= flags
& ~stripped
;
7110 /* switch duplicated blocks with raid1 */
7111 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7112 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
7114 /* this is drive concat, leave it alone */
7120 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
7122 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7124 u64 min_allocable_bytes
;
7129 * We need some metadata space and system metadata space for
7130 * allocating chunks in some corner cases until we force to set
7131 * it to be readonly.
7134 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
7136 min_allocable_bytes
= 1 * 1024 * 1024;
7138 min_allocable_bytes
= 0;
7140 spin_lock(&sinfo
->lock
);
7141 spin_lock(&cache
->lock
);
7148 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7149 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7151 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
7152 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
7153 min_allocable_bytes
<= sinfo
->total_bytes
) {
7154 sinfo
->bytes_readonly
+= num_bytes
;
7159 spin_unlock(&cache
->lock
);
7160 spin_unlock(&sinfo
->lock
);
7164 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
7165 struct btrfs_block_group_cache
*cache
)
7168 struct btrfs_trans_handle
*trans
;
7174 trans
= btrfs_join_transaction(root
);
7176 return PTR_ERR(trans
);
7178 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
7179 if (alloc_flags
!= cache
->flags
) {
7180 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7186 ret
= set_block_group_ro(cache
, 0);
7189 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
7190 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7194 ret
= set_block_group_ro(cache
, 0);
7196 btrfs_end_transaction(trans
, root
);
7200 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
7201 struct btrfs_root
*root
, u64 type
)
7203 u64 alloc_flags
= get_alloc_profile(root
, type
);
7204 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
7209 * helper to account the unused space of all the readonly block group in the
7210 * list. takes mirrors into account.
7212 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
7214 struct btrfs_block_group_cache
*block_group
;
7218 list_for_each_entry(block_group
, groups_list
, list
) {
7219 spin_lock(&block_group
->lock
);
7221 if (!block_group
->ro
) {
7222 spin_unlock(&block_group
->lock
);
7226 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7227 BTRFS_BLOCK_GROUP_RAID10
|
7228 BTRFS_BLOCK_GROUP_DUP
))
7233 free_bytes
+= (block_group
->key
.offset
-
7234 btrfs_block_group_used(&block_group
->item
)) *
7237 spin_unlock(&block_group
->lock
);
7244 * helper to account the unused space of all the readonly block group in the
7245 * space_info. takes mirrors into account.
7247 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
7252 spin_lock(&sinfo
->lock
);
7254 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
7255 if (!list_empty(&sinfo
->block_groups
[i
]))
7256 free_bytes
+= __btrfs_get_ro_block_group_free_space(
7257 &sinfo
->block_groups
[i
]);
7259 spin_unlock(&sinfo
->lock
);
7264 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
7265 struct btrfs_block_group_cache
*cache
)
7267 struct btrfs_space_info
*sinfo
= cache
->space_info
;
7272 spin_lock(&sinfo
->lock
);
7273 spin_lock(&cache
->lock
);
7274 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
7275 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
7276 sinfo
->bytes_readonly
-= num_bytes
;
7278 spin_unlock(&cache
->lock
);
7279 spin_unlock(&sinfo
->lock
);
7283 * checks to see if its even possible to relocate this block group.
7285 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7286 * ok to go ahead and try.
7288 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
7290 struct btrfs_block_group_cache
*block_group
;
7291 struct btrfs_space_info
*space_info
;
7292 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
7293 struct btrfs_device
*device
;
7302 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
7304 /* odd, couldn't find the block group, leave it alone */
7308 min_free
= btrfs_block_group_used(&block_group
->item
);
7310 /* no bytes used, we're good */
7314 space_info
= block_group
->space_info
;
7315 spin_lock(&space_info
->lock
);
7317 full
= space_info
->full
;
7320 * if this is the last block group we have in this space, we can't
7321 * relocate it unless we're able to allocate a new chunk below.
7323 * Otherwise, we need to make sure we have room in the space to handle
7324 * all of the extents from this block group. If we can, we're good
7326 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
7327 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
7328 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
7329 min_free
< space_info
->total_bytes
)) {
7330 spin_unlock(&space_info
->lock
);
7333 spin_unlock(&space_info
->lock
);
7336 * ok we don't have enough space, but maybe we have free space on our
7337 * devices to allocate new chunks for relocation, so loop through our
7338 * alloc devices and guess if we have enough space. if this block
7339 * group is going to be restriped, run checks against the target
7340 * profile instead of the current one.
7352 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
7354 index
= __get_block_group_index(extended_to_chunk(target
));
7357 * this is just a balance, so if we were marked as full
7358 * we know there is no space for a new chunk
7363 index
= get_block_group_index(block_group
);
7370 } else if (index
== 1) {
7372 } else if (index
== 2) {
7375 } else if (index
== 3) {
7376 dev_min
= fs_devices
->rw_devices
;
7377 do_div(min_free
, dev_min
);
7380 mutex_lock(&root
->fs_info
->chunk_mutex
);
7381 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
7385 * check to make sure we can actually find a chunk with enough
7386 * space to fit our block group in.
7388 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
7389 ret
= find_free_dev_extent(device
, min_free
,
7394 if (dev_nr
>= dev_min
)
7400 mutex_unlock(&root
->fs_info
->chunk_mutex
);
7402 btrfs_put_block_group(block_group
);
7406 static int find_first_block_group(struct btrfs_root
*root
,
7407 struct btrfs_path
*path
, struct btrfs_key
*key
)
7410 struct btrfs_key found_key
;
7411 struct extent_buffer
*leaf
;
7414 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
7419 slot
= path
->slots
[0];
7420 leaf
= path
->nodes
[0];
7421 if (slot
>= btrfs_header_nritems(leaf
)) {
7422 ret
= btrfs_next_leaf(root
, path
);
7429 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7431 if (found_key
.objectid
>= key
->objectid
&&
7432 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
7442 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
7444 struct btrfs_block_group_cache
*block_group
;
7448 struct inode
*inode
;
7450 block_group
= btrfs_lookup_first_block_group(info
, last
);
7451 while (block_group
) {
7452 spin_lock(&block_group
->lock
);
7453 if (block_group
->iref
)
7455 spin_unlock(&block_group
->lock
);
7456 block_group
= next_block_group(info
->tree_root
,
7466 inode
= block_group
->inode
;
7467 block_group
->iref
= 0;
7468 block_group
->inode
= NULL
;
7469 spin_unlock(&block_group
->lock
);
7471 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
7472 btrfs_put_block_group(block_group
);
7476 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
7478 struct btrfs_block_group_cache
*block_group
;
7479 struct btrfs_space_info
*space_info
;
7480 struct btrfs_caching_control
*caching_ctl
;
7483 down_write(&info
->extent_commit_sem
);
7484 while (!list_empty(&info
->caching_block_groups
)) {
7485 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
7486 struct btrfs_caching_control
, list
);
7487 list_del(&caching_ctl
->list
);
7488 put_caching_control(caching_ctl
);
7490 up_write(&info
->extent_commit_sem
);
7492 spin_lock(&info
->block_group_cache_lock
);
7493 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
7494 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
7496 rb_erase(&block_group
->cache_node
,
7497 &info
->block_group_cache_tree
);
7498 spin_unlock(&info
->block_group_cache_lock
);
7500 down_write(&block_group
->space_info
->groups_sem
);
7501 list_del(&block_group
->list
);
7502 up_write(&block_group
->space_info
->groups_sem
);
7504 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7505 wait_block_group_cache_done(block_group
);
7508 * We haven't cached this block group, which means we could
7509 * possibly have excluded extents on this block group.
7511 if (block_group
->cached
== BTRFS_CACHE_NO
)
7512 free_excluded_extents(info
->extent_root
, block_group
);
7514 btrfs_remove_free_space_cache(block_group
);
7515 btrfs_put_block_group(block_group
);
7517 spin_lock(&info
->block_group_cache_lock
);
7519 spin_unlock(&info
->block_group_cache_lock
);
7521 /* now that all the block groups are freed, go through and
7522 * free all the space_info structs. This is only called during
7523 * the final stages of unmount, and so we know nobody is
7524 * using them. We call synchronize_rcu() once before we start,
7525 * just to be on the safe side.
7529 release_global_block_rsv(info
);
7531 while(!list_empty(&info
->space_info
)) {
7532 space_info
= list_entry(info
->space_info
.next
,
7533 struct btrfs_space_info
,
7535 if (space_info
->bytes_pinned
> 0 ||
7536 space_info
->bytes_reserved
> 0 ||
7537 space_info
->bytes_may_use
> 0) {
7539 dump_space_info(space_info
, 0, 0);
7541 list_del(&space_info
->list
);
7547 static void __link_block_group(struct btrfs_space_info
*space_info
,
7548 struct btrfs_block_group_cache
*cache
)
7550 int index
= get_block_group_index(cache
);
7552 down_write(&space_info
->groups_sem
);
7553 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
7554 up_write(&space_info
->groups_sem
);
7557 int btrfs_read_block_groups(struct btrfs_root
*root
)
7559 struct btrfs_path
*path
;
7561 struct btrfs_block_group_cache
*cache
;
7562 struct btrfs_fs_info
*info
= root
->fs_info
;
7563 struct btrfs_space_info
*space_info
;
7564 struct btrfs_key key
;
7565 struct btrfs_key found_key
;
7566 struct extent_buffer
*leaf
;
7570 root
= info
->extent_root
;
7573 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7574 path
= btrfs_alloc_path();
7579 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
7580 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
7581 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
7583 if (btrfs_test_opt(root
, CLEAR_CACHE
))
7587 ret
= find_first_block_group(root
, path
, &key
);
7592 leaf
= path
->nodes
[0];
7593 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7594 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7599 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7601 if (!cache
->free_space_ctl
) {
7607 atomic_set(&cache
->count
, 1);
7608 spin_lock_init(&cache
->lock
);
7609 cache
->fs_info
= info
;
7610 INIT_LIST_HEAD(&cache
->list
);
7611 INIT_LIST_HEAD(&cache
->cluster_list
);
7614 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
7616 read_extent_buffer(leaf
, &cache
->item
,
7617 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7618 sizeof(cache
->item
));
7619 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7621 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7622 btrfs_release_path(path
);
7623 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7624 cache
->sectorsize
= root
->sectorsize
;
7626 btrfs_init_free_space_ctl(cache
);
7629 * We need to exclude the super stripes now so that the space
7630 * info has super bytes accounted for, otherwise we'll think
7631 * we have more space than we actually do.
7633 exclude_super_stripes(root
, cache
);
7636 * check for two cases, either we are full, and therefore
7637 * don't need to bother with the caching work since we won't
7638 * find any space, or we are empty, and we can just add all
7639 * the space in and be done with it. This saves us _alot_ of
7640 * time, particularly in the full case.
7642 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7643 cache
->last_byte_to_unpin
= (u64
)-1;
7644 cache
->cached
= BTRFS_CACHE_FINISHED
;
7645 free_excluded_extents(root
, cache
);
7646 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7647 cache
->last_byte_to_unpin
= (u64
)-1;
7648 cache
->cached
= BTRFS_CACHE_FINISHED
;
7649 add_new_free_space(cache
, root
->fs_info
,
7651 found_key
.objectid
+
7653 free_excluded_extents(root
, cache
);
7656 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7657 btrfs_block_group_used(&cache
->item
),
7659 BUG_ON(ret
); /* -ENOMEM */
7660 cache
->space_info
= space_info
;
7661 spin_lock(&cache
->space_info
->lock
);
7662 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7663 spin_unlock(&cache
->space_info
->lock
);
7665 __link_block_group(space_info
, cache
);
7667 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7668 BUG_ON(ret
); /* Logic error */
7670 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7671 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7672 set_block_group_ro(cache
, 1);
7675 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7676 if (!(get_alloc_profile(root
, space_info
->flags
) &
7677 (BTRFS_BLOCK_GROUP_RAID10
|
7678 BTRFS_BLOCK_GROUP_RAID1
|
7679 BTRFS_BLOCK_GROUP_DUP
)))
7682 * avoid allocating from un-mirrored block group if there are
7683 * mirrored block groups.
7685 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7686 set_block_group_ro(cache
, 1);
7687 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7688 set_block_group_ro(cache
, 1);
7691 init_global_block_rsv(info
);
7694 btrfs_free_path(path
);
7698 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7699 struct btrfs_root
*root
, u64 bytes_used
,
7700 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7704 struct btrfs_root
*extent_root
;
7705 struct btrfs_block_group_cache
*cache
;
7707 extent_root
= root
->fs_info
->extent_root
;
7709 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7711 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7714 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7716 if (!cache
->free_space_ctl
) {
7721 cache
->key
.objectid
= chunk_offset
;
7722 cache
->key
.offset
= size
;
7723 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7724 cache
->sectorsize
= root
->sectorsize
;
7725 cache
->fs_info
= root
->fs_info
;
7727 atomic_set(&cache
->count
, 1);
7728 spin_lock_init(&cache
->lock
);
7729 INIT_LIST_HEAD(&cache
->list
);
7730 INIT_LIST_HEAD(&cache
->cluster_list
);
7732 btrfs_init_free_space_ctl(cache
);
7734 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7735 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7736 cache
->flags
= type
;
7737 btrfs_set_block_group_flags(&cache
->item
, type
);
7739 cache
->last_byte_to_unpin
= (u64
)-1;
7740 cache
->cached
= BTRFS_CACHE_FINISHED
;
7741 exclude_super_stripes(root
, cache
);
7743 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7744 chunk_offset
+ size
);
7746 free_excluded_extents(root
, cache
);
7748 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7749 &cache
->space_info
);
7750 BUG_ON(ret
); /* -ENOMEM */
7751 update_global_block_rsv(root
->fs_info
);
7753 spin_lock(&cache
->space_info
->lock
);
7754 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7755 spin_unlock(&cache
->space_info
->lock
);
7757 __link_block_group(cache
->space_info
, cache
);
7759 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7760 BUG_ON(ret
); /* Logic error */
7762 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7763 sizeof(cache
->item
));
7765 btrfs_abort_transaction(trans
, extent_root
, ret
);
7769 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7774 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
7776 u64 extra_flags
= chunk_to_extended(flags
) &
7777 BTRFS_EXTENDED_PROFILE_MASK
;
7779 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
7780 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
7781 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
7782 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
7783 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
7784 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
7787 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7788 struct btrfs_root
*root
, u64 group_start
)
7790 struct btrfs_path
*path
;
7791 struct btrfs_block_group_cache
*block_group
;
7792 struct btrfs_free_cluster
*cluster
;
7793 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7794 struct btrfs_key key
;
7795 struct inode
*inode
;
7800 root
= root
->fs_info
->extent_root
;
7802 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7803 BUG_ON(!block_group
);
7804 BUG_ON(!block_group
->ro
);
7807 * Free the reserved super bytes from this block group before
7810 free_excluded_extents(root
, block_group
);
7812 memcpy(&key
, &block_group
->key
, sizeof(key
));
7813 index
= get_block_group_index(block_group
);
7814 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7815 BTRFS_BLOCK_GROUP_RAID1
|
7816 BTRFS_BLOCK_GROUP_RAID10
))
7821 /* make sure this block group isn't part of an allocation cluster */
7822 cluster
= &root
->fs_info
->data_alloc_cluster
;
7823 spin_lock(&cluster
->refill_lock
);
7824 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7825 spin_unlock(&cluster
->refill_lock
);
7828 * make sure this block group isn't part of a metadata
7829 * allocation cluster
7831 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7832 spin_lock(&cluster
->refill_lock
);
7833 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7834 spin_unlock(&cluster
->refill_lock
);
7836 path
= btrfs_alloc_path();
7842 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
7843 if (!IS_ERR(inode
)) {
7844 ret
= btrfs_orphan_add(trans
, inode
);
7846 btrfs_add_delayed_iput(inode
);
7850 /* One for the block groups ref */
7851 spin_lock(&block_group
->lock
);
7852 if (block_group
->iref
) {
7853 block_group
->iref
= 0;
7854 block_group
->inode
= NULL
;
7855 spin_unlock(&block_group
->lock
);
7858 spin_unlock(&block_group
->lock
);
7860 /* One for our lookup ref */
7861 btrfs_add_delayed_iput(inode
);
7864 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7865 key
.offset
= block_group
->key
.objectid
;
7868 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7872 btrfs_release_path(path
);
7874 ret
= btrfs_del_item(trans
, tree_root
, path
);
7877 btrfs_release_path(path
);
7880 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7881 rb_erase(&block_group
->cache_node
,
7882 &root
->fs_info
->block_group_cache_tree
);
7883 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7885 down_write(&block_group
->space_info
->groups_sem
);
7887 * we must use list_del_init so people can check to see if they
7888 * are still on the list after taking the semaphore
7890 list_del_init(&block_group
->list
);
7891 if (list_empty(&block_group
->space_info
->block_groups
[index
]))
7892 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
7893 up_write(&block_group
->space_info
->groups_sem
);
7895 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7896 wait_block_group_cache_done(block_group
);
7898 btrfs_remove_free_space_cache(block_group
);
7900 spin_lock(&block_group
->space_info
->lock
);
7901 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7902 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7903 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
7904 spin_unlock(&block_group
->space_info
->lock
);
7906 memcpy(&key
, &block_group
->key
, sizeof(key
));
7908 btrfs_clear_space_info_full(root
->fs_info
);
7910 btrfs_put_block_group(block_group
);
7911 btrfs_put_block_group(block_group
);
7913 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7919 ret
= btrfs_del_item(trans
, root
, path
);
7921 btrfs_free_path(path
);
7925 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
7927 struct btrfs_space_info
*space_info
;
7928 struct btrfs_super_block
*disk_super
;
7934 disk_super
= fs_info
->super_copy
;
7935 if (!btrfs_super_root(disk_super
))
7938 features
= btrfs_super_incompat_flags(disk_super
);
7939 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
7942 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
7943 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7948 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
7949 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7951 flags
= BTRFS_BLOCK_GROUP_METADATA
;
7952 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7956 flags
= BTRFS_BLOCK_GROUP_DATA
;
7957 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7963 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
7965 return unpin_extent_range(root
, start
, end
);
7968 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
7969 u64 num_bytes
, u64
*actual_bytes
)
7971 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
7974 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
7976 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7977 struct btrfs_block_group_cache
*cache
= NULL
;
7982 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
7986 * try to trim all FS space, our block group may start from non-zero.
7988 if (range
->len
== total_bytes
)
7989 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
7991 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
7994 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
7995 btrfs_put_block_group(cache
);
7999 start
= max(range
->start
, cache
->key
.objectid
);
8000 end
= min(range
->start
+ range
->len
,
8001 cache
->key
.objectid
+ cache
->key
.offset
);
8003 if (end
- start
>= range
->minlen
) {
8004 if (!block_group_cache_done(cache
)) {
8005 ret
= cache_block_group(cache
, NULL
, root
, 0);
8007 wait_block_group_cache_done(cache
);
8009 ret
= btrfs_trim_block_group(cache
,
8015 trimmed
+= group_trimmed
;
8017 btrfs_put_block_group(cache
);
8022 cache
= next_block_group(fs_info
->tree_root
, cache
);
8025 range
->len
= trimmed
;