Staging: sxg: Add checksum control option through ethtool interface
[linux-2.6-xlnx.git] / drivers / staging / sxg / sxg.c
blobd52212a09acbae9485ed76726cf58cfe9e0d3587
1 /**************************************************************************
3 * Copyright (C) 2000-2008 Alacritech, Inc. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above
12 * copyright notice, this list of conditions and the following
13 * disclaimer in the documentation and/or other materials provided
14 * with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR
20 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * The views and conclusions contained in the software and documentation
30 * are those of the authors and should not be interpreted as representing
31 * official policies, either expressed or implied, of Alacritech, Inc.
33 * Parts developed by LinSysSoft Sahara team
35 **************************************************************************/
38 * FILENAME: sxg.c
40 * The SXG driver for Alacritech's 10Gbe products.
42 * NOTE: This is the standard, non-accelerated version of Alacritech's
43 * IS-NIC driver.
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/errno.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/ioport.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/timer.h>
55 #include <linux/pci.h>
56 #include <linux/spinlock.h>
57 #include <linux/init.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/ethtool.h>
61 #include <linux/skbuff.h>
62 #include <linux/delay.h>
63 #include <linux/types.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/mii.h>
66 #include <linux/ip.h>
67 #include <linux/in.h>
68 #include <linux/tcp.h>
69 #include <linux/ipv6.h>
71 #define SLIC_GET_STATS_ENABLED 0
72 #define LINUX_FREES_ADAPTER_RESOURCES 1
73 #define SXG_OFFLOAD_IP_CHECKSUM 0
74 #define SXG_POWER_MANAGEMENT_ENABLED 0
75 #define VPCI 0
76 #define ATK_DEBUG 1
78 #include "sxg_os.h"
79 #include "sxghw.h"
80 #include "sxghif.h"
81 #include "sxg.h"
82 #include "sxgdbg.h"
84 #include "sxgphycode-1.2.h"
85 #define SXG_UCODE_DBG 0 /* Turn on for debugging */
86 #ifdef SXG_UCODE_DBG
87 #include "saharadbgdownload-1.71.c"
88 #include "saharadbgdownloadB-1.10.c"
89 #else
90 #include "saharadownload-1.55.c"
91 #include "saharadownloadB-1.8.c"
92 #endif
94 static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
95 enum sxg_buffer_type BufferType);
96 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
97 void *RcvBlock,
98 dma_addr_t PhysicalAddress,
99 u32 Length);
100 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
101 struct sxg_scatter_gather *SxgSgl,
102 dma_addr_t PhysicalAddress,
103 u32 Length);
105 static void sxg_mcast_init_crc32(void);
106 static int sxg_entry_open(struct net_device *dev);
107 static int sxg_second_open(struct net_device * dev);
108 static int sxg_entry_halt(struct net_device *dev);
109 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev);
111 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
112 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
113 struct sxg_scatter_gather *SxgSgl);
115 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
116 int budget);
117 static void sxg_interrupt(struct adapter_t *adapter);
118 static int sxg_poll(struct napi_struct *napi, int budget);
119 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
120 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
121 int *sxg_napi_continue, int *work_done, int budget);
122 static void sxg_complete_slow_send(struct adapter_t *adapter);
123 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
124 struct sxg_event *Event);
125 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
126 static bool sxg_mac_filter(struct adapter_t *adapter,
127 struct ether_header *EtherHdr, ushort length);
128 static struct net_device_stats *sxg_get_stats(struct net_device * dev);
129 void sxg_free_resources(struct adapter_t *adapter);
130 void sxg_free_rcvblocks(struct adapter_t *adapter);
131 void sxg_free_sgl_buffers(struct adapter_t *adapter);
132 void sxg_unmap_resources(struct adapter_t *adapter);
133 void sxg_free_mcast_addrs(struct adapter_t *adapter);
134 void sxg_collect_statistics(struct adapter_t *adapter);
135 static int sxg_register_interrupt(struct adapter_t *adapter);
136 static void sxg_remove_isr(struct adapter_t *adapter);
137 static irqreturn_t sxg_isr(int irq, void *dev_id);
139 #define XXXTODO 0
141 #if XXXTODO
142 static int sxg_mac_set_address(struct net_device *dev, void *ptr);
143 #endif
144 static void sxg_mcast_set_list(struct net_device *dev);
146 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter);
148 static int sxg_initialize_adapter(struct adapter_t *adapter);
149 static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
150 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
151 unsigned char Index);
152 int sxg_change_mtu (struct net_device *netdev, int new_mtu);
153 static int sxg_initialize_link(struct adapter_t *adapter);
154 static int sxg_phy_init(struct adapter_t *adapter);
155 static void sxg_link_event(struct adapter_t *adapter);
156 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
157 static void sxg_link_state(struct adapter_t *adapter,
158 enum SXG_LINK_STATE LinkState);
159 static int sxg_write_mdio_reg(struct adapter_t *adapter,
160 u32 DevAddr, u32 RegAddr, u32 Value);
161 static int sxg_read_mdio_reg(struct adapter_t *adapter,
162 u32 DevAddr, u32 RegAddr, u32 *pValue);
163 static void sxg_set_mcast_addr(struct adapter_t *adapter);
165 static unsigned int sxg_first_init = 1;
166 static char *sxg_banner =
167 "Alacritech SLIC Technology(tm) Server and Storage \
168 10Gbe Accelerator (Non-Accelerated)\n";
170 static int sxg_debug = 1;
171 static int debug = -1;
172 static struct net_device *head_netdevice = NULL;
174 static struct sxgbase_driver sxg_global = {
175 .dynamic_intagg = 1,
177 static int intagg_delay = 100;
178 static u32 dynamic_intagg = 0;
180 char sxg_driver_name[] = "sxg_nic";
181 #define DRV_AUTHOR "Alacritech, Inc. Engineering"
182 #define DRV_DESCRIPTION \
183 "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
184 #define DRV_COPYRIGHT \
185 "Copyright 2000-2008 Alacritech, Inc. All rights reserved."
187 MODULE_AUTHOR(DRV_AUTHOR);
188 MODULE_DESCRIPTION(DRV_DESCRIPTION);
189 MODULE_LICENSE("GPL");
191 module_param(dynamic_intagg, int, 0);
192 MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
193 module_param(intagg_delay, int, 0);
194 MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
196 static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
197 {PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
198 {0,}
201 MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
203 static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
205 writel(value, reg);
206 if (flush)
207 mb();
210 static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
211 u64 value, u32 cpu)
213 u32 value_high = (u32) (value >> 32);
214 u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
215 unsigned long flags;
217 spin_lock_irqsave(&adapter->Bit64RegLock, flags);
218 writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
219 writel(value_low, reg);
220 spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
223 static void sxg_init_driver(void)
225 if (sxg_first_init) {
226 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
227 __func__, jiffies);
228 sxg_first_init = 0;
229 spin_lock_init(&sxg_global.driver_lock);
233 static void sxg_dbg_macaddrs(struct adapter_t *adapter)
235 DBG_ERROR(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
236 adapter->netdev->name, adapter->currmacaddr[0],
237 adapter->currmacaddr[1], adapter->currmacaddr[2],
238 adapter->currmacaddr[3], adapter->currmacaddr[4],
239 adapter->currmacaddr[5]);
240 DBG_ERROR(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
241 adapter->netdev->name, adapter->macaddr[0],
242 adapter->macaddr[1], adapter->macaddr[2],
243 adapter->macaddr[3], adapter->macaddr[4],
244 adapter->macaddr[5]);
245 return;
248 /* SXG Globals */
249 static struct sxg_driver SxgDriver;
251 #ifdef ATKDBG
252 static struct sxg_trace_buffer LSxgTraceBuffer;
253 #endif /* ATKDBG */
254 static struct sxg_trace_buffer *SxgTraceBuffer = NULL;
257 * MSI Related API's
259 int sxg_register_intr(struct adapter_t *adapter);
260 int sxg_enable_msi_x(struct adapter_t *adapter);
261 int sxg_add_msi_isr(struct adapter_t *adapter);
262 void sxg_remove_msix_isr(struct adapter_t *adapter);
263 int sxg_set_interrupt_capability(struct adapter_t *adapter);
265 int sxg_set_interrupt_capability(struct adapter_t *adapter)
267 int ret;
269 ret = sxg_enable_msi_x(adapter);
270 if (ret != STATUS_SUCCESS) {
271 adapter->msi_enabled = FALSE;
272 DBG_ERROR("sxg_set_interrupt_capability MSI-X Disable\n");
273 } else {
274 adapter->msi_enabled = TRUE;
275 DBG_ERROR("sxg_set_interrupt_capability MSI-X Enable\n");
277 return ret;
280 int sxg_register_intr(struct adapter_t *adapter)
282 int ret = 0;
284 if (adapter->msi_enabled) {
285 ret = sxg_add_msi_isr(adapter);
287 else {
288 DBG_ERROR("MSI-X Enable Failed. Using Pin INT\n");
289 ret = sxg_register_interrupt(adapter);
290 if (ret != STATUS_SUCCESS) {
291 DBG_ERROR("sxg_register_interrupt Failed\n");
294 return ret;
297 int sxg_enable_msi_x(struct adapter_t *adapter)
299 int ret;
301 adapter->nr_msix_entries = 1;
302 adapter->msi_entries = kmalloc(adapter->nr_msix_entries *
303 sizeof(struct msix_entry),GFP_KERNEL);
304 if (!adapter->msi_entries) {
305 DBG_ERROR("%s:MSI Entries memory allocation Failed\n",__func__);
306 return -ENOMEM;
308 memset(adapter->msi_entries, 0, adapter->nr_msix_entries *
309 sizeof(struct msix_entry));
311 ret = pci_enable_msix(adapter->pcidev, adapter->msi_entries,
312 adapter->nr_msix_entries);
313 if (ret) {
314 DBG_ERROR("Enabling MSI-X with %d vectors failed\n",
315 adapter->nr_msix_entries);
316 /*Should try with less vector returned.*/
317 kfree(adapter->msi_entries);
318 return STATUS_FAILURE; /*MSI-X Enable failed.*/
320 return (STATUS_SUCCESS);
323 int sxg_add_msi_isr(struct adapter_t *adapter)
325 int ret,i;
327 if (!adapter->intrregistered) {
328 for (i=0; i<adapter->nr_msix_entries; i++) {
329 ret = request_irq (adapter->msi_entries[i].vector,
330 sxg_isr,
331 IRQF_SHARED,
332 adapter->netdev->name,
333 adapter->netdev);
334 if (ret) {
335 DBG_ERROR("sxg: MSI-X request_irq (%s) "
336 "FAILED [%x]\n", adapter->netdev->name,
337 ret);
338 return (ret);
342 adapter->msi_enabled = TRUE;
343 adapter->intrregistered = 1;
344 adapter->IntRegistered = TRUE;
345 return (STATUS_SUCCESS);
348 void sxg_remove_msix_isr(struct adapter_t *adapter)
350 int i,vector;
351 struct net_device *netdev = adapter->netdev;
353 for(i=0; i< adapter->nr_msix_entries;i++)
355 vector = adapter->msi_entries[i].vector;
356 DBG_ERROR("%s : Freeing IRQ vector#%d\n",__FUNCTION__,vector);
357 free_irq(vector,netdev);
362 static void sxg_remove_isr(struct adapter_t *adapter)
364 struct net_device *netdev = adapter->netdev;
365 if (adapter->msi_enabled)
366 sxg_remove_msix_isr(adapter);
367 else
368 free_irq(adapter->netdev->irq, netdev);
371 void sxg_reset_interrupt_capability(struct adapter_t *adapter)
373 if (adapter->msi_enabled) {
374 pci_disable_msix(adapter->pcidev);
375 kfree(adapter->msi_entries);
376 adapter->msi_entries = NULL;
378 return;
382 * sxg_download_microcode
384 * Download Microcode to Sahara adapter
386 * Arguments -
387 * adapter - A pointer to our adapter structure
388 * UcodeSel - microcode file selection
390 * Return
391 * int
393 static bool sxg_download_microcode(struct adapter_t *adapter,
394 enum SXG_UCODE_SEL UcodeSel)
396 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
397 u32 Section;
398 u32 ThisSectionSize;
399 u32 *Instruction = NULL;
400 u32 BaseAddress, AddressOffset, Address;
401 /* u32 Failure; */
402 u32 ValueRead;
403 u32 i;
404 u32 numSections = 0;
405 u32 sectionSize[16];
406 u32 sectionStart[16];
408 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
409 adapter, 0, 0, 0);
410 DBG_ERROR("sxg: %s ENTER\n", __func__);
412 switch (UcodeSel) {
413 case SXG_UCODE_SYSTEM: // System (operational) ucode
414 switch (adapter->asictype) {
415 case SAHARA_REV_A:
416 DBG_ERROR("%s SAHARA CARD REVISION A\n",
417 __func__);
418 numSections = SNumSections;
419 for (i = 0; i < numSections; i++) {
420 sectionSize[i] =
421 SSectionSize[i];
422 sectionStart[i] =
423 SSectionStart[i];
425 break;
426 case SAHARA_REV_B:
427 DBG_ERROR("%s SAHARA CARD REVISION B\n",
428 __func__);
429 numSections = SBNumSections;
430 for (i = 0; i < numSections; i++) {
431 sectionSize[i] =
432 SBSectionSize[i];
433 sectionStart[i] =
434 SBSectionStart[i];
436 break;
438 break;
439 default:
440 printk(KERN_ERR KBUILD_MODNAME
441 ": Woah, big error with the microcode!\n");
442 break;
445 DBG_ERROR("sxg: RESET THE CARD\n");
446 /* First, reset the card */
447 WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
448 udelay(50);
451 * Download each section of the microcode as specified in
452 * its download file. The *download.c file is generated using
453 * the saharaobjtoc facility which converts the metastep .obj
454 * file to a .c file which contains a two dimentional array.
456 for (Section = 0; Section < numSections; Section++) {
457 DBG_ERROR("sxg: SECTION # %d\n", Section);
458 switch (UcodeSel) {
459 case SXG_UCODE_SYSTEM:
460 switch (adapter->asictype) {
461 case SAHARA_REV_A:
462 Instruction = (u32 *) & SaharaUCode[Section][0];
463 break;
464 case SAHARA_REV_B:
465 Instruction = (u32 *) & SaharaUCodeB[Section][0];
466 break;
468 break;
469 default:
470 ASSERT(0);
471 break;
474 BaseAddress = sectionStart[Section];
475 /* Size in instructions */
476 ThisSectionSize = sectionSize[Section] / 12;
477 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
478 AddressOffset++) {
479 Address = BaseAddress + AddressOffset;
480 ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
481 /* Write instruction bits 31 - 0 */
482 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
483 /* Write instruction bits 63-32 */
484 WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
485 FLUSH);
486 /* Write instruction bits 95-64 */
487 WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
488 FLUSH);
489 /* Write instruction address with the WRITE bit set */
490 WRITE_REG(HwRegs->UcodeAddr,
491 (Address | MICROCODE_ADDRESS_WRITE), FLUSH);
493 * Sahara bug in the ucode download logic - the write to DataLow
494 * for the next instruction could get corrupted. To avoid this,
495 * write to DataLow again for this instruction (which may get
496 * corrupted, but it doesn't matter), then increment the address
497 * and write the data for the next instruction to DataLow. That
498 * write should succeed.
500 WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
501 /* Advance 3 u32S to start of next instruction */
502 Instruction += 3;
506 * Now repeat the entire operation reading the instruction back and
507 * checking for parity errors
509 for (Section = 0; Section < numSections; Section++) {
510 DBG_ERROR("sxg: check SECTION # %d\n", Section);
511 switch (UcodeSel) {
512 case SXG_UCODE_SYSTEM:
513 switch (adapter->asictype) {
514 case SAHARA_REV_A:
515 Instruction = (u32 *) &
516 SaharaUCode[Section][0];
517 break;
518 case SAHARA_REV_B:
519 Instruction = (u32 *) &
520 SaharaUCodeB[Section][0];
521 break;
523 break;
524 default:
525 ASSERT(0);
526 break;
528 BaseAddress = sectionStart[Section];
529 /* Size in instructions */
530 ThisSectionSize = sectionSize[Section] / 12;
531 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
532 AddressOffset++) {
533 Address = BaseAddress + AddressOffset;
534 /* Write the address with the READ bit set */
535 WRITE_REG(HwRegs->UcodeAddr,
536 (Address | MICROCODE_ADDRESS_READ), FLUSH);
537 /* Read it back and check parity bit. */
538 READ_REG(HwRegs->UcodeAddr, ValueRead);
539 if (ValueRead & MICROCODE_ADDRESS_PARITY) {
540 DBG_ERROR("sxg: %s PARITY ERROR\n",
541 __func__);
543 return FALSE; /* Parity error */
545 ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
546 /* Read the instruction back and compare */
547 READ_REG(HwRegs->UcodeDataLow, ValueRead);
548 if (ValueRead != *Instruction) {
549 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
550 __func__);
551 return FALSE; /* Miscompare */
553 READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
554 if (ValueRead != *(Instruction + 1)) {
555 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
556 __func__);
557 return FALSE; /* Miscompare */
559 READ_REG(HwRegs->UcodeDataHigh, ValueRead);
560 if (ValueRead != *(Instruction + 2)) {
561 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
562 __func__);
563 return FALSE; /* Miscompare */
565 /* Advance 3 u32S to start of next instruction */
566 Instruction += 3;
570 /* Everything OK, Go. */
571 WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
574 * Poll the CardUp register to wait for microcode to initialize
575 * Give up after 10,000 attemps (500ms).
577 for (i = 0; i < 10000; i++) {
578 udelay(50);
579 READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
580 if (ValueRead == 0xCAFE) {
581 DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __func__);
582 break;
585 if (i == 10000) {
586 DBG_ERROR("sxg: %s TIMEOUT\n", __func__);
588 return FALSE; /* Timeout */
591 * Now write the LoadSync register. This is used to
592 * synchronize with the card so it can scribble on the memory
593 * that contained 0xCAFE from the "CardUp" step above
595 if (UcodeSel == SXG_UCODE_SYSTEM) {
596 WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
599 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
600 adapter, 0, 0, 0);
601 DBG_ERROR("sxg: %s EXIT\n", __func__);
603 return (TRUE);
607 * sxg_allocate_resources - Allocate memory and locks
609 * Arguments -
610 * adapter - A pointer to our adapter structure
612 * Return - int
614 static int sxg_allocate_resources(struct adapter_t *adapter)
616 int status;
617 u32 i;
618 u32 RssIds, IsrCount;
619 /* struct sxg_xmt_ring *XmtRing; */
620 /* struct sxg_rcv_ring *RcvRing; */
622 DBG_ERROR("%s ENTER\n", __func__);
624 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
625 adapter, 0, 0, 0);
627 /* Windows tells us how many CPUs it plans to use for */
628 /* RSS */
629 RssIds = SXG_RSS_CPU_COUNT(adapter);
630 IsrCount = adapter->msi_enabled ? RssIds : 1;
632 DBG_ERROR("%s Setup the spinlocks\n", __func__);
634 /* Allocate spinlocks and initialize listheads first. */
635 spin_lock_init(&adapter->RcvQLock);
636 spin_lock_init(&adapter->SglQLock);
637 spin_lock_init(&adapter->XmtZeroLock);
638 spin_lock_init(&adapter->Bit64RegLock);
639 spin_lock_init(&adapter->AdapterLock);
640 atomic_set(&adapter->pending_allocations, 0);
642 DBG_ERROR("%s Setup the lists\n", __func__);
644 InitializeListHead(&adapter->FreeRcvBuffers);
645 InitializeListHead(&adapter->FreeRcvBlocks);
646 InitializeListHead(&adapter->AllRcvBlocks);
647 InitializeListHead(&adapter->FreeSglBuffers);
648 InitializeListHead(&adapter->AllSglBuffers);
651 * Mark these basic allocations done. This flags essentially
652 * tells the SxgFreeResources routine that it can grab spinlocks
653 * and reference listheads.
655 adapter->BasicAllocations = TRUE;
657 * Main allocation loop. Start with the maximum supported by
658 * the microcode and back off if memory allocation
659 * fails. If we hit a minimum, fail.
662 for (;;) {
663 DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
664 (unsigned int)(sizeof(struct sxg_xmt_ring) * 1));
667 * Start with big items first - receive and transmit rings.
668 * At the moment I'm going to keep the ring size fixed and
669 * adjust the TCBs if we fail. Later we might
670 * consider reducing the ring size as well..
672 adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
673 sizeof(struct sxg_xmt_ring) *
675 &adapter->PXmtRings);
676 DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
678 if (!adapter->XmtRings) {
679 goto per_tcb_allocation_failed;
681 memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
683 DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
684 (unsigned int)(sizeof(struct sxg_rcv_ring) * 1));
685 adapter->RcvRings =
686 pci_alloc_consistent(adapter->pcidev,
687 sizeof(struct sxg_rcv_ring) * 1,
688 &adapter->PRcvRings);
689 DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
690 if (!adapter->RcvRings) {
691 goto per_tcb_allocation_failed;
693 memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
694 adapter->ucode_stats = kzalloc(sizeof(struct sxg_ucode_stats), GFP_ATOMIC);
695 adapter->pucode_stats = pci_map_single(adapter->pcidev,
696 adapter->ucode_stats,
697 sizeof(struct sxg_ucode_stats),
698 PCI_DMA_FROMDEVICE);
699 // memset(adapter->ucode_stats, 0, sizeof(struct sxg_ucode_stats));
700 break;
702 per_tcb_allocation_failed:
703 /* an allocation failed. Free any successful allocations. */
704 if (adapter->XmtRings) {
705 pci_free_consistent(adapter->pcidev,
706 sizeof(struct sxg_xmt_ring) * 1,
707 adapter->XmtRings,
708 adapter->PXmtRings);
709 adapter->XmtRings = NULL;
711 if (adapter->RcvRings) {
712 pci_free_consistent(adapter->pcidev,
713 sizeof(struct sxg_rcv_ring) * 1,
714 adapter->RcvRings,
715 adapter->PRcvRings);
716 adapter->RcvRings = NULL;
718 /* Loop around and try again.... */
719 if (adapter->ucode_stats) {
720 pci_unmap_single(adapter->pcidev,
721 sizeof(struct sxg_ucode_stats),
722 adapter->pucode_stats, PCI_DMA_FROMDEVICE);
723 adapter->ucode_stats = NULL;
728 DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
729 /* Initialize rcv zero and xmt zero rings */
730 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
731 SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
733 /* Sanity check receive data structure format */
734 /* ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
735 (adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE)); */
736 ASSERT(sizeof(struct sxg_rcv_descriptor_block) ==
737 SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
740 * Allocate receive data buffers. We allocate a block of buffers and
741 * a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
743 for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
744 i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
745 status = sxg_allocate_buffer_memory(adapter,
746 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
747 SXG_BUFFER_TYPE_RCV);
748 if (status != STATUS_SUCCESS)
749 return status;
752 * NBL resource allocation can fail in the 'AllocateComplete' routine,
753 * which doesn't return status. Make sure we got the number of buffers
754 * we requested
756 if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
757 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
758 adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
760 return (STATUS_RESOURCES);
763 DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
764 (unsigned int)(sizeof(struct sxg_event_ring) * RssIds));
766 /* Allocate event queues. */
767 adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
768 sizeof(struct sxg_event_ring) *
769 RssIds,
770 &adapter->PEventRings);
772 if (!adapter->EventRings) {
773 /* Caller will call SxgFreeAdapter to clean up above
774 * allocations */
775 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
776 adapter, SXG_MAX_ENTRIES, 0, 0);
777 status = STATUS_RESOURCES;
778 goto per_tcb_allocation_failed;
780 memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
782 DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
783 /* Allocate ISR */
784 adapter->Isr = pci_alloc_consistent(adapter->pcidev,
785 IsrCount, &adapter->PIsr);
786 if (!adapter->Isr) {
787 /* Caller will call SxgFreeAdapter to clean up above
788 * allocations */
789 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
790 adapter, SXG_MAX_ENTRIES, 0, 0);
791 status = STATUS_RESOURCES;
792 goto per_tcb_allocation_failed;
794 memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
796 DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
797 __func__, (unsigned int)sizeof(u32));
799 /* Allocate shared XMT ring zero index location */
800 adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
801 sizeof(u32),
802 &adapter->
803 PXmtRingZeroIndex);
804 if (!adapter->XmtRingZeroIndex) {
805 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
806 adapter, SXG_MAX_ENTRIES, 0, 0);
807 status = STATUS_RESOURCES;
808 goto per_tcb_allocation_failed;
810 memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
812 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
813 adapter, SXG_MAX_ENTRIES, 0, 0);
815 return status;
819 * sxg_config_pci -
821 * Set up PCI Configuration space
823 * Arguments -
824 * pcidev - A pointer to our adapter structure
826 static void sxg_config_pci(struct pci_dev *pcidev)
828 u16 pci_command;
829 u16 new_command;
831 pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
832 DBG_ERROR("sxg: %s PCI command[%4.4x]\n", __func__, pci_command);
833 /* Set the command register */
834 new_command = pci_command | (
835 /* Memory Space Enable */
836 PCI_COMMAND_MEMORY |
837 /* Bus master enable */
838 PCI_COMMAND_MASTER |
839 /* Memory write and invalidate */
840 PCI_COMMAND_INVALIDATE |
841 /* Parity error response */
842 PCI_COMMAND_PARITY |
843 /* System ERR */
844 PCI_COMMAND_SERR |
845 /* Fast back-to-back */
846 PCI_COMMAND_FAST_BACK);
847 if (pci_command != new_command) {
848 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
849 __func__, pci_command, new_command);
850 pci_write_config_word(pcidev, PCI_COMMAND, new_command);
855 * sxg_read_config
856 * @adapter : Pointer to the adapter structure for the card
857 * This function will read the configuration data from EEPROM/FLASH
859 static inline int sxg_read_config(struct adapter_t *adapter)
861 /* struct sxg_config data; */
862 struct sw_cfg_data *data;
863 dma_addr_t p_addr;
864 unsigned long status;
865 unsigned long i;
867 data = pci_alloc_consistent(adapter->pcidev,
868 sizeof(struct sw_cfg_data), &p_addr);
869 if(!data) {
871 * We cant get even this much memory. Raise a hell
872 * Get out of here
874 printk(KERN_ERR"%s : Could not allocate memory for reading \
875 EEPROM\n", __FUNCTION__);
876 return -ENOMEM;
879 WRITE_REG(adapter->UcodeRegs[0].ConfigStat, SXG_CFG_TIMEOUT, TRUE);
881 WRITE_REG64(adapter, adapter->UcodeRegs[0].Config, p_addr, 0);
882 for(i=0; i<1000; i++) {
883 READ_REG(adapter->UcodeRegs[0].ConfigStat, status);
884 if (status != SXG_CFG_TIMEOUT)
885 break;
886 mdelay(1); /* Do we really need this */
889 switch(status) {
890 /* Config read from EEPROM succeeded */
891 case SXG_CFG_LOAD_EEPROM:
892 /* Config read from Flash succeeded */
893 case SXG_CFG_LOAD_FLASH:
894 /* Copy the MAC address to adapter structure */
895 /* TODO: We are not doing the remaining part : FRU,
896 * etc
898 memcpy(adapter->macaddr, data->MacAddr[0].MacAddr,
899 sizeof(struct sxg_config_mac));
900 break;
901 case SXG_CFG_TIMEOUT:
902 case SXG_CFG_LOAD_INVALID:
903 case SXG_CFG_LOAD_ERROR:
904 default: /* Fix default handler later */
905 printk(KERN_WARNING"%s : We could not read the config \
906 word. Status = %ld\n", __FUNCTION__, status);
907 break;
909 pci_free_consistent(adapter->pcidev, sizeof(struct sw_cfg_data), data,
910 p_addr);
911 if (adapter->netdev) {
912 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
913 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
915 sxg_dbg_macaddrs(adapter);
917 return status;
920 static int sxg_entry_probe(struct pci_dev *pcidev,
921 const struct pci_device_id *pci_tbl_entry)
923 static int did_version = 0;
924 int err;
925 struct net_device *netdev;
926 struct adapter_t *adapter;
927 void __iomem *memmapped_ioaddr;
928 u32 status = 0;
929 ulong mmio_start = 0;
930 ulong mmio_len = 0;
931 unsigned char revision_id;
933 DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
934 __func__, jiffies, smp_processor_id());
936 /* Initialize trace buffer */
937 #ifdef ATKDBG
938 SxgTraceBuffer = &LSxgTraceBuffer;
939 SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
940 #endif
942 sxg_global.dynamic_intagg = dynamic_intagg;
944 err = pci_enable_device(pcidev);
946 DBG_ERROR("Call pci_enable_device(%p) status[%x]\n", pcidev, err);
947 if (err) {
948 return err;
951 if (sxg_debug > 0 && did_version++ == 0) {
952 printk(KERN_INFO "%s\n", sxg_banner);
953 printk(KERN_INFO "%s\n", SXG_DRV_VERSION);
956 pci_read_config_byte(pcidev, PCI_REVISION_ID, &revision_id);
958 if (!(err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK))) {
959 DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
960 } else {
961 if ((err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) {
962 DBG_ERROR
963 ("No usable DMA configuration, aborting err[%x]\n",
964 err);
965 return err;
967 DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
970 DBG_ERROR("Call pci_request_regions\n");
972 err = pci_request_regions(pcidev, sxg_driver_name);
973 if (err) {
974 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
975 return err;
978 DBG_ERROR("call pci_set_master\n");
979 pci_set_master(pcidev);
981 DBG_ERROR("call alloc_etherdev\n");
982 netdev = alloc_etherdev(sizeof(struct adapter_t));
983 if (!netdev) {
984 err = -ENOMEM;
985 goto err_out_exit_sxg_probe;
987 DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
989 SET_NETDEV_DEV(netdev, &pcidev->dev);
991 pci_set_drvdata(pcidev, netdev);
992 adapter = netdev_priv(netdev);
993 if (revision_id == 1) {
994 adapter->asictype = SAHARA_REV_A;
995 } else if (revision_id == 2) {
996 adapter->asictype = SAHARA_REV_B;
997 } else {
998 ASSERT(0);
999 DBG_ERROR("%s Unexpected revision ID %x\n", __FUNCTION__, revision_id);
1000 goto err_out_exit_sxg_probe;
1002 adapter->netdev = netdev;
1003 adapter->pcidev = pcidev;
1005 mmio_start = pci_resource_start(pcidev, 0);
1006 mmio_len = pci_resource_len(pcidev, 0);
1008 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
1009 mmio_start, mmio_len);
1011 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
1012 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
1013 memmapped_ioaddr);
1014 if (!memmapped_ioaddr) {
1015 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
1016 __func__, mmio_len, mmio_start);
1017 goto err_out_free_mmio_region_0;
1020 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] \
1021 len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start,
1022 mmio_len, pcidev->irq);
1024 adapter->HwRegs = (void *)memmapped_ioaddr;
1025 adapter->base_addr = memmapped_ioaddr;
1027 mmio_start = pci_resource_start(pcidev, 2);
1028 mmio_len = pci_resource_len(pcidev, 2);
1030 DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
1031 mmio_start, mmio_len);
1033 memmapped_ioaddr = ioremap(mmio_start, mmio_len);
1034 DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
1035 memmapped_ioaddr);
1036 if (!memmapped_ioaddr) {
1037 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
1038 __func__, mmio_len, mmio_start);
1039 goto err_out_free_mmio_region_2;
1042 DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
1043 "start[%lx] len[%lx], IRQ %d.\n", __func__,
1044 memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
1046 adapter->UcodeRegs = (void *)memmapped_ioaddr;
1048 adapter->State = SXG_STATE_INITIALIZING;
1050 * Maintain a list of all adapters anchored by
1051 * the global SxgDriver structure.
1053 adapter->Next = SxgDriver.Adapters;
1054 SxgDriver.Adapters = adapter;
1055 adapter->AdapterID = ++SxgDriver.AdapterID;
1057 /* Initialize CRC table used to determine multicast hash */
1058 sxg_mcast_init_crc32();
1060 adapter->JumboEnabled = FALSE;
1061 adapter->RssEnabled = FALSE;
1062 if (adapter->JumboEnabled) {
1063 adapter->FrameSize = JUMBOMAXFRAME;
1064 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
1065 } else {
1066 adapter->FrameSize = ETHERMAXFRAME;
1067 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
1071 * status = SXG_READ_EEPROM(adapter);
1072 * if (!status) {
1073 * goto sxg_init_bad;
1077 DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
1078 sxg_config_pci(pcidev);
1079 DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
1081 DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
1082 sxg_init_driver();
1083 DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
1085 adapter->vendid = pci_tbl_entry->vendor;
1086 adapter->devid = pci_tbl_entry->device;
1087 adapter->subsysid = pci_tbl_entry->subdevice;
1088 adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
1089 adapter->functionnumber = (pcidev->devfn & 0x7);
1090 adapter->memorylength = pci_resource_len(pcidev, 0);
1091 adapter->irq = pcidev->irq;
1092 adapter->next_netdevice = head_netdevice;
1093 head_netdevice = netdev;
1094 adapter->port = 0; /*adapter->functionnumber; */
1096 /* Allocate memory and other resources */
1097 DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
1098 status = sxg_allocate_resources(adapter);
1099 DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
1100 __func__, status);
1101 if (status != STATUS_SUCCESS) {
1102 goto err_out_unmap;
1105 DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
1106 if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
1107 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
1108 __func__);
1109 sxg_read_config(adapter);
1110 status = sxg_adapter_set_hwaddr(adapter);
1111 } else {
1112 adapter->state = ADAPT_FAIL;
1113 adapter->linkstate = LINK_DOWN;
1114 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
1117 netdev->base_addr = (unsigned long)adapter->base_addr;
1118 netdev->irq = adapter->irq;
1119 netdev->open = sxg_entry_open;
1120 netdev->stop = sxg_entry_halt;
1121 netdev->hard_start_xmit = sxg_send_packets;
1122 netdev->do_ioctl = sxg_ioctl;
1123 netdev->change_mtu = sxg_change_mtu;
1124 #if XXXTODO
1125 netdev->set_mac_address = sxg_mac_set_address;
1126 #endif
1127 netdev->get_stats = sxg_get_stats;
1128 netdev->set_multicast_list = sxg_mcast_set_list;
1129 SET_ETHTOOL_OPS(netdev, &sxg_nic_ethtool_ops);
1130 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1131 err = sxg_set_interrupt_capability(adapter);
1132 if (err != STATUS_SUCCESS)
1133 DBG_ERROR("Cannot enable MSI-X capability\n");
1135 strcpy(netdev->name, "eth%d");
1136 /* strcpy(netdev->name, pci_name(pcidev)); */
1137 if ((err = register_netdev(netdev))) {
1138 DBG_ERROR("Cannot register net device, aborting. %s\n",
1139 netdev->name);
1140 goto err_out_unmap;
1143 netif_napi_add(netdev, &adapter->napi,
1144 sxg_poll, SXG_NETDEV_WEIGHT);
1145 DBG_ERROR
1146 ("sxg: %s addr 0x%lx, irq %d, MAC addr \
1147 %02X:%02X:%02X:%02X:%02X:%02X\n",
1148 netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
1149 netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
1150 netdev->dev_addr[4], netdev->dev_addr[5]);
1152 /* sxg_init_bad: */
1153 ASSERT(status == FALSE);
1154 /* sxg_free_adapter(adapter); */
1156 DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
1157 status, jiffies, smp_processor_id());
1158 return status;
1160 err_out_unmap:
1161 sxg_free_resources(adapter);
1163 err_out_free_mmio_region_2:
1165 mmio_start = pci_resource_start(pcidev, 2);
1166 mmio_len = pci_resource_len(pcidev, 2);
1167 release_mem_region(mmio_start, mmio_len);
1169 err_out_free_mmio_region_0:
1171 mmio_start = pci_resource_start(pcidev, 0);
1172 mmio_len = pci_resource_len(pcidev, 0);
1174 release_mem_region(mmio_start, mmio_len);
1176 err_out_exit_sxg_probe:
1178 DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
1179 smp_processor_id());
1181 pci_disable_device(pcidev);
1182 DBG_ERROR("sxg: %s deallocate device\n", __FUNCTION__);
1183 kfree(netdev);
1184 printk("Exit %s, Sxg driver loading failed..\n", __FUNCTION__);
1186 return -ENODEV;
1190 * LINE BASE Interrupt routines..
1192 * sxg_disable_interrupt
1194 * DisableInterrupt Handler
1196 * Arguments:
1198 * adapter: Our adapter structure
1200 * Return Value:
1201 * None.
1203 static void sxg_disable_interrupt(struct adapter_t *adapter)
1205 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
1206 adapter, adapter->InterruptsEnabled, 0, 0);
1207 /* For now, RSS is disabled with line based interrupts */
1208 ASSERT(adapter->RssEnabled == FALSE);
1209 /* Turn off interrupts by writing to the icr register. */
1210 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
1212 adapter->InterruptsEnabled = 0;
1214 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
1215 adapter, adapter->InterruptsEnabled, 0, 0);
1219 * sxg_enable_interrupt
1221 * EnableInterrupt Handler
1223 * Arguments:
1225 * adapter: Our adapter structure
1227 * Return Value:
1228 * None.
1230 static void sxg_enable_interrupt(struct adapter_t *adapter)
1232 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
1233 adapter, adapter->InterruptsEnabled, 0, 0);
1234 /* For now, RSS is disabled with line based interrupts */
1235 ASSERT(adapter->RssEnabled == FALSE);
1236 /* Turn on interrupts by writing to the icr register. */
1237 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
1239 adapter->InterruptsEnabled = 1;
1241 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
1242 adapter, 0, 0, 0);
1246 * sxg_isr - Process an line-based interrupt
1248 * Arguments:
1249 * Context - Our adapter structure
1250 * QueueDefault - Output parameter to queue to default CPU
1251 * TargetCpus - Output bitmap to schedule DPC's
1253 * Return Value: TRUE if our interrupt
1255 static irqreturn_t sxg_isr(int irq, void *dev_id)
1257 struct net_device *dev = (struct net_device *) dev_id;
1258 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1260 if(adapter->state != ADAPT_UP)
1261 return IRQ_NONE;
1262 adapter->Stats.NumInts++;
1263 if (adapter->Isr[0] == 0) {
1265 * The SLIC driver used to experience a number of spurious
1266 * interrupts due to the delay associated with the masking of
1267 * the interrupt (we'd bounce back in here). If we see that
1268 * again with Sahara,add a READ_REG of the Icr register after
1269 * the WRITE_REG below.
1271 adapter->Stats.FalseInts++;
1272 return IRQ_NONE;
1275 * Move the Isr contents and clear the value in
1276 * shared memory, and mask interrupts
1278 /* ASSERT(adapter->IsrDpcsPending == 0); */
1279 #if XXXTODO /* RSS Stuff */
1281 * If RSS is enabled and the ISR specifies SXG_ISR_EVENT, then
1282 * schedule DPC's based on event queues.
1284 if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
1285 for (i = 0;
1286 i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
1287 i++) {
1288 struct sxg_event_ring *EventRing =
1289 &adapter->EventRings[i];
1290 struct sxg_event *Event =
1291 &EventRing->Ring[adapter->NextEvent[i]];
1292 unsigned char Cpu =
1293 adapter->RssSystemInfo->RssIdToCpu[i];
1294 if (Event->Status & EVENT_STATUS_VALID) {
1295 adapter->IsrDpcsPending++;
1296 CpuMask |= (1 << Cpu);
1301 * Now, either schedule the CPUs specified by the CpuMask,
1302 * or queue default
1304 if (CpuMask) {
1305 *QueueDefault = FALSE;
1306 } else {
1307 adapter->IsrDpcsPending = 1;
1308 *QueueDefault = TRUE;
1310 *TargetCpus = CpuMask;
1311 #endif
1312 sxg_interrupt(adapter);
1314 return IRQ_HANDLED;
1317 static void sxg_interrupt(struct adapter_t *adapter)
1319 WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
1321 if (napi_schedule_prep(&adapter->napi)) {
1322 __napi_schedule(&adapter->napi);
1326 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
1327 int budget)
1329 /* unsigned char RssId = 0; */
1330 u32 NewIsr;
1331 int sxg_napi_continue = 1;
1332 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
1333 adapter, adapter->IsrCopy[0], 0, 0);
1334 /* For now, RSS is disabled with line based interrupts */
1335 ASSERT(adapter->RssEnabled == FALSE);
1337 adapter->IsrCopy[0] = adapter->Isr[0];
1338 adapter->Isr[0] = 0;
1340 /* Always process the event queue. */
1341 while (sxg_napi_continue)
1343 sxg_process_event_queue(adapter,
1344 (adapter->RssEnabled ? /*RssId */ 0 : 0),
1345 &sxg_napi_continue, work_done, budget);
1348 #if XXXTODO /* RSS stuff */
1349 if (--adapter->IsrDpcsPending) {
1350 /* We're done. */
1351 ASSERT(adapter->RssEnabled);
1352 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
1353 adapter, 0, 0, 0);
1354 return;
1356 #endif
1357 /* Last (or only) DPC processes the ISR and clears the interrupt. */
1358 NewIsr = sxg_process_isr(adapter, 0);
1359 /* Reenable interrupts */
1360 adapter->IsrCopy[0] = 0;
1361 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
1362 adapter, NewIsr, 0, 0);
1364 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
1365 adapter, 0, 0, 0);
1367 static int sxg_poll(struct napi_struct *napi, int budget)
1369 struct adapter_t *adapter = container_of(napi, struct adapter_t, napi);
1370 int work_done = 0;
1372 sxg_handle_interrupt(adapter, &work_done, budget);
1374 if (work_done < budget) {
1375 napi_complete(napi);
1376 WRITE_REG(adapter->UcodeRegs[0].Isr, 0, TRUE);
1378 return work_done;
1382 * sxg_process_isr - Process an interrupt. Called from the line-based and
1383 * message based interrupt DPC routines
1385 * Arguments:
1386 * adapter - Our adapter structure
1387 * Queue - The ISR that needs processing
1389 * Return Value:
1390 * None
1392 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
1394 u32 Isr = adapter->IsrCopy[MessageId];
1395 u32 NewIsr = 0;
1397 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
1398 adapter, Isr, 0, 0);
1400 /* Error */
1401 if (Isr & SXG_ISR_ERR) {
1402 if (Isr & SXG_ISR_PDQF) {
1403 adapter->Stats.PdqFull++;
1404 DBG_ERROR("%s: SXG_ISR_ERR PDQF!!\n", __func__);
1406 /* No host buffer */
1407 if (Isr & SXG_ISR_RMISS) {
1409 * There is a bunch of code in the SLIC driver which
1410 * attempts to process more receive events per DPC
1411 * if we start to fall behind. We'll probablyd
1412 * need to do something similar here, but hold
1413 * off for now. I don't want to make the code more
1414 * complicated than strictly needed.
1416 adapter->stats.rx_missed_errors++;
1417 if (adapter->stats.rx_missed_errors< 5) {
1418 DBG_ERROR("%s: SXG_ISR_ERR RMISS!!\n",
1419 __func__);
1422 /* Card crash */
1423 if (Isr & SXG_ISR_DEAD) {
1425 * Set aside the crash info and set the adapter state
1426 * to RESET
1428 adapter->CrashCpu = (unsigned char)
1429 ((Isr & SXG_ISR_CPU) >> SXG_ISR_CPU_SHIFT);
1430 adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
1431 adapter->Dead = TRUE;
1432 DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
1433 adapter->CrashLocation, adapter->CrashCpu);
1435 /* Event ring full */
1436 if (Isr & SXG_ISR_ERFULL) {
1438 * Same issue as RMISS, really. This means the
1439 * host is falling behind the card. Need to increase
1440 * event ring size, process more events per interrupt,
1441 * and/or reduce/remove interrupt aggregation.
1443 adapter->Stats.EventRingFull++;
1444 DBG_ERROR("%s: SXG_ISR_ERR EVENT RING FULL!!\n",
1445 __func__);
1447 /* Transmit drop - no DRAM buffers or XMT error */
1448 if (Isr & SXG_ISR_XDROP) {
1449 DBG_ERROR("%s: SXG_ISR_ERR XDROP!!\n", __func__);
1452 /* Slowpath send completions */
1453 if (Isr & SXG_ISR_SPSEND) {
1454 sxg_complete_slow_send(adapter);
1456 /* Dump */
1457 if (Isr & SXG_ISR_UPC) {
1458 /* Maybe change when debug is added.. */
1459 // ASSERT(adapter->DumpCmdRunning);
1460 adapter->DumpCmdRunning = FALSE;
1462 /* Link event */
1463 if (Isr & SXG_ISR_LINK) {
1464 sxg_link_event(adapter);
1466 /* Debug - breakpoint hit */
1467 if (Isr & SXG_ISR_BREAK) {
1469 * At the moment AGDB isn't written to support interactive
1470 * debug sessions. When it is, this interrupt will be used to
1471 * signal AGDB that it has hit a breakpoint. For now, ASSERT.
1473 ASSERT(0);
1475 /* Heartbeat response */
1476 if (Isr & SXG_ISR_PING) {
1477 adapter->PingOutstanding = FALSE;
1479 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
1480 adapter, Isr, NewIsr, 0);
1482 return (NewIsr);
1486 * sxg_rcv_checksum - Set the checksum for received packet
1488 * Arguements:
1489 * @adapter - Adapter structure on which packet is received
1490 * @skb - Packet which is receieved
1491 * @Event - Event read from hardware
1494 void sxg_rcv_checksum(struct adapter_t *adapter, struct sk_buff *skb,
1495 struct sxg_event *Event)
1497 skb->ip_summed = CHECKSUM_NONE;
1498 if (likely(adapter->flags & SXG_RCV_IP_CSUM_ENABLED)) {
1499 if (likely(adapter->flags & SXG_RCV_TCP_CSUM_ENABLED)
1500 && (Event->Status & EVENT_STATUS_TCPIP)) {
1501 if(!(Event->Status & EVENT_STATUS_TCPBAD))
1502 skb->ip_summed = CHECKSUM_UNNECESSARY;
1503 if(!(Event->Status & EVENT_STATUS_IPBAD))
1504 skb->ip_summed = CHECKSUM_UNNECESSARY;
1505 } else if(Event->Status & EVENT_STATUS_IPONLY) {
1506 if(!(Event->Status & EVENT_STATUS_IPBAD))
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
1513 * sxg_process_event_queue - Process our event queue
1515 * Arguments:
1516 * - adapter - Adapter structure
1517 * - RssId - The event queue requiring processing
1519 * Return Value:
1520 * None.
1522 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
1523 int *sxg_napi_continue, int *work_done, int budget)
1525 struct sxg_event_ring *EventRing = &adapter->EventRings[RssId];
1526 struct sxg_event *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1527 u32 EventsProcessed = 0, Batches = 0;
1528 struct sk_buff *skb;
1529 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1530 struct sk_buff *prev_skb = NULL;
1531 struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
1532 u32 Index;
1533 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1534 #endif
1535 u32 ReturnStatus = 0;
1536 int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
1538 ASSERT((adapter->State == SXG_STATE_RUNNING) ||
1539 (adapter->State == SXG_STATE_PAUSING) ||
1540 (adapter->State == SXG_STATE_PAUSED) ||
1541 (adapter->State == SXG_STATE_HALTING));
1543 * We may still have unprocessed events on the queue if
1544 * the card crashed. Don't process them.
1546 if (adapter->Dead) {
1547 return (0);
1550 * In theory there should only be a single processor that
1551 * accesses this queue, and only at interrupt-DPC time. So/
1552 * we shouldn't need a lock for any of this.
1554 while (Event->Status & EVENT_STATUS_VALID) {
1555 (*sxg_napi_continue) = 1;
1556 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
1557 Event, Event->Code, Event->Status,
1558 adapter->NextEvent);
1559 switch (Event->Code) {
1560 case EVENT_CODE_BUFFERS:
1561 /* struct sxg_ring_info Head & Tail == unsigned char */
1562 ASSERT(!(Event->CommandIndex & 0xFF00));
1563 sxg_complete_descriptor_blocks(adapter,
1564 Event->CommandIndex);
1565 break;
1566 case EVENT_CODE_SLOWRCV:
1567 (*work_done)++;
1568 --adapter->RcvBuffersOnCard;
1569 if ((skb = sxg_slow_receive(adapter, Event))) {
1570 u32 rx_bytes;
1571 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1572 /* Add it to our indication list */
1573 SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
1574 IndicationList, num_skbs);
1576 * Linux, we just pass up each skb to the
1577 * protocol above at this point, there is no
1578 * capability of an indication list.
1580 #else
1581 /* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
1582 /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
1583 rx_bytes = Event->Length;
1584 adapter->stats.rx_packets++;
1585 adapter->stats.rx_bytes += rx_bytes;
1586 sxg_rcv_checksum(adapter, skb, Event);
1587 skb->dev = adapter->netdev;
1588 netif_receive_skb(skb);
1589 #endif
1591 break;
1592 default:
1593 DBG_ERROR("%s: ERROR Invalid EventCode %d\n",
1594 __func__, Event->Code);
1595 /* ASSERT(0); */
1598 * See if we need to restock card receive buffers.
1599 * There are two things to note here:
1600 * First - This test is not SMP safe. The
1601 * adapter->BuffersOnCard field is protected via atomic
1602 * interlocked calls, but we do not protect it with respect
1603 * to these tests. The only way to do that is with a lock,
1604 * and I don't want to grab a lock every time we adjust the
1605 * BuffersOnCard count. Instead, we allow the buffer
1606 * replenishment to be off once in a while. The worst that
1607 * can happen is the card is given on more-or-less descriptor
1608 * block than the arbitrary value we've chosen. No big deal
1609 * In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard
1610 * is adjusted.
1611 * Second - We expect this test to rarely
1612 * evaluate to true. We attempt to refill descriptor blocks
1613 * as they are returned to us (sxg_complete_descriptor_blocks)
1614 * so The only time this should evaluate to true is when
1615 * sxg_complete_descriptor_blocks failed to allocate
1616 * receive buffers.
1618 if (adapter->JumboEnabled)
1619 sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
1621 if (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
1622 sxg_stock_rcv_buffers(adapter);
1625 * It's more efficient to just set this to zero.
1626 * But clearing the top bit saves potential debug info...
1628 Event->Status &= ~EVENT_STATUS_VALID;
1629 /* Advance to the next event */
1630 SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
1631 Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1632 EventsProcessed++;
1633 if (EventsProcessed == EVENT_RING_BATCH) {
1634 /* Release a batch of events back to the card */
1635 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1636 EVENT_RING_BATCH, FALSE);
1637 EventsProcessed = 0;
1639 * If we've processed our batch limit, break out of the
1640 * loop and return SXG_ISR_EVENT to arrange for us to
1641 * be called again
1643 if (Batches++ == EVENT_BATCH_LIMIT) {
1644 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1645 TRACE_NOISY, "EvtLimit", Batches,
1646 adapter->NextEvent, 0, 0);
1647 ReturnStatus = SXG_ISR_EVENT;
1648 break;
1651 if (*work_done >= budget) {
1652 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1653 EventsProcessed, FALSE);
1654 EventsProcessed = 0;
1655 (*sxg_napi_continue) = 0;
1656 break;
1659 if (!(Event->Status & EVENT_STATUS_VALID))
1660 (*sxg_napi_continue) = 0;
1662 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1663 /* Indicate any received dumb-nic frames */
1664 SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
1665 #endif
1666 /* Release events back to the card. */
1667 if (EventsProcessed) {
1668 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1669 EventsProcessed, FALSE);
1671 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
1672 Batches, EventsProcessed, adapter->NextEvent, num_skbs);
1674 return (ReturnStatus);
1678 * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1680 * Arguments -
1681 * adapter - A pointer to our adapter structure
1682 * Return
1683 * None
1685 static void sxg_complete_slow_send(struct adapter_t *adapter)
1687 struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
1688 struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
1689 u32 *ContextType;
1690 struct sxg_cmd *XmtCmd;
1691 unsigned long flags = 0;
1692 unsigned long sgl_flags = 0;
1693 unsigned int processed_count = 0;
1696 * NOTE - This lock is dropped and regrabbed in this loop.
1697 * This means two different processors can both be running/
1698 * through this loop. Be *very* careful.
1700 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1702 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
1703 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1705 while ((XmtRingInfo->Tail != *adapter->XmtRingZeroIndex)
1706 && processed_count++ < SXG_COMPLETE_SLOW_SEND_LIMIT) {
1708 * Locate the current Cmd (ring descriptor entry), and
1709 * associated SGL, and advance the tail
1711 SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
1712 ASSERT(ContextType);
1713 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1714 XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
1715 /* Clear the SGL field. */
1716 XmtCmd->Sgl = 0;
1718 switch (*ContextType) {
1719 case SXG_SGL_DUMB:
1721 struct sk_buff *skb;
1722 struct sxg_scatter_gather *SxgSgl =
1723 (struct sxg_scatter_gather *)ContextType;
1724 dma64_addr_t FirstSgeAddress;
1725 u32 FirstSgeLength;
1727 /* Dumb-nic send. Command context is the dumb-nic SGL */
1728 skb = (struct sk_buff *)ContextType;
1729 skb = SxgSgl->DumbPacket;
1730 FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress;
1731 FirstSgeLength = XmtCmd->Buffer.FirstSgeLength;
1732 /* Complete the send */
1733 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1734 TRACE_IMPORTANT, "DmSndCmp", skb, 0,
1735 0, 0);
1736 ASSERT(adapter->Stats.XmtQLen);
1738 * Now drop the lock and complete the send
1739 * back to Microsoft. We need to drop the lock
1740 * because Microsoft can come back with a
1741 * chimney send, which results in a double trip
1742 * in SxgTcpOuput
1744 spin_unlock_irqrestore(
1745 &adapter->XmtZeroLock, flags);
1747 SxgSgl->DumbPacket = NULL;
1748 SXG_COMPLETE_DUMB_SEND(adapter, skb,
1749 FirstSgeAddress,
1750 FirstSgeLength);
1751 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
1752 /* and reacquire.. */
1753 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1755 break;
1756 default:
1757 ASSERT(0);
1760 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
1761 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1762 adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1766 * sxg_slow_receive
1768 * Arguments -
1769 * adapter - A pointer to our adapter structure
1770 * Event - Receive event
1772 * Return - skb
1774 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
1775 struct sxg_event *Event)
1777 u32 BufferSize = adapter->ReceiveBufferSize;
1778 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1779 struct sk_buff *Packet;
1780 static int read_counter = 0;
1782 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *) Event->HostHandle;
1783 if(read_counter++ & 0x100)
1785 sxg_collect_statistics(adapter);
1786 read_counter = 0;
1788 ASSERT(RcvDataBufferHdr);
1789 ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
1790 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
1791 RcvDataBufferHdr, RcvDataBufferHdr->State,
1792 /*RcvDataBufferHdr->VirtualAddress*/ 0);
1793 /* Drop rcv frames in non-running state */
1794 switch (adapter->State) {
1795 case SXG_STATE_RUNNING:
1796 break;
1797 case SXG_STATE_PAUSING:
1798 case SXG_STATE_PAUSED:
1799 case SXG_STATE_HALTING:
1800 goto drop;
1801 default:
1802 ASSERT(0);
1803 goto drop;
1807 * memcpy(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1808 * RcvDataBufferHdr->VirtualAddress, Event->Length);
1811 /* Change buffer state to UPSTREAM */
1812 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
1813 if (Event->Status & EVENT_STATUS_RCVERR) {
1814 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
1815 Event, Event->Status, Event->HostHandle, 0);
1816 sxg_process_rcv_error(adapter, *(u32 *)
1817 SXG_RECEIVE_DATA_LOCATION
1818 (RcvDataBufferHdr));
1819 goto drop;
1821 #if XXXTODO /* VLAN stuff */
1822 /* If there's a VLAN tag, extract it and validate it */
1823 if (((struct ether_header *)
1824 (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->EtherType
1825 == ETHERTYPE_VLAN) {
1826 if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
1827 STATUS_SUCCESS) {
1828 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
1829 "BadVlan", Event,
1830 SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1831 Event->Length, 0);
1832 goto drop;
1835 #endif
1836 /* Dumb-nic frame. See if it passes our mac filter and update stats */
1838 if (!sxg_mac_filter(adapter,
1839 (struct ether_header *)(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)),
1840 Event->Length)) {
1841 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
1842 Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1843 Event->Length, 0);
1844 goto drop;
1847 Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
1848 SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
1849 Packet->protocol = eth_type_trans(Packet, adapter->netdev);
1851 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
1852 RcvDataBufferHdr, Packet, Event->Length, 0);
1853 /* Lastly adjust the receive packet length. */
1854 RcvDataBufferHdr->SxgDumbRcvPacket = NULL;
1855 RcvDataBufferHdr->PhysicalAddress = (dma_addr_t)NULL;
1856 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
1857 if (RcvDataBufferHdr->skb)
1859 spin_lock(&adapter->RcvQLock);
1860 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1861 // adapter->RcvBuffersOnCard ++;
1862 spin_unlock(&adapter->RcvQLock);
1864 return (Packet);
1866 drop:
1867 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
1868 RcvDataBufferHdr, Event->Length, 0, 0);
1869 adapter->stats.rx_dropped++;
1870 // adapter->Stats.RcvDiscards++;
1871 spin_lock(&adapter->RcvQLock);
1872 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1873 spin_unlock(&adapter->RcvQLock);
1874 return (NULL);
1878 * sxg_process_rcv_error - process receive error and update
1879 * stats
1881 * Arguments:
1882 * adapter - Adapter structure
1883 * ErrorStatus - 4-byte receive error status
1885 * Return Value : None
1887 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
1889 u32 Error;
1891 adapter->stats.rx_errors++;
1893 if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
1894 Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
1895 switch (Error) {
1896 case SXG_RCV_STATUS_TRANSPORT_CSUM:
1897 adapter->Stats.TransportCsum++;
1898 break;
1899 case SXG_RCV_STATUS_TRANSPORT_UFLOW:
1900 adapter->Stats.TransportUflow++;
1901 break;
1902 case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
1903 adapter->Stats.TransportHdrLen++;
1904 break;
1907 if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
1908 Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
1909 switch (Error) {
1910 case SXG_RCV_STATUS_NETWORK_CSUM:
1911 adapter->Stats.NetworkCsum++;
1912 break;
1913 case SXG_RCV_STATUS_NETWORK_UFLOW:
1914 adapter->Stats.NetworkUflow++;
1915 break;
1916 case SXG_RCV_STATUS_NETWORK_HDRLEN:
1917 adapter->Stats.NetworkHdrLen++;
1918 break;
1921 if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
1922 adapter->Stats.Parity++;
1924 if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
1925 Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
1926 switch (Error) {
1927 case SXG_RCV_STATUS_LINK_PARITY:
1928 adapter->Stats.LinkParity++;
1929 break;
1930 case SXG_RCV_STATUS_LINK_EARLY:
1931 adapter->Stats.LinkEarly++;
1932 break;
1933 case SXG_RCV_STATUS_LINK_BUFOFLOW:
1934 adapter->Stats.LinkBufOflow++;
1935 break;
1936 case SXG_RCV_STATUS_LINK_CODE:
1937 adapter->Stats.LinkCode++;
1938 break;
1939 case SXG_RCV_STATUS_LINK_DRIBBLE:
1940 adapter->Stats.LinkDribble++;
1941 break;
1942 case SXG_RCV_STATUS_LINK_CRC:
1943 adapter->Stats.LinkCrc++;
1944 break;
1945 case SXG_RCV_STATUS_LINK_OFLOW:
1946 adapter->Stats.LinkOflow++;
1947 break;
1948 case SXG_RCV_STATUS_LINK_UFLOW:
1949 adapter->Stats.LinkUflow++;
1950 break;
1956 * sxg_mac_filter
1958 * Arguments:
1959 * adapter - Adapter structure
1960 * pether - Ethernet header
1961 * length - Frame length
1963 * Return Value : TRUE if the frame is to be allowed
1965 static bool sxg_mac_filter(struct adapter_t *adapter,
1966 struct ether_header *EtherHdr, ushort length)
1968 bool EqualAddr;
1969 struct net_device *dev = adapter->netdev;
1971 if (SXG_MULTICAST_PACKET(EtherHdr)) {
1972 if (SXG_BROADCAST_PACKET(EtherHdr)) {
1973 /* broadcast */
1974 if (adapter->MacFilter & MAC_BCAST) {
1975 adapter->Stats.DumbRcvBcastPkts++;
1976 adapter->Stats.DumbRcvBcastBytes += length;
1977 return (TRUE);
1979 } else {
1980 /* multicast */
1981 if (adapter->MacFilter & MAC_ALLMCAST) {
1982 adapter->Stats.DumbRcvMcastPkts++;
1983 adapter->Stats.DumbRcvMcastBytes += length;
1984 return (TRUE);
1986 if (adapter->MacFilter & MAC_MCAST) {
1987 struct dev_mc_list *mclist = dev->mc_list;
1988 while (mclist) {
1989 ETHER_EQ_ADDR(mclist->da_addr,
1990 EtherHdr->ether_dhost,
1991 EqualAddr);
1992 if (EqualAddr) {
1993 adapter->Stats.
1994 DumbRcvMcastPkts++;
1995 adapter->Stats.
1996 DumbRcvMcastBytes += length;
1997 return (TRUE);
1999 mclist = mclist->next;
2003 } else if (adapter->MacFilter & MAC_DIRECTED) {
2005 * Not broadcast or multicast. Must be directed at us or
2006 * the card is in promiscuous mode. Either way, consider it
2007 * ours if MAC_DIRECTED is set
2009 adapter->Stats.DumbRcvUcastPkts++;
2010 adapter->Stats.DumbRcvUcastBytes += length;
2011 return (TRUE);
2013 if (adapter->MacFilter & MAC_PROMISC) {
2014 /* Whatever it is, keep it. */
2015 return (TRUE);
2017 return (FALSE);
2020 static int sxg_register_interrupt(struct adapter_t *adapter)
2022 if (!adapter->intrregistered) {
2023 int retval;
2025 DBG_ERROR
2026 ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
2027 __func__, adapter, adapter->netdev->irq, NR_IRQS);
2029 spin_unlock_irqrestore(&sxg_global.driver_lock,
2030 sxg_global.flags);
2032 retval = request_irq(adapter->netdev->irq,
2033 &sxg_isr,
2034 IRQF_SHARED,
2035 adapter->netdev->name, adapter->netdev);
2037 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2039 if (retval) {
2040 DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
2041 adapter->netdev->name, retval);
2042 return (retval);
2044 adapter->intrregistered = 1;
2045 adapter->IntRegistered = TRUE;
2046 /* Disable RSS with line-based interrupts */
2047 adapter->RssEnabled = FALSE;
2048 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
2049 __func__, adapter, adapter->netdev->irq);
2051 return (STATUS_SUCCESS);
2054 static void sxg_deregister_interrupt(struct adapter_t *adapter)
2056 DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
2057 #if XXXTODO
2058 slic_init_cleanup(adapter);
2059 #endif
2060 memset(&adapter->stats, 0, sizeof(struct net_device_stats));
2061 adapter->error_interrupts = 0;
2062 adapter->rcv_interrupts = 0;
2063 adapter->xmit_interrupts = 0;
2064 adapter->linkevent_interrupts = 0;
2065 adapter->upr_interrupts = 0;
2066 adapter->num_isrs = 0;
2067 adapter->xmit_completes = 0;
2068 adapter->rcv_broadcasts = 0;
2069 adapter->rcv_multicasts = 0;
2070 adapter->rcv_unicasts = 0;
2071 DBG_ERROR("sxg: %s EXIT\n", __func__);
2075 * sxg_if_init
2077 * Perform initialization of our slic interface.
2080 static int sxg_if_init(struct adapter_t *adapter)
2082 struct net_device *dev = adapter->netdev;
2083 int status = 0;
2085 DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d] flags[%x]\n",
2086 __func__, adapter->netdev->name,
2087 adapter->state,
2088 adapter->linkstate, dev->flags);
2090 /* adapter should be down at this point */
2091 if (adapter->state != ADAPT_DOWN) {
2092 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
2093 return (-EIO);
2095 ASSERT(adapter->linkstate == LINK_DOWN);
2097 adapter->devflags_prev = dev->flags;
2098 adapter->MacFilter = MAC_DIRECTED;
2099 if (dev->flags) {
2100 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
2101 adapter->netdev->name);
2102 if (dev->flags & IFF_BROADCAST) {
2103 adapter->MacFilter |= MAC_BCAST;
2104 DBG_ERROR("BCAST ");
2106 if (dev->flags & IFF_PROMISC) {
2107 adapter->MacFilter |= MAC_PROMISC;
2108 DBG_ERROR("PROMISC ");
2110 if (dev->flags & IFF_ALLMULTI) {
2111 adapter->MacFilter |= MAC_ALLMCAST;
2112 DBG_ERROR("ALL_MCAST ");
2114 if (dev->flags & IFF_MULTICAST) {
2115 adapter->MacFilter |= MAC_MCAST;
2116 DBG_ERROR("MCAST ");
2118 DBG_ERROR("\n");
2120 status = sxg_register_intr(adapter);
2121 if (status != STATUS_SUCCESS) {
2122 DBG_ERROR("sxg_if_init: sxg_register_intr FAILED %x\n",
2123 status);
2124 sxg_deregister_interrupt(adapter);
2125 return (status);
2128 adapter->state = ADAPT_UP;
2130 /* clear any pending events, then enable interrupts */
2131 DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
2133 return (STATUS_SUCCESS);
2136 void sxg_set_interrupt_aggregation(struct adapter_t *adapter)
2139 * Top bit disables aggregation on xmt (SXG_AGG_XMT_DISABLE).
2140 * Make sure Max is less than 0x8000.
2142 adapter->max_aggregation = SXG_MAX_AGG_DEFAULT;
2143 adapter->min_aggregation = SXG_MIN_AGG_DEFAULT;
2144 WRITE_REG(adapter->UcodeRegs[0].Aggregation,
2145 ((adapter->max_aggregation << SXG_MAX_AGG_SHIFT) |
2146 adapter->min_aggregation),
2147 TRUE);
2150 static int sxg_entry_open(struct net_device *dev)
2152 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2153 int status;
2154 static int turn;
2155 int sxg_initial_rcv_data_buffers = SXG_INITIAL_RCV_DATA_BUFFERS;
2156 int i;
2158 if (adapter->JumboEnabled == TRUE) {
2159 sxg_initial_rcv_data_buffers =
2160 SXG_INITIAL_JUMBO_RCV_DATA_BUFFERS;
2161 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo,
2162 SXG_JUMBO_RCV_RING_SIZE);
2166 * Allocate receive data buffers. We allocate a block of buffers and
2167 * a corresponding descriptor block at once. See sxghw.h:SXG_RCV_BLOCK
2170 for (i = 0; i < sxg_initial_rcv_data_buffers;
2171 i += SXG_RCV_DESCRIPTORS_PER_BLOCK)
2173 status = sxg_allocate_buffer_memory(adapter,
2174 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
2175 SXG_BUFFER_TYPE_RCV);
2176 if (status != STATUS_SUCCESS)
2177 return status;
2180 * NBL resource allocation can fail in the 'AllocateComplete' routine,
2181 * which doesn't return status. Make sure we got the number of buffers
2182 * we requested
2185 if (adapter->FreeRcvBufferCount < sxg_initial_rcv_data_buffers) {
2186 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
2187 adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
2189 return (STATUS_RESOURCES);
2192 * The microcode expects it to be downloaded on every open.
2194 DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __FUNCTION__);
2195 if (sxg_download_microcode(adapter, SXG_UCODE_SYSTEM)) {
2196 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
2197 __FUNCTION__);
2198 sxg_read_config(adapter);
2199 } else {
2200 adapter->state = ADAPT_FAIL;
2201 adapter->linkstate = LINK_DOWN;
2202 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n",
2203 status);
2205 msleep(5);
2207 if (turn) {
2208 sxg_second_open(adapter->netdev);
2210 return STATUS_SUCCESS;
2213 turn++;
2215 ASSERT(adapter);
2216 DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
2217 adapter->activated);
2218 DBG_ERROR
2219 ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
2220 __func__, adapter->netdev->name, jiffies, smp_processor_id(),
2221 adapter->netdev, adapter, adapter->port);
2223 netif_stop_queue(adapter->netdev);
2225 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2226 if (!adapter->activated) {
2227 sxg_global.num_sxg_ports_active++;
2228 adapter->activated = 1;
2230 /* Initialize the adapter */
2231 DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
2232 status = sxg_initialize_adapter(adapter);
2233 DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
2234 __func__, status);
2236 if (status == STATUS_SUCCESS) {
2237 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
2238 status = sxg_if_init(adapter);
2239 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
2240 status);
2243 if (status != STATUS_SUCCESS) {
2244 if (adapter->activated) {
2245 sxg_global.num_sxg_ports_active--;
2246 adapter->activated = 0;
2248 spin_unlock_irqrestore(&sxg_global.driver_lock,
2249 sxg_global.flags);
2250 return (status);
2252 DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
2253 sxg_set_interrupt_aggregation(adapter);
2254 napi_enable(&adapter->napi);
2256 /* Enable interrupts */
2257 SXG_ENABLE_ALL_INTERRUPTS(adapter);
2259 DBG_ERROR("sxg: %s EXIT\n", __func__);
2261 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2262 return STATUS_SUCCESS;
2265 int sxg_second_open(struct net_device * dev)
2267 struct adapter_t *adapter = (struct adapter_t*) netdev_priv(dev);
2268 int status = 0;
2270 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2271 netif_start_queue(adapter->netdev);
2272 adapter->state = ADAPT_UP;
2273 adapter->linkstate = LINK_UP;
2275 status = sxg_initialize_adapter(adapter);
2276 sxg_set_interrupt_aggregation(adapter);
2277 napi_enable(&adapter->napi);
2278 /* Re-enable interrupts */
2279 SXG_ENABLE_ALL_INTERRUPTS(adapter);
2281 netif_carrier_on(dev);
2282 sxg_register_interrupt(adapter);
2283 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2284 return (STATUS_SUCCESS);
2288 static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
2290 u32 mmio_start = 0;
2291 u32 mmio_len = 0;
2293 struct net_device *dev = pci_get_drvdata(pcidev);
2294 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2296 flush_scheduled_work();
2298 /* Deallocate Resources */
2299 unregister_netdev(dev);
2300 sxg_reset_interrupt_capability(adapter);
2301 sxg_free_resources(adapter);
2303 ASSERT(adapter);
2305 mmio_start = pci_resource_start(pcidev, 0);
2306 mmio_len = pci_resource_len(pcidev, 0);
2308 DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __FUNCTION__,
2309 mmio_start, mmio_len);
2310 release_mem_region(mmio_start, mmio_len);
2312 mmio_start = pci_resource_start(pcidev, 2);
2313 mmio_len = pci_resource_len(pcidev, 2);
2315 DBG_ERROR("sxg: %s rel_region(2) start[%x] len[%x]\n", __FUNCTION__,
2316 mmio_start, mmio_len);
2317 release_mem_region(mmio_start, mmio_len);
2319 pci_disable_device(pcidev);
2321 DBG_ERROR("sxg: %s deallocate device\n", __func__);
2322 kfree(dev);
2323 DBG_ERROR("sxg: %s EXIT\n", __func__);
2326 static int sxg_entry_halt(struct net_device *dev)
2328 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2329 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2330 int i;
2331 u32 RssIds, IsrCount;
2332 unsigned long flags;
2334 RssIds = SXG_RSS_CPU_COUNT(adapter);
2335 IsrCount = adapter->msi_enabled ? RssIds : 1;
2337 napi_disable(&adapter->napi);
2338 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2339 DBG_ERROR("sxg: %s (%s) ENTER\n", __func__, dev->name);
2341 WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 0, true);
2342 netif_stop_queue(adapter->netdev);
2343 adapter->state = ADAPT_DOWN;
2344 adapter->linkstate = LINK_DOWN;
2345 adapter->devflags_prev = 0;
2346 DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
2347 __func__, dev->name, adapter, adapter->state);
2349 /* Disable interrupts */
2350 SXG_DISABLE_ALL_INTERRUPTS(adapter);
2352 netif_carrier_off(dev);
2353 spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2355 sxg_deregister_interrupt(adapter);
2356 WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
2357 mdelay(5000);
2358 spin_lock(&adapter->RcvQLock);
2359 /* Free all the blocks and the buffers, moved from remove() routine */
2360 if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
2361 sxg_free_rcvblocks(adapter);
2365 InitializeListHead(&adapter->FreeRcvBuffers);
2366 InitializeListHead(&adapter->FreeRcvBlocks);
2367 InitializeListHead(&adapter->AllRcvBlocks);
2368 InitializeListHead(&adapter->FreeSglBuffers);
2369 InitializeListHead(&adapter->AllSglBuffers);
2371 adapter->FreeRcvBufferCount = 0;
2372 adapter->FreeRcvBlockCount = 0;
2373 adapter->AllRcvBlockCount = 0;
2374 adapter->RcvBuffersOnCard = 0;
2375 adapter->PendingRcvCount = 0;
2377 memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
2378 memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
2379 memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
2380 for (i = 0; i < SXG_MAX_RING_SIZE; i++)
2381 adapter->RcvRingZeroInfo.Context[i] = NULL;
2382 SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
2383 SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
2385 spin_unlock(&adapter->RcvQLock);
2387 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2388 adapter->AllSglBufferCount = 0;
2389 adapter->FreeSglBufferCount = 0;
2390 adapter->PendingXmtCount = 0;
2391 memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
2392 memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
2393 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2395 for (i = 0; i < SXG_MAX_RSS; i++) {
2396 adapter->NextEvent[i] = 0;
2398 atomic_set(&adapter->pending_allocations, 0);
2399 adapter->intrregistered = 0;
2400 sxg_remove_isr(adapter);
2401 DBG_ERROR("sxg: %s (%s) EXIT\n", __FUNCTION__, dev->name);
2402 return (STATUS_SUCCESS);
2405 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2407 ASSERT(rq);
2408 /* DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);*/
2409 switch (cmd) {
2410 case SIOCSLICSETINTAGG:
2412 /* struct adapter_t *adapter = (struct adapter_t *)
2413 * netdev_priv(dev);
2415 u32 data[7];
2416 u32 intagg;
2418 if (copy_from_user(data, rq->ifr_data, 28)) {
2419 DBG_ERROR("copy_from_user FAILED getting \
2420 initial params\n");
2421 return -EFAULT;
2423 intagg = data[0];
2424 printk(KERN_EMERG
2425 "%s: set interrupt aggregation to %d\n",
2426 __func__, intagg);
2427 return 0;
2430 default:
2431 /* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
2432 return -EOPNOTSUPP;
2434 return 0;
2437 #define NORMAL_ETHFRAME 0
2440 * sxg_send_packets - Send a skb packet
2442 * Arguments:
2443 * skb - The packet to send
2444 * dev - Our linux net device that refs our adapter
2446 * Return:
2447 * 0 regardless of outcome XXXTODO refer to e1000 driver
2449 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev)
2451 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2452 u32 status = STATUS_SUCCESS;
2455 * DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __FUNCTION__,
2456 * skb);
2459 /* Check the adapter state */
2460 switch (adapter->State) {
2461 case SXG_STATE_INITIALIZING:
2462 case SXG_STATE_HALTED:
2463 case SXG_STATE_SHUTDOWN:
2464 ASSERT(0); /* unexpected */
2465 /* fall through */
2466 case SXG_STATE_RESETTING:
2467 case SXG_STATE_SLEEP:
2468 case SXG_STATE_BOOTDIAG:
2469 case SXG_STATE_DIAG:
2470 case SXG_STATE_HALTING:
2471 status = STATUS_FAILURE;
2472 break;
2473 case SXG_STATE_RUNNING:
2474 if (adapter->LinkState != SXG_LINK_UP) {
2475 status = STATUS_FAILURE;
2477 break;
2478 default:
2479 ASSERT(0);
2480 status = STATUS_FAILURE;
2482 if (status != STATUS_SUCCESS) {
2483 goto xmit_fail;
2485 /* send a packet */
2486 status = sxg_transmit_packet(adapter, skb);
2487 if (status == STATUS_SUCCESS) {
2488 goto xmit_done;
2491 xmit_fail:
2492 /* reject & complete all the packets if they cant be sent */
2493 if (status != STATUS_SUCCESS) {
2494 #if XXXTODO
2495 /* sxg_send_packets_fail(adapter, skb, status); */
2496 #else
2497 SXG_DROP_DUMB_SEND(adapter, skb);
2498 adapter->stats.tx_dropped++;
2499 return NETDEV_TX_BUSY;
2500 #endif
2502 DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
2503 status);
2505 xmit_done:
2506 return NETDEV_TX_OK;
2510 * sxg_transmit_packet
2512 * This function transmits a single packet.
2514 * Arguments -
2515 * adapter - Pointer to our adapter structure
2516 * skb - The packet to be sent
2518 * Return - STATUS of send
2520 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
2522 struct sxg_x64_sgl *pSgl;
2523 struct sxg_scatter_gather *SxgSgl;
2524 unsigned long sgl_flags;
2525 /* void *SglBuffer; */
2526 /* u32 SglBufferLength; */
2529 * The vast majority of work is done in the shared
2530 * sxg_dumb_sgl routine.
2532 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
2533 adapter, skb, 0, 0);
2535 /* Allocate a SGL buffer */
2536 SXG_GET_SGL_BUFFER(adapter, SxgSgl, 0);
2537 if (!SxgSgl) {
2538 adapter->Stats.NoSglBuf++;
2539 adapter->stats.tx_errors++;
2540 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
2541 adapter, skb, 0, 0);
2542 return (STATUS_RESOURCES);
2544 ASSERT(SxgSgl->adapter == adapter);
2545 /*SglBuffer = SXG_SGL_BUFFER(SxgSgl);
2546 SglBufferLength = SXG_SGL_BUF_SIZE; */
2547 SxgSgl->VlanTag.VlanTci = 0;
2548 SxgSgl->VlanTag.VlanTpid = 0;
2549 SxgSgl->Type = SXG_SGL_DUMB;
2550 SxgSgl->DumbPacket = skb;
2551 pSgl = NULL;
2553 /* Call the common sxg_dumb_sgl routine to complete the send. */
2554 return (sxg_dumb_sgl(pSgl, SxgSgl));
2558 * sxg_dumb_sgl
2560 * Arguments:
2561 * pSgl -
2562 * SxgSgl - struct sxg_scatter_gather
2564 * Return Value:
2565 * Status of send operation.
2567 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
2568 struct sxg_scatter_gather *SxgSgl)
2570 struct adapter_t *adapter = SxgSgl->adapter;
2571 struct sk_buff *skb = SxgSgl->DumbPacket;
2572 /* For now, all dumb-nic sends go on RSS queue zero */
2573 struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
2574 struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
2575 struct sxg_cmd *XmtCmd = NULL;
2576 /* u32 Index = 0; */
2577 u32 DataLength = skb->len;
2578 /* unsigned int BufLen; */
2579 /* u32 SglOffset; */
2580 u64 phys_addr;
2581 unsigned long flags;
2582 unsigned long queue_id=0;
2584 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
2585 pSgl, SxgSgl, 0, 0);
2587 /* Set aside a pointer to the sgl */
2588 SxgSgl->pSgl = pSgl;
2590 /* Sanity check that our SGL format is as we expect. */
2591 ASSERT(sizeof(struct sxg_x64_sge) == sizeof(struct sxg_x64_sge));
2592 /* Shouldn't be a vlan tag on this frame */
2593 ASSERT(SxgSgl->VlanTag.VlanTci == 0);
2594 ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
2597 * From here below we work with the SGL placed in our
2598 * buffer.
2601 SxgSgl->Sgl.NumberOfElements = 1;
2603 * Set ucode Queue ID based on bottom bits of destination TCP port.
2604 * This Queue ID splits slowpath/dumb-nic packet processing across
2605 * multiple threads on the card to improve performance. It is split
2606 * using the TCP port to avoid out-of-order packets that can result
2607 * from multithreaded processing. We use the destination port because
2608 * we expect to be run on a server, so in nearly all cases the local
2609 * port is likely to be constant (well-known server port) and the
2610 * remote port is likely to be random. The exception to this is iSCSI,
2611 * in which case we use the sport instead. Note
2612 * that original attempt at XOR'ing source and dest port resulted in
2613 * poor balance on NTTTCP/iometer applications since they tend to
2614 * line up (even-even, odd-odd..).
2617 if (skb->protocol == htons(ETH_P_IP)) {
2618 struct iphdr *ip;
2620 ip = ip_hdr(skb);
2621 if ((ip->protocol == IPPROTO_TCP)&&(DataLength >= sizeof(
2622 struct tcphdr))){
2623 queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2624 (ntohs (tcp_hdr(skb)->source) &
2625 SXG_LARGE_SEND_QUEUE_MASK):
2626 (ntohs(tcp_hdr(skb)->dest) &
2627 SXG_LARGE_SEND_QUEUE_MASK));
2629 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2630 if ((ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) && (DataLength >=
2631 sizeof(struct tcphdr)) ) {
2632 queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2633 (ntohs (tcp_hdr(skb)->source) &
2634 SXG_LARGE_SEND_QUEUE_MASK):
2635 (ntohs(tcp_hdr(skb)->dest) &
2636 SXG_LARGE_SEND_QUEUE_MASK));
2640 /* Grab the spinlock and acquire a command */
2641 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2642 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2643 if (XmtCmd == NULL) {
2645 * Call sxg_complete_slow_send to see if we can
2646 * free up any XmtRingZero entries and then try again
2649 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2650 sxg_complete_slow_send(adapter);
2651 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2652 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2653 if (XmtCmd == NULL) {
2654 adapter->Stats.XmtZeroFull++;
2655 goto abortcmd;
2658 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
2659 XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
2660 /* Update stats */
2661 adapter->stats.tx_packets++;
2662 adapter->stats.tx_bytes += DataLength;
2663 #if XXXTODO /* Stats stuff */
2664 if (SXG_MULTICAST_PACKET(EtherHdr)) {
2665 if (SXG_BROADCAST_PACKET(EtherHdr)) {
2666 adapter->Stats.DumbXmtBcastPkts++;
2667 adapter->Stats.DumbXmtBcastBytes += DataLength;
2668 } else {
2669 adapter->Stats.DumbXmtMcastPkts++;
2670 adapter->Stats.DumbXmtMcastBytes += DataLength;
2672 } else {
2673 adapter->Stats.DumbXmtUcastPkts++;
2674 adapter->Stats.DumbXmtUcastBytes += DataLength;
2676 #endif
2678 * Fill in the command
2679 * Copy out the first SGE to the command and adjust for offset
2681 phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
2682 PCI_DMA_TODEVICE);
2685 * SAHARA SGL WORKAROUND
2686 * See if the SGL straddles a 64k boundary. If so, skip to
2687 * the start of the next 64k boundary and continue
2690 if ((adapter->asictype == SAHARA_REV_A) &&
2691 (SXG_INVALID_SGL(phys_addr,skb->data_len)))
2693 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2694 /* Silently drop this packet */
2695 printk(KERN_EMERG"Dropped a packet for 64k boundary problem\n");
2696 return STATUS_SUCCESS;
2698 memset(XmtCmd, '\0', sizeof(*XmtCmd));
2699 XmtCmd->Buffer.FirstSgeAddress = phys_addr;
2700 XmtCmd->Buffer.FirstSgeLength = DataLength;
2701 XmtCmd->Buffer.SgeOffset = 0;
2702 XmtCmd->Buffer.TotalLength = DataLength;
2703 XmtCmd->SgEntries = 1;
2704 XmtCmd->Flags = 0;
2706 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2708 * We need to set the Checkum in IP header to 0. This is
2709 * required by hardware.
2711 ip_hdr(skb)->check = 0x0;
2712 XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_IP;
2713 XmtCmd->CsumFlags.Flags |= SXG_SLOWCMD_CSUM_TCP;
2714 /* Dont know if length will require a change in case of VLAN */
2715 XmtCmd->CsumFlags.MacLen = ETH_HLEN;
2716 XmtCmd->CsumFlags.IpHl = skb_network_header_len(skb) >>
2717 SXG_NW_HDR_LEN_SHIFT;
2720 * Advance transmit cmd descripter by 1.
2721 * NOTE - See comments in SxgTcpOutput where we write
2722 * to the XmtCmd register regarding CPU ID values and/or
2723 * multiple commands.
2724 * Top 16 bits specify queue_id. See comments about queue_id above
2726 /* Four queues at the moment */
2727 ASSERT((queue_id & ~SXG_LARGE_SEND_QUEUE_MASK) == 0);
2728 WRITE_REG(adapter->UcodeRegs[0].XmtCmd, ((queue_id << 16) | 1), TRUE);
2729 adapter->Stats.XmtQLen++; /* Stats within lock */
2730 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2731 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
2732 XmtCmd, pSgl, SxgSgl, 0);
2733 return STATUS_SUCCESS;
2735 abortcmd:
2737 * NOTE - Only jump to this label AFTER grabbing the
2738 * XmtZeroLock, and DO NOT DROP IT between the
2739 * command allocation and the following abort.
2741 if (XmtCmd) {
2742 SXG_ABORT_CMD(XmtRingInfo);
2744 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2747 * failsgl:
2748 * Jump to this label if failure occurs before the
2749 * XmtZeroLock is grabbed
2751 adapter->stats.tx_errors++;
2752 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
2753 pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
2754 /* SxgSgl->DumbPacket is the skb */
2755 // SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket);
2757 return STATUS_FAILURE;
2761 * Link management functions
2763 * sxg_initialize_link - Initialize the link stuff
2765 * Arguments -
2766 * adapter - A pointer to our adapter structure
2768 * Return
2769 * status
2771 static int sxg_initialize_link(struct adapter_t *adapter)
2773 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2774 u32 Value;
2775 u32 ConfigData;
2776 u32 MaxFrame;
2777 u32 AxgMacReg1;
2778 int status;
2780 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
2781 adapter, 0, 0, 0);
2783 /* Reset PHY and XGXS module */
2784 WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
2786 /* Reset transmit configuration register */
2787 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
2789 /* Reset receive configuration register */
2790 WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
2792 /* Reset all MAC modules */
2793 WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
2796 * Link address 0
2797 * XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
2798 * is stored with the first nibble (0a) in the byte 0
2799 * of the Mac address. Possibly reverse?
2801 Value = *(u32 *) adapter->macaddr;
2802 WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
2803 /* also write the MAC address to the MAC. Endian is reversed. */
2804 WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
2805 Value = (*(u16 *) & adapter->macaddr[4] & 0x0000FFFF);
2806 WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
2807 /* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
2808 Value = ntohl(Value);
2809 WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
2810 /* Link address 1 */
2811 WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
2812 WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
2813 /* Link address 2 */
2814 WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
2815 WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
2816 /* Link address 3 */
2817 WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
2818 WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
2820 /* Enable MAC modules */
2821 WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
2823 /* Configure MAC */
2824 AxgMacReg1 = ( /* Enable XMT */
2825 AXGMAC_CFG1_XMT_EN |
2826 /* Enable receive */
2827 AXGMAC_CFG1_RCV_EN |
2828 /* short frame detection */
2829 AXGMAC_CFG1_SHORT_ASSERT |
2830 /* Verify frame length */
2831 AXGMAC_CFG1_CHECK_LEN |
2832 /* Generate FCS */
2833 AXGMAC_CFG1_GEN_FCS |
2834 /* Pad frames to 64 bytes */
2835 AXGMAC_CFG1_PAD_64);
2837 if (adapter->XmtFcEnabled) {
2838 AxgMacReg1 |= AXGMAC_CFG1_XMT_PAUSE; /* Allow sending of pause */
2840 if (adapter->RcvFcEnabled) {
2841 AxgMacReg1 |= AXGMAC_CFG1_RCV_PAUSE; /* Enable detection of pause */
2844 WRITE_REG(HwRegs->MacConfig1, AxgMacReg1, TRUE);
2846 /* Set AXGMAC max frame length if jumbo. Not needed for standard MTU */
2847 if (adapter->JumboEnabled) {
2848 WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
2851 * AMIIM Configuration Register -
2852 * The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
2853 * (bottom bits) of this register is used to determine the MDC frequency
2854 * as specified in the A-XGMAC Design Document. This value must not be
2855 * zero. The following value (62 or 0x3E) is based on our MAC transmit
2856 * clock frequency (MTCLK) of 312.5 MHz. Given a maximum MDIO clock
2857 * frequency of 2.5 MHz (see the PHY spec), we get:
2858 * 312.5/(2*(X+1)) < 2.5 ==> X = 62.
2859 * This value happens to be the default value for this register, so we
2860 * really don't have to do this.
2862 if (adapter->asictype == SAHARA_REV_B) {
2863 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000001F, TRUE);
2864 } else {
2865 WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
2868 /* Power up and enable PHY and XAUI/XGXS/Serdes logic */
2869 WRITE_REG(HwRegs->LinkStatus,
2870 (LS_PHY_CLR_RESET |
2871 LS_XGXS_ENABLE |
2872 LS_XGXS_CTL |
2873 LS_PHY_CLK_EN |
2874 LS_ATTN_ALARM),
2875 TRUE);
2876 DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2879 * Per information given by Aeluros, wait 100 ms after removing reset.
2880 * It's not enough to wait for the self-clearing reset bit in reg 0 to
2881 * clear.
2883 mdelay(100);
2885 /* Verify the PHY has come up by checking that the Reset bit has
2886 * cleared.
2888 status = sxg_read_mdio_reg(adapter,
2889 MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2890 PHY_PMA_CONTROL1, /* PMA/PMD control register */
2891 &Value);
2892 DBG_ERROR("After sxg_read_mdio_reg Value[%x] fail=%x\n", Value,
2893 (Value & PMA_CONTROL1_RESET));
2894 if (status != STATUS_SUCCESS)
2895 return (STATUS_FAILURE);
2896 if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
2897 return (STATUS_FAILURE);
2899 /* The SERDES should be initialized by now - confirm */
2900 READ_REG(HwRegs->LinkStatus, Value);
2901 if (Value & LS_SERDES_DOWN) /* verify SERDES is initialized */
2902 return (STATUS_FAILURE);
2904 /* The XAUI link should also be up - confirm */
2905 if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
2906 return (STATUS_FAILURE);
2908 /* Initialize the PHY */
2909 status = sxg_phy_init(adapter);
2910 if (status != STATUS_SUCCESS)
2911 return (STATUS_FAILURE);
2913 /* Enable the Link Alarm */
2915 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2916 * LASI_CONTROL - LASI control register
2917 * LASI_CTL_LS_ALARM_ENABLE - enable link alarm bit
2919 status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2920 LASI_CONTROL,
2921 LASI_CTL_LS_ALARM_ENABLE);
2922 if (status != STATUS_SUCCESS)
2923 return (STATUS_FAILURE);
2925 /* XXXTODO - temporary - verify bit is set */
2927 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2928 * LASI_CONTROL - LASI control register
2930 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2931 LASI_CONTROL,
2932 &Value);
2934 if (status != STATUS_SUCCESS)
2935 return (STATUS_FAILURE);
2936 if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
2937 DBG_ERROR("Error! LASI Control Alarm Enable bit not set!\n");
2939 /* Enable receive */
2940 MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
2941 ConfigData = (RCV_CONFIG_ENABLE |
2942 RCV_CONFIG_ENPARSE |
2943 RCV_CONFIG_RCVBAD |
2944 RCV_CONFIG_RCVPAUSE |
2945 RCV_CONFIG_TZIPV6 |
2946 RCV_CONFIG_TZIPV4 |
2947 RCV_CONFIG_HASH_16 |
2948 RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
2950 if (adapter->asictype == SAHARA_REV_B) {
2951 ConfigData |= (RCV_CONFIG_HIPRICTL |
2952 RCV_CONFIG_NEWSTATUSFMT);
2954 WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
2956 WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
2958 /* Mark the link as down. We'll get a link event when it comes up. */
2959 sxg_link_state(adapter, SXG_LINK_DOWN);
2961 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
2962 adapter, 0, 0, 0);
2963 return (STATUS_SUCCESS);
2967 * sxg_phy_init - Initialize the PHY
2969 * Arguments -
2970 * adapter - A pointer to our adapter structure
2972 * Return
2973 * status
2975 static int sxg_phy_init(struct adapter_t *adapter)
2977 u32 Value;
2978 struct phy_ucode *p;
2979 int status;
2981 DBG_ERROR("ENTER %s\n", __func__);
2983 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2984 * 0xC205 - PHY ID register (?)
2985 * &Value - XXXTODO - add def
2987 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2988 0xC205,
2989 &Value);
2990 if (status != STATUS_SUCCESS)
2991 return (STATUS_FAILURE);
2993 if (Value == 0x0012) {
2994 /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
2995 DBG_ERROR("AEL2005C PHY detected. Downloading PHY \
2996 microcode.\n");
2998 /* Initialize AEL2005C PHY and download PHY microcode */
2999 for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
3000 if (p->Addr == 0) {
3001 /* if address == 0, data == sleep time in ms */
3002 mdelay(p->Data);
3003 } else {
3004 /* write the given data to the specified address */
3005 status = sxg_write_mdio_reg(adapter,
3006 MIIM_DEV_PHY_PMA,
3007 /* PHY address */
3008 p->Addr,
3009 /* PHY data */
3010 p->Data);
3011 if (status != STATUS_SUCCESS)
3012 return (STATUS_FAILURE);
3016 DBG_ERROR("EXIT %s\n", __func__);
3018 return (STATUS_SUCCESS);
3022 * sxg_link_event - Process a link event notification from the card
3024 * Arguments -
3025 * adapter - A pointer to our adapter structure
3027 * Return
3028 * None
3030 static void sxg_link_event(struct adapter_t *adapter)
3032 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3033 struct net_device *netdev = adapter->netdev;
3034 enum SXG_LINK_STATE LinkState;
3035 int status;
3036 u32 Value;
3038 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
3039 adapter, 0, 0, 0);
3040 DBG_ERROR("ENTER %s\n", __func__);
3042 /* Check the Link Status register. We should have a Link Alarm. */
3043 READ_REG(HwRegs->LinkStatus, Value);
3044 if (Value & LS_LINK_ALARM) {
3046 * We got a Link Status alarm. First, pause to let the
3047 * link state settle (it can bounce a number of times)
3049 mdelay(10);
3051 /* Now clear the alarm by reading the LASI status register. */
3052 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
3053 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
3054 /* LASI status register */
3055 LASI_STATUS,
3056 &Value);
3057 if (status != STATUS_SUCCESS) {
3058 DBG_ERROR("Error reading LASI Status MDIO register!\n");
3059 sxg_link_state(adapter, SXG_LINK_DOWN);
3060 /* ASSERT(0); */
3063 * We used to assert that the LASI_LS_ALARM bit was set, as
3064 * it should be. But there appears to be cases during
3065 * initialization (when the PHY is reset and re-initialized)
3066 * when we get a link alarm, but the status bit is 0 when we
3067 * read it. Rather than trying to assure this never happens
3068 * (and nver being certain), just ignore it.
3070 * ASSERT(Value & LASI_STATUS_LS_ALARM);
3073 /* Now get and set the link state */
3074 LinkState = sxg_get_link_state(adapter);
3075 sxg_link_state(adapter, LinkState);
3076 DBG_ERROR("SXG: Link Alarm occurred. Link is %s\n",
3077 ((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
3078 if (LinkState == SXG_LINK_UP)
3079 netif_carrier_on(netdev);
3080 else
3081 netif_carrier_off(netdev);
3082 } else {
3084 * XXXTODO - Assuming Link Attention is only being generated
3085 * for the Link Alarm pin (and not for a XAUI Link Status change)
3086 * , then it's impossible to get here. Yet we've gotten here
3087 * twice (under extreme conditions - bouncing the link up and
3088 * down many times a second). Needs further investigation.
3090 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
3091 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
3092 /* ASSERT(0); */
3094 DBG_ERROR("EXIT %s\n", __func__);
3099 * sxg_get_link_state - Determine if the link is up or down
3101 * Arguments -
3102 * adapter - A pointer to our adapter structure
3104 * Return
3105 * Link State
3107 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
3109 int status;
3110 u32 Value;
3112 DBG_ERROR("ENTER %s\n", __func__);
3114 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
3115 adapter, 0, 0, 0);
3118 * Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
3119 * the following 3 bits (from 3 different MDIO registers) are all true.
3122 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
3123 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
3124 /* PMA/PMD Receive Signal Detect register */
3125 PHY_PMA_RCV_DET,
3126 &Value);
3127 if (status != STATUS_SUCCESS)
3128 goto bad;
3130 /* If PMA/PMD receive signal detect is 0, then the link is down */
3131 if (!(Value & PMA_RCV_DETECT))
3132 return (SXG_LINK_DOWN);
3134 /* MIIM_DEV_PHY_PCS - PHY PCS module */
3135 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS,
3136 /* PCS 10GBASE-R Status 1 register */
3137 PHY_PCS_10G_STATUS1,
3138 &Value);
3139 if (status != STATUS_SUCCESS)
3140 goto bad;
3142 /* If PCS is not locked to receive blocks, then the link is down */
3143 if (!(Value & PCS_10B_BLOCK_LOCK))
3144 return (SXG_LINK_DOWN);
3146 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS,/* PHY XS module */
3147 /* XS Lane Status register */
3148 PHY_XS_LANE_STATUS,
3149 &Value);
3150 if (status != STATUS_SUCCESS)
3151 goto bad;
3153 /* If XS transmit lanes are not aligned, then the link is down */
3154 if (!(Value & XS_LANE_ALIGN))
3155 return (SXG_LINK_DOWN);
3157 /* All 3 bits are true, so the link is up */
3158 DBG_ERROR("EXIT %s\n", __func__);
3160 return (SXG_LINK_UP);
3162 bad:
3163 /* An error occurred reading an MDIO register. This shouldn't happen. */
3164 DBG_ERROR("Error reading an MDIO register!\n");
3165 ASSERT(0);
3166 return (SXG_LINK_DOWN);
3169 static void sxg_indicate_link_state(struct adapter_t *adapter,
3170 enum SXG_LINK_STATE LinkState)
3172 if (adapter->LinkState == SXG_LINK_UP) {
3173 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
3174 __func__);
3175 netif_start_queue(adapter->netdev);
3176 } else {
3177 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
3178 __func__);
3179 netif_stop_queue(adapter->netdev);
3184 * sxg_change_mtu - Change the Maximum Transfer Unit
3185 * * @returns 0 on success, negative on failure
3187 int sxg_change_mtu (struct net_device *netdev, int new_mtu)
3189 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(netdev);
3191 if (!((new_mtu == SXG_DEFAULT_MTU) || (new_mtu == SXG_JUMBO_MTU)))
3192 return -EINVAL;
3194 if(new_mtu == netdev->mtu)
3195 return 0;
3197 netdev->mtu = new_mtu;
3199 if (new_mtu == SXG_JUMBO_MTU) {
3200 adapter->JumboEnabled = TRUE;
3201 adapter->FrameSize = JUMBOMAXFRAME;
3202 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
3203 } else {
3204 adapter->JumboEnabled = FALSE;
3205 adapter->FrameSize = ETHERMAXFRAME;
3206 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
3209 sxg_entry_halt(netdev);
3210 sxg_entry_open(netdev);
3211 return 0;
3215 * sxg_link_state - Set the link state and if necessary, indicate.
3216 * This routine the central point of processing for all link state changes.
3217 * Nothing else in the driver should alter the link state or perform
3218 * link state indications
3220 * Arguments -
3221 * adapter - A pointer to our adapter structure
3222 * LinkState - The link state
3224 * Return
3225 * None
3227 static void sxg_link_state(struct adapter_t *adapter,
3228 enum SXG_LINK_STATE LinkState)
3230 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
3231 adapter, LinkState, adapter->LinkState, adapter->State);
3233 DBG_ERROR("ENTER %s\n", __func__);
3236 * Hold the adapter lock during this routine. Maybe move
3237 * the lock to the caller.
3239 /* IMP TODO : Check if we can survive without taking this lock */
3240 // spin_lock(&adapter->AdapterLock);
3241 if (LinkState == adapter->LinkState) {
3242 /* Nothing changed.. */
3243 // spin_unlock(&adapter->AdapterLock);
3244 DBG_ERROR("EXIT #0 %s. Link status = %d\n",
3245 __func__, LinkState);
3246 return;
3248 /* Save the adapter state */
3249 adapter->LinkState = LinkState;
3251 /* Drop the lock and indicate link state */
3252 // spin_unlock(&adapter->AdapterLock);
3253 DBG_ERROR("EXIT #1 %s\n", __func__);
3255 sxg_indicate_link_state(adapter, LinkState);
3259 * sxg_write_mdio_reg - Write to a register on the MDIO bus
3261 * Arguments -
3262 * adapter - A pointer to our adapter structure
3263 * DevAddr - MDIO device number being addressed
3264 * RegAddr - register address for the specified MDIO device
3265 * Value - value to write to the MDIO register
3267 * Return
3268 * status
3270 static int sxg_write_mdio_reg(struct adapter_t *adapter,
3271 u32 DevAddr, u32 RegAddr, u32 Value)
3273 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3274 /* Address operation (written to MIIM field reg) */
3275 u32 AddrOp;
3276 /* Write operation (written to MIIM field reg) */
3277 u32 WriteOp;
3278 u32 Cmd;/* Command (written to MIIM command reg) */
3279 u32 ValueRead;
3280 u32 Timeout;
3282 /* DBG_ERROR("ENTER %s\n", __func__); */
3284 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
3285 adapter, 0, 0, 0);
3287 /* Ensure values don't exceed field width */
3288 DevAddr &= 0x001F; /* 5-bit field */
3289 RegAddr &= 0xFFFF; /* 16-bit field */
3290 Value &= 0xFFFF; /* 16-bit field */
3292 /* Set MIIM field register bits for an MIIM address operation */
3293 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3294 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3295 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3296 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
3298 /* Set MIIM field register bits for an MIIM write operation */
3299 WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3300 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3301 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3302 (MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
3304 /* Set MIIM command register bits to execute an MIIM command */
3305 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
3307 /* Reset the command register command bit (in case it's not 0) */
3308 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3310 /* MIIM write to set the address of the specified MDIO register */
3311 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
3313 /* Write to MIIM Command Register to execute to address operation */
3314 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3316 /* Poll AMIIM Indicator register to wait for completion */
3317 Timeout = SXG_LINK_TIMEOUT;
3318 do {
3319 udelay(100); /* Timeout in 100us units */
3320 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3321 if (--Timeout == 0) {
3322 return (STATUS_FAILURE);
3324 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3326 /* Reset the command register command bit */
3327 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3329 /* MIIM write to set up an MDIO write operation */
3330 WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
3332 /* Write to MIIM Command Register to execute the write operation */
3333 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3335 /* Poll AMIIM Indicator register to wait for completion */
3336 Timeout = SXG_LINK_TIMEOUT;
3337 do {
3338 udelay(100); /* Timeout in 100us units */
3339 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3340 if (--Timeout == 0) {
3341 return (STATUS_FAILURE);
3343 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3345 /* DBG_ERROR("EXIT %s\n", __func__); */
3347 return (STATUS_SUCCESS);
3351 * sxg_read_mdio_reg - Read a register on the MDIO bus
3353 * Arguments -
3354 * adapter - A pointer to our adapter structure
3355 * DevAddr - MDIO device number being addressed
3356 * RegAddr - register address for the specified MDIO device
3357 * pValue - pointer to where to put data read from the MDIO register
3359 * Return
3360 * status
3362 static int sxg_read_mdio_reg(struct adapter_t *adapter,
3363 u32 DevAddr, u32 RegAddr, u32 *pValue)
3365 struct sxg_hw_regs *HwRegs = adapter->HwRegs;
3366 u32 AddrOp; /* Address operation (written to MIIM field reg) */
3367 u32 ReadOp; /* Read operation (written to MIIM field reg) */
3368 u32 Cmd; /* Command (written to MIIM command reg) */
3369 u32 ValueRead;
3370 u32 Timeout;
3372 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
3373 adapter, 0, 0, 0);
3374 DBG_ERROR("ENTER %s\n", __FUNCTION__);
3376 /* Ensure values don't exceed field width */
3377 DevAddr &= 0x001F; /* 5-bit field */
3378 RegAddr &= 0xFFFF; /* 16-bit field */
3380 /* Set MIIM field register bits for an MIIM address operation */
3381 AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3382 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3383 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3384 (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
3386 /* Set MIIM field register bits for an MIIM read operation */
3387 ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3388 (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3389 (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3390 (MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
3392 /* Set MIIM command register bits to execute an MIIM command */
3393 Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
3395 /* Reset the command register command bit (in case it's not 0) */
3396 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3398 /* MIIM write to set the address of the specified MDIO register */
3399 WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
3401 /* Write to MIIM Command Register to execute to address operation */
3402 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3404 /* Poll AMIIM Indicator register to wait for completion */
3405 Timeout = SXG_LINK_TIMEOUT;
3406 do {
3407 udelay(100); /* Timeout in 100us units */
3408 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3409 if (--Timeout == 0) {
3410 DBG_ERROR("EXIT %s with STATUS_FAILURE 1\n", __FUNCTION__);
3412 return (STATUS_FAILURE);
3414 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3416 /* Reset the command register command bit */
3417 WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3419 /* MIIM write to set up an MDIO register read operation */
3420 WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
3422 /* Write to MIIM Command Register to execute the read operation */
3423 WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3425 /* Poll AMIIM Indicator register to wait for completion */
3426 Timeout = SXG_LINK_TIMEOUT;
3427 do {
3428 udelay(100); /* Timeout in 100us units */
3429 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3430 if (--Timeout == 0) {
3431 DBG_ERROR("EXIT %s with STATUS_FAILURE 2\n", __FUNCTION__);
3433 return (STATUS_FAILURE);
3435 } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3437 /* Read the MDIO register data back from the field register */
3438 READ_REG(HwRegs->MacAmiimField, *pValue);
3439 *pValue &= 0xFFFF; /* data is in the lower 16 bits */
3441 DBG_ERROR("EXIT %s\n", __FUNCTION__);
3443 return (STATUS_SUCCESS);
3447 * Functions to obtain the CRC corresponding to the destination mac address.
3448 * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
3449 * the polynomial:
3450 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5
3451 * + x^4 + x^2 + x^1.
3453 * After the CRC for the 6 bytes is generated (but before the value is
3454 * complemented), we must then transpose the value and return bits 30-23.
3456 static u32 sxg_crc_table[256];/* Table of CRC's for all possible byte values */
3457 static u32 sxg_crc_init; /* Is table initialized */
3459 /* Contruct the CRC32 table */
3460 static void sxg_mcast_init_crc32(void)
3462 u32 c; /* CRC shit reg */
3463 u32 e = 0; /* Poly X-or pattern */
3464 int i; /* counter */
3465 int k; /* byte being shifted into crc */
3467 static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
3469 for (i = 0; i < sizeof(p) / sizeof(int); i++) {
3470 e |= 1L << (31 - p[i]);
3473 for (i = 1; i < 256; i++) {
3474 c = i;
3475 for (k = 8; k; k--) {
3476 c = c & 1 ? (c >> 1) ^ e : c >> 1;
3478 sxg_crc_table[i] = c;
3483 * Return the MAC hast as described above.
3485 static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
3487 u32 crc;
3488 char *p;
3489 int i;
3490 unsigned char machash = 0;
3492 if (!sxg_crc_init) {
3493 sxg_mcast_init_crc32();
3494 sxg_crc_init = 1;
3497 crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */
3498 for (i = 0, p = macaddr; i < 6; ++p, ++i) {
3499 crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
3502 /* Return bits 1-8, transposed */
3503 for (i = 1; i < 9; i++) {
3504 machash |= (((crc >> i) & 1) << (8 - i));
3507 return (machash);
3510 static void sxg_mcast_set_mask(struct adapter_t *adapter)
3512 struct sxg_ucode_regs *sxg_regs = adapter->UcodeRegs;
3514 DBG_ERROR("%s ENTER (%s) MacFilter[%x] mask[%llx]\n", __FUNCTION__,
3515 adapter->netdev->name, (unsigned int)adapter->MacFilter,
3516 adapter->MulticastMask);
3518 if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
3520 * Turn on all multicast addresses. We have to do this for
3521 * promiscuous mode as well as ALLMCAST mode. It saves the
3522 * Microcode from having keep state about the MAC configuration
3524 /* DBG_ERROR("sxg: %s MacFilter = MAC_ALLMCAST | MAC_PROMISC\n \
3525 * SLUT MODE!!!\n",__func__);
3527 WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
3528 WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
3529 /* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high \
3530 * 0xFFFFFFFF\n",__func__, adapter->netdev->name);
3533 } else {
3535 * Commit our multicast mast to the SLIC by writing to the
3536 * multicast address mask registers
3538 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
3539 __func__, adapter->netdev->name,
3540 ((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
3541 ((ulong)
3542 ((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
3544 WRITE_REG(sxg_regs->McastLow,
3545 (u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
3546 WRITE_REG(sxg_regs->McastHigh,
3547 (u32) ((adapter->
3548 MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
3552 static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
3554 unsigned char crcpoly;
3556 /* Get the CRC polynomial for the mac address */
3557 crcpoly = sxg_mcast_get_mac_hash(address);
3560 * We only have space on the SLIC for 64 entries. Lop
3561 * off the top two bits. (2^6 = 64)
3563 crcpoly &= 0x3F;
3565 /* OR in the new bit into our 64 bit mask. */
3566 adapter->MulticastMask |= (u64) 1 << crcpoly;
3570 * Function takes MAC addresses from dev_mc_list and generates the Mask
3573 static void sxg_set_mcast_addr(struct adapter_t *adapter)
3575 struct dev_mc_list *mclist;
3576 struct net_device *dev = adapter->netdev;
3577 int i;
3579 if (adapter->MacFilter & (MAC_ALLMCAST | MAC_MCAST)) {
3580 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
3581 i++, mclist = mclist->next) {
3582 sxg_mcast_set_bit(adapter,mclist->da_addr);
3585 sxg_mcast_set_mask(adapter);
3588 static void sxg_mcast_set_list(struct net_device *dev)
3590 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3592 ASSERT(adapter);
3593 if (dev->flags & IFF_PROMISC)
3594 adapter->MacFilter |= MAC_PROMISC;
3595 if (dev->flags & IFF_MULTICAST)
3596 adapter->MacFilter |= MAC_MCAST;
3597 if (dev->flags & IFF_ALLMULTI)
3598 adapter->MacFilter |= MAC_ALLMCAST;
3600 //XXX handle other flags as well
3601 sxg_set_mcast_addr(adapter);
3604 void sxg_free_sgl_buffers(struct adapter_t *adapter)
3606 struct list_entry *ple;
3607 struct sxg_scatter_gather *Sgl;
3609 while(!(IsListEmpty(&adapter->AllSglBuffers))) {
3610 ple = RemoveHeadList(&adapter->AllSglBuffers);
3611 Sgl = container_of(ple, struct sxg_scatter_gather, AllList);
3612 kfree(Sgl);
3613 adapter->AllSglBufferCount--;
3617 void sxg_free_rcvblocks(struct adapter_t *adapter)
3619 u32 i;
3620 void *temp_RcvBlock;
3621 struct list_entry *ple;
3622 struct sxg_rcv_block_hdr *RcvBlockHdr;
3623 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3624 ASSERT((adapter->state == SXG_STATE_INITIALIZING) ||
3625 (adapter->state == SXG_STATE_HALTING));
3626 while(!(IsListEmpty(&adapter->AllRcvBlocks))) {
3628 ple = RemoveHeadList(&adapter->AllRcvBlocks);
3629 RcvBlockHdr = container_of(ple, struct sxg_rcv_block_hdr, AllList);
3631 if(RcvBlockHdr->VirtualAddress) {
3632 temp_RcvBlock = RcvBlockHdr->VirtualAddress;
3634 for(i=0; i< SXG_RCV_DESCRIPTORS_PER_BLOCK;
3635 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3636 RcvDataBufferHdr =
3637 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3638 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3642 pci_free_consistent(adapter->pcidev,
3643 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
3644 RcvBlockHdr->VirtualAddress,
3645 RcvBlockHdr->PhysicalAddress);
3646 adapter->AllRcvBlockCount--;
3648 ASSERT(adapter->AllRcvBlockCount == 0);
3649 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3650 adapter, 0, 0, 0);
3652 void sxg_free_mcast_addrs(struct adapter_t *adapter)
3654 struct sxg_multicast_address *address;
3655 while(adapter->MulticastAddrs) {
3656 address = adapter->MulticastAddrs;
3657 adapter->MulticastAddrs = address->Next;
3658 kfree(address);
3661 adapter->MulticastMask= 0;
3664 void sxg_unmap_resources(struct adapter_t *adapter)
3666 if(adapter->HwRegs) {
3667 iounmap((void *)adapter->HwRegs);
3669 if(adapter->UcodeRegs) {
3670 iounmap((void *)adapter->UcodeRegs);
3673 ASSERT(adapter->AllRcvBlockCount == 0);
3674 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3675 adapter, 0, 0, 0);
3681 * sxg_free_resources - Free everything allocated in SxgAllocateResources
3683 * Arguments -
3684 * adapter - A pointer to our adapter structure
3686 * Return
3687 * none
3689 void sxg_free_resources(struct adapter_t *adapter)
3691 u32 RssIds, IsrCount;
3692 RssIds = SXG_RSS_CPU_COUNT(adapter);
3693 IsrCount = adapter->msi_enabled ? RssIds : 1;
3695 if (adapter->BasicAllocations == FALSE) {
3697 * No allocations have been made, including spinlocks,
3698 * or listhead initializations. Return.
3700 return;
3703 if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
3704 sxg_free_rcvblocks(adapter);
3706 if (!(IsListEmpty(&adapter->AllSglBuffers))) {
3707 sxg_free_sgl_buffers(adapter);
3710 if (adapter->XmtRingZeroIndex) {
3711 pci_free_consistent(adapter->pcidev,
3712 sizeof(u32),
3713 adapter->XmtRingZeroIndex,
3714 adapter->PXmtRingZeroIndex);
3716 if (adapter->Isr) {
3717 pci_free_consistent(adapter->pcidev,
3718 sizeof(u32) * IsrCount,
3719 adapter->Isr, adapter->PIsr);
3722 if (adapter->EventRings) {
3723 pci_free_consistent(adapter->pcidev,
3724 sizeof(struct sxg_event_ring) * RssIds,
3725 adapter->EventRings, adapter->PEventRings);
3727 if (adapter->RcvRings) {
3728 pci_free_consistent(adapter->pcidev,
3729 sizeof(struct sxg_rcv_ring) * 1,
3730 adapter->RcvRings,
3731 adapter->PRcvRings);
3732 adapter->RcvRings = NULL;
3735 if(adapter->XmtRings) {
3736 pci_free_consistent(adapter->pcidev,
3737 sizeof(struct sxg_xmt_ring) * 1,
3738 adapter->XmtRings,
3739 adapter->PXmtRings);
3740 adapter->XmtRings = NULL;
3743 if (adapter->ucode_stats) {
3744 pci_unmap_single(adapter->pcidev,
3745 sizeof(struct sxg_ucode_stats),
3746 adapter->pucode_stats, PCI_DMA_FROMDEVICE);
3747 adapter->ucode_stats = NULL;
3751 /* Unmap register spaces */
3752 sxg_unmap_resources(adapter);
3754 sxg_free_mcast_addrs(adapter);
3756 adapter->BasicAllocations = FALSE;
3761 * sxg_allocate_complete -
3763 * This routine is called when a memory allocation has completed.
3765 * Arguments -
3766 * struct adapter_t * - Our adapter structure
3767 * VirtualAddress - Memory virtual address
3768 * PhysicalAddress - Memory physical address
3769 * Length - Length of memory allocated (or 0)
3770 * Context - The type of buffer allocated
3772 * Return
3773 * None.
3775 static int sxg_allocate_complete(struct adapter_t *adapter,
3776 void *VirtualAddress,
3777 dma_addr_t PhysicalAddress,
3778 u32 Length, enum sxg_buffer_type Context)
3780 int status = 0;
3781 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
3782 adapter, VirtualAddress, Length, Context);
3783 ASSERT(atomic_read(&adapter->pending_allocations));
3784 atomic_dec(&adapter->pending_allocations);
3786 switch (Context) {
3788 case SXG_BUFFER_TYPE_RCV:
3789 status = sxg_allocate_rcvblock_complete(adapter,
3790 VirtualAddress,
3791 PhysicalAddress, Length);
3792 break;
3793 case SXG_BUFFER_TYPE_SGL:
3794 sxg_allocate_sgl_buffer_complete(adapter, (struct sxg_scatter_gather *)
3795 VirtualAddress,
3796 PhysicalAddress, Length);
3797 break;
3799 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
3800 adapter, VirtualAddress, Length, Context);
3802 return status;
3806 * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3807 * synchronous and asynchronous buffer allocations
3809 * Arguments -
3810 * adapter - A pointer to our adapter structure
3811 * Size - block size to allocate
3812 * BufferType - Type of buffer to allocate
3814 * Return
3815 * int
3817 static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
3818 u32 Size, enum sxg_buffer_type BufferType)
3820 int status;
3821 void *Buffer;
3822 dma_addr_t pBuffer;
3824 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
3825 adapter, Size, BufferType, 0);
3827 * Grab the adapter lock and check the state. If we're in anything other
3828 * than INITIALIZING or RUNNING state, fail. This is to prevent
3829 * allocations in an improper driver state
3832 atomic_inc(&adapter->pending_allocations);
3834 if(BufferType != SXG_BUFFER_TYPE_SGL)
3835 Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
3836 else {
3837 Buffer = kzalloc(Size, GFP_ATOMIC);
3838 pBuffer = (dma_addr_t)NULL;
3840 if (Buffer == NULL) {
3842 * Decrement the AllocationsPending count while holding
3843 * the lock. Pause processing relies on this
3845 atomic_dec(&adapter->pending_allocations);
3846 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
3847 adapter, Size, BufferType, 0);
3848 return (STATUS_RESOURCES);
3850 status = sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
3852 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
3853 adapter, Size, BufferType, status);
3854 return status;
3858 * sxg_allocate_rcvblock_complete - Complete a receive descriptor
3859 * block allocation
3861 * Arguments -
3862 * adapter - A pointer to our adapter structure
3863 * RcvBlock - receive block virtual address
3864 * PhysicalAddress - Physical address
3865 * Length - Memory length
3867 * Return
3869 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
3870 void *RcvBlock,
3871 dma_addr_t PhysicalAddress,
3872 u32 Length)
3874 u32 i;
3875 u32 BufferSize = adapter->ReceiveBufferSize;
3876 u64 Paddr;
3877 void *temp_RcvBlock;
3878 struct sxg_rcv_block_hdr *RcvBlockHdr;
3879 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3880 struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3881 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3883 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
3884 adapter, RcvBlock, Length, 0);
3885 if (RcvBlock == NULL) {
3886 goto fail;
3888 memset(RcvBlock, 0, Length);
3889 ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
3890 (BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
3891 ASSERT(Length == SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE));
3893 * First, initialize the contained pool of receive data buffers.
3894 * This initialization requires NBL/NB/MDL allocations, if any of them
3895 * fail, free the block and return without queueing the shared memory
3897 //RcvDataBuffer = RcvBlock;
3898 temp_RcvBlock = RcvBlock;
3899 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3900 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3901 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
3902 temp_RcvBlock;
3903 /* For FREE macro assertion */
3904 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
3905 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
3906 if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
3907 goto fail;
3912 * Place this entire block of memory on the AllRcvBlocks queue so it
3913 * can be free later
3916 RcvBlockHdr = (struct sxg_rcv_block_hdr *) ((unsigned char *)RcvBlock +
3917 SXG_RCV_BLOCK_HDR_OFFSET(SXG_RCV_DATA_HDR_SIZE));
3918 RcvBlockHdr->VirtualAddress = RcvBlock;
3919 RcvBlockHdr->PhysicalAddress = PhysicalAddress;
3920 spin_lock(&adapter->RcvQLock);
3921 adapter->AllRcvBlockCount++;
3922 InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
3923 spin_unlock(&adapter->RcvQLock);
3925 /* Now free the contained receive data buffers that we
3926 * initialized above */
3927 temp_RcvBlock = RcvBlock;
3928 for (i = 0, Paddr = PhysicalAddress;
3929 i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3930 i++, Paddr += SXG_RCV_DATA_HDR_SIZE,
3931 temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3932 RcvDataBufferHdr =
3933 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3934 spin_lock(&adapter->RcvQLock);
3935 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3936 spin_unlock(&adapter->RcvQLock);
3939 /* Locate the descriptor block and put it on a separate free queue */
3940 RcvDescriptorBlock =
3941 (struct sxg_rcv_descriptor_block *) ((unsigned char *)RcvBlock +
3942 SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3943 (SXG_RCV_DATA_HDR_SIZE));
3944 RcvDescriptorBlockHdr =
3945 (struct sxg_rcv_descriptor_block_hdr *) ((unsigned char *)RcvBlock +
3946 SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3947 (SXG_RCV_DATA_HDR_SIZE));
3948 RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
3949 RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
3950 spin_lock(&adapter->RcvQLock);
3951 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
3952 spin_unlock(&adapter->RcvQLock);
3953 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
3954 adapter, RcvBlock, Length, 0);
3955 return STATUS_SUCCESS;
3956 fail:
3957 /* Free any allocated resources */
3958 if (RcvBlock) {
3959 temp_RcvBlock = RcvBlock;
3960 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3961 i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3962 RcvDataBufferHdr =
3963 (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3964 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3966 pci_free_consistent(adapter->pcidev,
3967 Length, RcvBlock, PhysicalAddress);
3969 DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
3970 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
3971 adapter, adapter->FreeRcvBufferCount,
3972 adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
3973 adapter->Stats.NoMem++;
3974 /* As allocation failed, free all previously allocated blocks..*/
3975 //sxg_free_rcvblocks(adapter);
3977 return STATUS_RESOURCES;
3981 * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
3983 * Arguments -
3984 * adapter - A pointer to our adapter structure
3985 * SxgSgl - struct sxg_scatter_gather buffer
3986 * PhysicalAddress - Physical address
3987 * Length - Memory length
3989 * Return
3991 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
3992 struct sxg_scatter_gather *SxgSgl,
3993 dma_addr_t PhysicalAddress,
3994 u32 Length)
3996 unsigned long sgl_flags;
3997 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
3998 adapter, SxgSgl, Length, 0);
3999 spin_lock_irqsave(&adapter->SglQLock, sgl_flags);
4000 adapter->AllSglBufferCount++;
4001 /* PhysicalAddress; */
4002 SxgSgl->PhysicalAddress = PhysicalAddress;
4003 /* Initialize backpointer once */
4004 SxgSgl->adapter = adapter;
4005 InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
4006 spin_unlock_irqrestore(&adapter->SglQLock, sgl_flags);
4007 SxgSgl->State = SXG_BUFFER_BUSY;
4008 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL);
4009 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
4010 adapter, SxgSgl, Length, 0);
4014 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter)
4017 * DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] \
4018 * funct#[%d]\n", __func__, card->config_set,
4019 * adapter->port, adapter->physport, adapter->functionnumber);
4021 * sxg_dbg_macaddrs(adapter);
4023 /* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n",
4024 * __FUNCTION__);
4027 /* sxg_dbg_macaddrs(adapter); */
4029 struct net_device * dev = adapter->netdev;
4030 if(!dev)
4032 printk("sxg: Dev is Null\n");
4035 DBG_ERROR("%s ENTER (%s)\n", __FUNCTION__, adapter->netdev->name);
4037 if (netif_running(dev)) {
4038 return -EBUSY;
4040 if (!adapter) {
4041 return -EBUSY;
4044 if (!(adapter->currmacaddr[0] ||
4045 adapter->currmacaddr[1] ||
4046 adapter->currmacaddr[2] ||
4047 adapter->currmacaddr[3] ||
4048 adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
4049 memcpy(adapter->currmacaddr, adapter->macaddr, 6);
4051 if (adapter->netdev) {
4052 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
4053 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
4055 /* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
4056 sxg_dbg_macaddrs(adapter);
4058 return 0;
4061 #if XXXTODO
4062 static int sxg_mac_set_address(struct net_device *dev, void *ptr)
4064 struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
4065 struct sockaddr *addr = ptr;
4067 DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
4069 if (netif_running(dev)) {
4070 return -EBUSY;
4072 if (!adapter) {
4073 return -EBUSY;
4075 DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
4076 __func__, adapter->netdev->name, adapter->currmacaddr[0],
4077 adapter->currmacaddr[1], adapter->currmacaddr[2],
4078 adapter->currmacaddr[3], adapter->currmacaddr[4],
4079 adapter->currmacaddr[5]);
4080 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4081 memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
4082 DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
4083 __func__, adapter->netdev->name, adapter->currmacaddr[0],
4084 adapter->currmacaddr[1], adapter->currmacaddr[2],
4085 adapter->currmacaddr[3], adapter->currmacaddr[4],
4086 adapter->currmacaddr[5]);
4088 sxg_config_set(adapter, TRUE);
4089 return 0;
4091 #endif
4094 * SXG DRIVER FUNCTIONS (below)
4096 * sxg_initialize_adapter - Initialize adapter
4098 * Arguments -
4099 * adapter - A pointer to our adapter structure
4101 * Return - int
4103 static int sxg_initialize_adapter(struct adapter_t *adapter)
4105 u32 RssIds, IsrCount;
4106 u32 i;
4107 int status;
4108 int sxg_rcv_ring_size = SXG_RCV_RING_SIZE;
4110 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
4111 adapter, 0, 0, 0);
4113 RssIds = 1; /* XXXTODO SXG_RSS_CPU_COUNT(adapter); */
4114 IsrCount = adapter->msi_enabled ? RssIds : 1;
4117 * Sanity check SXG_UCODE_REGS structure definition to
4118 * make sure the length is correct
4120 ASSERT(sizeof(struct sxg_ucode_regs) == SXG_REGISTER_SIZE_PER_CPU);
4122 /* Disable interrupts */
4123 SXG_DISABLE_ALL_INTERRUPTS(adapter);
4125 /* Set MTU */
4126 ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
4127 (adapter->FrameSize == JUMBOMAXFRAME));
4128 WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
4130 /* Set event ring base address and size */
4131 WRITE_REG64(adapter,
4132 adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
4133 WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
4135 /* Per-ISR initialization */
4136 for (i = 0; i < IsrCount; i++) {
4137 u64 Addr;
4138 /* Set interrupt status pointer */
4139 Addr = adapter->PIsr + (i * sizeof(u32));
4140 WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
4143 /* XMT ring zero index */
4144 WRITE_REG64(adapter,
4145 adapter->UcodeRegs[0].SPSendIndex,
4146 adapter->PXmtRingZeroIndex, 0);
4148 /* Per-RSS initialization */
4149 for (i = 0; i < RssIds; i++) {
4150 /* Release all event ring entries to the Microcode */
4151 WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
4152 TRUE);
4155 /* Transmit ring base and size */
4156 WRITE_REG64(adapter,
4157 adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
4158 WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
4160 /* Receive ring base and size */
4161 WRITE_REG64(adapter,
4162 adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
4163 if (adapter->JumboEnabled == TRUE)
4164 sxg_rcv_ring_size = SXG_JUMBO_RCV_RING_SIZE;
4165 WRITE_REG(adapter->UcodeRegs[0].RcvSize, sxg_rcv_ring_size, TRUE);
4167 /* Populate the card with receive buffers */
4168 sxg_stock_rcv_buffers(adapter);
4171 * Initialize checksum offload capabilities. At the moment we always
4172 * enable IP and TCP receive checksums on the card. Depending on the
4173 * checksum configuration specified by the user, we can choose to
4174 * report or ignore the checksum information provided by the card.
4176 WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
4177 SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
4179 adapter->flags |= (SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED );
4181 /* Initialize the MAC, XAUI */
4182 DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
4183 status = sxg_initialize_link(adapter);
4184 DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
4185 status);
4186 if (status != STATUS_SUCCESS) {
4187 return (status);
4190 * Initialize Dead to FALSE.
4191 * SlicCheckForHang or SlicDumpThread will take it from here.
4193 adapter->Dead = FALSE;
4194 adapter->PingOutstanding = FALSE;
4195 adapter->XmtFcEnabled = TRUE;
4196 adapter->RcvFcEnabled = TRUE;
4198 adapter->State = SXG_STATE_RUNNING;
4200 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
4201 adapter, 0, 0, 0);
4202 return (STATUS_SUCCESS);
4206 * sxg_fill_descriptor_block - Populate a descriptor block and give it to
4207 * the card. The caller should hold the RcvQLock
4209 * Arguments -
4210 * adapter - A pointer to our adapter structure
4211 * RcvDescriptorBlockHdr - Descriptor block to fill
4213 * Return
4214 * status
4216 static int sxg_fill_descriptor_block(struct adapter_t *adapter,
4217 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr)
4219 u32 i;
4220 struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
4221 struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
4222 struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
4223 struct sxg_cmd *RingDescriptorCmd;
4224 struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
4226 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
4227 adapter, adapter->RcvBuffersOnCard,
4228 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4230 ASSERT(RcvDescriptorBlockHdr);
4233 * If we don't have the resources to fill the descriptor block,
4234 * return failure
4236 if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
4237 SXG_RING_FULL(RcvRingInfo)) {
4238 adapter->Stats.NoMem++;
4239 return (STATUS_FAILURE);
4241 /* Get a ring descriptor command */
4242 SXG_GET_CMD(RingZero,
4243 RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
4244 ASSERT(RingDescriptorCmd);
4245 RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
4246 RcvDescriptorBlock = (struct sxg_rcv_descriptor_block *)
4247 RcvDescriptorBlockHdr->VirtualAddress;
4249 /* Fill in the descriptor block */
4250 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
4251 SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
4252 ASSERT(RcvDataBufferHdr);
4253 // ASSERT(RcvDataBufferHdr->SxgDumbRcvPacket);
4254 if (!RcvDataBufferHdr->SxgDumbRcvPacket) {
4255 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr,
4256 adapter->ReceiveBufferSize);
4257 if(RcvDataBufferHdr->skb)
4258 RcvDataBufferHdr->SxgDumbRcvPacket =
4259 RcvDataBufferHdr->skb;
4260 else
4261 goto no_memory;
4263 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
4264 RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
4265 RcvDescriptorBlock->Descriptors[i].VirtualAddress =
4266 (void *)RcvDataBufferHdr;
4268 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
4269 RcvDataBufferHdr->PhysicalAddress;
4271 /* Add the descriptor block to receive descriptor ring 0 */
4272 RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
4275 * RcvBuffersOnCard is not protected via the receive lock (see
4276 * sxg_process_event_queue) We don't want to grap a lock every time a
4277 * buffer is returned to us, so we use atomic interlocked functions
4278 * instead.
4280 adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
4282 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
4283 RcvDescriptorBlockHdr,
4284 RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
4286 WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
4287 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
4288 adapter, adapter->RcvBuffersOnCard,
4289 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4290 return (STATUS_SUCCESS);
4291 no_memory:
4292 for (; i >= 0 ; i--) {
4293 if (RcvDescriptorBlock->Descriptors[i].VirtualAddress) {
4294 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
4295 RcvDescriptorBlock->Descriptors[i].
4296 VirtualAddress;
4297 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
4298 (dma_addr_t)NULL;
4299 RcvDescriptorBlock->Descriptors[i].VirtualAddress=NULL;
4301 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
4303 RcvDescriptorBlockHdr->State = SXG_BUFFER_FREE;
4304 SXG_RETURN_CMD(RingZero, RcvRingInfo, RingDescriptorCmd,
4305 RcvDescriptorBlockHdr);
4307 return (-ENOMEM);
4311 * sxg_stock_rcv_buffers - Stock the card with receive buffers
4313 * Arguments -
4314 * adapter - A pointer to our adapter structure
4316 * Return
4317 * None
4319 static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
4321 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
4322 int sxg_rcv_data_buffers = SXG_RCV_DATA_BUFFERS;
4323 int sxg_min_rcv_data_buffers = SXG_MIN_RCV_DATA_BUFFERS;
4325 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
4326 adapter, adapter->RcvBuffersOnCard,
4327 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4329 * First, see if we've got less than our minimum threshold of
4330 * receive buffers, there isn't an allocation in progress, and
4331 * we haven't exceeded our maximum.. get another block of buffers
4332 * None of this needs to be SMP safe. It's round numbers.
4334 if (adapter->JumboEnabled == TRUE)
4335 sxg_min_rcv_data_buffers = SXG_MIN_JUMBO_RCV_DATA_BUFFERS;
4336 if ((adapter->FreeRcvBufferCount < sxg_min_rcv_data_buffers) &&
4337 (adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
4338 (atomic_read(&adapter->pending_allocations) == 0)) {
4339 sxg_allocate_buffer_memory(adapter,
4340 SXG_RCV_BLOCK_SIZE
4341 (SXG_RCV_DATA_HDR_SIZE),
4342 SXG_BUFFER_TYPE_RCV);
4344 /* Now grab the RcvQLock lock and proceed */
4345 spin_lock(&adapter->RcvQLock);
4346 if (adapter->JumboEnabled)
4347 sxg_rcv_data_buffers = SXG_JUMBO_RCV_DATA_BUFFERS;
4348 while (adapter->RcvBuffersOnCard < sxg_rcv_data_buffers) {
4349 struct list_entry *_ple;
4351 /* Get a descriptor block */
4352 RcvDescriptorBlockHdr = NULL;
4353 if (adapter->FreeRcvBlockCount) {
4354 _ple = RemoveHeadList(&adapter->FreeRcvBlocks);
4355 RcvDescriptorBlockHdr =
4356 container_of(_ple, struct sxg_rcv_descriptor_block_hdr,
4357 FreeList);
4358 adapter->FreeRcvBlockCount--;
4359 RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
4362 if (RcvDescriptorBlockHdr == NULL) {
4363 /* Bail out.. */
4364 adapter->Stats.NoMem++;
4365 break;
4367 /* Fill in the descriptor block and give it to the card */
4368 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
4369 STATUS_FAILURE) {
4370 /* Free the descriptor block */
4371 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4372 RcvDescriptorBlockHdr);
4373 break;
4376 spin_unlock(&adapter->RcvQLock);
4377 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
4378 adapter, adapter->RcvBuffersOnCard,
4379 adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4383 * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
4384 * completed by the microcode
4386 * Arguments -
4387 * adapter - A pointer to our adapter structure
4388 * Index - Where the microcode is up to
4390 * Return
4391 * None
4393 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
4394 unsigned char Index)
4396 struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
4397 struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
4398 struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
4399 struct sxg_cmd *RingDescriptorCmd;
4401 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
4402 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4404 /* Now grab the RcvQLock lock and proceed */
4405 spin_lock(&adapter->RcvQLock);
4406 ASSERT(Index != RcvRingInfo->Tail);
4407 while (sxg_ring_get_forward_diff(RcvRingInfo, Index,
4408 RcvRingInfo->Tail) > 3) {
4410 * Locate the current Cmd (ring descriptor entry), and
4411 * associated receive descriptor block, and advance
4412 * the tail
4414 SXG_RETURN_CMD(RingZero,
4415 RcvRingInfo,
4416 RingDescriptorCmd, RcvDescriptorBlockHdr);
4417 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
4418 RcvRingInfo->Head, RcvRingInfo->Tail,
4419 RingDescriptorCmd, RcvDescriptorBlockHdr);
4421 /* Clear the SGL field */
4422 RingDescriptorCmd->Sgl = 0;
4424 * Attempt to refill it and hand it right back to the
4425 * card. If we fail to refill it, free the descriptor block
4426 * header. The card will be restocked later via the
4427 * RcvBuffersOnCard test
4429 if (sxg_fill_descriptor_block(adapter,
4430 RcvDescriptorBlockHdr) == STATUS_FAILURE)
4431 SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4432 RcvDescriptorBlockHdr);
4434 spin_unlock(&adapter->RcvQLock);
4435 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
4436 adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4440 * Read the statistics which the card has been maintaining.
4442 void sxg_collect_statistics(struct adapter_t *adapter)
4444 if(adapter->ucode_stats)
4445 WRITE_REG64(adapter, adapter->UcodeRegs[0].GetUcodeStats,
4446 adapter->pucode_stats, 0);
4447 adapter->stats.rx_fifo_errors = adapter->ucode_stats->ERDrops;
4448 adapter->stats.rx_over_errors = adapter->ucode_stats->NBDrops;
4449 adapter->stats.tx_fifo_errors = adapter->ucode_stats->XDrops;
4452 static struct net_device_stats *sxg_get_stats(struct net_device * dev)
4454 struct adapter_t *adapter = netdev_priv(dev);
4456 sxg_collect_statistics(adapter);
4457 return (&adapter->stats);
4460 static struct pci_driver sxg_driver = {
4461 .name = sxg_driver_name,
4462 .id_table = sxg_pci_tbl,
4463 .probe = sxg_entry_probe,
4464 .remove = sxg_entry_remove,
4465 #if SXG_POWER_MANAGEMENT_ENABLED
4466 .suspend = sxgpm_suspend,
4467 .resume = sxgpm_resume,
4468 #endif
4469 /* .shutdown = slic_shutdown, MOOK_INVESTIGATE */
4472 static int __init sxg_module_init(void)
4474 sxg_init_driver();
4476 if (debug >= 0)
4477 sxg_debug = debug;
4479 return pci_register_driver(&sxg_driver);
4482 static void __exit sxg_module_cleanup(void)
4484 pci_unregister_driver(&sxg_driver);
4487 module_init(sxg_module_init);
4488 module_exit(sxg_module_cleanup);