serial: xilinx_uartps: fix bad register write in console_write
[linux-2.6-xlnx.git] / mm / page_alloc.c
blob4a4f9219683f63d8594c143fa24f27d4daa6a8ff
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
84 * Array of node states.
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 [N_CPU] = { { [0] = 1UL } },
95 #endif /* NUMA */
97 EXPORT_SYMBOL(node_states);
99 unsigned long totalram_pages __read_mostly;
100 unsigned long totalreserve_pages __read_mostly;
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
107 unsigned long dirty_balance_reserve __read_mostly;
109 int percpu_pagelist_fraction;
110 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
112 #ifdef CONFIG_PM_SLEEP
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
122 static gfp_t saved_gfp_mask;
124 void pm_restore_gfp_mask(void)
126 WARN_ON(!mutex_is_locked(&pm_mutex));
127 if (saved_gfp_mask) {
128 gfp_allowed_mask = saved_gfp_mask;
129 saved_gfp_mask = 0;
133 void pm_restrict_gfp_mask(void)
135 WARN_ON(!mutex_is_locked(&pm_mutex));
136 WARN_ON(saved_gfp_mask);
137 saved_gfp_mask = gfp_allowed_mask;
138 gfp_allowed_mask &= ~GFP_IOFS;
141 bool pm_suspended_storage(void)
143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 return false;
145 return true;
147 #endif /* CONFIG_PM_SLEEP */
149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150 int pageblock_order __read_mostly;
151 #endif
153 static void __free_pages_ok(struct page *page, unsigned int order);
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
166 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
167 #ifdef CONFIG_ZONE_DMA
168 256,
169 #endif
170 #ifdef CONFIG_ZONE_DMA32
171 256,
172 #endif
173 #ifdef CONFIG_HIGHMEM
175 #endif
179 EXPORT_SYMBOL(totalram_pages);
181 static char * const zone_names[MAX_NR_ZONES] = {
182 #ifdef CONFIG_ZONE_DMA
183 "DMA",
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 "DMA32",
187 #endif
188 "Normal",
189 #ifdef CONFIG_HIGHMEM
190 "HighMem",
191 #endif
192 "Movable",
195 int min_free_kbytes = 1024;
197 static unsigned long __meminitdata nr_kernel_pages;
198 static unsigned long __meminitdata nr_all_pages;
199 static unsigned long __meminitdata dma_reserve;
201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __initdata required_kernelcore;
205 static unsigned long __initdata required_movablecore;
206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 int movable_zone;
210 EXPORT_SYMBOL(movable_zone);
211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 int nr_online_nodes __read_mostly = 1;
216 EXPORT_SYMBOL(nr_node_ids);
217 EXPORT_SYMBOL(nr_online_nodes);
218 #endif
220 int page_group_by_mobility_disabled __read_mostly;
222 static void set_pageblock_migratetype(struct page *page, int migratetype)
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
232 bool oom_killer_disabled __read_mostly;
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
249 return ret;
252 static int page_is_consistent(struct zone *zone, struct page *page)
254 if (!pfn_valid_within(page_to_pfn(page)))
255 return 0;
256 if (zone != page_zone(page))
257 return 0;
259 return 1;
262 * Temporary debugging check for pages not lying within a given zone.
264 static int bad_range(struct zone *zone, struct page *page)
266 if (page_outside_zone_boundaries(zone, page))
267 return 1;
268 if (!page_is_consistent(zone, page))
269 return 1;
271 return 0;
273 #else
274 static inline int bad_range(struct zone *zone, struct page *page)
276 return 0;
278 #endif
280 static void bad_page(struct page *page)
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
288 reset_page_mapcount(page); /* remove PageBuddy */
289 return;
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
301 if (nr_unshown) {
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
304 nr_unshown);
305 nr_unshown = 0;
307 nr_shown = 0;
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
313 current->comm, page_to_pfn(page));
314 dump_page(page);
316 print_modules();
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page *page)
341 __free_pages_ok(page, compound_order(page));
344 void prep_compound_page(struct page *page, unsigned long order)
346 int i;
347 int nr_pages = 1 << order;
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354 __SetPageTail(p);
355 set_page_count(p, 0);
356 p->first_page = page;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
373 __ClearPageHead(page);
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
382 __ClearPageTail(p);
385 return bad;
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
390 int i;
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
401 #ifdef CONFIG_DEBUG_PAGEALLOC
402 unsigned int _debug_guardpage_minorder;
404 static int __init debug_guardpage_minorder_setup(char *buf)
406 unsigned long res;
408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 return 0;
412 _debug_guardpage_minorder = res;
413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 return 0;
416 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
418 static inline void set_page_guard_flag(struct page *page)
420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
423 static inline void clear_page_guard_flag(struct page *page)
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
427 #else
428 static inline void set_page_guard_flag(struct page *page) { }
429 static inline void clear_page_guard_flag(struct page *page) { }
430 #endif
432 static inline void set_page_order(struct page *page, int order)
434 set_page_private(page, order);
435 __SetPageBuddy(page);
438 static inline void rmv_page_order(struct page *page)
440 __ClearPageBuddy(page);
441 set_page_private(page, 0);
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
450 * B2 = B1 ^ (1 << O)
451 * For example, if the starting buddy (buddy2) is #8 its order
452 * 1 buddy is #10:
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
457 * P = B & ~(1 << O)
459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461 static inline unsigned long
462 __find_buddy_index(unsigned long page_idx, unsigned int order)
464 return page_idx ^ (1 << order);
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
470 * (a) the buddy is not in a hole &&
471 * (b) the buddy is in the buddy system &&
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478 * For recording page's order, we use page_private(page).
480 static inline int page_is_buddy(struct page *page, struct page *buddy,
481 int order)
483 if (!pfn_valid_within(page_to_pfn(buddy)))
484 return 0;
486 if (page_zone_id(page) != page_zone_id(buddy))
487 return 0;
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON(page_count(buddy) != 0);
491 return 1;
494 if (PageBuddy(buddy) && page_order(buddy) == order) {
495 VM_BUG_ON(page_count(buddy) != 0);
496 return 1;
498 return 0;
502 * Freeing function for a buddy system allocator.
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
515 * order is recorded in page_private(page) field.
516 * So when we are allocating or freeing one, we can derive the state of the
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
519 * If a block is freed, and its buddy is also free, then this
520 * triggers coalescing into a block of larger size.
522 * -- wli
525 static inline void __free_one_page(struct page *page,
526 struct zone *zone, unsigned int order,
527 int migratetype)
529 unsigned long page_idx;
530 unsigned long combined_idx;
531 unsigned long uninitialized_var(buddy_idx);
532 struct page *buddy;
534 if (unlikely(PageCompound(page)))
535 if (unlikely(destroy_compound_page(page, order)))
536 return;
538 VM_BUG_ON(migratetype == -1);
540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
542 VM_BUG_ON(page_idx & ((1 << order) - 1));
543 VM_BUG_ON(bad_range(zone, page));
545 while (order < MAX_ORDER-1) {
546 buddy_idx = __find_buddy_index(page_idx, order);
547 buddy = page + (buddy_idx - page_idx);
548 if (!page_is_buddy(page, buddy, order))
549 break;
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
554 if (page_is_guard(buddy)) {
555 clear_page_guard_flag(buddy);
556 set_page_private(page, 0);
557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 } else {
559 list_del(&buddy->lru);
560 zone->free_area[order].nr_free--;
561 rmv_page_order(buddy);
563 combined_idx = buddy_idx & page_idx;
564 page = page + (combined_idx - page_idx);
565 page_idx = combined_idx;
566 order++;
568 set_page_order(page, order);
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
579 struct page *higher_page, *higher_buddy;
580 combined_idx = buddy_idx & page_idx;
581 higher_page = page + (combined_idx - page_idx);
582 buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 higher_buddy = page + (buddy_idx - combined_idx);
584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 list_add_tail(&page->lru,
586 &zone->free_area[order].free_list[migratetype]);
587 goto out;
591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592 out:
593 zone->free_area[order].nr_free++;
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
601 static inline void free_page_mlock(struct page *page)
603 __dec_zone_page_state(page, NR_MLOCK);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED);
607 static inline int free_pages_check(struct page *page)
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
614 bad_page(page);
615 return 1;
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
666 do {
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, page_private(page));
672 trace_mm_page_pcpu_drain(page, 0, page_private(page));
673 } while (--to_free && --batch_free && !list_empty(list));
675 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
676 spin_unlock(&zone->lock);
679 static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
682 spin_lock(&zone->lock);
683 zone->all_unreclaimable = 0;
684 zone->pages_scanned = 0;
686 __free_one_page(page, zone, order, migratetype);
687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
688 spin_unlock(&zone->lock);
691 static bool free_pages_prepare(struct page *page, unsigned int order)
693 int i;
694 int bad = 0;
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
714 return true;
717 static void __free_pages_ok(struct page *page, unsigned int order)
719 unsigned long flags;
720 int wasMlocked = __TestClearPageMlocked(page);
722 if (!free_pages_prepare(page, order))
723 return;
725 local_irq_save(flags);
726 if (unlikely(wasMlocked))
727 free_page_mlock(page);
728 __count_vm_events(PGFREE, 1 << order);
729 free_one_page(page_zone(page), page, order,
730 get_pageblock_migratetype(page));
731 local_irq_restore(flags);
734 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
736 unsigned int nr_pages = 1 << order;
737 unsigned int loop;
739 prefetchw(page);
740 for (loop = 0; loop < nr_pages; loop++) {
741 struct page *p = &page[loop];
743 if (loop + 1 < nr_pages)
744 prefetchw(p + 1);
745 __ClearPageReserved(p);
746 set_page_count(p, 0);
749 set_page_refcounted(page);
750 __free_pages(page, order);
753 #ifdef CONFIG_CMA
754 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755 void __init init_cma_reserved_pageblock(struct page *page)
757 unsigned i = pageblock_nr_pages;
758 struct page *p = page;
760 do {
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
763 } while (++p, --i);
765 set_page_refcounted(page);
766 set_pageblock_migratetype(page, MIGRATE_CMA);
767 __free_pages(page, pageblock_order);
768 totalram_pages += pageblock_nr_pages;
770 #endif
773 * The order of subdivision here is critical for the IO subsystem.
774 * Please do not alter this order without good reasons and regression
775 * testing. Specifically, as large blocks of memory are subdivided,
776 * the order in which smaller blocks are delivered depends on the order
777 * they're subdivided in this function. This is the primary factor
778 * influencing the order in which pages are delivered to the IO
779 * subsystem according to empirical testing, and this is also justified
780 * by considering the behavior of a buddy system containing a single
781 * large block of memory acted on by a series of small allocations.
782 * This behavior is a critical factor in sglist merging's success.
784 * -- wli
786 static inline void expand(struct zone *zone, struct page *page,
787 int low, int high, struct free_area *area,
788 int migratetype)
790 unsigned long size = 1 << high;
792 while (high > low) {
793 area--;
794 high--;
795 size >>= 1;
796 VM_BUG_ON(bad_range(zone, &page[size]));
798 #ifdef CONFIG_DEBUG_PAGEALLOC
799 if (high < debug_guardpage_minorder()) {
801 * Mark as guard pages (or page), that will allow to
802 * merge back to allocator when buddy will be freed.
803 * Corresponding page table entries will not be touched,
804 * pages will stay not present in virtual address space
806 INIT_LIST_HEAD(&page[size].lru);
807 set_page_guard_flag(&page[size]);
808 set_page_private(&page[size], high);
809 /* Guard pages are not available for any usage */
810 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
811 continue;
813 #endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
821 * This page is about to be returned from the page allocator
823 static inline int check_new_page(struct page *page)
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
833 return 0;
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
838 int i;
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
846 set_page_private(page, 0);
847 set_page_refcounted(page);
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
858 return 0;
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
888 return NULL;
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904 #endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
914 static int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
922 #ifndef CONFIG_HOLES_IN_ZONE
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 page += 1 << order;
951 pages_moved += 1 << order;
954 return pages_moved;
957 static int move_freepages_block(struct zone *zone, struct page *page,
958 int migratetype)
960 unsigned long start_pfn, end_pfn;
961 struct page *start_page, *end_page;
963 start_pfn = page_to_pfn(page);
964 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
965 start_page = pfn_to_page(start_pfn);
966 end_page = start_page + pageblock_nr_pages - 1;
967 end_pfn = start_pfn + pageblock_nr_pages - 1;
969 /* Do not cross zone boundaries */
970 if (start_pfn < zone->zone_start_pfn)
971 start_page = page;
972 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
973 return 0;
975 return move_freepages(zone, start_page, end_page, migratetype);
978 static void change_pageblock_range(struct page *pageblock_page,
979 int start_order, int migratetype)
981 int nr_pageblocks = 1 << (start_order - pageblock_order);
983 while (nr_pageblocks--) {
984 set_pageblock_migratetype(pageblock_page, migratetype);
985 pageblock_page += pageblock_nr_pages;
989 /* Remove an element from the buddy allocator from the fallback list */
990 static inline struct page *
991 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
993 struct free_area * area;
994 int current_order;
995 struct page *page;
996 int migratetype, i;
998 /* Find the largest possible block of pages in the other list */
999 for (current_order = MAX_ORDER-1; current_order >= order;
1000 --current_order) {
1001 for (i = 0;; i++) {
1002 migratetype = fallbacks[start_migratetype][i];
1004 /* MIGRATE_RESERVE handled later if necessary */
1005 if (migratetype == MIGRATE_RESERVE)
1006 break;
1008 area = &(zone->free_area[current_order]);
1009 if (list_empty(&area->free_list[migratetype]))
1010 continue;
1012 page = list_entry(area->free_list[migratetype].next,
1013 struct page, lru);
1014 area->nr_free--;
1017 * If breaking a large block of pages, move all free
1018 * pages to the preferred allocation list. If falling
1019 * back for a reclaimable kernel allocation, be more
1020 * aggressive about taking ownership of free pages
1022 * On the other hand, never change migration
1023 * type of MIGRATE_CMA pageblocks nor move CMA
1024 * pages on different free lists. We don't
1025 * want unmovable pages to be allocated from
1026 * MIGRATE_CMA areas.
1028 if (!is_migrate_cma(migratetype) &&
1029 (unlikely(current_order >= pageblock_order / 2) ||
1030 start_migratetype == MIGRATE_RECLAIMABLE ||
1031 page_group_by_mobility_disabled)) {
1032 int pages;
1033 pages = move_freepages_block(zone, page,
1034 start_migratetype);
1036 /* Claim the whole block if over half of it is free */
1037 if (pages >= (1 << (pageblock_order-1)) ||
1038 page_group_by_mobility_disabled)
1039 set_pageblock_migratetype(page,
1040 start_migratetype);
1042 migratetype = start_migratetype;
1045 /* Remove the page from the freelists */
1046 list_del(&page->lru);
1047 rmv_page_order(page);
1049 /* Take ownership for orders >= pageblock_order */
1050 if (current_order >= pageblock_order &&
1051 !is_migrate_cma(migratetype))
1052 change_pageblock_range(page, current_order,
1053 start_migratetype);
1055 expand(zone, page, order, current_order, area,
1056 is_migrate_cma(migratetype)
1057 ? migratetype : start_migratetype);
1059 trace_mm_page_alloc_extfrag(page, order, current_order,
1060 start_migratetype, migratetype);
1062 return page;
1066 return NULL;
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1073 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074 int migratetype)
1076 struct page *page;
1078 retry_reserve:
1079 page = __rmqueue_smallest(zone, order, migratetype);
1081 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1082 page = __rmqueue_fallback(zone, order, migratetype);
1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 * is used because __rmqueue_smallest is an inline function
1087 * and we want just one call site
1089 if (!page) {
1090 migratetype = MIGRATE_RESERVE;
1091 goto retry_reserve;
1095 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1096 return page;
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency. Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1104 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1105 unsigned long count, struct list_head *list,
1106 int migratetype, int cold)
1108 int mt = migratetype, i;
1110 spin_lock(&zone->lock);
1111 for (i = 0; i < count; ++i) {
1112 struct page *page = __rmqueue(zone, order, migratetype);
1113 if (unlikely(page == NULL))
1114 break;
1117 * Split buddy pages returned by expand() are received here
1118 * in physical page order. The page is added to the callers and
1119 * list and the list head then moves forward. From the callers
1120 * perspective, the linked list is ordered by page number in
1121 * some conditions. This is useful for IO devices that can
1122 * merge IO requests if the physical pages are ordered
1123 * properly.
1125 if (likely(cold == 0))
1126 list_add(&page->lru, list);
1127 else
1128 list_add_tail(&page->lru, list);
1129 if (IS_ENABLED(CONFIG_CMA)) {
1130 mt = get_pageblock_migratetype(page);
1131 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132 mt = migratetype;
1134 set_page_private(page, mt);
1135 list = &page->lru;
1137 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1138 spin_unlock(&zone->lock);
1139 return i;
1142 #ifdef CONFIG_NUMA
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1146 * expired.
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
1151 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1153 unsigned long flags;
1154 int to_drain;
1156 local_irq_save(flags);
1157 if (pcp->count >= pcp->batch)
1158 to_drain = pcp->batch;
1159 else
1160 to_drain = pcp->count;
1161 free_pcppages_bulk(zone, to_drain, pcp);
1162 pcp->count -= to_drain;
1163 local_irq_restore(flags);
1165 #endif
1168 * Drain pages of the indicated processor.
1170 * The processor must either be the current processor and the
1171 * thread pinned to the current processor or a processor that
1172 * is not online.
1174 static void drain_pages(unsigned int cpu)
1176 unsigned long flags;
1177 struct zone *zone;
1179 for_each_populated_zone(zone) {
1180 struct per_cpu_pageset *pset;
1181 struct per_cpu_pages *pcp;
1183 local_irq_save(flags);
1184 pset = per_cpu_ptr(zone->pageset, cpu);
1186 pcp = &pset->pcp;
1187 if (pcp->count) {
1188 free_pcppages_bulk(zone, pcp->count, pcp);
1189 pcp->count = 0;
1191 local_irq_restore(flags);
1196 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1198 void drain_local_pages(void *arg)
1200 drain_pages(smp_processor_id());
1204 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1206 * Note that this code is protected against sending an IPI to an offline
1207 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1208 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1209 * nothing keeps CPUs from showing up after we populated the cpumask and
1210 * before the call to on_each_cpu_mask().
1212 void drain_all_pages(void)
1214 int cpu;
1215 struct per_cpu_pageset *pcp;
1216 struct zone *zone;
1219 * Allocate in the BSS so we wont require allocation in
1220 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1222 static cpumask_t cpus_with_pcps;
1225 * We don't care about racing with CPU hotplug event
1226 * as offline notification will cause the notified
1227 * cpu to drain that CPU pcps and on_each_cpu_mask
1228 * disables preemption as part of its processing
1230 for_each_online_cpu(cpu) {
1231 bool has_pcps = false;
1232 for_each_populated_zone(zone) {
1233 pcp = per_cpu_ptr(zone->pageset, cpu);
1234 if (pcp->pcp.count) {
1235 has_pcps = true;
1236 break;
1239 if (has_pcps)
1240 cpumask_set_cpu(cpu, &cpus_with_pcps);
1241 else
1242 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1244 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1247 #ifdef CONFIG_HIBERNATION
1249 void mark_free_pages(struct zone *zone)
1251 unsigned long pfn, max_zone_pfn;
1252 unsigned long flags;
1253 int order, t;
1254 struct list_head *curr;
1256 if (!zone->spanned_pages)
1257 return;
1259 spin_lock_irqsave(&zone->lock, flags);
1261 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1262 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1263 if (pfn_valid(pfn)) {
1264 struct page *page = pfn_to_page(pfn);
1266 if (!swsusp_page_is_forbidden(page))
1267 swsusp_unset_page_free(page);
1270 for_each_migratetype_order(order, t) {
1271 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1272 unsigned long i;
1274 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1275 for (i = 0; i < (1UL << order); i++)
1276 swsusp_set_page_free(pfn_to_page(pfn + i));
1279 spin_unlock_irqrestore(&zone->lock, flags);
1281 #endif /* CONFIG_PM */
1284 * Free a 0-order page
1285 * cold == 1 ? free a cold page : free a hot page
1287 void free_hot_cold_page(struct page *page, int cold)
1289 struct zone *zone = page_zone(page);
1290 struct per_cpu_pages *pcp;
1291 unsigned long flags;
1292 int migratetype;
1293 int wasMlocked = __TestClearPageMlocked(page);
1295 if (!free_pages_prepare(page, 0))
1296 return;
1298 migratetype = get_pageblock_migratetype(page);
1299 set_page_private(page, migratetype);
1300 local_irq_save(flags);
1301 if (unlikely(wasMlocked))
1302 free_page_mlock(page);
1303 __count_vm_event(PGFREE);
1306 * We only track unmovable, reclaimable and movable on pcp lists.
1307 * Free ISOLATE pages back to the allocator because they are being
1308 * offlined but treat RESERVE as movable pages so we can get those
1309 * areas back if necessary. Otherwise, we may have to free
1310 * excessively into the page allocator
1312 if (migratetype >= MIGRATE_PCPTYPES) {
1313 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1314 free_one_page(zone, page, 0, migratetype);
1315 goto out;
1317 migratetype = MIGRATE_MOVABLE;
1320 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1321 if (cold)
1322 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1323 else
1324 list_add(&page->lru, &pcp->lists[migratetype]);
1325 pcp->count++;
1326 if (pcp->count >= pcp->high) {
1327 free_pcppages_bulk(zone, pcp->batch, pcp);
1328 pcp->count -= pcp->batch;
1331 out:
1332 local_irq_restore(flags);
1336 * Free a list of 0-order pages
1338 void free_hot_cold_page_list(struct list_head *list, int cold)
1340 struct page *page, *next;
1342 list_for_each_entry_safe(page, next, list, lru) {
1343 trace_mm_page_free_batched(page, cold);
1344 free_hot_cold_page(page, cold);
1349 * split_page takes a non-compound higher-order page, and splits it into
1350 * n (1<<order) sub-pages: page[0..n]
1351 * Each sub-page must be freed individually.
1353 * Note: this is probably too low level an operation for use in drivers.
1354 * Please consult with lkml before using this in your driver.
1356 void split_page(struct page *page, unsigned int order)
1358 int i;
1360 VM_BUG_ON(PageCompound(page));
1361 VM_BUG_ON(!page_count(page));
1363 #ifdef CONFIG_KMEMCHECK
1365 * Split shadow pages too, because free(page[0]) would
1366 * otherwise free the whole shadow.
1368 if (kmemcheck_page_is_tracked(page))
1369 split_page(virt_to_page(page[0].shadow), order);
1370 #endif
1372 for (i = 1; i < (1 << order); i++)
1373 set_page_refcounted(page + i);
1377 * Similar to split_page except the page is already free. As this is only
1378 * being used for migration, the migratetype of the block also changes.
1379 * As this is called with interrupts disabled, the caller is responsible
1380 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1381 * are enabled.
1383 * Note: this is probably too low level an operation for use in drivers.
1384 * Please consult with lkml before using this in your driver.
1386 int split_free_page(struct page *page)
1388 unsigned int order;
1389 unsigned long watermark;
1390 struct zone *zone;
1392 BUG_ON(!PageBuddy(page));
1394 zone = page_zone(page);
1395 order = page_order(page);
1397 /* Obey watermarks as if the page was being allocated */
1398 watermark = low_wmark_pages(zone) + (1 << order);
1399 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1400 return 0;
1402 /* Remove page from free list */
1403 list_del(&page->lru);
1404 zone->free_area[order].nr_free--;
1405 rmv_page_order(page);
1406 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1408 /* Split into individual pages */
1409 set_page_refcounted(page);
1410 split_page(page, order);
1412 if (order >= pageblock_order - 1) {
1413 struct page *endpage = page + (1 << order) - 1;
1414 for (; page < endpage; page += pageblock_nr_pages) {
1415 int mt = get_pageblock_migratetype(page);
1416 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1417 set_pageblock_migratetype(page,
1418 MIGRATE_MOVABLE);
1422 return 1 << order;
1426 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1427 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1428 * or two.
1430 static inline
1431 struct page *buffered_rmqueue(struct zone *preferred_zone,
1432 struct zone *zone, int order, gfp_t gfp_flags,
1433 int migratetype)
1435 unsigned long flags;
1436 struct page *page;
1437 int cold = !!(gfp_flags & __GFP_COLD);
1439 again:
1440 if (likely(order == 0)) {
1441 struct per_cpu_pages *pcp;
1442 struct list_head *list;
1444 local_irq_save(flags);
1445 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1446 list = &pcp->lists[migratetype];
1447 if (list_empty(list)) {
1448 pcp->count += rmqueue_bulk(zone, 0,
1449 pcp->batch, list,
1450 migratetype, cold);
1451 if (unlikely(list_empty(list)))
1452 goto failed;
1455 if (cold)
1456 page = list_entry(list->prev, struct page, lru);
1457 else
1458 page = list_entry(list->next, struct page, lru);
1460 list_del(&page->lru);
1461 pcp->count--;
1462 } else {
1463 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1465 * __GFP_NOFAIL is not to be used in new code.
1467 * All __GFP_NOFAIL callers should be fixed so that they
1468 * properly detect and handle allocation failures.
1470 * We most definitely don't want callers attempting to
1471 * allocate greater than order-1 page units with
1472 * __GFP_NOFAIL.
1474 WARN_ON_ONCE(order > 1);
1476 spin_lock_irqsave(&zone->lock, flags);
1477 page = __rmqueue(zone, order, migratetype);
1478 spin_unlock(&zone->lock);
1479 if (!page)
1480 goto failed;
1481 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1484 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1485 zone_statistics(preferred_zone, zone, gfp_flags);
1486 local_irq_restore(flags);
1488 VM_BUG_ON(bad_range(zone, page));
1489 if (prep_new_page(page, order, gfp_flags))
1490 goto again;
1491 return page;
1493 failed:
1494 local_irq_restore(flags);
1495 return NULL;
1498 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1499 #define ALLOC_WMARK_MIN WMARK_MIN
1500 #define ALLOC_WMARK_LOW WMARK_LOW
1501 #define ALLOC_WMARK_HIGH WMARK_HIGH
1502 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1504 /* Mask to get the watermark bits */
1505 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1507 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1508 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1509 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1511 #ifdef CONFIG_FAIL_PAGE_ALLOC
1513 static struct {
1514 struct fault_attr attr;
1516 u32 ignore_gfp_highmem;
1517 u32 ignore_gfp_wait;
1518 u32 min_order;
1519 } fail_page_alloc = {
1520 .attr = FAULT_ATTR_INITIALIZER,
1521 .ignore_gfp_wait = 1,
1522 .ignore_gfp_highmem = 1,
1523 .min_order = 1,
1526 static int __init setup_fail_page_alloc(char *str)
1528 return setup_fault_attr(&fail_page_alloc.attr, str);
1530 __setup("fail_page_alloc=", setup_fail_page_alloc);
1532 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1534 if (order < fail_page_alloc.min_order)
1535 return 0;
1536 if (gfp_mask & __GFP_NOFAIL)
1537 return 0;
1538 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1539 return 0;
1540 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1541 return 0;
1543 return should_fail(&fail_page_alloc.attr, 1 << order);
1546 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1548 static int __init fail_page_alloc_debugfs(void)
1550 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1551 struct dentry *dir;
1553 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1554 &fail_page_alloc.attr);
1555 if (IS_ERR(dir))
1556 return PTR_ERR(dir);
1558 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1559 &fail_page_alloc.ignore_gfp_wait))
1560 goto fail;
1561 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1562 &fail_page_alloc.ignore_gfp_highmem))
1563 goto fail;
1564 if (!debugfs_create_u32("min-order", mode, dir,
1565 &fail_page_alloc.min_order))
1566 goto fail;
1568 return 0;
1569 fail:
1570 debugfs_remove_recursive(dir);
1572 return -ENOMEM;
1575 late_initcall(fail_page_alloc_debugfs);
1577 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1579 #else /* CONFIG_FAIL_PAGE_ALLOC */
1581 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1583 return 0;
1586 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1589 * Return true if free pages are above 'mark'. This takes into account the order
1590 * of the allocation.
1592 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1593 int classzone_idx, int alloc_flags, long free_pages)
1595 /* free_pages my go negative - that's OK */
1596 long min = mark;
1597 int o;
1599 free_pages -= (1 << order) - 1;
1600 if (alloc_flags & ALLOC_HIGH)
1601 min -= min / 2;
1602 if (alloc_flags & ALLOC_HARDER)
1603 min -= min / 4;
1605 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1606 return false;
1607 for (o = 0; o < order; o++) {
1608 /* At the next order, this order's pages become unavailable */
1609 free_pages -= z->free_area[o].nr_free << o;
1611 /* Require fewer higher order pages to be free */
1612 min >>= 1;
1614 if (free_pages <= min)
1615 return false;
1617 return true;
1620 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 int classzone_idx, int alloc_flags)
1623 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1624 zone_page_state(z, NR_FREE_PAGES));
1627 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1628 int classzone_idx, int alloc_flags)
1630 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1632 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1633 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1635 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1636 free_pages);
1639 #ifdef CONFIG_NUMA
1641 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1642 * skip over zones that are not allowed by the cpuset, or that have
1643 * been recently (in last second) found to be nearly full. See further
1644 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1645 * that have to skip over a lot of full or unallowed zones.
1647 * If the zonelist cache is present in the passed in zonelist, then
1648 * returns a pointer to the allowed node mask (either the current
1649 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1651 * If the zonelist cache is not available for this zonelist, does
1652 * nothing and returns NULL.
1654 * If the fullzones BITMAP in the zonelist cache is stale (more than
1655 * a second since last zap'd) then we zap it out (clear its bits.)
1657 * We hold off even calling zlc_setup, until after we've checked the
1658 * first zone in the zonelist, on the theory that most allocations will
1659 * be satisfied from that first zone, so best to examine that zone as
1660 * quickly as we can.
1662 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1664 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1665 nodemask_t *allowednodes; /* zonelist_cache approximation */
1667 zlc = zonelist->zlcache_ptr;
1668 if (!zlc)
1669 return NULL;
1671 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1672 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1673 zlc->last_full_zap = jiffies;
1676 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1677 &cpuset_current_mems_allowed :
1678 &node_states[N_HIGH_MEMORY];
1679 return allowednodes;
1683 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1684 * if it is worth looking at further for free memory:
1685 * 1) Check that the zone isn't thought to be full (doesn't have its
1686 * bit set in the zonelist_cache fullzones BITMAP).
1687 * 2) Check that the zones node (obtained from the zonelist_cache
1688 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1689 * Return true (non-zero) if zone is worth looking at further, or
1690 * else return false (zero) if it is not.
1692 * This check -ignores- the distinction between various watermarks,
1693 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1694 * found to be full for any variation of these watermarks, it will
1695 * be considered full for up to one second by all requests, unless
1696 * we are so low on memory on all allowed nodes that we are forced
1697 * into the second scan of the zonelist.
1699 * In the second scan we ignore this zonelist cache and exactly
1700 * apply the watermarks to all zones, even it is slower to do so.
1701 * We are low on memory in the second scan, and should leave no stone
1702 * unturned looking for a free page.
1704 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1705 nodemask_t *allowednodes)
1707 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1708 int i; /* index of *z in zonelist zones */
1709 int n; /* node that zone *z is on */
1711 zlc = zonelist->zlcache_ptr;
1712 if (!zlc)
1713 return 1;
1715 i = z - zonelist->_zonerefs;
1716 n = zlc->z_to_n[i];
1718 /* This zone is worth trying if it is allowed but not full */
1719 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1723 * Given 'z' scanning a zonelist, set the corresponding bit in
1724 * zlc->fullzones, so that subsequent attempts to allocate a page
1725 * from that zone don't waste time re-examining it.
1727 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1729 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1730 int i; /* index of *z in zonelist zones */
1732 zlc = zonelist->zlcache_ptr;
1733 if (!zlc)
1734 return;
1736 i = z - zonelist->_zonerefs;
1738 set_bit(i, zlc->fullzones);
1742 * clear all zones full, called after direct reclaim makes progress so that
1743 * a zone that was recently full is not skipped over for up to a second
1745 static void zlc_clear_zones_full(struct zonelist *zonelist)
1747 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1749 zlc = zonelist->zlcache_ptr;
1750 if (!zlc)
1751 return;
1753 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1756 #else /* CONFIG_NUMA */
1758 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1760 return NULL;
1763 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1764 nodemask_t *allowednodes)
1766 return 1;
1769 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1773 static void zlc_clear_zones_full(struct zonelist *zonelist)
1776 #endif /* CONFIG_NUMA */
1779 * get_page_from_freelist goes through the zonelist trying to allocate
1780 * a page.
1782 static struct page *
1783 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1784 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1785 struct zone *preferred_zone, int migratetype)
1787 struct zoneref *z;
1788 struct page *page = NULL;
1789 int classzone_idx;
1790 struct zone *zone;
1791 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1792 int zlc_active = 0; /* set if using zonelist_cache */
1793 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1795 classzone_idx = zone_idx(preferred_zone);
1796 zonelist_scan:
1798 * Scan zonelist, looking for a zone with enough free.
1799 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1801 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1802 high_zoneidx, nodemask) {
1803 if (NUMA_BUILD && zlc_active &&
1804 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1805 continue;
1806 if ((alloc_flags & ALLOC_CPUSET) &&
1807 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1808 continue;
1810 * When allocating a page cache page for writing, we
1811 * want to get it from a zone that is within its dirty
1812 * limit, such that no single zone holds more than its
1813 * proportional share of globally allowed dirty pages.
1814 * The dirty limits take into account the zone's
1815 * lowmem reserves and high watermark so that kswapd
1816 * should be able to balance it without having to
1817 * write pages from its LRU list.
1819 * This may look like it could increase pressure on
1820 * lower zones by failing allocations in higher zones
1821 * before they are full. But the pages that do spill
1822 * over are limited as the lower zones are protected
1823 * by this very same mechanism. It should not become
1824 * a practical burden to them.
1826 * XXX: For now, allow allocations to potentially
1827 * exceed the per-zone dirty limit in the slowpath
1828 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1829 * which is important when on a NUMA setup the allowed
1830 * zones are together not big enough to reach the
1831 * global limit. The proper fix for these situations
1832 * will require awareness of zones in the
1833 * dirty-throttling and the flusher threads.
1835 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1836 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1837 goto this_zone_full;
1839 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1840 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1841 unsigned long mark;
1842 int ret;
1844 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1845 if (zone_watermark_ok(zone, order, mark,
1846 classzone_idx, alloc_flags))
1847 goto try_this_zone;
1849 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1851 * we do zlc_setup if there are multiple nodes
1852 * and before considering the first zone allowed
1853 * by the cpuset.
1855 allowednodes = zlc_setup(zonelist, alloc_flags);
1856 zlc_active = 1;
1857 did_zlc_setup = 1;
1860 if (zone_reclaim_mode == 0)
1861 goto this_zone_full;
1864 * As we may have just activated ZLC, check if the first
1865 * eligible zone has failed zone_reclaim recently.
1867 if (NUMA_BUILD && zlc_active &&
1868 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1869 continue;
1871 ret = zone_reclaim(zone, gfp_mask, order);
1872 switch (ret) {
1873 case ZONE_RECLAIM_NOSCAN:
1874 /* did not scan */
1875 continue;
1876 case ZONE_RECLAIM_FULL:
1877 /* scanned but unreclaimable */
1878 continue;
1879 default:
1880 /* did we reclaim enough */
1881 if (!zone_watermark_ok(zone, order, mark,
1882 classzone_idx, alloc_flags))
1883 goto this_zone_full;
1887 try_this_zone:
1888 page = buffered_rmqueue(preferred_zone, zone, order,
1889 gfp_mask, migratetype);
1890 if (page)
1891 break;
1892 this_zone_full:
1893 if (NUMA_BUILD)
1894 zlc_mark_zone_full(zonelist, z);
1897 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1898 /* Disable zlc cache for second zonelist scan */
1899 zlc_active = 0;
1900 goto zonelist_scan;
1902 return page;
1906 * Large machines with many possible nodes should not always dump per-node
1907 * meminfo in irq context.
1909 static inline bool should_suppress_show_mem(void)
1911 bool ret = false;
1913 #if NODES_SHIFT > 8
1914 ret = in_interrupt();
1915 #endif
1916 return ret;
1919 static DEFINE_RATELIMIT_STATE(nopage_rs,
1920 DEFAULT_RATELIMIT_INTERVAL,
1921 DEFAULT_RATELIMIT_BURST);
1923 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1925 unsigned int filter = SHOW_MEM_FILTER_NODES;
1927 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1928 debug_guardpage_minorder() > 0)
1929 return;
1932 * This documents exceptions given to allocations in certain
1933 * contexts that are allowed to allocate outside current's set
1934 * of allowed nodes.
1936 if (!(gfp_mask & __GFP_NOMEMALLOC))
1937 if (test_thread_flag(TIF_MEMDIE) ||
1938 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1939 filter &= ~SHOW_MEM_FILTER_NODES;
1940 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1941 filter &= ~SHOW_MEM_FILTER_NODES;
1943 if (fmt) {
1944 struct va_format vaf;
1945 va_list args;
1947 va_start(args, fmt);
1949 vaf.fmt = fmt;
1950 vaf.va = &args;
1952 pr_warn("%pV", &vaf);
1954 va_end(args);
1957 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1958 current->comm, order, gfp_mask);
1960 dump_stack();
1961 if (!should_suppress_show_mem())
1962 show_mem(filter);
1965 static inline int
1966 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1967 unsigned long did_some_progress,
1968 unsigned long pages_reclaimed)
1970 /* Do not loop if specifically requested */
1971 if (gfp_mask & __GFP_NORETRY)
1972 return 0;
1974 /* Always retry if specifically requested */
1975 if (gfp_mask & __GFP_NOFAIL)
1976 return 1;
1979 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1980 * making forward progress without invoking OOM. Suspend also disables
1981 * storage devices so kswapd will not help. Bail if we are suspending.
1983 if (!did_some_progress && pm_suspended_storage())
1984 return 0;
1987 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1988 * means __GFP_NOFAIL, but that may not be true in other
1989 * implementations.
1991 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1992 return 1;
1995 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1996 * specified, then we retry until we no longer reclaim any pages
1997 * (above), or we've reclaimed an order of pages at least as
1998 * large as the allocation's order. In both cases, if the
1999 * allocation still fails, we stop retrying.
2001 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2002 return 1;
2004 return 0;
2007 static inline struct page *
2008 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2009 struct zonelist *zonelist, enum zone_type high_zoneidx,
2010 nodemask_t *nodemask, struct zone *preferred_zone,
2011 int migratetype)
2013 struct page *page;
2015 /* Acquire the OOM killer lock for the zones in zonelist */
2016 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2017 schedule_timeout_uninterruptible(1);
2018 return NULL;
2022 * Go through the zonelist yet one more time, keep very high watermark
2023 * here, this is only to catch a parallel oom killing, we must fail if
2024 * we're still under heavy pressure.
2026 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2027 order, zonelist, high_zoneidx,
2028 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2029 preferred_zone, migratetype);
2030 if (page)
2031 goto out;
2033 if (!(gfp_mask & __GFP_NOFAIL)) {
2034 /* The OOM killer will not help higher order allocs */
2035 if (order > PAGE_ALLOC_COSTLY_ORDER)
2036 goto out;
2037 /* The OOM killer does not needlessly kill tasks for lowmem */
2038 if (high_zoneidx < ZONE_NORMAL)
2039 goto out;
2041 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2042 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2043 * The caller should handle page allocation failure by itself if
2044 * it specifies __GFP_THISNODE.
2045 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2047 if (gfp_mask & __GFP_THISNODE)
2048 goto out;
2050 /* Exhausted what can be done so it's blamo time */
2051 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2053 out:
2054 clear_zonelist_oom(zonelist, gfp_mask);
2055 return page;
2058 #ifdef CONFIG_COMPACTION
2059 /* Try memory compaction for high-order allocations before reclaim */
2060 static struct page *
2061 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2062 struct zonelist *zonelist, enum zone_type high_zoneidx,
2063 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2064 int migratetype, bool sync_migration,
2065 bool *deferred_compaction,
2066 unsigned long *did_some_progress)
2068 struct page *page;
2070 if (!order)
2071 return NULL;
2073 if (compaction_deferred(preferred_zone, order)) {
2074 *deferred_compaction = true;
2075 return NULL;
2078 current->flags |= PF_MEMALLOC;
2079 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2080 nodemask, sync_migration);
2081 current->flags &= ~PF_MEMALLOC;
2082 if (*did_some_progress != COMPACT_SKIPPED) {
2084 /* Page migration frees to the PCP lists but we want merging */
2085 drain_pages(get_cpu());
2086 put_cpu();
2088 page = get_page_from_freelist(gfp_mask, nodemask,
2089 order, zonelist, high_zoneidx,
2090 alloc_flags, preferred_zone,
2091 migratetype);
2092 if (page) {
2093 preferred_zone->compact_considered = 0;
2094 preferred_zone->compact_defer_shift = 0;
2095 if (order >= preferred_zone->compact_order_failed)
2096 preferred_zone->compact_order_failed = order + 1;
2097 count_vm_event(COMPACTSUCCESS);
2098 return page;
2102 * It's bad if compaction run occurs and fails.
2103 * The most likely reason is that pages exist,
2104 * but not enough to satisfy watermarks.
2106 count_vm_event(COMPACTFAIL);
2109 * As async compaction considers a subset of pageblocks, only
2110 * defer if the failure was a sync compaction failure.
2112 if (sync_migration)
2113 defer_compaction(preferred_zone, order);
2115 cond_resched();
2118 return NULL;
2120 #else
2121 static inline struct page *
2122 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2123 struct zonelist *zonelist, enum zone_type high_zoneidx,
2124 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2125 int migratetype, bool sync_migration,
2126 bool *deferred_compaction,
2127 unsigned long *did_some_progress)
2129 return NULL;
2131 #endif /* CONFIG_COMPACTION */
2133 /* Perform direct synchronous page reclaim */
2134 static int
2135 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2136 nodemask_t *nodemask)
2138 struct reclaim_state reclaim_state;
2139 int progress;
2141 cond_resched();
2143 /* We now go into synchronous reclaim */
2144 cpuset_memory_pressure_bump();
2145 current->flags |= PF_MEMALLOC;
2146 lockdep_set_current_reclaim_state(gfp_mask);
2147 reclaim_state.reclaimed_slab = 0;
2148 current->reclaim_state = &reclaim_state;
2150 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2152 current->reclaim_state = NULL;
2153 lockdep_clear_current_reclaim_state();
2154 current->flags &= ~PF_MEMALLOC;
2156 cond_resched();
2158 return progress;
2161 /* The really slow allocator path where we enter direct reclaim */
2162 static inline struct page *
2163 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166 int migratetype, unsigned long *did_some_progress)
2168 struct page *page = NULL;
2169 bool drained = false;
2171 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2172 nodemask);
2173 if (unlikely(!(*did_some_progress)))
2174 return NULL;
2176 /* After successful reclaim, reconsider all zones for allocation */
2177 if (NUMA_BUILD)
2178 zlc_clear_zones_full(zonelist);
2180 retry:
2181 page = get_page_from_freelist(gfp_mask, nodemask, order,
2182 zonelist, high_zoneidx,
2183 alloc_flags, preferred_zone,
2184 migratetype);
2187 * If an allocation failed after direct reclaim, it could be because
2188 * pages are pinned on the per-cpu lists. Drain them and try again
2190 if (!page && !drained) {
2191 drain_all_pages();
2192 drained = true;
2193 goto retry;
2196 return page;
2200 * This is called in the allocator slow-path if the allocation request is of
2201 * sufficient urgency to ignore watermarks and take other desperate measures
2203 static inline struct page *
2204 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, struct zone *preferred_zone,
2207 int migratetype)
2209 struct page *page;
2211 do {
2212 page = get_page_from_freelist(gfp_mask, nodemask, order,
2213 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2214 preferred_zone, migratetype);
2216 if (!page && gfp_mask & __GFP_NOFAIL)
2217 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2218 } while (!page && (gfp_mask & __GFP_NOFAIL));
2220 return page;
2223 static inline
2224 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2225 enum zone_type high_zoneidx,
2226 enum zone_type classzone_idx)
2228 struct zoneref *z;
2229 struct zone *zone;
2231 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2232 wakeup_kswapd(zone, order, classzone_idx);
2235 static inline int
2236 gfp_to_alloc_flags(gfp_t gfp_mask)
2238 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2239 const gfp_t wait = gfp_mask & __GFP_WAIT;
2241 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2242 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2245 * The caller may dip into page reserves a bit more if the caller
2246 * cannot run direct reclaim, or if the caller has realtime scheduling
2247 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2248 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2250 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2252 if (!wait) {
2254 * Not worth trying to allocate harder for
2255 * __GFP_NOMEMALLOC even if it can't schedule.
2257 if (!(gfp_mask & __GFP_NOMEMALLOC))
2258 alloc_flags |= ALLOC_HARDER;
2260 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2261 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2263 alloc_flags &= ~ALLOC_CPUSET;
2264 } else if (unlikely(rt_task(current)) && !in_interrupt())
2265 alloc_flags |= ALLOC_HARDER;
2267 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2268 if (!in_interrupt() &&
2269 ((current->flags & PF_MEMALLOC) ||
2270 unlikely(test_thread_flag(TIF_MEMDIE))))
2271 alloc_flags |= ALLOC_NO_WATERMARKS;
2274 return alloc_flags;
2277 static inline struct page *
2278 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2279 struct zonelist *zonelist, enum zone_type high_zoneidx,
2280 nodemask_t *nodemask, struct zone *preferred_zone,
2281 int migratetype)
2283 const gfp_t wait = gfp_mask & __GFP_WAIT;
2284 struct page *page = NULL;
2285 int alloc_flags;
2286 unsigned long pages_reclaimed = 0;
2287 unsigned long did_some_progress;
2288 bool sync_migration = false;
2289 bool deferred_compaction = false;
2292 * In the slowpath, we sanity check order to avoid ever trying to
2293 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2294 * be using allocators in order of preference for an area that is
2295 * too large.
2297 if (order >= MAX_ORDER) {
2298 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2299 return NULL;
2303 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2304 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2305 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2306 * using a larger set of nodes after it has established that the
2307 * allowed per node queues are empty and that nodes are
2308 * over allocated.
2310 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2311 goto nopage;
2313 restart:
2314 if (!(gfp_mask & __GFP_NO_KSWAPD))
2315 wake_all_kswapd(order, zonelist, high_zoneidx,
2316 zone_idx(preferred_zone));
2319 * OK, we're below the kswapd watermark and have kicked background
2320 * reclaim. Now things get more complex, so set up alloc_flags according
2321 * to how we want to proceed.
2323 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2326 * Find the true preferred zone if the allocation is unconstrained by
2327 * cpusets.
2329 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2330 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2331 &preferred_zone);
2333 rebalance:
2334 /* This is the last chance, in general, before the goto nopage. */
2335 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2336 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2337 preferred_zone, migratetype);
2338 if (page)
2339 goto got_pg;
2341 /* Allocate without watermarks if the context allows */
2342 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2343 page = __alloc_pages_high_priority(gfp_mask, order,
2344 zonelist, high_zoneidx, nodemask,
2345 preferred_zone, migratetype);
2346 if (page)
2347 goto got_pg;
2350 /* Atomic allocations - we can't balance anything */
2351 if (!wait)
2352 goto nopage;
2354 /* Avoid recursion of direct reclaim */
2355 if (current->flags & PF_MEMALLOC)
2356 goto nopage;
2358 /* Avoid allocations with no watermarks from looping endlessly */
2359 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2360 goto nopage;
2363 * Try direct compaction. The first pass is asynchronous. Subsequent
2364 * attempts after direct reclaim are synchronous
2366 page = __alloc_pages_direct_compact(gfp_mask, order,
2367 zonelist, high_zoneidx,
2368 nodemask,
2369 alloc_flags, preferred_zone,
2370 migratetype, sync_migration,
2371 &deferred_compaction,
2372 &did_some_progress);
2373 if (page)
2374 goto got_pg;
2375 sync_migration = true;
2378 * If compaction is deferred for high-order allocations, it is because
2379 * sync compaction recently failed. In this is the case and the caller
2380 * has requested the system not be heavily disrupted, fail the
2381 * allocation now instead of entering direct reclaim
2383 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2384 goto nopage;
2386 /* Try direct reclaim and then allocating */
2387 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2388 zonelist, high_zoneidx,
2389 nodemask,
2390 alloc_flags, preferred_zone,
2391 migratetype, &did_some_progress);
2392 if (page)
2393 goto got_pg;
2396 * If we failed to make any progress reclaiming, then we are
2397 * running out of options and have to consider going OOM
2399 if (!did_some_progress) {
2400 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2401 if (oom_killer_disabled)
2402 goto nopage;
2403 /* Coredumps can quickly deplete all memory reserves */
2404 if ((current->flags & PF_DUMPCORE) &&
2405 !(gfp_mask & __GFP_NOFAIL))
2406 goto nopage;
2407 page = __alloc_pages_may_oom(gfp_mask, order,
2408 zonelist, high_zoneidx,
2409 nodemask, preferred_zone,
2410 migratetype);
2411 if (page)
2412 goto got_pg;
2414 if (!(gfp_mask & __GFP_NOFAIL)) {
2416 * The oom killer is not called for high-order
2417 * allocations that may fail, so if no progress
2418 * is being made, there are no other options and
2419 * retrying is unlikely to help.
2421 if (order > PAGE_ALLOC_COSTLY_ORDER)
2422 goto nopage;
2424 * The oom killer is not called for lowmem
2425 * allocations to prevent needlessly killing
2426 * innocent tasks.
2428 if (high_zoneidx < ZONE_NORMAL)
2429 goto nopage;
2432 goto restart;
2436 /* Check if we should retry the allocation */
2437 pages_reclaimed += did_some_progress;
2438 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2439 pages_reclaimed)) {
2440 /* Wait for some write requests to complete then retry */
2441 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2442 goto rebalance;
2443 } else {
2445 * High-order allocations do not necessarily loop after
2446 * direct reclaim and reclaim/compaction depends on compaction
2447 * being called after reclaim so call directly if necessary
2449 page = __alloc_pages_direct_compact(gfp_mask, order,
2450 zonelist, high_zoneidx,
2451 nodemask,
2452 alloc_flags, preferred_zone,
2453 migratetype, sync_migration,
2454 &deferred_compaction,
2455 &did_some_progress);
2456 if (page)
2457 goto got_pg;
2460 nopage:
2461 warn_alloc_failed(gfp_mask, order, NULL);
2462 return page;
2463 got_pg:
2464 if (kmemcheck_enabled)
2465 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2466 return page;
2471 * This is the 'heart' of the zoned buddy allocator.
2473 struct page *
2474 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2475 struct zonelist *zonelist, nodemask_t *nodemask)
2477 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2478 struct zone *preferred_zone;
2479 struct page *page = NULL;
2480 int migratetype = allocflags_to_migratetype(gfp_mask);
2481 unsigned int cpuset_mems_cookie;
2483 gfp_mask &= gfp_allowed_mask;
2485 lockdep_trace_alloc(gfp_mask);
2487 might_sleep_if(gfp_mask & __GFP_WAIT);
2489 if (should_fail_alloc_page(gfp_mask, order))
2490 return NULL;
2493 * Check the zones suitable for the gfp_mask contain at least one
2494 * valid zone. It's possible to have an empty zonelist as a result
2495 * of GFP_THISNODE and a memoryless node
2497 if (unlikely(!zonelist->_zonerefs->zone))
2498 return NULL;
2500 retry_cpuset:
2501 cpuset_mems_cookie = get_mems_allowed();
2503 /* The preferred zone is used for statistics later */
2504 first_zones_zonelist(zonelist, high_zoneidx,
2505 nodemask ? : &cpuset_current_mems_allowed,
2506 &preferred_zone);
2507 if (!preferred_zone)
2508 goto out;
2510 /* First allocation attempt */
2511 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2512 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2513 preferred_zone, migratetype);
2514 if (unlikely(!page))
2515 page = __alloc_pages_slowpath(gfp_mask, order,
2516 zonelist, high_zoneidx, nodemask,
2517 preferred_zone, migratetype);
2519 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2521 out:
2523 * When updating a task's mems_allowed, it is possible to race with
2524 * parallel threads in such a way that an allocation can fail while
2525 * the mask is being updated. If a page allocation is about to fail,
2526 * check if the cpuset changed during allocation and if so, retry.
2528 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2529 goto retry_cpuset;
2531 return page;
2533 EXPORT_SYMBOL(__alloc_pages_nodemask);
2536 * Common helper functions.
2538 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2540 struct page *page;
2543 * __get_free_pages() returns a 32-bit address, which cannot represent
2544 * a highmem page
2546 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2548 page = alloc_pages(gfp_mask, order);
2549 if (!page)
2550 return 0;
2551 return (unsigned long) page_address(page);
2553 EXPORT_SYMBOL(__get_free_pages);
2555 unsigned long get_zeroed_page(gfp_t gfp_mask)
2557 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2559 EXPORT_SYMBOL(get_zeroed_page);
2561 void __free_pages(struct page *page, unsigned int order)
2563 if (put_page_testzero(page)) {
2564 if (order == 0)
2565 free_hot_cold_page(page, 0);
2566 else
2567 __free_pages_ok(page, order);
2571 EXPORT_SYMBOL(__free_pages);
2573 void free_pages(unsigned long addr, unsigned int order)
2575 if (addr != 0) {
2576 VM_BUG_ON(!virt_addr_valid((void *)addr));
2577 __free_pages(virt_to_page((void *)addr), order);
2581 EXPORT_SYMBOL(free_pages);
2583 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2585 if (addr) {
2586 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2587 unsigned long used = addr + PAGE_ALIGN(size);
2589 split_page(virt_to_page((void *)addr), order);
2590 while (used < alloc_end) {
2591 free_page(used);
2592 used += PAGE_SIZE;
2595 return (void *)addr;
2599 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2600 * @size: the number of bytes to allocate
2601 * @gfp_mask: GFP flags for the allocation
2603 * This function is similar to alloc_pages(), except that it allocates the
2604 * minimum number of pages to satisfy the request. alloc_pages() can only
2605 * allocate memory in power-of-two pages.
2607 * This function is also limited by MAX_ORDER.
2609 * Memory allocated by this function must be released by free_pages_exact().
2611 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2613 unsigned int order = get_order(size);
2614 unsigned long addr;
2616 addr = __get_free_pages(gfp_mask, order);
2617 return make_alloc_exact(addr, order, size);
2619 EXPORT_SYMBOL(alloc_pages_exact);
2622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2623 * pages on a node.
2624 * @nid: the preferred node ID where memory should be allocated
2625 * @size: the number of bytes to allocate
2626 * @gfp_mask: GFP flags for the allocation
2628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2629 * back.
2630 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2631 * but is not exact.
2633 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2635 unsigned order = get_order(size);
2636 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2637 if (!p)
2638 return NULL;
2639 return make_alloc_exact((unsigned long)page_address(p), order, size);
2641 EXPORT_SYMBOL(alloc_pages_exact_nid);
2644 * free_pages_exact - release memory allocated via alloc_pages_exact()
2645 * @virt: the value returned by alloc_pages_exact.
2646 * @size: size of allocation, same value as passed to alloc_pages_exact().
2648 * Release the memory allocated by a previous call to alloc_pages_exact.
2650 void free_pages_exact(void *virt, size_t size)
2652 unsigned long addr = (unsigned long)virt;
2653 unsigned long end = addr + PAGE_ALIGN(size);
2655 while (addr < end) {
2656 free_page(addr);
2657 addr += PAGE_SIZE;
2660 EXPORT_SYMBOL(free_pages_exact);
2662 static unsigned int nr_free_zone_pages(int offset)
2664 struct zoneref *z;
2665 struct zone *zone;
2667 /* Just pick one node, since fallback list is circular */
2668 unsigned int sum = 0;
2670 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2672 for_each_zone_zonelist(zone, z, zonelist, offset) {
2673 unsigned long size = zone->present_pages;
2674 unsigned long high = high_wmark_pages(zone);
2675 if (size > high)
2676 sum += size - high;
2679 return sum;
2683 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2685 unsigned int nr_free_buffer_pages(void)
2687 return nr_free_zone_pages(gfp_zone(GFP_USER));
2689 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2692 * Amount of free RAM allocatable within all zones
2694 unsigned int nr_free_pagecache_pages(void)
2696 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2699 static inline void show_node(struct zone *zone)
2701 if (NUMA_BUILD)
2702 printk("Node %d ", zone_to_nid(zone));
2705 void si_meminfo(struct sysinfo *val)
2707 val->totalram = totalram_pages;
2708 val->sharedram = 0;
2709 val->freeram = global_page_state(NR_FREE_PAGES);
2710 val->bufferram = nr_blockdev_pages();
2711 val->totalhigh = totalhigh_pages;
2712 val->freehigh = nr_free_highpages();
2713 val->mem_unit = PAGE_SIZE;
2716 EXPORT_SYMBOL(si_meminfo);
2718 #ifdef CONFIG_NUMA
2719 void si_meminfo_node(struct sysinfo *val, int nid)
2721 pg_data_t *pgdat = NODE_DATA(nid);
2723 val->totalram = pgdat->node_present_pages;
2724 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2725 #ifdef CONFIG_HIGHMEM
2726 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2727 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2728 NR_FREE_PAGES);
2729 #else
2730 val->totalhigh = 0;
2731 val->freehigh = 0;
2732 #endif
2733 val->mem_unit = PAGE_SIZE;
2735 #endif
2738 * Determine whether the node should be displayed or not, depending on whether
2739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2741 bool skip_free_areas_node(unsigned int flags, int nid)
2743 bool ret = false;
2744 unsigned int cpuset_mems_cookie;
2746 if (!(flags & SHOW_MEM_FILTER_NODES))
2747 goto out;
2749 do {
2750 cpuset_mems_cookie = get_mems_allowed();
2751 ret = !node_isset(nid, cpuset_current_mems_allowed);
2752 } while (!put_mems_allowed(cpuset_mems_cookie));
2753 out:
2754 return ret;
2757 #define K(x) ((x) << (PAGE_SHIFT-10))
2760 * Show free area list (used inside shift_scroll-lock stuff)
2761 * We also calculate the percentage fragmentation. We do this by counting the
2762 * memory on each free list with the exception of the first item on the list.
2763 * Suppresses nodes that are not allowed by current's cpuset if
2764 * SHOW_MEM_FILTER_NODES is passed.
2766 void show_free_areas(unsigned int filter)
2768 int cpu;
2769 struct zone *zone;
2771 for_each_populated_zone(zone) {
2772 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2773 continue;
2774 show_node(zone);
2775 printk("%s per-cpu:\n", zone->name);
2777 for_each_online_cpu(cpu) {
2778 struct per_cpu_pageset *pageset;
2780 pageset = per_cpu_ptr(zone->pageset, cpu);
2782 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2783 cpu, pageset->pcp.high,
2784 pageset->pcp.batch, pageset->pcp.count);
2788 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2789 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2790 " unevictable:%lu"
2791 " dirty:%lu writeback:%lu unstable:%lu\n"
2792 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2793 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2794 global_page_state(NR_ACTIVE_ANON),
2795 global_page_state(NR_INACTIVE_ANON),
2796 global_page_state(NR_ISOLATED_ANON),
2797 global_page_state(NR_ACTIVE_FILE),
2798 global_page_state(NR_INACTIVE_FILE),
2799 global_page_state(NR_ISOLATED_FILE),
2800 global_page_state(NR_UNEVICTABLE),
2801 global_page_state(NR_FILE_DIRTY),
2802 global_page_state(NR_WRITEBACK),
2803 global_page_state(NR_UNSTABLE_NFS),
2804 global_page_state(NR_FREE_PAGES),
2805 global_page_state(NR_SLAB_RECLAIMABLE),
2806 global_page_state(NR_SLAB_UNRECLAIMABLE),
2807 global_page_state(NR_FILE_MAPPED),
2808 global_page_state(NR_SHMEM),
2809 global_page_state(NR_PAGETABLE),
2810 global_page_state(NR_BOUNCE));
2812 for_each_populated_zone(zone) {
2813 int i;
2815 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2816 continue;
2817 show_node(zone);
2818 printk("%s"
2819 " free:%lukB"
2820 " min:%lukB"
2821 " low:%lukB"
2822 " high:%lukB"
2823 " active_anon:%lukB"
2824 " inactive_anon:%lukB"
2825 " active_file:%lukB"
2826 " inactive_file:%lukB"
2827 " unevictable:%lukB"
2828 " isolated(anon):%lukB"
2829 " isolated(file):%lukB"
2830 " present:%lukB"
2831 " mlocked:%lukB"
2832 " dirty:%lukB"
2833 " writeback:%lukB"
2834 " mapped:%lukB"
2835 " shmem:%lukB"
2836 " slab_reclaimable:%lukB"
2837 " slab_unreclaimable:%lukB"
2838 " kernel_stack:%lukB"
2839 " pagetables:%lukB"
2840 " unstable:%lukB"
2841 " bounce:%lukB"
2842 " writeback_tmp:%lukB"
2843 " pages_scanned:%lu"
2844 " all_unreclaimable? %s"
2845 "\n",
2846 zone->name,
2847 K(zone_page_state(zone, NR_FREE_PAGES)),
2848 K(min_wmark_pages(zone)),
2849 K(low_wmark_pages(zone)),
2850 K(high_wmark_pages(zone)),
2851 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2852 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2853 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2854 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2855 K(zone_page_state(zone, NR_UNEVICTABLE)),
2856 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2857 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2858 K(zone->present_pages),
2859 K(zone_page_state(zone, NR_MLOCK)),
2860 K(zone_page_state(zone, NR_FILE_DIRTY)),
2861 K(zone_page_state(zone, NR_WRITEBACK)),
2862 K(zone_page_state(zone, NR_FILE_MAPPED)),
2863 K(zone_page_state(zone, NR_SHMEM)),
2864 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2865 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2866 zone_page_state(zone, NR_KERNEL_STACK) *
2867 THREAD_SIZE / 1024,
2868 K(zone_page_state(zone, NR_PAGETABLE)),
2869 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2870 K(zone_page_state(zone, NR_BOUNCE)),
2871 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2872 zone->pages_scanned,
2873 (zone->all_unreclaimable ? "yes" : "no")
2875 printk("lowmem_reserve[]:");
2876 for (i = 0; i < MAX_NR_ZONES; i++)
2877 printk(" %lu", zone->lowmem_reserve[i]);
2878 printk("\n");
2881 for_each_populated_zone(zone) {
2882 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2884 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2885 continue;
2886 show_node(zone);
2887 printk("%s: ", zone->name);
2889 spin_lock_irqsave(&zone->lock, flags);
2890 for (order = 0; order < MAX_ORDER; order++) {
2891 nr[order] = zone->free_area[order].nr_free;
2892 total += nr[order] << order;
2894 spin_unlock_irqrestore(&zone->lock, flags);
2895 for (order = 0; order < MAX_ORDER; order++)
2896 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2897 printk("= %lukB\n", K(total));
2900 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2902 show_swap_cache_info();
2905 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2907 zoneref->zone = zone;
2908 zoneref->zone_idx = zone_idx(zone);
2912 * Builds allocation fallback zone lists.
2914 * Add all populated zones of a node to the zonelist.
2916 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2917 int nr_zones, enum zone_type zone_type)
2919 struct zone *zone;
2921 BUG_ON(zone_type >= MAX_NR_ZONES);
2922 zone_type++;
2924 do {
2925 zone_type--;
2926 zone = pgdat->node_zones + zone_type;
2927 if (populated_zone(zone)) {
2928 zoneref_set_zone(zone,
2929 &zonelist->_zonerefs[nr_zones++]);
2930 check_highest_zone(zone_type);
2933 } while (zone_type);
2934 return nr_zones;
2939 * zonelist_order:
2940 * 0 = automatic detection of better ordering.
2941 * 1 = order by ([node] distance, -zonetype)
2942 * 2 = order by (-zonetype, [node] distance)
2944 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2945 * the same zonelist. So only NUMA can configure this param.
2947 #define ZONELIST_ORDER_DEFAULT 0
2948 #define ZONELIST_ORDER_NODE 1
2949 #define ZONELIST_ORDER_ZONE 2
2951 /* zonelist order in the kernel.
2952 * set_zonelist_order() will set this to NODE or ZONE.
2954 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2955 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2958 #ifdef CONFIG_NUMA
2959 /* The value user specified ....changed by config */
2960 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2961 /* string for sysctl */
2962 #define NUMA_ZONELIST_ORDER_LEN 16
2963 char numa_zonelist_order[16] = "default";
2966 * interface for configure zonelist ordering.
2967 * command line option "numa_zonelist_order"
2968 * = "[dD]efault - default, automatic configuration.
2969 * = "[nN]ode - order by node locality, then by zone within node
2970 * = "[zZ]one - order by zone, then by locality within zone
2973 static int __parse_numa_zonelist_order(char *s)
2975 if (*s == 'd' || *s == 'D') {
2976 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2977 } else if (*s == 'n' || *s == 'N') {
2978 user_zonelist_order = ZONELIST_ORDER_NODE;
2979 } else if (*s == 'z' || *s == 'Z') {
2980 user_zonelist_order = ZONELIST_ORDER_ZONE;
2981 } else {
2982 printk(KERN_WARNING
2983 "Ignoring invalid numa_zonelist_order value: "
2984 "%s\n", s);
2985 return -EINVAL;
2987 return 0;
2990 static __init int setup_numa_zonelist_order(char *s)
2992 int ret;
2994 if (!s)
2995 return 0;
2997 ret = __parse_numa_zonelist_order(s);
2998 if (ret == 0)
2999 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3001 return ret;
3003 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3006 * sysctl handler for numa_zonelist_order
3008 int numa_zonelist_order_handler(ctl_table *table, int write,
3009 void __user *buffer, size_t *length,
3010 loff_t *ppos)
3012 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3013 int ret;
3014 static DEFINE_MUTEX(zl_order_mutex);
3016 mutex_lock(&zl_order_mutex);
3017 if (write)
3018 strcpy(saved_string, (char*)table->data);
3019 ret = proc_dostring(table, write, buffer, length, ppos);
3020 if (ret)
3021 goto out;
3022 if (write) {
3023 int oldval = user_zonelist_order;
3024 if (__parse_numa_zonelist_order((char*)table->data)) {
3026 * bogus value. restore saved string
3028 strncpy((char*)table->data, saved_string,
3029 NUMA_ZONELIST_ORDER_LEN);
3030 user_zonelist_order = oldval;
3031 } else if (oldval != user_zonelist_order) {
3032 mutex_lock(&zonelists_mutex);
3033 build_all_zonelists(NULL);
3034 mutex_unlock(&zonelists_mutex);
3037 out:
3038 mutex_unlock(&zl_order_mutex);
3039 return ret;
3043 #define MAX_NODE_LOAD (nr_online_nodes)
3044 static int node_load[MAX_NUMNODES];
3047 * find_next_best_node - find the next node that should appear in a given node's fallback list
3048 * @node: node whose fallback list we're appending
3049 * @used_node_mask: nodemask_t of already used nodes
3051 * We use a number of factors to determine which is the next node that should
3052 * appear on a given node's fallback list. The node should not have appeared
3053 * already in @node's fallback list, and it should be the next closest node
3054 * according to the distance array (which contains arbitrary distance values
3055 * from each node to each node in the system), and should also prefer nodes
3056 * with no CPUs, since presumably they'll have very little allocation pressure
3057 * on them otherwise.
3058 * It returns -1 if no node is found.
3060 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3062 int n, val;
3063 int min_val = INT_MAX;
3064 int best_node = -1;
3065 const struct cpumask *tmp = cpumask_of_node(0);
3067 /* Use the local node if we haven't already */
3068 if (!node_isset(node, *used_node_mask)) {
3069 node_set(node, *used_node_mask);
3070 return node;
3073 for_each_node_state(n, N_HIGH_MEMORY) {
3075 /* Don't want a node to appear more than once */
3076 if (node_isset(n, *used_node_mask))
3077 continue;
3079 /* Use the distance array to find the distance */
3080 val = node_distance(node, n);
3082 /* Penalize nodes under us ("prefer the next node") */
3083 val += (n < node);
3085 /* Give preference to headless and unused nodes */
3086 tmp = cpumask_of_node(n);
3087 if (!cpumask_empty(tmp))
3088 val += PENALTY_FOR_NODE_WITH_CPUS;
3090 /* Slight preference for less loaded node */
3091 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3092 val += node_load[n];
3094 if (val < min_val) {
3095 min_val = val;
3096 best_node = n;
3100 if (best_node >= 0)
3101 node_set(best_node, *used_node_mask);
3103 return best_node;
3108 * Build zonelists ordered by node and zones within node.
3109 * This results in maximum locality--normal zone overflows into local
3110 * DMA zone, if any--but risks exhausting DMA zone.
3112 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3114 int j;
3115 struct zonelist *zonelist;
3117 zonelist = &pgdat->node_zonelists[0];
3118 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3120 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3121 MAX_NR_ZONES - 1);
3122 zonelist->_zonerefs[j].zone = NULL;
3123 zonelist->_zonerefs[j].zone_idx = 0;
3127 * Build gfp_thisnode zonelists
3129 static void build_thisnode_zonelists(pg_data_t *pgdat)
3131 int j;
3132 struct zonelist *zonelist;
3134 zonelist = &pgdat->node_zonelists[1];
3135 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3136 zonelist->_zonerefs[j].zone = NULL;
3137 zonelist->_zonerefs[j].zone_idx = 0;
3141 * Build zonelists ordered by zone and nodes within zones.
3142 * This results in conserving DMA zone[s] until all Normal memory is
3143 * exhausted, but results in overflowing to remote node while memory
3144 * may still exist in local DMA zone.
3146 static int node_order[MAX_NUMNODES];
3148 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3150 int pos, j, node;
3151 int zone_type; /* needs to be signed */
3152 struct zone *z;
3153 struct zonelist *zonelist;
3155 zonelist = &pgdat->node_zonelists[0];
3156 pos = 0;
3157 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3158 for (j = 0; j < nr_nodes; j++) {
3159 node = node_order[j];
3160 z = &NODE_DATA(node)->node_zones[zone_type];
3161 if (populated_zone(z)) {
3162 zoneref_set_zone(z,
3163 &zonelist->_zonerefs[pos++]);
3164 check_highest_zone(zone_type);
3168 zonelist->_zonerefs[pos].zone = NULL;
3169 zonelist->_zonerefs[pos].zone_idx = 0;
3172 static int default_zonelist_order(void)
3174 int nid, zone_type;
3175 unsigned long low_kmem_size,total_size;
3176 struct zone *z;
3177 int average_size;
3179 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3180 * If they are really small and used heavily, the system can fall
3181 * into OOM very easily.
3182 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3185 low_kmem_size = 0;
3186 total_size = 0;
3187 for_each_online_node(nid) {
3188 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3189 z = &NODE_DATA(nid)->node_zones[zone_type];
3190 if (populated_zone(z)) {
3191 if (zone_type < ZONE_NORMAL)
3192 low_kmem_size += z->present_pages;
3193 total_size += z->present_pages;
3194 } else if (zone_type == ZONE_NORMAL) {
3196 * If any node has only lowmem, then node order
3197 * is preferred to allow kernel allocations
3198 * locally; otherwise, they can easily infringe
3199 * on other nodes when there is an abundance of
3200 * lowmem available to allocate from.
3202 return ZONELIST_ORDER_NODE;
3206 if (!low_kmem_size || /* there are no DMA area. */
3207 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3208 return ZONELIST_ORDER_NODE;
3210 * look into each node's config.
3211 * If there is a node whose DMA/DMA32 memory is very big area on
3212 * local memory, NODE_ORDER may be suitable.
3214 average_size = total_size /
3215 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3216 for_each_online_node(nid) {
3217 low_kmem_size = 0;
3218 total_size = 0;
3219 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3220 z = &NODE_DATA(nid)->node_zones[zone_type];
3221 if (populated_zone(z)) {
3222 if (zone_type < ZONE_NORMAL)
3223 low_kmem_size += z->present_pages;
3224 total_size += z->present_pages;
3227 if (low_kmem_size &&
3228 total_size > average_size && /* ignore small node */
3229 low_kmem_size > total_size * 70/100)
3230 return ZONELIST_ORDER_NODE;
3232 return ZONELIST_ORDER_ZONE;
3235 static void set_zonelist_order(void)
3237 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3238 current_zonelist_order = default_zonelist_order();
3239 else
3240 current_zonelist_order = user_zonelist_order;
3243 static void build_zonelists(pg_data_t *pgdat)
3245 int j, node, load;
3246 enum zone_type i;
3247 nodemask_t used_mask;
3248 int local_node, prev_node;
3249 struct zonelist *zonelist;
3250 int order = current_zonelist_order;
3252 /* initialize zonelists */
3253 for (i = 0; i < MAX_ZONELISTS; i++) {
3254 zonelist = pgdat->node_zonelists + i;
3255 zonelist->_zonerefs[0].zone = NULL;
3256 zonelist->_zonerefs[0].zone_idx = 0;
3259 /* NUMA-aware ordering of nodes */
3260 local_node = pgdat->node_id;
3261 load = nr_online_nodes;
3262 prev_node = local_node;
3263 nodes_clear(used_mask);
3265 memset(node_order, 0, sizeof(node_order));
3266 j = 0;
3268 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3269 int distance = node_distance(local_node, node);
3272 * If another node is sufficiently far away then it is better
3273 * to reclaim pages in a zone before going off node.
3275 if (distance > RECLAIM_DISTANCE)
3276 zone_reclaim_mode = 1;
3279 * We don't want to pressure a particular node.
3280 * So adding penalty to the first node in same
3281 * distance group to make it round-robin.
3283 if (distance != node_distance(local_node, prev_node))
3284 node_load[node] = load;
3286 prev_node = node;
3287 load--;
3288 if (order == ZONELIST_ORDER_NODE)
3289 build_zonelists_in_node_order(pgdat, node);
3290 else
3291 node_order[j++] = node; /* remember order */
3294 if (order == ZONELIST_ORDER_ZONE) {
3295 /* calculate node order -- i.e., DMA last! */
3296 build_zonelists_in_zone_order(pgdat, j);
3299 build_thisnode_zonelists(pgdat);
3302 /* Construct the zonelist performance cache - see further mmzone.h */
3303 static void build_zonelist_cache(pg_data_t *pgdat)
3305 struct zonelist *zonelist;
3306 struct zonelist_cache *zlc;
3307 struct zoneref *z;
3309 zonelist = &pgdat->node_zonelists[0];
3310 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3311 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3312 for (z = zonelist->_zonerefs; z->zone; z++)
3313 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3318 * Return node id of node used for "local" allocations.
3319 * I.e., first node id of first zone in arg node's generic zonelist.
3320 * Used for initializing percpu 'numa_mem', which is used primarily
3321 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3323 int local_memory_node(int node)
3325 struct zone *zone;
3327 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3328 gfp_zone(GFP_KERNEL),
3329 NULL,
3330 &zone);
3331 return zone->node;
3333 #endif
3335 #else /* CONFIG_NUMA */
3337 static void set_zonelist_order(void)
3339 current_zonelist_order = ZONELIST_ORDER_ZONE;
3342 static void build_zonelists(pg_data_t *pgdat)
3344 int node, local_node;
3345 enum zone_type j;
3346 struct zonelist *zonelist;
3348 local_node = pgdat->node_id;
3350 zonelist = &pgdat->node_zonelists[0];
3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3354 * Now we build the zonelist so that it contains the zones
3355 * of all the other nodes.
3356 * We don't want to pressure a particular node, so when
3357 * building the zones for node N, we make sure that the
3358 * zones coming right after the local ones are those from
3359 * node N+1 (modulo N)
3361 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3362 if (!node_online(node))
3363 continue;
3364 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3365 MAX_NR_ZONES - 1);
3367 for (node = 0; node < local_node; node++) {
3368 if (!node_online(node))
3369 continue;
3370 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3371 MAX_NR_ZONES - 1);
3374 zonelist->_zonerefs[j].zone = NULL;
3375 zonelist->_zonerefs[j].zone_idx = 0;
3378 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3379 static void build_zonelist_cache(pg_data_t *pgdat)
3381 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3384 #endif /* CONFIG_NUMA */
3387 * Boot pageset table. One per cpu which is going to be used for all
3388 * zones and all nodes. The parameters will be set in such a way
3389 * that an item put on a list will immediately be handed over to
3390 * the buddy list. This is safe since pageset manipulation is done
3391 * with interrupts disabled.
3393 * The boot_pagesets must be kept even after bootup is complete for
3394 * unused processors and/or zones. They do play a role for bootstrapping
3395 * hotplugged processors.
3397 * zoneinfo_show() and maybe other functions do
3398 * not check if the processor is online before following the pageset pointer.
3399 * Other parts of the kernel may not check if the zone is available.
3401 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3402 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3403 static void setup_zone_pageset(struct zone *zone);
3406 * Global mutex to protect against size modification of zonelists
3407 * as well as to serialize pageset setup for the new populated zone.
3409 DEFINE_MUTEX(zonelists_mutex);
3411 /* return values int ....just for stop_machine() */
3412 static __init_refok int __build_all_zonelists(void *data)
3414 int nid;
3415 int cpu;
3417 #ifdef CONFIG_NUMA
3418 memset(node_load, 0, sizeof(node_load));
3419 #endif
3420 for_each_online_node(nid) {
3421 pg_data_t *pgdat = NODE_DATA(nid);
3423 build_zonelists(pgdat);
3424 build_zonelist_cache(pgdat);
3428 * Initialize the boot_pagesets that are going to be used
3429 * for bootstrapping processors. The real pagesets for
3430 * each zone will be allocated later when the per cpu
3431 * allocator is available.
3433 * boot_pagesets are used also for bootstrapping offline
3434 * cpus if the system is already booted because the pagesets
3435 * are needed to initialize allocators on a specific cpu too.
3436 * F.e. the percpu allocator needs the page allocator which
3437 * needs the percpu allocator in order to allocate its pagesets
3438 * (a chicken-egg dilemma).
3440 for_each_possible_cpu(cpu) {
3441 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3443 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3445 * We now know the "local memory node" for each node--
3446 * i.e., the node of the first zone in the generic zonelist.
3447 * Set up numa_mem percpu variable for on-line cpus. During
3448 * boot, only the boot cpu should be on-line; we'll init the
3449 * secondary cpus' numa_mem as they come on-line. During
3450 * node/memory hotplug, we'll fixup all on-line cpus.
3452 if (cpu_online(cpu))
3453 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3454 #endif
3457 return 0;
3461 * Called with zonelists_mutex held always
3462 * unless system_state == SYSTEM_BOOTING.
3464 void __ref build_all_zonelists(void *data)
3466 set_zonelist_order();
3468 if (system_state == SYSTEM_BOOTING) {
3469 __build_all_zonelists(NULL);
3470 mminit_verify_zonelist();
3471 cpuset_init_current_mems_allowed();
3472 } else {
3473 /* we have to stop all cpus to guarantee there is no user
3474 of zonelist */
3475 #ifdef CONFIG_MEMORY_HOTPLUG
3476 if (data)
3477 setup_zone_pageset((struct zone *)data);
3478 #endif
3479 stop_machine(__build_all_zonelists, NULL, NULL);
3480 /* cpuset refresh routine should be here */
3482 vm_total_pages = nr_free_pagecache_pages();
3484 * Disable grouping by mobility if the number of pages in the
3485 * system is too low to allow the mechanism to work. It would be
3486 * more accurate, but expensive to check per-zone. This check is
3487 * made on memory-hotadd so a system can start with mobility
3488 * disabled and enable it later
3490 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3491 page_group_by_mobility_disabled = 1;
3492 else
3493 page_group_by_mobility_disabled = 0;
3495 printk("Built %i zonelists in %s order, mobility grouping %s. "
3496 "Total pages: %ld\n",
3497 nr_online_nodes,
3498 zonelist_order_name[current_zonelist_order],
3499 page_group_by_mobility_disabled ? "off" : "on",
3500 vm_total_pages);
3501 #ifdef CONFIG_NUMA
3502 printk("Policy zone: %s\n", zone_names[policy_zone]);
3503 #endif
3507 * Helper functions to size the waitqueue hash table.
3508 * Essentially these want to choose hash table sizes sufficiently
3509 * large so that collisions trying to wait on pages are rare.
3510 * But in fact, the number of active page waitqueues on typical
3511 * systems is ridiculously low, less than 200. So this is even
3512 * conservative, even though it seems large.
3514 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3515 * waitqueues, i.e. the size of the waitq table given the number of pages.
3517 #define PAGES_PER_WAITQUEUE 256
3519 #ifndef CONFIG_MEMORY_HOTPLUG
3520 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3522 unsigned long size = 1;
3524 pages /= PAGES_PER_WAITQUEUE;
3526 while (size < pages)
3527 size <<= 1;
3530 * Once we have dozens or even hundreds of threads sleeping
3531 * on IO we've got bigger problems than wait queue collision.
3532 * Limit the size of the wait table to a reasonable size.
3534 size = min(size, 4096UL);
3536 return max(size, 4UL);
3538 #else
3540 * A zone's size might be changed by hot-add, so it is not possible to determine
3541 * a suitable size for its wait_table. So we use the maximum size now.
3543 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3545 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3546 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3547 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3549 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3550 * or more by the traditional way. (See above). It equals:
3552 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3553 * ia64(16K page size) : = ( 8G + 4M)byte.
3554 * powerpc (64K page size) : = (32G +16M)byte.
3556 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3558 return 4096UL;
3560 #endif
3563 * This is an integer logarithm so that shifts can be used later
3564 * to extract the more random high bits from the multiplicative
3565 * hash function before the remainder is taken.
3567 static inline unsigned long wait_table_bits(unsigned long size)
3569 return ffz(~size);
3572 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3575 * Check if a pageblock contains reserved pages
3577 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3579 unsigned long pfn;
3581 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3582 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3583 return 1;
3585 return 0;
3589 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3590 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3591 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3592 * higher will lead to a bigger reserve which will get freed as contiguous
3593 * blocks as reclaim kicks in
3595 static void setup_zone_migrate_reserve(struct zone *zone)
3597 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3598 struct page *page;
3599 unsigned long block_migratetype;
3600 int reserve;
3603 * Get the start pfn, end pfn and the number of blocks to reserve
3604 * We have to be careful to be aligned to pageblock_nr_pages to
3605 * make sure that we always check pfn_valid for the first page in
3606 * the block.
3608 start_pfn = zone->zone_start_pfn;
3609 end_pfn = start_pfn + zone->spanned_pages;
3610 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3611 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3612 pageblock_order;
3615 * Reserve blocks are generally in place to help high-order atomic
3616 * allocations that are short-lived. A min_free_kbytes value that
3617 * would result in more than 2 reserve blocks for atomic allocations
3618 * is assumed to be in place to help anti-fragmentation for the
3619 * future allocation of hugepages at runtime.
3621 reserve = min(2, reserve);
3623 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3624 if (!pfn_valid(pfn))
3625 continue;
3626 page = pfn_to_page(pfn);
3628 /* Watch out for overlapping nodes */
3629 if (page_to_nid(page) != zone_to_nid(zone))
3630 continue;
3632 block_migratetype = get_pageblock_migratetype(page);
3634 /* Only test what is necessary when the reserves are not met */
3635 if (reserve > 0) {
3637 * Blocks with reserved pages will never free, skip
3638 * them.
3640 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3641 if (pageblock_is_reserved(pfn, block_end_pfn))
3642 continue;
3644 /* If this block is reserved, account for it */
3645 if (block_migratetype == MIGRATE_RESERVE) {
3646 reserve--;
3647 continue;
3650 /* Suitable for reserving if this block is movable */
3651 if (block_migratetype == MIGRATE_MOVABLE) {
3652 set_pageblock_migratetype(page,
3653 MIGRATE_RESERVE);
3654 move_freepages_block(zone, page,
3655 MIGRATE_RESERVE);
3656 reserve--;
3657 continue;
3662 * If the reserve is met and this is a previous reserved block,
3663 * take it back
3665 if (block_migratetype == MIGRATE_RESERVE) {
3666 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3667 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3673 * Initially all pages are reserved - free ones are freed
3674 * up by free_all_bootmem() once the early boot process is
3675 * done. Non-atomic initialization, single-pass.
3677 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3678 unsigned long start_pfn, enum memmap_context context)
3680 struct page *page;
3681 unsigned long end_pfn = start_pfn + size;
3682 unsigned long pfn;
3683 struct zone *z;
3685 if (highest_memmap_pfn < end_pfn - 1)
3686 highest_memmap_pfn = end_pfn - 1;
3688 z = &NODE_DATA(nid)->node_zones[zone];
3689 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3691 * There can be holes in boot-time mem_map[]s
3692 * handed to this function. They do not
3693 * exist on hotplugged memory.
3695 if (context == MEMMAP_EARLY) {
3696 if (!early_pfn_valid(pfn))
3697 continue;
3698 if (!early_pfn_in_nid(pfn, nid))
3699 continue;
3701 page = pfn_to_page(pfn);
3702 set_page_links(page, zone, nid, pfn);
3703 mminit_verify_page_links(page, zone, nid, pfn);
3704 init_page_count(page);
3705 reset_page_mapcount(page);
3706 SetPageReserved(page);
3708 * Mark the block movable so that blocks are reserved for
3709 * movable at startup. This will force kernel allocations
3710 * to reserve their blocks rather than leaking throughout
3711 * the address space during boot when many long-lived
3712 * kernel allocations are made. Later some blocks near
3713 * the start are marked MIGRATE_RESERVE by
3714 * setup_zone_migrate_reserve()
3716 * bitmap is created for zone's valid pfn range. but memmap
3717 * can be created for invalid pages (for alignment)
3718 * check here not to call set_pageblock_migratetype() against
3719 * pfn out of zone.
3721 if ((z->zone_start_pfn <= pfn)
3722 && (pfn < z->zone_start_pfn + z->spanned_pages)
3723 && !(pfn & (pageblock_nr_pages - 1)))
3724 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3726 INIT_LIST_HEAD(&page->lru);
3727 #ifdef WANT_PAGE_VIRTUAL
3728 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3729 if (!is_highmem_idx(zone))
3730 set_page_address(page, __va(pfn << PAGE_SHIFT));
3731 #endif
3735 static void __meminit zone_init_free_lists(struct zone *zone)
3737 int order, t;
3738 for_each_migratetype_order(order, t) {
3739 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3740 zone->free_area[order].nr_free = 0;
3744 #ifndef __HAVE_ARCH_MEMMAP_INIT
3745 #define memmap_init(size, nid, zone, start_pfn) \
3746 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3747 #endif
3749 static int zone_batchsize(struct zone *zone)
3751 #ifdef CONFIG_MMU
3752 int batch;
3755 * The per-cpu-pages pools are set to around 1000th of the
3756 * size of the zone. But no more than 1/2 of a meg.
3758 * OK, so we don't know how big the cache is. So guess.
3760 batch = zone->present_pages / 1024;
3761 if (batch * PAGE_SIZE > 512 * 1024)
3762 batch = (512 * 1024) / PAGE_SIZE;
3763 batch /= 4; /* We effectively *= 4 below */
3764 if (batch < 1)
3765 batch = 1;
3768 * Clamp the batch to a 2^n - 1 value. Having a power
3769 * of 2 value was found to be more likely to have
3770 * suboptimal cache aliasing properties in some cases.
3772 * For example if 2 tasks are alternately allocating
3773 * batches of pages, one task can end up with a lot
3774 * of pages of one half of the possible page colors
3775 * and the other with pages of the other colors.
3777 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3779 return batch;
3781 #else
3782 /* The deferral and batching of frees should be suppressed under NOMMU
3783 * conditions.
3785 * The problem is that NOMMU needs to be able to allocate large chunks
3786 * of contiguous memory as there's no hardware page translation to
3787 * assemble apparent contiguous memory from discontiguous pages.
3789 * Queueing large contiguous runs of pages for batching, however,
3790 * causes the pages to actually be freed in smaller chunks. As there
3791 * can be a significant delay between the individual batches being
3792 * recycled, this leads to the once large chunks of space being
3793 * fragmented and becoming unavailable for high-order allocations.
3795 return 0;
3796 #endif
3799 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3801 struct per_cpu_pages *pcp;
3802 int migratetype;
3804 memset(p, 0, sizeof(*p));
3806 pcp = &p->pcp;
3807 pcp->count = 0;
3808 pcp->high = 6 * batch;
3809 pcp->batch = max(1UL, 1 * batch);
3810 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3811 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3815 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3816 * to the value high for the pageset p.
3819 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3820 unsigned long high)
3822 struct per_cpu_pages *pcp;
3824 pcp = &p->pcp;
3825 pcp->high = high;
3826 pcp->batch = max(1UL, high/4);
3827 if ((high/4) > (PAGE_SHIFT * 8))
3828 pcp->batch = PAGE_SHIFT * 8;
3831 static void setup_zone_pageset(struct zone *zone)
3833 int cpu;
3835 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3837 for_each_possible_cpu(cpu) {
3838 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3840 setup_pageset(pcp, zone_batchsize(zone));
3842 if (percpu_pagelist_fraction)
3843 setup_pagelist_highmark(pcp,
3844 (zone->present_pages /
3845 percpu_pagelist_fraction));
3850 * Allocate per cpu pagesets and initialize them.
3851 * Before this call only boot pagesets were available.
3853 void __init setup_per_cpu_pageset(void)
3855 struct zone *zone;
3857 for_each_populated_zone(zone)
3858 setup_zone_pageset(zone);
3861 static noinline __init_refok
3862 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3864 int i;
3865 struct pglist_data *pgdat = zone->zone_pgdat;
3866 size_t alloc_size;
3869 * The per-page waitqueue mechanism uses hashed waitqueues
3870 * per zone.
3872 zone->wait_table_hash_nr_entries =
3873 wait_table_hash_nr_entries(zone_size_pages);
3874 zone->wait_table_bits =
3875 wait_table_bits(zone->wait_table_hash_nr_entries);
3876 alloc_size = zone->wait_table_hash_nr_entries
3877 * sizeof(wait_queue_head_t);
3879 if (!slab_is_available()) {
3880 zone->wait_table = (wait_queue_head_t *)
3881 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3882 } else {
3884 * This case means that a zone whose size was 0 gets new memory
3885 * via memory hot-add.
3886 * But it may be the case that a new node was hot-added. In
3887 * this case vmalloc() will not be able to use this new node's
3888 * memory - this wait_table must be initialized to use this new
3889 * node itself as well.
3890 * To use this new node's memory, further consideration will be
3891 * necessary.
3893 zone->wait_table = vmalloc(alloc_size);
3895 if (!zone->wait_table)
3896 return -ENOMEM;
3898 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3899 init_waitqueue_head(zone->wait_table + i);
3901 return 0;
3904 static int __zone_pcp_update(void *data)
3906 struct zone *zone = data;
3907 int cpu;
3908 unsigned long batch = zone_batchsize(zone), flags;
3910 for_each_possible_cpu(cpu) {
3911 struct per_cpu_pageset *pset;
3912 struct per_cpu_pages *pcp;
3914 pset = per_cpu_ptr(zone->pageset, cpu);
3915 pcp = &pset->pcp;
3917 local_irq_save(flags);
3918 free_pcppages_bulk(zone, pcp->count, pcp);
3919 setup_pageset(pset, batch);
3920 local_irq_restore(flags);
3922 return 0;
3925 void zone_pcp_update(struct zone *zone)
3927 stop_machine(__zone_pcp_update, zone, NULL);
3930 static __meminit void zone_pcp_init(struct zone *zone)
3933 * per cpu subsystem is not up at this point. The following code
3934 * relies on the ability of the linker to provide the
3935 * offset of a (static) per cpu variable into the per cpu area.
3937 zone->pageset = &boot_pageset;
3939 if (zone->present_pages)
3940 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3941 zone->name, zone->present_pages,
3942 zone_batchsize(zone));
3945 __meminit int init_currently_empty_zone(struct zone *zone,
3946 unsigned long zone_start_pfn,
3947 unsigned long size,
3948 enum memmap_context context)
3950 struct pglist_data *pgdat = zone->zone_pgdat;
3951 int ret;
3952 ret = zone_wait_table_init(zone, size);
3953 if (ret)
3954 return ret;
3955 pgdat->nr_zones = zone_idx(zone) + 1;
3957 zone->zone_start_pfn = zone_start_pfn;
3959 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3960 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3961 pgdat->node_id,
3962 (unsigned long)zone_idx(zone),
3963 zone_start_pfn, (zone_start_pfn + size));
3965 zone_init_free_lists(zone);
3967 return 0;
3970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3971 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3973 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3974 * Architectures may implement their own version but if add_active_range()
3975 * was used and there are no special requirements, this is a convenient
3976 * alternative
3978 int __meminit __early_pfn_to_nid(unsigned long pfn)
3980 unsigned long start_pfn, end_pfn;
3981 int i, nid;
3983 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3984 if (start_pfn <= pfn && pfn < end_pfn)
3985 return nid;
3986 /* This is a memory hole */
3987 return -1;
3989 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3991 int __meminit early_pfn_to_nid(unsigned long pfn)
3993 int nid;
3995 nid = __early_pfn_to_nid(pfn);
3996 if (nid >= 0)
3997 return nid;
3998 /* just returns 0 */
3999 return 0;
4002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4003 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4005 int nid;
4007 nid = __early_pfn_to_nid(pfn);
4008 if (nid >= 0 && nid != node)
4009 return false;
4010 return true;
4012 #endif
4015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4019 * If an architecture guarantees that all ranges registered with
4020 * add_active_ranges() contain no holes and may be freed, this
4021 * this function may be used instead of calling free_bootmem() manually.
4023 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4025 unsigned long start_pfn, end_pfn;
4026 int i, this_nid;
4028 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4029 start_pfn = min(start_pfn, max_low_pfn);
4030 end_pfn = min(end_pfn, max_low_pfn);
4032 if (start_pfn < end_pfn)
4033 free_bootmem_node(NODE_DATA(this_nid),
4034 PFN_PHYS(start_pfn),
4035 (end_pfn - start_pfn) << PAGE_SHIFT);
4040 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4041 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4043 * If an architecture guarantees that all ranges registered with
4044 * add_active_ranges() contain no holes and may be freed, this
4045 * function may be used instead of calling memory_present() manually.
4047 void __init sparse_memory_present_with_active_regions(int nid)
4049 unsigned long start_pfn, end_pfn;
4050 int i, this_nid;
4052 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4053 memory_present(this_nid, start_pfn, end_pfn);
4057 * get_pfn_range_for_nid - Return the start and end page frames for a node
4058 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4059 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4060 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4062 * It returns the start and end page frame of a node based on information
4063 * provided by an arch calling add_active_range(). If called for a node
4064 * with no available memory, a warning is printed and the start and end
4065 * PFNs will be 0.
4067 void __meminit get_pfn_range_for_nid(unsigned int nid,
4068 unsigned long *start_pfn, unsigned long *end_pfn)
4070 unsigned long this_start_pfn, this_end_pfn;
4071 int i;
4073 *start_pfn = -1UL;
4074 *end_pfn = 0;
4076 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4077 *start_pfn = min(*start_pfn, this_start_pfn);
4078 *end_pfn = max(*end_pfn, this_end_pfn);
4081 if (*start_pfn == -1UL)
4082 *start_pfn = 0;
4086 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4087 * assumption is made that zones within a node are ordered in monotonic
4088 * increasing memory addresses so that the "highest" populated zone is used
4090 static void __init find_usable_zone_for_movable(void)
4092 int zone_index;
4093 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4094 if (zone_index == ZONE_MOVABLE)
4095 continue;
4097 if (arch_zone_highest_possible_pfn[zone_index] >
4098 arch_zone_lowest_possible_pfn[zone_index])
4099 break;
4102 VM_BUG_ON(zone_index == -1);
4103 movable_zone = zone_index;
4107 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4108 * because it is sized independent of architecture. Unlike the other zones,
4109 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4110 * in each node depending on the size of each node and how evenly kernelcore
4111 * is distributed. This helper function adjusts the zone ranges
4112 * provided by the architecture for a given node by using the end of the
4113 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4114 * zones within a node are in order of monotonic increases memory addresses
4116 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4117 unsigned long zone_type,
4118 unsigned long node_start_pfn,
4119 unsigned long node_end_pfn,
4120 unsigned long *zone_start_pfn,
4121 unsigned long *zone_end_pfn)
4123 /* Only adjust if ZONE_MOVABLE is on this node */
4124 if (zone_movable_pfn[nid]) {
4125 /* Size ZONE_MOVABLE */
4126 if (zone_type == ZONE_MOVABLE) {
4127 *zone_start_pfn = zone_movable_pfn[nid];
4128 *zone_end_pfn = min(node_end_pfn,
4129 arch_zone_highest_possible_pfn[movable_zone]);
4131 /* Adjust for ZONE_MOVABLE starting within this range */
4132 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4133 *zone_end_pfn > zone_movable_pfn[nid]) {
4134 *zone_end_pfn = zone_movable_pfn[nid];
4136 /* Check if this whole range is within ZONE_MOVABLE */
4137 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4138 *zone_start_pfn = *zone_end_pfn;
4143 * Return the number of pages a zone spans in a node, including holes
4144 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4146 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4147 unsigned long zone_type,
4148 unsigned long *ignored)
4150 unsigned long node_start_pfn, node_end_pfn;
4151 unsigned long zone_start_pfn, zone_end_pfn;
4153 /* Get the start and end of the node and zone */
4154 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4155 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4156 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4157 adjust_zone_range_for_zone_movable(nid, zone_type,
4158 node_start_pfn, node_end_pfn,
4159 &zone_start_pfn, &zone_end_pfn);
4161 /* Check that this node has pages within the zone's required range */
4162 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4163 return 0;
4165 /* Move the zone boundaries inside the node if necessary */
4166 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4167 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4169 /* Return the spanned pages */
4170 return zone_end_pfn - zone_start_pfn;
4174 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4175 * then all holes in the requested range will be accounted for.
4177 unsigned long __meminit __absent_pages_in_range(int nid,
4178 unsigned long range_start_pfn,
4179 unsigned long range_end_pfn)
4181 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4182 unsigned long start_pfn, end_pfn;
4183 int i;
4185 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4186 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4187 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4188 nr_absent -= end_pfn - start_pfn;
4190 return nr_absent;
4194 * absent_pages_in_range - Return number of page frames in holes within a range
4195 * @start_pfn: The start PFN to start searching for holes
4196 * @end_pfn: The end PFN to stop searching for holes
4198 * It returns the number of pages frames in memory holes within a range.
4200 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4201 unsigned long end_pfn)
4203 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4206 /* Return the number of page frames in holes in a zone on a node */
4207 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4208 unsigned long zone_type,
4209 unsigned long *ignored)
4211 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4212 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4213 unsigned long node_start_pfn, node_end_pfn;
4214 unsigned long zone_start_pfn, zone_end_pfn;
4216 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4217 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4218 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4220 adjust_zone_range_for_zone_movable(nid, zone_type,
4221 node_start_pfn, node_end_pfn,
4222 &zone_start_pfn, &zone_end_pfn);
4223 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4226 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4227 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4228 unsigned long zone_type,
4229 unsigned long *zones_size)
4231 return zones_size[zone_type];
4234 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4235 unsigned long zone_type,
4236 unsigned long *zholes_size)
4238 if (!zholes_size)
4239 return 0;
4241 return zholes_size[zone_type];
4244 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4246 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4247 unsigned long *zones_size, unsigned long *zholes_size)
4249 unsigned long realtotalpages, totalpages = 0;
4250 enum zone_type i;
4252 for (i = 0; i < MAX_NR_ZONES; i++)
4253 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4254 zones_size);
4255 pgdat->node_spanned_pages = totalpages;
4257 realtotalpages = totalpages;
4258 for (i = 0; i < MAX_NR_ZONES; i++)
4259 realtotalpages -=
4260 zone_absent_pages_in_node(pgdat->node_id, i,
4261 zholes_size);
4262 pgdat->node_present_pages = realtotalpages;
4263 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4264 realtotalpages);
4267 #ifndef CONFIG_SPARSEMEM
4269 * Calculate the size of the zone->blockflags rounded to an unsigned long
4270 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4271 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4272 * round what is now in bits to nearest long in bits, then return it in
4273 * bytes.
4275 static unsigned long __init usemap_size(unsigned long zonesize)
4277 unsigned long usemapsize;
4279 usemapsize = roundup(zonesize, pageblock_nr_pages);
4280 usemapsize = usemapsize >> pageblock_order;
4281 usemapsize *= NR_PAGEBLOCK_BITS;
4282 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4284 return usemapsize / 8;
4287 static void __init setup_usemap(struct pglist_data *pgdat,
4288 struct zone *zone, unsigned long zonesize)
4290 unsigned long usemapsize = usemap_size(zonesize);
4291 zone->pageblock_flags = NULL;
4292 if (usemapsize)
4293 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4294 usemapsize);
4296 #else
4297 static inline void setup_usemap(struct pglist_data *pgdat,
4298 struct zone *zone, unsigned long zonesize) {}
4299 #endif /* CONFIG_SPARSEMEM */
4301 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4303 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4304 static inline void __init set_pageblock_order(void)
4306 unsigned int order;
4308 /* Check that pageblock_nr_pages has not already been setup */
4309 if (pageblock_order)
4310 return;
4312 if (HPAGE_SHIFT > PAGE_SHIFT)
4313 order = HUGETLB_PAGE_ORDER;
4314 else
4315 order = MAX_ORDER - 1;
4318 * Assume the largest contiguous order of interest is a huge page.
4319 * This value may be variable depending on boot parameters on IA64 and
4320 * powerpc.
4322 pageblock_order = order;
4324 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4327 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4328 * is unused as pageblock_order is set at compile-time. See
4329 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4330 * the kernel config
4332 static inline void set_pageblock_order(void)
4336 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4339 * Set up the zone data structures:
4340 * - mark all pages reserved
4341 * - mark all memory queues empty
4342 * - clear the memory bitmaps
4344 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4345 unsigned long *zones_size, unsigned long *zholes_size)
4347 enum zone_type j;
4348 int nid = pgdat->node_id;
4349 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4350 int ret;
4352 pgdat_resize_init(pgdat);
4353 pgdat->nr_zones = 0;
4354 init_waitqueue_head(&pgdat->kswapd_wait);
4355 pgdat->kswapd_max_order = 0;
4356 pgdat_page_cgroup_init(pgdat);
4358 for (j = 0; j < MAX_NR_ZONES; j++) {
4359 struct zone *zone = pgdat->node_zones + j;
4360 unsigned long size, realsize, memmap_pages;
4362 size = zone_spanned_pages_in_node(nid, j, zones_size);
4363 realsize = size - zone_absent_pages_in_node(nid, j,
4364 zholes_size);
4367 * Adjust realsize so that it accounts for how much memory
4368 * is used by this zone for memmap. This affects the watermark
4369 * and per-cpu initialisations
4371 memmap_pages =
4372 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4373 if (realsize >= memmap_pages) {
4374 realsize -= memmap_pages;
4375 if (memmap_pages)
4376 printk(KERN_DEBUG
4377 " %s zone: %lu pages used for memmap\n",
4378 zone_names[j], memmap_pages);
4379 } else
4380 printk(KERN_WARNING
4381 " %s zone: %lu pages exceeds realsize %lu\n",
4382 zone_names[j], memmap_pages, realsize);
4384 /* Account for reserved pages */
4385 if (j == 0 && realsize > dma_reserve) {
4386 realsize -= dma_reserve;
4387 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4388 zone_names[0], dma_reserve);
4391 if (!is_highmem_idx(j))
4392 nr_kernel_pages += realsize;
4393 nr_all_pages += realsize;
4395 zone->spanned_pages = size;
4396 zone->present_pages = realsize;
4397 #ifdef CONFIG_NUMA
4398 zone->node = nid;
4399 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4400 / 100;
4401 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4402 #endif
4403 zone->name = zone_names[j];
4404 spin_lock_init(&zone->lock);
4405 spin_lock_init(&zone->lru_lock);
4406 zone_seqlock_init(zone);
4407 zone->zone_pgdat = pgdat;
4409 zone_pcp_init(zone);
4410 lruvec_init(&zone->lruvec, zone);
4411 zap_zone_vm_stats(zone);
4412 zone->flags = 0;
4413 if (!size)
4414 continue;
4416 set_pageblock_order();
4417 setup_usemap(pgdat, zone, size);
4418 ret = init_currently_empty_zone(zone, zone_start_pfn,
4419 size, MEMMAP_EARLY);
4420 BUG_ON(ret);
4421 memmap_init(size, nid, j, zone_start_pfn);
4422 zone_start_pfn += size;
4426 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4428 /* Skip empty nodes */
4429 if (!pgdat->node_spanned_pages)
4430 return;
4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 /* ia64 gets its own node_mem_map, before this, without bootmem */
4434 if (!pgdat->node_mem_map) {
4435 unsigned long size, start, end;
4436 struct page *map;
4439 * The zone's endpoints aren't required to be MAX_ORDER
4440 * aligned but the node_mem_map endpoints must be in order
4441 * for the buddy allocator to function correctly.
4443 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4444 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4445 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4446 size = (end - start) * sizeof(struct page);
4447 map = alloc_remap(pgdat->node_id, size);
4448 if (!map)
4449 map = alloc_bootmem_node_nopanic(pgdat, size);
4450 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4452 #ifndef CONFIG_NEED_MULTIPLE_NODES
4454 * With no DISCONTIG, the global mem_map is just set as node 0's
4456 if (pgdat == NODE_DATA(0)) {
4457 mem_map = NODE_DATA(0)->node_mem_map;
4458 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4459 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4460 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4463 #endif
4464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4467 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4468 unsigned long node_start_pfn, unsigned long *zholes_size)
4470 pg_data_t *pgdat = NODE_DATA(nid);
4472 pgdat->node_id = nid;
4473 pgdat->node_start_pfn = node_start_pfn;
4474 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4476 alloc_node_mem_map(pgdat);
4477 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4478 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4479 nid, (unsigned long)pgdat,
4480 (unsigned long)pgdat->node_mem_map);
4481 #endif
4483 free_area_init_core(pgdat, zones_size, zholes_size);
4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4488 #if MAX_NUMNODES > 1
4490 * Figure out the number of possible node ids.
4492 static void __init setup_nr_node_ids(void)
4494 unsigned int node;
4495 unsigned int highest = 0;
4497 for_each_node_mask(node, node_possible_map)
4498 highest = node;
4499 nr_node_ids = highest + 1;
4501 #else
4502 static inline void setup_nr_node_ids(void)
4505 #endif
4508 * node_map_pfn_alignment - determine the maximum internode alignment
4510 * This function should be called after node map is populated and sorted.
4511 * It calculates the maximum power of two alignment which can distinguish
4512 * all the nodes.
4514 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4515 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4516 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4517 * shifted, 1GiB is enough and this function will indicate so.
4519 * This is used to test whether pfn -> nid mapping of the chosen memory
4520 * model has fine enough granularity to avoid incorrect mapping for the
4521 * populated node map.
4523 * Returns the determined alignment in pfn's. 0 if there is no alignment
4524 * requirement (single node).
4526 unsigned long __init node_map_pfn_alignment(void)
4528 unsigned long accl_mask = 0, last_end = 0;
4529 unsigned long start, end, mask;
4530 int last_nid = -1;
4531 int i, nid;
4533 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4534 if (!start || last_nid < 0 || last_nid == nid) {
4535 last_nid = nid;
4536 last_end = end;
4537 continue;
4541 * Start with a mask granular enough to pin-point to the
4542 * start pfn and tick off bits one-by-one until it becomes
4543 * too coarse to separate the current node from the last.
4545 mask = ~((1 << __ffs(start)) - 1);
4546 while (mask && last_end <= (start & (mask << 1)))
4547 mask <<= 1;
4549 /* accumulate all internode masks */
4550 accl_mask |= mask;
4553 /* convert mask to number of pages */
4554 return ~accl_mask + 1;
4557 /* Find the lowest pfn for a node */
4558 static unsigned long __init find_min_pfn_for_node(int nid)
4560 unsigned long min_pfn = ULONG_MAX;
4561 unsigned long start_pfn;
4562 int i;
4564 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4565 min_pfn = min(min_pfn, start_pfn);
4567 if (min_pfn == ULONG_MAX) {
4568 printk(KERN_WARNING
4569 "Could not find start_pfn for node %d\n", nid);
4570 return 0;
4573 return min_pfn;
4577 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4579 * It returns the minimum PFN based on information provided via
4580 * add_active_range().
4582 unsigned long __init find_min_pfn_with_active_regions(void)
4584 return find_min_pfn_for_node(MAX_NUMNODES);
4588 * early_calculate_totalpages()
4589 * Sum pages in active regions for movable zone.
4590 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4592 static unsigned long __init early_calculate_totalpages(void)
4594 unsigned long totalpages = 0;
4595 unsigned long start_pfn, end_pfn;
4596 int i, nid;
4598 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4599 unsigned long pages = end_pfn - start_pfn;
4601 totalpages += pages;
4602 if (pages)
4603 node_set_state(nid, N_HIGH_MEMORY);
4605 return totalpages;
4609 * Find the PFN the Movable zone begins in each node. Kernel memory
4610 * is spread evenly between nodes as long as the nodes have enough
4611 * memory. When they don't, some nodes will have more kernelcore than
4612 * others
4614 static void __init find_zone_movable_pfns_for_nodes(void)
4616 int i, nid;
4617 unsigned long usable_startpfn;
4618 unsigned long kernelcore_node, kernelcore_remaining;
4619 /* save the state before borrow the nodemask */
4620 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4621 unsigned long totalpages = early_calculate_totalpages();
4622 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4625 * If movablecore was specified, calculate what size of
4626 * kernelcore that corresponds so that memory usable for
4627 * any allocation type is evenly spread. If both kernelcore
4628 * and movablecore are specified, then the value of kernelcore
4629 * will be used for required_kernelcore if it's greater than
4630 * what movablecore would have allowed.
4632 if (required_movablecore) {
4633 unsigned long corepages;
4636 * Round-up so that ZONE_MOVABLE is at least as large as what
4637 * was requested by the user
4639 required_movablecore =
4640 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4641 corepages = totalpages - required_movablecore;
4643 required_kernelcore = max(required_kernelcore, corepages);
4646 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4647 if (!required_kernelcore)
4648 goto out;
4650 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4651 find_usable_zone_for_movable();
4652 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4654 restart:
4655 /* Spread kernelcore memory as evenly as possible throughout nodes */
4656 kernelcore_node = required_kernelcore / usable_nodes;
4657 for_each_node_state(nid, N_HIGH_MEMORY) {
4658 unsigned long start_pfn, end_pfn;
4661 * Recalculate kernelcore_node if the division per node
4662 * now exceeds what is necessary to satisfy the requested
4663 * amount of memory for the kernel
4665 if (required_kernelcore < kernelcore_node)
4666 kernelcore_node = required_kernelcore / usable_nodes;
4669 * As the map is walked, we track how much memory is usable
4670 * by the kernel using kernelcore_remaining. When it is
4671 * 0, the rest of the node is usable by ZONE_MOVABLE
4673 kernelcore_remaining = kernelcore_node;
4675 /* Go through each range of PFNs within this node */
4676 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4677 unsigned long size_pages;
4679 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4680 if (start_pfn >= end_pfn)
4681 continue;
4683 /* Account for what is only usable for kernelcore */
4684 if (start_pfn < usable_startpfn) {
4685 unsigned long kernel_pages;
4686 kernel_pages = min(end_pfn, usable_startpfn)
4687 - start_pfn;
4689 kernelcore_remaining -= min(kernel_pages,
4690 kernelcore_remaining);
4691 required_kernelcore -= min(kernel_pages,
4692 required_kernelcore);
4694 /* Continue if range is now fully accounted */
4695 if (end_pfn <= usable_startpfn) {
4698 * Push zone_movable_pfn to the end so
4699 * that if we have to rebalance
4700 * kernelcore across nodes, we will
4701 * not double account here
4703 zone_movable_pfn[nid] = end_pfn;
4704 continue;
4706 start_pfn = usable_startpfn;
4710 * The usable PFN range for ZONE_MOVABLE is from
4711 * start_pfn->end_pfn. Calculate size_pages as the
4712 * number of pages used as kernelcore
4714 size_pages = end_pfn - start_pfn;
4715 if (size_pages > kernelcore_remaining)
4716 size_pages = kernelcore_remaining;
4717 zone_movable_pfn[nid] = start_pfn + size_pages;
4720 * Some kernelcore has been met, update counts and
4721 * break if the kernelcore for this node has been
4722 * satisified
4724 required_kernelcore -= min(required_kernelcore,
4725 size_pages);
4726 kernelcore_remaining -= size_pages;
4727 if (!kernelcore_remaining)
4728 break;
4733 * If there is still required_kernelcore, we do another pass with one
4734 * less node in the count. This will push zone_movable_pfn[nid] further
4735 * along on the nodes that still have memory until kernelcore is
4736 * satisified
4738 usable_nodes--;
4739 if (usable_nodes && required_kernelcore > usable_nodes)
4740 goto restart;
4742 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4743 for (nid = 0; nid < MAX_NUMNODES; nid++)
4744 zone_movable_pfn[nid] =
4745 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4747 out:
4748 /* restore the node_state */
4749 node_states[N_HIGH_MEMORY] = saved_node_state;
4752 /* Any regular memory on that node ? */
4753 static void check_for_regular_memory(pg_data_t *pgdat)
4755 #ifdef CONFIG_HIGHMEM
4756 enum zone_type zone_type;
4758 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4759 struct zone *zone = &pgdat->node_zones[zone_type];
4760 if (zone->present_pages) {
4761 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4762 break;
4765 #endif
4769 * free_area_init_nodes - Initialise all pg_data_t and zone data
4770 * @max_zone_pfn: an array of max PFNs for each zone
4772 * This will call free_area_init_node() for each active node in the system.
4773 * Using the page ranges provided by add_active_range(), the size of each
4774 * zone in each node and their holes is calculated. If the maximum PFN
4775 * between two adjacent zones match, it is assumed that the zone is empty.
4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778 * starts where the previous one ended. For example, ZONE_DMA32 starts
4779 * at arch_max_dma_pfn.
4781 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4783 unsigned long start_pfn, end_pfn;
4784 int i, nid;
4786 /* Record where the zone boundaries are */
4787 memset(arch_zone_lowest_possible_pfn, 0,
4788 sizeof(arch_zone_lowest_possible_pfn));
4789 memset(arch_zone_highest_possible_pfn, 0,
4790 sizeof(arch_zone_highest_possible_pfn));
4791 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4792 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4793 for (i = 1; i < MAX_NR_ZONES; i++) {
4794 if (i == ZONE_MOVABLE)
4795 continue;
4796 arch_zone_lowest_possible_pfn[i] =
4797 arch_zone_highest_possible_pfn[i-1];
4798 arch_zone_highest_possible_pfn[i] =
4799 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4801 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4802 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4804 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4805 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4806 find_zone_movable_pfns_for_nodes();
4808 /* Print out the zone ranges */
4809 printk("Zone ranges:\n");
4810 for (i = 0; i < MAX_NR_ZONES; i++) {
4811 if (i == ZONE_MOVABLE)
4812 continue;
4813 printk(KERN_CONT " %-8s ", zone_names[i]);
4814 if (arch_zone_lowest_possible_pfn[i] ==
4815 arch_zone_highest_possible_pfn[i])
4816 printk(KERN_CONT "empty\n");
4817 else
4818 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4819 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4820 (arch_zone_highest_possible_pfn[i]
4821 << PAGE_SHIFT) - 1);
4824 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4825 printk("Movable zone start for each node\n");
4826 for (i = 0; i < MAX_NUMNODES; i++) {
4827 if (zone_movable_pfn[i])
4828 printk(" Node %d: %#010lx\n", i,
4829 zone_movable_pfn[i] << PAGE_SHIFT);
4832 /* Print out the early_node_map[] */
4833 printk("Early memory node ranges\n");
4834 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4835 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4836 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4838 /* Initialise every node */
4839 mminit_verify_pageflags_layout();
4840 setup_nr_node_ids();
4841 for_each_online_node(nid) {
4842 pg_data_t *pgdat = NODE_DATA(nid);
4843 free_area_init_node(nid, NULL,
4844 find_min_pfn_for_node(nid), NULL);
4846 /* Any memory on that node */
4847 if (pgdat->node_present_pages)
4848 node_set_state(nid, N_HIGH_MEMORY);
4849 check_for_regular_memory(pgdat);
4853 static int __init cmdline_parse_core(char *p, unsigned long *core)
4855 unsigned long long coremem;
4856 if (!p)
4857 return -EINVAL;
4859 coremem = memparse(p, &p);
4860 *core = coremem >> PAGE_SHIFT;
4862 /* Paranoid check that UL is enough for the coremem value */
4863 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4865 return 0;
4869 * kernelcore=size sets the amount of memory for use for allocations that
4870 * cannot be reclaimed or migrated.
4872 static int __init cmdline_parse_kernelcore(char *p)
4874 return cmdline_parse_core(p, &required_kernelcore);
4878 * movablecore=size sets the amount of memory for use for allocations that
4879 * can be reclaimed or migrated.
4881 static int __init cmdline_parse_movablecore(char *p)
4883 return cmdline_parse_core(p, &required_movablecore);
4886 early_param("kernelcore", cmdline_parse_kernelcore);
4887 early_param("movablecore", cmdline_parse_movablecore);
4889 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4892 * set_dma_reserve - set the specified number of pages reserved in the first zone
4893 * @new_dma_reserve: The number of pages to mark reserved
4895 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4896 * In the DMA zone, a significant percentage may be consumed by kernel image
4897 * and other unfreeable allocations which can skew the watermarks badly. This
4898 * function may optionally be used to account for unfreeable pages in the
4899 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4900 * smaller per-cpu batchsize.
4902 void __init set_dma_reserve(unsigned long new_dma_reserve)
4904 dma_reserve = new_dma_reserve;
4907 void __init free_area_init(unsigned long *zones_size)
4909 free_area_init_node(0, zones_size,
4910 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4913 static int page_alloc_cpu_notify(struct notifier_block *self,
4914 unsigned long action, void *hcpu)
4916 int cpu = (unsigned long)hcpu;
4918 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4919 lru_add_drain_cpu(cpu);
4920 drain_pages(cpu);
4923 * Spill the event counters of the dead processor
4924 * into the current processors event counters.
4925 * This artificially elevates the count of the current
4926 * processor.
4928 vm_events_fold_cpu(cpu);
4931 * Zero the differential counters of the dead processor
4932 * so that the vm statistics are consistent.
4934 * This is only okay since the processor is dead and cannot
4935 * race with what we are doing.
4937 refresh_cpu_vm_stats(cpu);
4939 return NOTIFY_OK;
4942 void __init page_alloc_init(void)
4944 hotcpu_notifier(page_alloc_cpu_notify, 0);
4948 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4949 * or min_free_kbytes changes.
4951 static void calculate_totalreserve_pages(void)
4953 struct pglist_data *pgdat;
4954 unsigned long reserve_pages = 0;
4955 enum zone_type i, j;
4957 for_each_online_pgdat(pgdat) {
4958 for (i = 0; i < MAX_NR_ZONES; i++) {
4959 struct zone *zone = pgdat->node_zones + i;
4960 unsigned long max = 0;
4962 /* Find valid and maximum lowmem_reserve in the zone */
4963 for (j = i; j < MAX_NR_ZONES; j++) {
4964 if (zone->lowmem_reserve[j] > max)
4965 max = zone->lowmem_reserve[j];
4968 /* we treat the high watermark as reserved pages. */
4969 max += high_wmark_pages(zone);
4971 if (max > zone->present_pages)
4972 max = zone->present_pages;
4973 reserve_pages += max;
4975 * Lowmem reserves are not available to
4976 * GFP_HIGHUSER page cache allocations and
4977 * kswapd tries to balance zones to their high
4978 * watermark. As a result, neither should be
4979 * regarded as dirtyable memory, to prevent a
4980 * situation where reclaim has to clean pages
4981 * in order to balance the zones.
4983 zone->dirty_balance_reserve = max;
4986 dirty_balance_reserve = reserve_pages;
4987 totalreserve_pages = reserve_pages;
4991 * setup_per_zone_lowmem_reserve - called whenever
4992 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4993 * has a correct pages reserved value, so an adequate number of
4994 * pages are left in the zone after a successful __alloc_pages().
4996 static void setup_per_zone_lowmem_reserve(void)
4998 struct pglist_data *pgdat;
4999 enum zone_type j, idx;
5001 for_each_online_pgdat(pgdat) {
5002 for (j = 0; j < MAX_NR_ZONES; j++) {
5003 struct zone *zone = pgdat->node_zones + j;
5004 unsigned long present_pages = zone->present_pages;
5006 zone->lowmem_reserve[j] = 0;
5008 idx = j;
5009 while (idx) {
5010 struct zone *lower_zone;
5012 idx--;
5014 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5015 sysctl_lowmem_reserve_ratio[idx] = 1;
5017 lower_zone = pgdat->node_zones + idx;
5018 lower_zone->lowmem_reserve[j] = present_pages /
5019 sysctl_lowmem_reserve_ratio[idx];
5020 present_pages += lower_zone->present_pages;
5025 /* update totalreserve_pages */
5026 calculate_totalreserve_pages();
5029 static void __setup_per_zone_wmarks(void)
5031 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5032 unsigned long lowmem_pages = 0;
5033 struct zone *zone;
5034 unsigned long flags;
5036 /* Calculate total number of !ZONE_HIGHMEM pages */
5037 for_each_zone(zone) {
5038 if (!is_highmem(zone))
5039 lowmem_pages += zone->present_pages;
5042 for_each_zone(zone) {
5043 u64 tmp;
5045 spin_lock_irqsave(&zone->lock, flags);
5046 tmp = (u64)pages_min * zone->present_pages;
5047 do_div(tmp, lowmem_pages);
5048 if (is_highmem(zone)) {
5050 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5051 * need highmem pages, so cap pages_min to a small
5052 * value here.
5054 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5055 * deltas controls asynch page reclaim, and so should
5056 * not be capped for highmem.
5058 int min_pages;
5060 min_pages = zone->present_pages / 1024;
5061 if (min_pages < SWAP_CLUSTER_MAX)
5062 min_pages = SWAP_CLUSTER_MAX;
5063 if (min_pages > 128)
5064 min_pages = 128;
5065 zone->watermark[WMARK_MIN] = min_pages;
5066 } else {
5068 * If it's a lowmem zone, reserve a number of pages
5069 * proportionate to the zone's size.
5071 zone->watermark[WMARK_MIN] = tmp;
5074 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5075 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5077 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5078 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5079 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5081 setup_zone_migrate_reserve(zone);
5082 spin_unlock_irqrestore(&zone->lock, flags);
5085 /* update totalreserve_pages */
5086 calculate_totalreserve_pages();
5090 * setup_per_zone_wmarks - called when min_free_kbytes changes
5091 * or when memory is hot-{added|removed}
5093 * Ensures that the watermark[min,low,high] values for each zone are set
5094 * correctly with respect to min_free_kbytes.
5096 void setup_per_zone_wmarks(void)
5098 mutex_lock(&zonelists_mutex);
5099 __setup_per_zone_wmarks();
5100 mutex_unlock(&zonelists_mutex);
5104 * The inactive anon list should be small enough that the VM never has to
5105 * do too much work, but large enough that each inactive page has a chance
5106 * to be referenced again before it is swapped out.
5108 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5109 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5110 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5111 * the anonymous pages are kept on the inactive list.
5113 * total target max
5114 * memory ratio inactive anon
5115 * -------------------------------------
5116 * 10MB 1 5MB
5117 * 100MB 1 50MB
5118 * 1GB 3 250MB
5119 * 10GB 10 0.9GB
5120 * 100GB 31 3GB
5121 * 1TB 101 10GB
5122 * 10TB 320 32GB
5124 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5126 unsigned int gb, ratio;
5128 /* Zone size in gigabytes */
5129 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5130 if (gb)
5131 ratio = int_sqrt(10 * gb);
5132 else
5133 ratio = 1;
5135 zone->inactive_ratio = ratio;
5138 static void __meminit setup_per_zone_inactive_ratio(void)
5140 struct zone *zone;
5142 for_each_zone(zone)
5143 calculate_zone_inactive_ratio(zone);
5147 * Initialise min_free_kbytes.
5149 * For small machines we want it small (128k min). For large machines
5150 * we want it large (64MB max). But it is not linear, because network
5151 * bandwidth does not increase linearly with machine size. We use
5153 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5154 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5156 * which yields
5158 * 16MB: 512k
5159 * 32MB: 724k
5160 * 64MB: 1024k
5161 * 128MB: 1448k
5162 * 256MB: 2048k
5163 * 512MB: 2896k
5164 * 1024MB: 4096k
5165 * 2048MB: 5792k
5166 * 4096MB: 8192k
5167 * 8192MB: 11584k
5168 * 16384MB: 16384k
5170 int __meminit init_per_zone_wmark_min(void)
5172 unsigned long lowmem_kbytes;
5174 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5176 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5177 if (min_free_kbytes < 128)
5178 min_free_kbytes = 128;
5179 if (min_free_kbytes > 65536)
5180 min_free_kbytes = 65536;
5181 setup_per_zone_wmarks();
5182 refresh_zone_stat_thresholds();
5183 setup_per_zone_lowmem_reserve();
5184 setup_per_zone_inactive_ratio();
5185 return 0;
5187 module_init(init_per_zone_wmark_min)
5190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5191 * that we can call two helper functions whenever min_free_kbytes
5192 * changes.
5194 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5195 void __user *buffer, size_t *length, loff_t *ppos)
5197 proc_dointvec(table, write, buffer, length, ppos);
5198 if (write)
5199 setup_per_zone_wmarks();
5200 return 0;
5203 #ifdef CONFIG_NUMA
5204 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5205 void __user *buffer, size_t *length, loff_t *ppos)
5207 struct zone *zone;
5208 int rc;
5210 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5211 if (rc)
5212 return rc;
5214 for_each_zone(zone)
5215 zone->min_unmapped_pages = (zone->present_pages *
5216 sysctl_min_unmapped_ratio) / 100;
5217 return 0;
5220 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5221 void __user *buffer, size_t *length, loff_t *ppos)
5223 struct zone *zone;
5224 int rc;
5226 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5227 if (rc)
5228 return rc;
5230 for_each_zone(zone)
5231 zone->min_slab_pages = (zone->present_pages *
5232 sysctl_min_slab_ratio) / 100;
5233 return 0;
5235 #endif
5238 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5239 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5240 * whenever sysctl_lowmem_reserve_ratio changes.
5242 * The reserve ratio obviously has absolutely no relation with the
5243 * minimum watermarks. The lowmem reserve ratio can only make sense
5244 * if in function of the boot time zone sizes.
5246 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5247 void __user *buffer, size_t *length, loff_t *ppos)
5249 proc_dointvec_minmax(table, write, buffer, length, ppos);
5250 setup_per_zone_lowmem_reserve();
5251 return 0;
5255 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5256 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5257 * can have before it gets flushed back to buddy allocator.
5260 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5261 void __user *buffer, size_t *length, loff_t *ppos)
5263 struct zone *zone;
5264 unsigned int cpu;
5265 int ret;
5267 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5268 if (!write || (ret < 0))
5269 return ret;
5270 for_each_populated_zone(zone) {
5271 for_each_possible_cpu(cpu) {
5272 unsigned long high;
5273 high = zone->present_pages / percpu_pagelist_fraction;
5274 setup_pagelist_highmark(
5275 per_cpu_ptr(zone->pageset, cpu), high);
5278 return 0;
5281 int hashdist = HASHDIST_DEFAULT;
5283 #ifdef CONFIG_NUMA
5284 static int __init set_hashdist(char *str)
5286 if (!str)
5287 return 0;
5288 hashdist = simple_strtoul(str, &str, 0);
5289 return 1;
5291 __setup("hashdist=", set_hashdist);
5292 #endif
5295 * allocate a large system hash table from bootmem
5296 * - it is assumed that the hash table must contain an exact power-of-2
5297 * quantity of entries
5298 * - limit is the number of hash buckets, not the total allocation size
5300 void *__init alloc_large_system_hash(const char *tablename,
5301 unsigned long bucketsize,
5302 unsigned long numentries,
5303 int scale,
5304 int flags,
5305 unsigned int *_hash_shift,
5306 unsigned int *_hash_mask,
5307 unsigned long low_limit,
5308 unsigned long high_limit)
5310 unsigned long long max = high_limit;
5311 unsigned long log2qty, size;
5312 void *table = NULL;
5314 /* allow the kernel cmdline to have a say */
5315 if (!numentries) {
5316 /* round applicable memory size up to nearest megabyte */
5317 numentries = nr_kernel_pages;
5318 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5319 numentries >>= 20 - PAGE_SHIFT;
5320 numentries <<= 20 - PAGE_SHIFT;
5322 /* limit to 1 bucket per 2^scale bytes of low memory */
5323 if (scale > PAGE_SHIFT)
5324 numentries >>= (scale - PAGE_SHIFT);
5325 else
5326 numentries <<= (PAGE_SHIFT - scale);
5328 /* Make sure we've got at least a 0-order allocation.. */
5329 if (unlikely(flags & HASH_SMALL)) {
5330 /* Makes no sense without HASH_EARLY */
5331 WARN_ON(!(flags & HASH_EARLY));
5332 if (!(numentries >> *_hash_shift)) {
5333 numentries = 1UL << *_hash_shift;
5334 BUG_ON(!numentries);
5336 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5337 numentries = PAGE_SIZE / bucketsize;
5339 numentries = roundup_pow_of_two(numentries);
5341 /* limit allocation size to 1/16 total memory by default */
5342 if (max == 0) {
5343 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5344 do_div(max, bucketsize);
5346 max = min(max, 0x80000000ULL);
5348 if (numentries < low_limit)
5349 numentries = low_limit;
5350 if (numentries > max)
5351 numentries = max;
5353 log2qty = ilog2(numentries);
5355 do {
5356 size = bucketsize << log2qty;
5357 if (flags & HASH_EARLY)
5358 table = alloc_bootmem_nopanic(size);
5359 else if (hashdist)
5360 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5361 else {
5363 * If bucketsize is not a power-of-two, we may free
5364 * some pages at the end of hash table which
5365 * alloc_pages_exact() automatically does
5367 if (get_order(size) < MAX_ORDER) {
5368 table = alloc_pages_exact(size, GFP_ATOMIC);
5369 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5372 } while (!table && size > PAGE_SIZE && --log2qty);
5374 if (!table)
5375 panic("Failed to allocate %s hash table\n", tablename);
5377 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5378 tablename,
5379 (1UL << log2qty),
5380 ilog2(size) - PAGE_SHIFT,
5381 size);
5383 if (_hash_shift)
5384 *_hash_shift = log2qty;
5385 if (_hash_mask)
5386 *_hash_mask = (1 << log2qty) - 1;
5388 return table;
5391 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5392 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5393 unsigned long pfn)
5395 #ifdef CONFIG_SPARSEMEM
5396 return __pfn_to_section(pfn)->pageblock_flags;
5397 #else
5398 return zone->pageblock_flags;
5399 #endif /* CONFIG_SPARSEMEM */
5402 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5404 #ifdef CONFIG_SPARSEMEM
5405 pfn &= (PAGES_PER_SECTION-1);
5406 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5407 #else
5408 pfn = pfn - zone->zone_start_pfn;
5409 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5410 #endif /* CONFIG_SPARSEMEM */
5414 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5415 * @page: The page within the block of interest
5416 * @start_bitidx: The first bit of interest to retrieve
5417 * @end_bitidx: The last bit of interest
5418 * returns pageblock_bits flags
5420 unsigned long get_pageblock_flags_group(struct page *page,
5421 int start_bitidx, int end_bitidx)
5423 struct zone *zone;
5424 unsigned long *bitmap;
5425 unsigned long pfn, bitidx;
5426 unsigned long flags = 0;
5427 unsigned long value = 1;
5429 zone = page_zone(page);
5430 pfn = page_to_pfn(page);
5431 bitmap = get_pageblock_bitmap(zone, pfn);
5432 bitidx = pfn_to_bitidx(zone, pfn);
5434 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5435 if (test_bit(bitidx + start_bitidx, bitmap))
5436 flags |= value;
5438 return flags;
5442 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5443 * @page: The page within the block of interest
5444 * @start_bitidx: The first bit of interest
5445 * @end_bitidx: The last bit of interest
5446 * @flags: The flags to set
5448 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5449 int start_bitidx, int end_bitidx)
5451 struct zone *zone;
5452 unsigned long *bitmap;
5453 unsigned long pfn, bitidx;
5454 unsigned long value = 1;
5456 zone = page_zone(page);
5457 pfn = page_to_pfn(page);
5458 bitmap = get_pageblock_bitmap(zone, pfn);
5459 bitidx = pfn_to_bitidx(zone, pfn);
5460 VM_BUG_ON(pfn < zone->zone_start_pfn);
5461 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5463 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5464 if (flags & value)
5465 __set_bit(bitidx + start_bitidx, bitmap);
5466 else
5467 __clear_bit(bitidx + start_bitidx, bitmap);
5471 * This is designed as sub function...plz see page_isolation.c also.
5472 * set/clear page block's type to be ISOLATE.
5473 * page allocater never alloc memory from ISOLATE block.
5476 static int
5477 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5479 unsigned long pfn, iter, found;
5480 int mt;
5483 * For avoiding noise data, lru_add_drain_all() should be called
5484 * If ZONE_MOVABLE, the zone never contains immobile pages
5486 if (zone_idx(zone) == ZONE_MOVABLE)
5487 return true;
5488 mt = get_pageblock_migratetype(page);
5489 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5490 return true;
5492 pfn = page_to_pfn(page);
5493 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5494 unsigned long check = pfn + iter;
5496 if (!pfn_valid_within(check))
5497 continue;
5499 page = pfn_to_page(check);
5500 if (!page_count(page)) {
5501 if (PageBuddy(page))
5502 iter += (1 << page_order(page)) - 1;
5503 continue;
5505 if (!PageLRU(page))
5506 found++;
5508 * If there are RECLAIMABLE pages, we need to check it.
5509 * But now, memory offline itself doesn't call shrink_slab()
5510 * and it still to be fixed.
5513 * If the page is not RAM, page_count()should be 0.
5514 * we don't need more check. This is an _used_ not-movable page.
5516 * The problematic thing here is PG_reserved pages. PG_reserved
5517 * is set to both of a memory hole page and a _used_ kernel
5518 * page at boot.
5520 if (found > count)
5521 return false;
5523 return true;
5526 bool is_pageblock_removable_nolock(struct page *page)
5528 struct zone *zone;
5529 unsigned long pfn;
5532 * We have to be careful here because we are iterating over memory
5533 * sections which are not zone aware so we might end up outside of
5534 * the zone but still within the section.
5535 * We have to take care about the node as well. If the node is offline
5536 * its NODE_DATA will be NULL - see page_zone.
5538 if (!node_online(page_to_nid(page)))
5539 return false;
5541 zone = page_zone(page);
5542 pfn = page_to_pfn(page);
5543 if (zone->zone_start_pfn > pfn ||
5544 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5545 return false;
5547 return __count_immobile_pages(zone, page, 0);
5550 int set_migratetype_isolate(struct page *page)
5552 struct zone *zone;
5553 unsigned long flags, pfn;
5554 struct memory_isolate_notify arg;
5555 int notifier_ret;
5556 int ret = -EBUSY;
5558 zone = page_zone(page);
5560 spin_lock_irqsave(&zone->lock, flags);
5562 pfn = page_to_pfn(page);
5563 arg.start_pfn = pfn;
5564 arg.nr_pages = pageblock_nr_pages;
5565 arg.pages_found = 0;
5568 * It may be possible to isolate a pageblock even if the
5569 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5570 * notifier chain is used by balloon drivers to return the
5571 * number of pages in a range that are held by the balloon
5572 * driver to shrink memory. If all the pages are accounted for
5573 * by balloons, are free, or on the LRU, isolation can continue.
5574 * Later, for example, when memory hotplug notifier runs, these
5575 * pages reported as "can be isolated" should be isolated(freed)
5576 * by the balloon driver through the memory notifier chain.
5578 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5579 notifier_ret = notifier_to_errno(notifier_ret);
5580 if (notifier_ret)
5581 goto out;
5583 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5584 * We just check MOVABLE pages.
5586 if (__count_immobile_pages(zone, page, arg.pages_found))
5587 ret = 0;
5590 * immobile means "not-on-lru" paes. If immobile is larger than
5591 * removable-by-driver pages reported by notifier, we'll fail.
5594 out:
5595 if (!ret) {
5596 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5597 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5600 spin_unlock_irqrestore(&zone->lock, flags);
5601 if (!ret)
5602 drain_all_pages();
5603 return ret;
5606 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
5608 struct zone *zone;
5609 unsigned long flags;
5610 zone = page_zone(page);
5611 spin_lock_irqsave(&zone->lock, flags);
5612 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5613 goto out;
5614 set_pageblock_migratetype(page, migratetype);
5615 move_freepages_block(zone, page, migratetype);
5616 out:
5617 spin_unlock_irqrestore(&zone->lock, flags);
5620 #ifdef CONFIG_CMA
5622 static unsigned long pfn_max_align_down(unsigned long pfn)
5624 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5625 pageblock_nr_pages) - 1);
5628 static unsigned long pfn_max_align_up(unsigned long pfn)
5630 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5631 pageblock_nr_pages));
5634 static struct page *
5635 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5636 int **resultp)
5638 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5640 if (PageHighMem(page))
5641 gfp_mask |= __GFP_HIGHMEM;
5643 return alloc_page(gfp_mask);
5646 /* [start, end) must belong to a single zone. */
5647 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5649 /* This function is based on compact_zone() from compaction.c. */
5651 unsigned long pfn = start;
5652 unsigned int tries = 0;
5653 int ret = 0;
5655 struct compact_control cc = {
5656 .nr_migratepages = 0,
5657 .order = -1,
5658 .zone = page_zone(pfn_to_page(start)),
5659 .sync = true,
5661 INIT_LIST_HEAD(&cc.migratepages);
5663 migrate_prep_local();
5665 while (pfn < end || !list_empty(&cc.migratepages)) {
5666 if (fatal_signal_pending(current)) {
5667 ret = -EINTR;
5668 break;
5671 if (list_empty(&cc.migratepages)) {
5672 cc.nr_migratepages = 0;
5673 pfn = isolate_migratepages_range(cc.zone, &cc,
5674 pfn, end);
5675 if (!pfn) {
5676 ret = -EINTR;
5677 break;
5679 tries = 0;
5680 } else if (++tries == 5) {
5681 ret = ret < 0 ? ret : -EBUSY;
5682 break;
5685 ret = migrate_pages(&cc.migratepages,
5686 __alloc_contig_migrate_alloc,
5687 0, false, MIGRATE_SYNC);
5690 putback_lru_pages(&cc.migratepages);
5691 return ret > 0 ? 0 : ret;
5695 * Update zone's cma pages counter used for watermark level calculation.
5697 static inline void __update_cma_watermarks(struct zone *zone, int count)
5699 unsigned long flags;
5700 spin_lock_irqsave(&zone->lock, flags);
5701 zone->min_cma_pages += count;
5702 spin_unlock_irqrestore(&zone->lock, flags);
5703 setup_per_zone_wmarks();
5707 * Trigger memory pressure bump to reclaim some pages in order to be able to
5708 * allocate 'count' pages in single page units. Does similar work as
5709 *__alloc_pages_slowpath() function.
5711 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5713 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5714 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5715 int did_some_progress = 0;
5716 int order = 1;
5719 * Increase level of watermarks to force kswapd do his job
5720 * to stabilise at new watermark level.
5722 __update_cma_watermarks(zone, count);
5724 /* Obey watermarks as if the page was being allocated */
5725 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5726 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5728 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5729 NULL);
5730 if (!did_some_progress) {
5731 /* Exhausted what can be done so it's blamo time */
5732 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5736 /* Restore original watermark levels. */
5737 __update_cma_watermarks(zone, -count);
5739 return count;
5743 * alloc_contig_range() -- tries to allocate given range of pages
5744 * @start: start PFN to allocate
5745 * @end: one-past-the-last PFN to allocate
5746 * @migratetype: migratetype of the underlaying pageblocks (either
5747 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5748 * in range must have the same migratetype and it must
5749 * be either of the two.
5751 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5752 * aligned, however it's the caller's responsibility to guarantee that
5753 * we are the only thread that changes migrate type of pageblocks the
5754 * pages fall in.
5756 * The PFN range must belong to a single zone.
5758 * Returns zero on success or negative error code. On success all
5759 * pages which PFN is in [start, end) are allocated for the caller and
5760 * need to be freed with free_contig_range().
5762 int alloc_contig_range(unsigned long start, unsigned long end,
5763 unsigned migratetype)
5765 struct zone *zone = page_zone(pfn_to_page(start));
5766 unsigned long outer_start, outer_end;
5767 int ret = 0, order;
5770 * What we do here is we mark all pageblocks in range as
5771 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5772 * have different sizes, and due to the way page allocator
5773 * work, we align the range to biggest of the two pages so
5774 * that page allocator won't try to merge buddies from
5775 * different pageblocks and change MIGRATE_ISOLATE to some
5776 * other migration type.
5778 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5779 * migrate the pages from an unaligned range (ie. pages that
5780 * we are interested in). This will put all the pages in
5781 * range back to page allocator as MIGRATE_ISOLATE.
5783 * When this is done, we take the pages in range from page
5784 * allocator removing them from the buddy system. This way
5785 * page allocator will never consider using them.
5787 * This lets us mark the pageblocks back as
5788 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5789 * aligned range but not in the unaligned, original range are
5790 * put back to page allocator so that buddy can use them.
5793 ret = start_isolate_page_range(pfn_max_align_down(start),
5794 pfn_max_align_up(end), migratetype);
5795 if (ret)
5796 goto done;
5798 ret = __alloc_contig_migrate_range(start, end);
5799 if (ret)
5800 goto done;
5803 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5804 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5805 * more, all pages in [start, end) are free in page allocator.
5806 * What we are going to do is to allocate all pages from
5807 * [start, end) (that is remove them from page allocator).
5809 * The only problem is that pages at the beginning and at the
5810 * end of interesting range may be not aligned with pages that
5811 * page allocator holds, ie. they can be part of higher order
5812 * pages. Because of this, we reserve the bigger range and
5813 * once this is done free the pages we are not interested in.
5815 * We don't have to hold zone->lock here because the pages are
5816 * isolated thus they won't get removed from buddy.
5819 lru_add_drain_all();
5820 drain_all_pages();
5822 order = 0;
5823 outer_start = start;
5824 while (!PageBuddy(pfn_to_page(outer_start))) {
5825 if (++order >= MAX_ORDER) {
5826 ret = -EBUSY;
5827 goto done;
5829 outer_start &= ~0UL << order;
5832 /* Make sure the range is really isolated. */
5833 if (test_pages_isolated(outer_start, end)) {
5834 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5835 outer_start, end);
5836 ret = -EBUSY;
5837 goto done;
5841 * Reclaim enough pages to make sure that contiguous allocation
5842 * will not starve the system.
5844 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5846 /* Grab isolated pages from freelists. */
5847 outer_end = isolate_freepages_range(outer_start, end);
5848 if (!outer_end) {
5849 ret = -EBUSY;
5850 goto done;
5853 /* Free head and tail (if any) */
5854 if (start != outer_start)
5855 free_contig_range(outer_start, start - outer_start);
5856 if (end != outer_end)
5857 free_contig_range(end, outer_end - end);
5859 done:
5860 undo_isolate_page_range(pfn_max_align_down(start),
5861 pfn_max_align_up(end), migratetype);
5862 return ret;
5865 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5867 for (; nr_pages--; ++pfn)
5868 __free_page(pfn_to_page(pfn));
5870 #endif
5872 #ifdef CONFIG_MEMORY_HOTREMOVE
5874 * All pages in the range must be isolated before calling this.
5876 void
5877 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5879 struct page *page;
5880 struct zone *zone;
5881 int order, i;
5882 unsigned long pfn;
5883 unsigned long flags;
5884 /* find the first valid pfn */
5885 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5886 if (pfn_valid(pfn))
5887 break;
5888 if (pfn == end_pfn)
5889 return;
5890 zone = page_zone(pfn_to_page(pfn));
5891 spin_lock_irqsave(&zone->lock, flags);
5892 pfn = start_pfn;
5893 while (pfn < end_pfn) {
5894 if (!pfn_valid(pfn)) {
5895 pfn++;
5896 continue;
5898 page = pfn_to_page(pfn);
5899 BUG_ON(page_count(page));
5900 BUG_ON(!PageBuddy(page));
5901 order = page_order(page);
5902 #ifdef CONFIG_DEBUG_VM
5903 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5904 pfn, 1 << order, end_pfn);
5905 #endif
5906 list_del(&page->lru);
5907 rmv_page_order(page);
5908 zone->free_area[order].nr_free--;
5909 __mod_zone_page_state(zone, NR_FREE_PAGES,
5910 - (1UL << order));
5911 for (i = 0; i < (1 << order); i++)
5912 SetPageReserved((page+i));
5913 pfn += (1 << order);
5915 spin_unlock_irqrestore(&zone->lock, flags);
5917 #endif
5919 #ifdef CONFIG_MEMORY_FAILURE
5920 bool is_free_buddy_page(struct page *page)
5922 struct zone *zone = page_zone(page);
5923 unsigned long pfn = page_to_pfn(page);
5924 unsigned long flags;
5925 int order;
5927 spin_lock_irqsave(&zone->lock, flags);
5928 for (order = 0; order < MAX_ORDER; order++) {
5929 struct page *page_head = page - (pfn & ((1 << order) - 1));
5931 if (PageBuddy(page_head) && page_order(page_head) >= order)
5932 break;
5934 spin_unlock_irqrestore(&zone->lock, flags);
5936 return order < MAX_ORDER;
5938 #endif
5940 static const struct trace_print_flags pageflag_names[] = {
5941 {1UL << PG_locked, "locked" },
5942 {1UL << PG_error, "error" },
5943 {1UL << PG_referenced, "referenced" },
5944 {1UL << PG_uptodate, "uptodate" },
5945 {1UL << PG_dirty, "dirty" },
5946 {1UL << PG_lru, "lru" },
5947 {1UL << PG_active, "active" },
5948 {1UL << PG_slab, "slab" },
5949 {1UL << PG_owner_priv_1, "owner_priv_1" },
5950 {1UL << PG_arch_1, "arch_1" },
5951 {1UL << PG_reserved, "reserved" },
5952 {1UL << PG_private, "private" },
5953 {1UL << PG_private_2, "private_2" },
5954 {1UL << PG_writeback, "writeback" },
5955 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5956 {1UL << PG_head, "head" },
5957 {1UL << PG_tail, "tail" },
5958 #else
5959 {1UL << PG_compound, "compound" },
5960 #endif
5961 {1UL << PG_swapcache, "swapcache" },
5962 {1UL << PG_mappedtodisk, "mappedtodisk" },
5963 {1UL << PG_reclaim, "reclaim" },
5964 {1UL << PG_swapbacked, "swapbacked" },
5965 {1UL << PG_unevictable, "unevictable" },
5966 #ifdef CONFIG_MMU
5967 {1UL << PG_mlocked, "mlocked" },
5968 #endif
5969 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5970 {1UL << PG_uncached, "uncached" },
5971 #endif
5972 #ifdef CONFIG_MEMORY_FAILURE
5973 {1UL << PG_hwpoison, "hwpoison" },
5974 #endif
5975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5976 {1UL << PG_compound_lock, "compound_lock" },
5977 #endif
5980 static void dump_page_flags(unsigned long flags)
5982 const char *delim = "";
5983 unsigned long mask;
5984 int i;
5986 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
5988 printk(KERN_ALERT "page flags: %#lx(", flags);
5990 /* remove zone id */
5991 flags &= (1UL << NR_PAGEFLAGS) - 1;
5993 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
5995 mask = pageflag_names[i].mask;
5996 if ((flags & mask) != mask)
5997 continue;
5999 flags &= ~mask;
6000 printk("%s%s", delim, pageflag_names[i].name);
6001 delim = "|";
6004 /* check for left over flags */
6005 if (flags)
6006 printk("%s%#lx", delim, flags);
6008 printk(")\n");
6011 void dump_page(struct page *page)
6013 printk(KERN_ALERT
6014 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6015 page, atomic_read(&page->_count), page_mapcount(page),
6016 page->mapping, page->index);
6017 dump_page_flags(page->flags);
6018 mem_cgroup_print_bad_page(page);