2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node
);
69 EXPORT_PER_CPU_SYMBOL(numa_node
);
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
79 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
84 * Array of node states.
86 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
87 [N_POSSIBLE
] = NODE_MASK_ALL
,
88 [N_ONLINE
] = { { [0] = 1UL } },
90 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
92 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
94 [N_CPU
] = { { [0] = 1UL } },
97 EXPORT_SYMBOL(node_states
);
99 unsigned long totalram_pages __read_mostly
;
100 unsigned long totalreserve_pages __read_mostly
;
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
107 unsigned long dirty_balance_reserve __read_mostly
;
109 int percpu_pagelist_fraction
;
110 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
112 #ifdef CONFIG_PM_SLEEP
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
122 static gfp_t saved_gfp_mask
;
124 void pm_restore_gfp_mask(void)
126 WARN_ON(!mutex_is_locked(&pm_mutex
));
127 if (saved_gfp_mask
) {
128 gfp_allowed_mask
= saved_gfp_mask
;
133 void pm_restrict_gfp_mask(void)
135 WARN_ON(!mutex_is_locked(&pm_mutex
));
136 WARN_ON(saved_gfp_mask
);
137 saved_gfp_mask
= gfp_allowed_mask
;
138 gfp_allowed_mask
&= ~GFP_IOFS
;
141 bool pm_suspended_storage(void)
143 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
147 #endif /* CONFIG_PM_SLEEP */
149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150 int pageblock_order __read_mostly
;
153 static void __free_pages_ok(struct page
*page
, unsigned int order
);
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
166 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
167 #ifdef CONFIG_ZONE_DMA
170 #ifdef CONFIG_ZONE_DMA32
173 #ifdef CONFIG_HIGHMEM
179 EXPORT_SYMBOL(totalram_pages
);
181 static char * const zone_names
[MAX_NR_ZONES
] = {
182 #ifdef CONFIG_ZONE_DMA
185 #ifdef CONFIG_ZONE_DMA32
189 #ifdef CONFIG_HIGHMEM
195 int min_free_kbytes
= 1024;
197 static unsigned long __meminitdata nr_kernel_pages
;
198 static unsigned long __meminitdata nr_all_pages
;
199 static unsigned long __meminitdata dma_reserve
;
201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
204 static unsigned long __initdata required_kernelcore
;
205 static unsigned long __initdata required_movablecore
;
206 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 EXPORT_SYMBOL(movable_zone
);
211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
214 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
215 int nr_online_nodes __read_mostly
= 1;
216 EXPORT_SYMBOL(nr_node_ids
);
217 EXPORT_SYMBOL(nr_online_nodes
);
220 int page_group_by_mobility_disabled __read_mostly
;
222 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
225 if (unlikely(page_group_by_mobility_disabled
))
226 migratetype
= MIGRATE_UNMOVABLE
;
228 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
229 PB_migrate
, PB_migrate_end
);
232 bool oom_killer_disabled __read_mostly
;
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
239 unsigned long pfn
= page_to_pfn(page
);
242 seq
= zone_span_seqbegin(zone
);
243 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
245 else if (pfn
< zone
->zone_start_pfn
)
247 } while (zone_span_seqretry(zone
, seq
));
252 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
254 if (!pfn_valid_within(page_to_pfn(page
)))
256 if (zone
!= page_zone(page
))
262 * Temporary debugging check for pages not lying within a given zone.
264 static int bad_range(struct zone
*zone
, struct page
*page
)
266 if (page_outside_zone_boundaries(zone
, page
))
268 if (!page_is_consistent(zone
, page
))
274 static inline int bad_range(struct zone
*zone
, struct page
*page
)
280 static void bad_page(struct page
*page
)
282 static unsigned long resume
;
283 static unsigned long nr_shown
;
284 static unsigned long nr_unshown
;
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page
)) {
288 reset_page_mapcount(page
); /* remove PageBuddy */
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
296 if (nr_shown
== 60) {
297 if (time_before(jiffies
, resume
)) {
303 "BUG: Bad page state: %lu messages suppressed\n",
310 resume
= jiffies
+ 60 * HZ
;
312 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
313 current
->comm
, page_to_pfn(page
));
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page
); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE
);
325 * Higher-order pages are called "compound pages". They are structured thusly:
327 * The first PAGE_SIZE page is called the "head page".
329 * The remaining PAGE_SIZE pages are called "tail pages".
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
339 static void free_compound_page(struct page
*page
)
341 __free_pages_ok(page
, compound_order(page
));
344 void prep_compound_page(struct page
*page
, unsigned long order
)
347 int nr_pages
= 1 << order
;
349 set_compound_page_dtor(page
, free_compound_page
);
350 set_compound_order(page
, order
);
352 for (i
= 1; i
< nr_pages
; i
++) {
353 struct page
*p
= page
+ i
;
355 set_page_count(p
, 0);
356 p
->first_page
= page
;
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page
*page
, unsigned long order
)
364 int nr_pages
= 1 << order
;
367 if (unlikely(compound_order(page
) != order
) ||
368 unlikely(!PageHead(page
))) {
373 __ClearPageHead(page
);
375 for (i
= 1; i
< nr_pages
; i
++) {
376 struct page
*p
= page
+ i
;
378 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
388 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
396 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
397 for (i
= 0; i
< (1 << order
); i
++)
398 clear_highpage(page
+ i
);
401 #ifdef CONFIG_DEBUG_PAGEALLOC
402 unsigned int _debug_guardpage_minorder
;
404 static int __init
debug_guardpage_minorder_setup(char *buf
)
408 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
409 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
412 _debug_guardpage_minorder
= res
;
413 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
416 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
418 static inline void set_page_guard_flag(struct page
*page
)
420 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
423 static inline void clear_page_guard_flag(struct page
*page
)
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
428 static inline void set_page_guard_flag(struct page
*page
) { }
429 static inline void clear_page_guard_flag(struct page
*page
) { }
432 static inline void set_page_order(struct page
*page
, int order
)
434 set_page_private(page
, order
);
435 __SetPageBuddy(page
);
438 static inline void rmv_page_order(struct page
*page
)
440 __ClearPageBuddy(page
);
441 set_page_private(page
, 0);
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
451 * For example, if the starting buddy (buddy2) is #8 its order
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
461 static inline unsigned long
462 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
464 return page_idx
^ (1 << order
);
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
470 * (a) the buddy is not in a hole &&
471 * (b) the buddy is in the buddy system &&
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
478 * For recording page's order, we use page_private(page).
480 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
483 if (!pfn_valid_within(page_to_pfn(buddy
)))
486 if (page_zone_id(page
) != page_zone_id(buddy
))
489 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
490 VM_BUG_ON(page_count(buddy
) != 0);
494 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
495 VM_BUG_ON(page_count(buddy
) != 0);
502 * Freeing function for a buddy system allocator.
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
515 * order is recorded in page_private(page) field.
516 * So when we are allocating or freeing one, we can derive the state of the
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
519 * If a block is freed, and its buddy is also free, then this
520 * triggers coalescing into a block of larger size.
525 static inline void __free_one_page(struct page
*page
,
526 struct zone
*zone
, unsigned int order
,
529 unsigned long page_idx
;
530 unsigned long combined_idx
;
531 unsigned long uninitialized_var(buddy_idx
);
534 if (unlikely(PageCompound(page
)))
535 if (unlikely(destroy_compound_page(page
, order
)))
538 VM_BUG_ON(migratetype
== -1);
540 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
542 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
543 VM_BUG_ON(bad_range(zone
, page
));
545 while (order
< MAX_ORDER
-1) {
546 buddy_idx
= __find_buddy_index(page_idx
, order
);
547 buddy
= page
+ (buddy_idx
- page_idx
);
548 if (!page_is_buddy(page
, buddy
, order
))
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
554 if (page_is_guard(buddy
)) {
555 clear_page_guard_flag(buddy
);
556 set_page_private(page
, 0);
557 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
559 list_del(&buddy
->lru
);
560 zone
->free_area
[order
].nr_free
--;
561 rmv_page_order(buddy
);
563 combined_idx
= buddy_idx
& page_idx
;
564 page
= page
+ (combined_idx
- page_idx
);
565 page_idx
= combined_idx
;
568 set_page_order(page
, order
);
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
578 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
579 struct page
*higher_page
, *higher_buddy
;
580 combined_idx
= buddy_idx
& page_idx
;
581 higher_page
= page
+ (combined_idx
- page_idx
);
582 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
583 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
584 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
585 list_add_tail(&page
->lru
,
586 &zone
->free_area
[order
].free_list
[migratetype
]);
591 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
593 zone
->free_area
[order
].nr_free
++;
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
601 static inline void free_page_mlock(struct page
*page
)
603 __dec_zone_page_state(page
, NR_MLOCK
);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
607 static inline int free_pages_check(struct page
*page
)
609 if (unlikely(page_mapcount(page
) |
610 (page
->mapping
!= NULL
) |
611 (atomic_read(&page
->_count
) != 0) |
612 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
613 (mem_cgroup_bad_page_check(page
)))) {
617 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
618 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
633 static void free_pcppages_bulk(struct zone
*zone
, int count
,
634 struct per_cpu_pages
*pcp
)
640 spin_lock(&zone
->lock
);
641 zone
->all_unreclaimable
= 0;
642 zone
->pages_scanned
= 0;
646 struct list_head
*list
;
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
657 if (++migratetype
== MIGRATE_PCPTYPES
)
659 list
= &pcp
->lists
[migratetype
];
660 } while (list_empty(list
));
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free
== MIGRATE_PCPTYPES
)
664 batch_free
= to_free
;
667 page
= list_entry(list
->prev
, struct page
, lru
);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page
->lru
);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page
, zone
, 0, page_private(page
));
672 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
673 } while (--to_free
&& --batch_free
&& !list_empty(list
));
675 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
676 spin_unlock(&zone
->lock
);
679 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
682 spin_lock(&zone
->lock
);
683 zone
->all_unreclaimable
= 0;
684 zone
->pages_scanned
= 0;
686 __free_one_page(page
, zone
, order
, migratetype
);
687 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
688 spin_unlock(&zone
->lock
);
691 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
696 trace_mm_page_free(page
, order
);
697 kmemcheck_free_shadow(page
, order
);
700 page
->mapping
= NULL
;
701 for (i
= 0; i
< (1 << order
); i
++)
702 bad
+= free_pages_check(page
+ i
);
706 if (!PageHighMem(page
)) {
707 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
708 debug_check_no_obj_freed(page_address(page
),
711 arch_free_page(page
, order
);
712 kernel_map_pages(page
, 1 << order
, 0);
717 static void __free_pages_ok(struct page
*page
, unsigned int order
)
720 int wasMlocked
= __TestClearPageMlocked(page
);
722 if (!free_pages_prepare(page
, order
))
725 local_irq_save(flags
);
726 if (unlikely(wasMlocked
))
727 free_page_mlock(page
);
728 __count_vm_events(PGFREE
, 1 << order
);
729 free_one_page(page_zone(page
), page
, order
,
730 get_pageblock_migratetype(page
));
731 local_irq_restore(flags
);
734 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
736 unsigned int nr_pages
= 1 << order
;
740 for (loop
= 0; loop
< nr_pages
; loop
++) {
741 struct page
*p
= &page
[loop
];
743 if (loop
+ 1 < nr_pages
)
745 __ClearPageReserved(p
);
746 set_page_count(p
, 0);
749 set_page_refcounted(page
);
750 __free_pages(page
, order
);
754 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755 void __init
init_cma_reserved_pageblock(struct page
*page
)
757 unsigned i
= pageblock_nr_pages
;
758 struct page
*p
= page
;
761 __ClearPageReserved(p
);
762 set_page_count(p
, 0);
765 set_page_refcounted(page
);
766 set_pageblock_migratetype(page
, MIGRATE_CMA
);
767 __free_pages(page
, pageblock_order
);
768 totalram_pages
+= pageblock_nr_pages
;
773 * The order of subdivision here is critical for the IO subsystem.
774 * Please do not alter this order without good reasons and regression
775 * testing. Specifically, as large blocks of memory are subdivided,
776 * the order in which smaller blocks are delivered depends on the order
777 * they're subdivided in this function. This is the primary factor
778 * influencing the order in which pages are delivered to the IO
779 * subsystem according to empirical testing, and this is also justified
780 * by considering the behavior of a buddy system containing a single
781 * large block of memory acted on by a series of small allocations.
782 * This behavior is a critical factor in sglist merging's success.
786 static inline void expand(struct zone
*zone
, struct page
*page
,
787 int low
, int high
, struct free_area
*area
,
790 unsigned long size
= 1 << high
;
796 VM_BUG_ON(bad_range(zone
, &page
[size
]));
798 #ifdef CONFIG_DEBUG_PAGEALLOC
799 if (high
< debug_guardpage_minorder()) {
801 * Mark as guard pages (or page), that will allow to
802 * merge back to allocator when buddy will be freed.
803 * Corresponding page table entries will not be touched,
804 * pages will stay not present in virtual address space
806 INIT_LIST_HEAD(&page
[size
].lru
);
807 set_page_guard_flag(&page
[size
]);
808 set_page_private(&page
[size
], high
);
809 /* Guard pages are not available for any usage */
810 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << high
));
814 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
816 set_page_order(&page
[size
], high
);
821 * This page is about to be returned from the page allocator
823 static inline int check_new_page(struct page
*page
)
825 if (unlikely(page_mapcount(page
) |
826 (page
->mapping
!= NULL
) |
827 (atomic_read(&page
->_count
) != 0) |
828 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
829 (mem_cgroup_bad_page_check(page
)))) {
836 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
840 for (i
= 0; i
< (1 << order
); i
++) {
841 struct page
*p
= page
+ i
;
842 if (unlikely(check_new_page(p
)))
846 set_page_private(page
, 0);
847 set_page_refcounted(page
);
849 arch_alloc_page(page
, order
);
850 kernel_map_pages(page
, 1 << order
, 1);
852 if (gfp_flags
& __GFP_ZERO
)
853 prep_zero_page(page
, order
, gfp_flags
);
855 if (order
&& (gfp_flags
& __GFP_COMP
))
856 prep_compound_page(page
, order
);
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
866 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
869 unsigned int current_order
;
870 struct free_area
* area
;
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
875 area
= &(zone
->free_area
[current_order
]);
876 if (list_empty(&area
->free_list
[migratetype
]))
879 page
= list_entry(area
->free_list
[migratetype
].next
,
881 list_del(&page
->lru
);
882 rmv_page_order(page
);
884 expand(zone
, page
, order
, current_order
, area
, migratetype
);
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
896 static int fallbacks
[MIGRATE_TYPES
][4] = {
897 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
898 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
900 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
901 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
903 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
905 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
906 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
914 static int move_freepages(struct zone
*zone
,
915 struct page
*start_page
, struct page
*end_page
,
922 #ifndef CONFIG_HOLES_IN_ZONE
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
930 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
933 for (page
= start_page
; page
<= end_page
;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
937 if (!pfn_valid_within(page_to_pfn(page
))) {
942 if (!PageBuddy(page
)) {
947 order
= page_order(page
);
948 list_move(&page
->lru
,
949 &zone
->free_area
[order
].free_list
[migratetype
]);
951 pages_moved
+= 1 << order
;
957 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
960 unsigned long start_pfn
, end_pfn
;
961 struct page
*start_page
, *end_page
;
963 start_pfn
= page_to_pfn(page
);
964 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
965 start_page
= pfn_to_page(start_pfn
);
966 end_page
= start_page
+ pageblock_nr_pages
- 1;
967 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
969 /* Do not cross zone boundaries */
970 if (start_pfn
< zone
->zone_start_pfn
)
972 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
975 return move_freepages(zone
, start_page
, end_page
, migratetype
);
978 static void change_pageblock_range(struct page
*pageblock_page
,
979 int start_order
, int migratetype
)
981 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
983 while (nr_pageblocks
--) {
984 set_pageblock_migratetype(pageblock_page
, migratetype
);
985 pageblock_page
+= pageblock_nr_pages
;
989 /* Remove an element from the buddy allocator from the fallback list */
990 static inline struct page
*
991 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
993 struct free_area
* area
;
998 /* Find the largest possible block of pages in the other list */
999 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1002 migratetype
= fallbacks
[start_migratetype
][i
];
1004 /* MIGRATE_RESERVE handled later if necessary */
1005 if (migratetype
== MIGRATE_RESERVE
)
1008 area
= &(zone
->free_area
[current_order
]);
1009 if (list_empty(&area
->free_list
[migratetype
]))
1012 page
= list_entry(area
->free_list
[migratetype
].next
,
1017 * If breaking a large block of pages, move all free
1018 * pages to the preferred allocation list. If falling
1019 * back for a reclaimable kernel allocation, be more
1020 * aggressive about taking ownership of free pages
1022 * On the other hand, never change migration
1023 * type of MIGRATE_CMA pageblocks nor move CMA
1024 * pages on different free lists. We don't
1025 * want unmovable pages to be allocated from
1026 * MIGRATE_CMA areas.
1028 if (!is_migrate_cma(migratetype
) &&
1029 (unlikely(current_order
>= pageblock_order
/ 2) ||
1030 start_migratetype
== MIGRATE_RECLAIMABLE
||
1031 page_group_by_mobility_disabled
)) {
1033 pages
= move_freepages_block(zone
, page
,
1036 /* Claim the whole block if over half of it is free */
1037 if (pages
>= (1 << (pageblock_order
-1)) ||
1038 page_group_by_mobility_disabled
)
1039 set_pageblock_migratetype(page
,
1042 migratetype
= start_migratetype
;
1045 /* Remove the page from the freelists */
1046 list_del(&page
->lru
);
1047 rmv_page_order(page
);
1049 /* Take ownership for orders >= pageblock_order */
1050 if (current_order
>= pageblock_order
&&
1051 !is_migrate_cma(migratetype
))
1052 change_pageblock_range(page
, current_order
,
1055 expand(zone
, page
, order
, current_order
, area
,
1056 is_migrate_cma(migratetype
)
1057 ? migratetype
: start_migratetype
);
1059 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1060 start_migratetype
, migratetype
);
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1073 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1079 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1081 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1082 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 * is used because __rmqueue_smallest is an inline function
1087 * and we want just one call site
1090 migratetype
= MIGRATE_RESERVE
;
1095 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency. Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1104 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1105 unsigned long count
, struct list_head
*list
,
1106 int migratetype
, int cold
)
1108 int mt
= migratetype
, i
;
1110 spin_lock(&zone
->lock
);
1111 for (i
= 0; i
< count
; ++i
) {
1112 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1113 if (unlikely(page
== NULL
))
1117 * Split buddy pages returned by expand() are received here
1118 * in physical page order. The page is added to the callers and
1119 * list and the list head then moves forward. From the callers
1120 * perspective, the linked list is ordered by page number in
1121 * some conditions. This is useful for IO devices that can
1122 * merge IO requests if the physical pages are ordered
1125 if (likely(cold
== 0))
1126 list_add(&page
->lru
, list
);
1128 list_add_tail(&page
->lru
, list
);
1129 if (IS_ENABLED(CONFIG_CMA
)) {
1130 mt
= get_pageblock_migratetype(page
);
1131 if (!is_migrate_cma(mt
) && mt
!= MIGRATE_ISOLATE
)
1134 set_page_private(page
, mt
);
1137 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1138 spin_unlock(&zone
->lock
);
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
1151 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1153 unsigned long flags
;
1156 local_irq_save(flags
);
1157 if (pcp
->count
>= pcp
->batch
)
1158 to_drain
= pcp
->batch
;
1160 to_drain
= pcp
->count
;
1161 free_pcppages_bulk(zone
, to_drain
, pcp
);
1162 pcp
->count
-= to_drain
;
1163 local_irq_restore(flags
);
1168 * Drain pages of the indicated processor.
1170 * The processor must either be the current processor and the
1171 * thread pinned to the current processor or a processor that
1174 static void drain_pages(unsigned int cpu
)
1176 unsigned long flags
;
1179 for_each_populated_zone(zone
) {
1180 struct per_cpu_pageset
*pset
;
1181 struct per_cpu_pages
*pcp
;
1183 local_irq_save(flags
);
1184 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1188 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1191 local_irq_restore(flags
);
1196 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1198 void drain_local_pages(void *arg
)
1200 drain_pages(smp_processor_id());
1204 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1206 * Note that this code is protected against sending an IPI to an offline
1207 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1208 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1209 * nothing keeps CPUs from showing up after we populated the cpumask and
1210 * before the call to on_each_cpu_mask().
1212 void drain_all_pages(void)
1215 struct per_cpu_pageset
*pcp
;
1219 * Allocate in the BSS so we wont require allocation in
1220 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1222 static cpumask_t cpus_with_pcps
;
1225 * We don't care about racing with CPU hotplug event
1226 * as offline notification will cause the notified
1227 * cpu to drain that CPU pcps and on_each_cpu_mask
1228 * disables preemption as part of its processing
1230 for_each_online_cpu(cpu
) {
1231 bool has_pcps
= false;
1232 for_each_populated_zone(zone
) {
1233 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1234 if (pcp
->pcp
.count
) {
1240 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1242 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1244 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1247 #ifdef CONFIG_HIBERNATION
1249 void mark_free_pages(struct zone
*zone
)
1251 unsigned long pfn
, max_zone_pfn
;
1252 unsigned long flags
;
1254 struct list_head
*curr
;
1256 if (!zone
->spanned_pages
)
1259 spin_lock_irqsave(&zone
->lock
, flags
);
1261 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1262 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1263 if (pfn_valid(pfn
)) {
1264 struct page
*page
= pfn_to_page(pfn
);
1266 if (!swsusp_page_is_forbidden(page
))
1267 swsusp_unset_page_free(page
);
1270 for_each_migratetype_order(order
, t
) {
1271 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1274 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1275 for (i
= 0; i
< (1UL << order
); i
++)
1276 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1279 spin_unlock_irqrestore(&zone
->lock
, flags
);
1281 #endif /* CONFIG_PM */
1284 * Free a 0-order page
1285 * cold == 1 ? free a cold page : free a hot page
1287 void free_hot_cold_page(struct page
*page
, int cold
)
1289 struct zone
*zone
= page_zone(page
);
1290 struct per_cpu_pages
*pcp
;
1291 unsigned long flags
;
1293 int wasMlocked
= __TestClearPageMlocked(page
);
1295 if (!free_pages_prepare(page
, 0))
1298 migratetype
= get_pageblock_migratetype(page
);
1299 set_page_private(page
, migratetype
);
1300 local_irq_save(flags
);
1301 if (unlikely(wasMlocked
))
1302 free_page_mlock(page
);
1303 __count_vm_event(PGFREE
);
1306 * We only track unmovable, reclaimable and movable on pcp lists.
1307 * Free ISOLATE pages back to the allocator because they are being
1308 * offlined but treat RESERVE as movable pages so we can get those
1309 * areas back if necessary. Otherwise, we may have to free
1310 * excessively into the page allocator
1312 if (migratetype
>= MIGRATE_PCPTYPES
) {
1313 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1314 free_one_page(zone
, page
, 0, migratetype
);
1317 migratetype
= MIGRATE_MOVABLE
;
1320 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1322 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1324 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1326 if (pcp
->count
>= pcp
->high
) {
1327 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1328 pcp
->count
-= pcp
->batch
;
1332 local_irq_restore(flags
);
1336 * Free a list of 0-order pages
1338 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1340 struct page
*page
, *next
;
1342 list_for_each_entry_safe(page
, next
, list
, lru
) {
1343 trace_mm_page_free_batched(page
, cold
);
1344 free_hot_cold_page(page
, cold
);
1349 * split_page takes a non-compound higher-order page, and splits it into
1350 * n (1<<order) sub-pages: page[0..n]
1351 * Each sub-page must be freed individually.
1353 * Note: this is probably too low level an operation for use in drivers.
1354 * Please consult with lkml before using this in your driver.
1356 void split_page(struct page
*page
, unsigned int order
)
1360 VM_BUG_ON(PageCompound(page
));
1361 VM_BUG_ON(!page_count(page
));
1363 #ifdef CONFIG_KMEMCHECK
1365 * Split shadow pages too, because free(page[0]) would
1366 * otherwise free the whole shadow.
1368 if (kmemcheck_page_is_tracked(page
))
1369 split_page(virt_to_page(page
[0].shadow
), order
);
1372 for (i
= 1; i
< (1 << order
); i
++)
1373 set_page_refcounted(page
+ i
);
1377 * Similar to split_page except the page is already free. As this is only
1378 * being used for migration, the migratetype of the block also changes.
1379 * As this is called with interrupts disabled, the caller is responsible
1380 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1383 * Note: this is probably too low level an operation for use in drivers.
1384 * Please consult with lkml before using this in your driver.
1386 int split_free_page(struct page
*page
)
1389 unsigned long watermark
;
1392 BUG_ON(!PageBuddy(page
));
1394 zone
= page_zone(page
);
1395 order
= page_order(page
);
1397 /* Obey watermarks as if the page was being allocated */
1398 watermark
= low_wmark_pages(zone
) + (1 << order
);
1399 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1402 /* Remove page from free list */
1403 list_del(&page
->lru
);
1404 zone
->free_area
[order
].nr_free
--;
1405 rmv_page_order(page
);
1406 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1408 /* Split into individual pages */
1409 set_page_refcounted(page
);
1410 split_page(page
, order
);
1412 if (order
>= pageblock_order
- 1) {
1413 struct page
*endpage
= page
+ (1 << order
) - 1;
1414 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1415 int mt
= get_pageblock_migratetype(page
);
1416 if (mt
!= MIGRATE_ISOLATE
&& !is_migrate_cma(mt
))
1417 set_pageblock_migratetype(page
,
1426 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1427 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1431 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1432 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1435 unsigned long flags
;
1437 int cold
= !!(gfp_flags
& __GFP_COLD
);
1440 if (likely(order
== 0)) {
1441 struct per_cpu_pages
*pcp
;
1442 struct list_head
*list
;
1444 local_irq_save(flags
);
1445 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1446 list
= &pcp
->lists
[migratetype
];
1447 if (list_empty(list
)) {
1448 pcp
->count
+= rmqueue_bulk(zone
, 0,
1451 if (unlikely(list_empty(list
)))
1456 page
= list_entry(list
->prev
, struct page
, lru
);
1458 page
= list_entry(list
->next
, struct page
, lru
);
1460 list_del(&page
->lru
);
1463 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1465 * __GFP_NOFAIL is not to be used in new code.
1467 * All __GFP_NOFAIL callers should be fixed so that they
1468 * properly detect and handle allocation failures.
1470 * We most definitely don't want callers attempting to
1471 * allocate greater than order-1 page units with
1474 WARN_ON_ONCE(order
> 1);
1476 spin_lock_irqsave(&zone
->lock
, flags
);
1477 page
= __rmqueue(zone
, order
, migratetype
);
1478 spin_unlock(&zone
->lock
);
1481 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1484 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1485 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1486 local_irq_restore(flags
);
1488 VM_BUG_ON(bad_range(zone
, page
));
1489 if (prep_new_page(page
, order
, gfp_flags
))
1494 local_irq_restore(flags
);
1498 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1499 #define ALLOC_WMARK_MIN WMARK_MIN
1500 #define ALLOC_WMARK_LOW WMARK_LOW
1501 #define ALLOC_WMARK_HIGH WMARK_HIGH
1502 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1504 /* Mask to get the watermark bits */
1505 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1507 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1508 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1509 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1511 #ifdef CONFIG_FAIL_PAGE_ALLOC
1514 struct fault_attr attr
;
1516 u32 ignore_gfp_highmem
;
1517 u32 ignore_gfp_wait
;
1519 } fail_page_alloc
= {
1520 .attr
= FAULT_ATTR_INITIALIZER
,
1521 .ignore_gfp_wait
= 1,
1522 .ignore_gfp_highmem
= 1,
1526 static int __init
setup_fail_page_alloc(char *str
)
1528 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1530 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1532 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1534 if (order
< fail_page_alloc
.min_order
)
1536 if (gfp_mask
& __GFP_NOFAIL
)
1538 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1540 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1543 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1546 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1548 static int __init
fail_page_alloc_debugfs(void)
1550 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1553 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1554 &fail_page_alloc
.attr
);
1556 return PTR_ERR(dir
);
1558 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1559 &fail_page_alloc
.ignore_gfp_wait
))
1561 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1562 &fail_page_alloc
.ignore_gfp_highmem
))
1564 if (!debugfs_create_u32("min-order", mode
, dir
,
1565 &fail_page_alloc
.min_order
))
1570 debugfs_remove_recursive(dir
);
1575 late_initcall(fail_page_alloc_debugfs
);
1577 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1579 #else /* CONFIG_FAIL_PAGE_ALLOC */
1581 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1586 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1589 * Return true if free pages are above 'mark'. This takes into account the order
1590 * of the allocation.
1592 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1593 int classzone_idx
, int alloc_flags
, long free_pages
)
1595 /* free_pages my go negative - that's OK */
1599 free_pages
-= (1 << order
) - 1;
1600 if (alloc_flags
& ALLOC_HIGH
)
1602 if (alloc_flags
& ALLOC_HARDER
)
1605 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1607 for (o
= 0; o
< order
; o
++) {
1608 /* At the next order, this order's pages become unavailable */
1609 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1611 /* Require fewer higher order pages to be free */
1614 if (free_pages
<= min
)
1620 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1621 int classzone_idx
, int alloc_flags
)
1623 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1624 zone_page_state(z
, NR_FREE_PAGES
));
1627 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1628 int classzone_idx
, int alloc_flags
)
1630 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1632 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1633 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1635 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1641 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1642 * skip over zones that are not allowed by the cpuset, or that have
1643 * been recently (in last second) found to be nearly full. See further
1644 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1645 * that have to skip over a lot of full or unallowed zones.
1647 * If the zonelist cache is present in the passed in zonelist, then
1648 * returns a pointer to the allowed node mask (either the current
1649 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1651 * If the zonelist cache is not available for this zonelist, does
1652 * nothing and returns NULL.
1654 * If the fullzones BITMAP in the zonelist cache is stale (more than
1655 * a second since last zap'd) then we zap it out (clear its bits.)
1657 * We hold off even calling zlc_setup, until after we've checked the
1658 * first zone in the zonelist, on the theory that most allocations will
1659 * be satisfied from that first zone, so best to examine that zone as
1660 * quickly as we can.
1662 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1664 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1665 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1667 zlc
= zonelist
->zlcache_ptr
;
1671 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1672 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1673 zlc
->last_full_zap
= jiffies
;
1676 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1677 &cpuset_current_mems_allowed
:
1678 &node_states
[N_HIGH_MEMORY
];
1679 return allowednodes
;
1683 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1684 * if it is worth looking at further for free memory:
1685 * 1) Check that the zone isn't thought to be full (doesn't have its
1686 * bit set in the zonelist_cache fullzones BITMAP).
1687 * 2) Check that the zones node (obtained from the zonelist_cache
1688 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1689 * Return true (non-zero) if zone is worth looking at further, or
1690 * else return false (zero) if it is not.
1692 * This check -ignores- the distinction between various watermarks,
1693 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1694 * found to be full for any variation of these watermarks, it will
1695 * be considered full for up to one second by all requests, unless
1696 * we are so low on memory on all allowed nodes that we are forced
1697 * into the second scan of the zonelist.
1699 * In the second scan we ignore this zonelist cache and exactly
1700 * apply the watermarks to all zones, even it is slower to do so.
1701 * We are low on memory in the second scan, and should leave no stone
1702 * unturned looking for a free page.
1704 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1705 nodemask_t
*allowednodes
)
1707 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1708 int i
; /* index of *z in zonelist zones */
1709 int n
; /* node that zone *z is on */
1711 zlc
= zonelist
->zlcache_ptr
;
1715 i
= z
- zonelist
->_zonerefs
;
1718 /* This zone is worth trying if it is allowed but not full */
1719 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1723 * Given 'z' scanning a zonelist, set the corresponding bit in
1724 * zlc->fullzones, so that subsequent attempts to allocate a page
1725 * from that zone don't waste time re-examining it.
1727 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1729 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1730 int i
; /* index of *z in zonelist zones */
1732 zlc
= zonelist
->zlcache_ptr
;
1736 i
= z
- zonelist
->_zonerefs
;
1738 set_bit(i
, zlc
->fullzones
);
1742 * clear all zones full, called after direct reclaim makes progress so that
1743 * a zone that was recently full is not skipped over for up to a second
1745 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1747 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1749 zlc
= zonelist
->zlcache_ptr
;
1753 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1756 #else /* CONFIG_NUMA */
1758 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1763 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1764 nodemask_t
*allowednodes
)
1769 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1773 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1776 #endif /* CONFIG_NUMA */
1779 * get_page_from_freelist goes through the zonelist trying to allocate
1782 static struct page
*
1783 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1784 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1785 struct zone
*preferred_zone
, int migratetype
)
1788 struct page
*page
= NULL
;
1791 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1792 int zlc_active
= 0; /* set if using zonelist_cache */
1793 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1795 classzone_idx
= zone_idx(preferred_zone
);
1798 * Scan zonelist, looking for a zone with enough free.
1799 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1801 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1802 high_zoneidx
, nodemask
) {
1803 if (NUMA_BUILD
&& zlc_active
&&
1804 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1806 if ((alloc_flags
& ALLOC_CPUSET
) &&
1807 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1810 * When allocating a page cache page for writing, we
1811 * want to get it from a zone that is within its dirty
1812 * limit, such that no single zone holds more than its
1813 * proportional share of globally allowed dirty pages.
1814 * The dirty limits take into account the zone's
1815 * lowmem reserves and high watermark so that kswapd
1816 * should be able to balance it without having to
1817 * write pages from its LRU list.
1819 * This may look like it could increase pressure on
1820 * lower zones by failing allocations in higher zones
1821 * before they are full. But the pages that do spill
1822 * over are limited as the lower zones are protected
1823 * by this very same mechanism. It should not become
1824 * a practical burden to them.
1826 * XXX: For now, allow allocations to potentially
1827 * exceed the per-zone dirty limit in the slowpath
1828 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1829 * which is important when on a NUMA setup the allowed
1830 * zones are together not big enough to reach the
1831 * global limit. The proper fix for these situations
1832 * will require awareness of zones in the
1833 * dirty-throttling and the flusher threads.
1835 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1836 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1837 goto this_zone_full
;
1839 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1840 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1844 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1845 if (zone_watermark_ok(zone
, order
, mark
,
1846 classzone_idx
, alloc_flags
))
1849 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1851 * we do zlc_setup if there are multiple nodes
1852 * and before considering the first zone allowed
1855 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1860 if (zone_reclaim_mode
== 0)
1861 goto this_zone_full
;
1864 * As we may have just activated ZLC, check if the first
1865 * eligible zone has failed zone_reclaim recently.
1867 if (NUMA_BUILD
&& zlc_active
&&
1868 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1871 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1873 case ZONE_RECLAIM_NOSCAN
:
1876 case ZONE_RECLAIM_FULL
:
1877 /* scanned but unreclaimable */
1880 /* did we reclaim enough */
1881 if (!zone_watermark_ok(zone
, order
, mark
,
1882 classzone_idx
, alloc_flags
))
1883 goto this_zone_full
;
1888 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1889 gfp_mask
, migratetype
);
1894 zlc_mark_zone_full(zonelist
, z
);
1897 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1898 /* Disable zlc cache for second zonelist scan */
1906 * Large machines with many possible nodes should not always dump per-node
1907 * meminfo in irq context.
1909 static inline bool should_suppress_show_mem(void)
1914 ret
= in_interrupt();
1919 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1920 DEFAULT_RATELIMIT_INTERVAL
,
1921 DEFAULT_RATELIMIT_BURST
);
1923 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1925 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1927 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
1928 debug_guardpage_minorder() > 0)
1932 * This documents exceptions given to allocations in certain
1933 * contexts that are allowed to allocate outside current's set
1936 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1937 if (test_thread_flag(TIF_MEMDIE
) ||
1938 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1939 filter
&= ~SHOW_MEM_FILTER_NODES
;
1940 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1941 filter
&= ~SHOW_MEM_FILTER_NODES
;
1944 struct va_format vaf
;
1947 va_start(args
, fmt
);
1952 pr_warn("%pV", &vaf
);
1957 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1958 current
->comm
, order
, gfp_mask
);
1961 if (!should_suppress_show_mem())
1966 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1967 unsigned long did_some_progress
,
1968 unsigned long pages_reclaimed
)
1970 /* Do not loop if specifically requested */
1971 if (gfp_mask
& __GFP_NORETRY
)
1974 /* Always retry if specifically requested */
1975 if (gfp_mask
& __GFP_NOFAIL
)
1979 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1980 * making forward progress without invoking OOM. Suspend also disables
1981 * storage devices so kswapd will not help. Bail if we are suspending.
1983 if (!did_some_progress
&& pm_suspended_storage())
1987 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1988 * means __GFP_NOFAIL, but that may not be true in other
1991 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1995 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1996 * specified, then we retry until we no longer reclaim any pages
1997 * (above), or we've reclaimed an order of pages at least as
1998 * large as the allocation's order. In both cases, if the
1999 * allocation still fails, we stop retrying.
2001 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2007 static inline struct page
*
2008 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2009 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2010 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2015 /* Acquire the OOM killer lock for the zones in zonelist */
2016 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2017 schedule_timeout_uninterruptible(1);
2022 * Go through the zonelist yet one more time, keep very high watermark
2023 * here, this is only to catch a parallel oom killing, we must fail if
2024 * we're still under heavy pressure.
2026 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2027 order
, zonelist
, high_zoneidx
,
2028 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2029 preferred_zone
, migratetype
);
2033 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2034 /* The OOM killer will not help higher order allocs */
2035 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2037 /* The OOM killer does not needlessly kill tasks for lowmem */
2038 if (high_zoneidx
< ZONE_NORMAL
)
2041 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2042 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2043 * The caller should handle page allocation failure by itself if
2044 * it specifies __GFP_THISNODE.
2045 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2047 if (gfp_mask
& __GFP_THISNODE
)
2050 /* Exhausted what can be done so it's blamo time */
2051 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2054 clear_zonelist_oom(zonelist
, gfp_mask
);
2058 #ifdef CONFIG_COMPACTION
2059 /* Try memory compaction for high-order allocations before reclaim */
2060 static struct page
*
2061 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2062 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2063 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2064 int migratetype
, bool sync_migration
,
2065 bool *deferred_compaction
,
2066 unsigned long *did_some_progress
)
2073 if (compaction_deferred(preferred_zone
, order
)) {
2074 *deferred_compaction
= true;
2078 current
->flags
|= PF_MEMALLOC
;
2079 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2080 nodemask
, sync_migration
);
2081 current
->flags
&= ~PF_MEMALLOC
;
2082 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2084 /* Page migration frees to the PCP lists but we want merging */
2085 drain_pages(get_cpu());
2088 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2089 order
, zonelist
, high_zoneidx
,
2090 alloc_flags
, preferred_zone
,
2093 preferred_zone
->compact_considered
= 0;
2094 preferred_zone
->compact_defer_shift
= 0;
2095 if (order
>= preferred_zone
->compact_order_failed
)
2096 preferred_zone
->compact_order_failed
= order
+ 1;
2097 count_vm_event(COMPACTSUCCESS
);
2102 * It's bad if compaction run occurs and fails.
2103 * The most likely reason is that pages exist,
2104 * but not enough to satisfy watermarks.
2106 count_vm_event(COMPACTFAIL
);
2109 * As async compaction considers a subset of pageblocks, only
2110 * defer if the failure was a sync compaction failure.
2113 defer_compaction(preferred_zone
, order
);
2121 static inline struct page
*
2122 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2123 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2124 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2125 int migratetype
, bool sync_migration
,
2126 bool *deferred_compaction
,
2127 unsigned long *did_some_progress
)
2131 #endif /* CONFIG_COMPACTION */
2133 /* Perform direct synchronous page reclaim */
2135 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2136 nodemask_t
*nodemask
)
2138 struct reclaim_state reclaim_state
;
2143 /* We now go into synchronous reclaim */
2144 cpuset_memory_pressure_bump();
2145 current
->flags
|= PF_MEMALLOC
;
2146 lockdep_set_current_reclaim_state(gfp_mask
);
2147 reclaim_state
.reclaimed_slab
= 0;
2148 current
->reclaim_state
= &reclaim_state
;
2150 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2152 current
->reclaim_state
= NULL
;
2153 lockdep_clear_current_reclaim_state();
2154 current
->flags
&= ~PF_MEMALLOC
;
2161 /* The really slow allocator path where we enter direct reclaim */
2162 static inline struct page
*
2163 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2164 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2165 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2166 int migratetype
, unsigned long *did_some_progress
)
2168 struct page
*page
= NULL
;
2169 bool drained
= false;
2171 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2173 if (unlikely(!(*did_some_progress
)))
2176 /* After successful reclaim, reconsider all zones for allocation */
2178 zlc_clear_zones_full(zonelist
);
2181 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2182 zonelist
, high_zoneidx
,
2183 alloc_flags
, preferred_zone
,
2187 * If an allocation failed after direct reclaim, it could be because
2188 * pages are pinned on the per-cpu lists. Drain them and try again
2190 if (!page
&& !drained
) {
2200 * This is called in the allocator slow-path if the allocation request is of
2201 * sufficient urgency to ignore watermarks and take other desperate measures
2203 static inline struct page
*
2204 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2205 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2206 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2212 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2213 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2214 preferred_zone
, migratetype
);
2216 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2217 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2218 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2224 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2225 enum zone_type high_zoneidx
,
2226 enum zone_type classzone_idx
)
2231 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2232 wakeup_kswapd(zone
, order
, classzone_idx
);
2236 gfp_to_alloc_flags(gfp_t gfp_mask
)
2238 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2239 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2241 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2242 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2245 * The caller may dip into page reserves a bit more if the caller
2246 * cannot run direct reclaim, or if the caller has realtime scheduling
2247 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2248 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2250 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2254 * Not worth trying to allocate harder for
2255 * __GFP_NOMEMALLOC even if it can't schedule.
2257 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2258 alloc_flags
|= ALLOC_HARDER
;
2260 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2261 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2263 alloc_flags
&= ~ALLOC_CPUSET
;
2264 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2265 alloc_flags
|= ALLOC_HARDER
;
2267 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2268 if (!in_interrupt() &&
2269 ((current
->flags
& PF_MEMALLOC
) ||
2270 unlikely(test_thread_flag(TIF_MEMDIE
))))
2271 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2277 static inline struct page
*
2278 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2279 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2280 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2283 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2284 struct page
*page
= NULL
;
2286 unsigned long pages_reclaimed
= 0;
2287 unsigned long did_some_progress
;
2288 bool sync_migration
= false;
2289 bool deferred_compaction
= false;
2292 * In the slowpath, we sanity check order to avoid ever trying to
2293 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2294 * be using allocators in order of preference for an area that is
2297 if (order
>= MAX_ORDER
) {
2298 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2303 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2304 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2305 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2306 * using a larger set of nodes after it has established that the
2307 * allowed per node queues are empty and that nodes are
2310 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2314 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2315 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2316 zone_idx(preferred_zone
));
2319 * OK, we're below the kswapd watermark and have kicked background
2320 * reclaim. Now things get more complex, so set up alloc_flags according
2321 * to how we want to proceed.
2323 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2326 * Find the true preferred zone if the allocation is unconstrained by
2329 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2330 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2334 /* This is the last chance, in general, before the goto nopage. */
2335 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2336 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2337 preferred_zone
, migratetype
);
2341 /* Allocate without watermarks if the context allows */
2342 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2343 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2344 zonelist
, high_zoneidx
, nodemask
,
2345 preferred_zone
, migratetype
);
2350 /* Atomic allocations - we can't balance anything */
2354 /* Avoid recursion of direct reclaim */
2355 if (current
->flags
& PF_MEMALLOC
)
2358 /* Avoid allocations with no watermarks from looping endlessly */
2359 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2363 * Try direct compaction. The first pass is asynchronous. Subsequent
2364 * attempts after direct reclaim are synchronous
2366 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2367 zonelist
, high_zoneidx
,
2369 alloc_flags
, preferred_zone
,
2370 migratetype
, sync_migration
,
2371 &deferred_compaction
,
2372 &did_some_progress
);
2375 sync_migration
= true;
2378 * If compaction is deferred for high-order allocations, it is because
2379 * sync compaction recently failed. In this is the case and the caller
2380 * has requested the system not be heavily disrupted, fail the
2381 * allocation now instead of entering direct reclaim
2383 if (deferred_compaction
&& (gfp_mask
& __GFP_NO_KSWAPD
))
2386 /* Try direct reclaim and then allocating */
2387 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2388 zonelist
, high_zoneidx
,
2390 alloc_flags
, preferred_zone
,
2391 migratetype
, &did_some_progress
);
2396 * If we failed to make any progress reclaiming, then we are
2397 * running out of options and have to consider going OOM
2399 if (!did_some_progress
) {
2400 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2401 if (oom_killer_disabled
)
2403 /* Coredumps can quickly deplete all memory reserves */
2404 if ((current
->flags
& PF_DUMPCORE
) &&
2405 !(gfp_mask
& __GFP_NOFAIL
))
2407 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2408 zonelist
, high_zoneidx
,
2409 nodemask
, preferred_zone
,
2414 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2416 * The oom killer is not called for high-order
2417 * allocations that may fail, so if no progress
2418 * is being made, there are no other options and
2419 * retrying is unlikely to help.
2421 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2424 * The oom killer is not called for lowmem
2425 * allocations to prevent needlessly killing
2428 if (high_zoneidx
< ZONE_NORMAL
)
2436 /* Check if we should retry the allocation */
2437 pages_reclaimed
+= did_some_progress
;
2438 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2440 /* Wait for some write requests to complete then retry */
2441 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2445 * High-order allocations do not necessarily loop after
2446 * direct reclaim and reclaim/compaction depends on compaction
2447 * being called after reclaim so call directly if necessary
2449 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2450 zonelist
, high_zoneidx
,
2452 alloc_flags
, preferred_zone
,
2453 migratetype
, sync_migration
,
2454 &deferred_compaction
,
2455 &did_some_progress
);
2461 warn_alloc_failed(gfp_mask
, order
, NULL
);
2464 if (kmemcheck_enabled
)
2465 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2471 * This is the 'heart' of the zoned buddy allocator.
2474 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2475 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2477 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2478 struct zone
*preferred_zone
;
2479 struct page
*page
= NULL
;
2480 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2481 unsigned int cpuset_mems_cookie
;
2483 gfp_mask
&= gfp_allowed_mask
;
2485 lockdep_trace_alloc(gfp_mask
);
2487 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2489 if (should_fail_alloc_page(gfp_mask
, order
))
2493 * Check the zones suitable for the gfp_mask contain at least one
2494 * valid zone. It's possible to have an empty zonelist as a result
2495 * of GFP_THISNODE and a memoryless node
2497 if (unlikely(!zonelist
->_zonerefs
->zone
))
2501 cpuset_mems_cookie
= get_mems_allowed();
2503 /* The preferred zone is used for statistics later */
2504 first_zones_zonelist(zonelist
, high_zoneidx
,
2505 nodemask
? : &cpuset_current_mems_allowed
,
2507 if (!preferred_zone
)
2510 /* First allocation attempt */
2511 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2512 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2513 preferred_zone
, migratetype
);
2514 if (unlikely(!page
))
2515 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2516 zonelist
, high_zoneidx
, nodemask
,
2517 preferred_zone
, migratetype
);
2519 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2523 * When updating a task's mems_allowed, it is possible to race with
2524 * parallel threads in such a way that an allocation can fail while
2525 * the mask is being updated. If a page allocation is about to fail,
2526 * check if the cpuset changed during allocation and if so, retry.
2528 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2533 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2536 * Common helper functions.
2538 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2543 * __get_free_pages() returns a 32-bit address, which cannot represent
2546 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2548 page
= alloc_pages(gfp_mask
, order
);
2551 return (unsigned long) page_address(page
);
2553 EXPORT_SYMBOL(__get_free_pages
);
2555 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2557 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2559 EXPORT_SYMBOL(get_zeroed_page
);
2561 void __free_pages(struct page
*page
, unsigned int order
)
2563 if (put_page_testzero(page
)) {
2565 free_hot_cold_page(page
, 0);
2567 __free_pages_ok(page
, order
);
2571 EXPORT_SYMBOL(__free_pages
);
2573 void free_pages(unsigned long addr
, unsigned int order
)
2576 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2577 __free_pages(virt_to_page((void *)addr
), order
);
2581 EXPORT_SYMBOL(free_pages
);
2583 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2586 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2587 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2589 split_page(virt_to_page((void *)addr
), order
);
2590 while (used
< alloc_end
) {
2595 return (void *)addr
;
2599 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2600 * @size: the number of bytes to allocate
2601 * @gfp_mask: GFP flags for the allocation
2603 * This function is similar to alloc_pages(), except that it allocates the
2604 * minimum number of pages to satisfy the request. alloc_pages() can only
2605 * allocate memory in power-of-two pages.
2607 * This function is also limited by MAX_ORDER.
2609 * Memory allocated by this function must be released by free_pages_exact().
2611 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2613 unsigned int order
= get_order(size
);
2616 addr
= __get_free_pages(gfp_mask
, order
);
2617 return make_alloc_exact(addr
, order
, size
);
2619 EXPORT_SYMBOL(alloc_pages_exact
);
2622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2624 * @nid: the preferred node ID where memory should be allocated
2625 * @size: the number of bytes to allocate
2626 * @gfp_mask: GFP flags for the allocation
2628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2630 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2633 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2635 unsigned order
= get_order(size
);
2636 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2639 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2641 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2644 * free_pages_exact - release memory allocated via alloc_pages_exact()
2645 * @virt: the value returned by alloc_pages_exact.
2646 * @size: size of allocation, same value as passed to alloc_pages_exact().
2648 * Release the memory allocated by a previous call to alloc_pages_exact.
2650 void free_pages_exact(void *virt
, size_t size
)
2652 unsigned long addr
= (unsigned long)virt
;
2653 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2655 while (addr
< end
) {
2660 EXPORT_SYMBOL(free_pages_exact
);
2662 static unsigned int nr_free_zone_pages(int offset
)
2667 /* Just pick one node, since fallback list is circular */
2668 unsigned int sum
= 0;
2670 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2672 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2673 unsigned long size
= zone
->present_pages
;
2674 unsigned long high
= high_wmark_pages(zone
);
2683 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2685 unsigned int nr_free_buffer_pages(void)
2687 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2689 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2692 * Amount of free RAM allocatable within all zones
2694 unsigned int nr_free_pagecache_pages(void)
2696 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2699 static inline void show_node(struct zone
*zone
)
2702 printk("Node %d ", zone_to_nid(zone
));
2705 void si_meminfo(struct sysinfo
*val
)
2707 val
->totalram
= totalram_pages
;
2709 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2710 val
->bufferram
= nr_blockdev_pages();
2711 val
->totalhigh
= totalhigh_pages
;
2712 val
->freehigh
= nr_free_highpages();
2713 val
->mem_unit
= PAGE_SIZE
;
2716 EXPORT_SYMBOL(si_meminfo
);
2719 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2721 pg_data_t
*pgdat
= NODE_DATA(nid
);
2723 val
->totalram
= pgdat
->node_present_pages
;
2724 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2725 #ifdef CONFIG_HIGHMEM
2726 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2727 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2733 val
->mem_unit
= PAGE_SIZE
;
2738 * Determine whether the node should be displayed or not, depending on whether
2739 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2741 bool skip_free_areas_node(unsigned int flags
, int nid
)
2744 unsigned int cpuset_mems_cookie
;
2746 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2750 cpuset_mems_cookie
= get_mems_allowed();
2751 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2752 } while (!put_mems_allowed(cpuset_mems_cookie
));
2757 #define K(x) ((x) << (PAGE_SHIFT-10))
2760 * Show free area list (used inside shift_scroll-lock stuff)
2761 * We also calculate the percentage fragmentation. We do this by counting the
2762 * memory on each free list with the exception of the first item on the list.
2763 * Suppresses nodes that are not allowed by current's cpuset if
2764 * SHOW_MEM_FILTER_NODES is passed.
2766 void show_free_areas(unsigned int filter
)
2771 for_each_populated_zone(zone
) {
2772 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2775 printk("%s per-cpu:\n", zone
->name
);
2777 for_each_online_cpu(cpu
) {
2778 struct per_cpu_pageset
*pageset
;
2780 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2782 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2783 cpu
, pageset
->pcp
.high
,
2784 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2788 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2789 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2791 " dirty:%lu writeback:%lu unstable:%lu\n"
2792 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2793 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2794 global_page_state(NR_ACTIVE_ANON
),
2795 global_page_state(NR_INACTIVE_ANON
),
2796 global_page_state(NR_ISOLATED_ANON
),
2797 global_page_state(NR_ACTIVE_FILE
),
2798 global_page_state(NR_INACTIVE_FILE
),
2799 global_page_state(NR_ISOLATED_FILE
),
2800 global_page_state(NR_UNEVICTABLE
),
2801 global_page_state(NR_FILE_DIRTY
),
2802 global_page_state(NR_WRITEBACK
),
2803 global_page_state(NR_UNSTABLE_NFS
),
2804 global_page_state(NR_FREE_PAGES
),
2805 global_page_state(NR_SLAB_RECLAIMABLE
),
2806 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2807 global_page_state(NR_FILE_MAPPED
),
2808 global_page_state(NR_SHMEM
),
2809 global_page_state(NR_PAGETABLE
),
2810 global_page_state(NR_BOUNCE
));
2812 for_each_populated_zone(zone
) {
2815 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2823 " active_anon:%lukB"
2824 " inactive_anon:%lukB"
2825 " active_file:%lukB"
2826 " inactive_file:%lukB"
2827 " unevictable:%lukB"
2828 " isolated(anon):%lukB"
2829 " isolated(file):%lukB"
2836 " slab_reclaimable:%lukB"
2837 " slab_unreclaimable:%lukB"
2838 " kernel_stack:%lukB"
2842 " writeback_tmp:%lukB"
2843 " pages_scanned:%lu"
2844 " all_unreclaimable? %s"
2847 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2848 K(min_wmark_pages(zone
)),
2849 K(low_wmark_pages(zone
)),
2850 K(high_wmark_pages(zone
)),
2851 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2852 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2853 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2854 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2855 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2856 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2857 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2858 K(zone
->present_pages
),
2859 K(zone_page_state(zone
, NR_MLOCK
)),
2860 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2861 K(zone_page_state(zone
, NR_WRITEBACK
)),
2862 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2863 K(zone_page_state(zone
, NR_SHMEM
)),
2864 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2865 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2866 zone_page_state(zone
, NR_KERNEL_STACK
) *
2868 K(zone_page_state(zone
, NR_PAGETABLE
)),
2869 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2870 K(zone_page_state(zone
, NR_BOUNCE
)),
2871 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2872 zone
->pages_scanned
,
2873 (zone
->all_unreclaimable
? "yes" : "no")
2875 printk("lowmem_reserve[]:");
2876 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2877 printk(" %lu", zone
->lowmem_reserve
[i
]);
2881 for_each_populated_zone(zone
) {
2882 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2884 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2887 printk("%s: ", zone
->name
);
2889 spin_lock_irqsave(&zone
->lock
, flags
);
2890 for (order
= 0; order
< MAX_ORDER
; order
++) {
2891 nr
[order
] = zone
->free_area
[order
].nr_free
;
2892 total
+= nr
[order
] << order
;
2894 spin_unlock_irqrestore(&zone
->lock
, flags
);
2895 for (order
= 0; order
< MAX_ORDER
; order
++)
2896 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2897 printk("= %lukB\n", K(total
));
2900 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2902 show_swap_cache_info();
2905 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2907 zoneref
->zone
= zone
;
2908 zoneref
->zone_idx
= zone_idx(zone
);
2912 * Builds allocation fallback zone lists.
2914 * Add all populated zones of a node to the zonelist.
2916 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2917 int nr_zones
, enum zone_type zone_type
)
2921 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2926 zone
= pgdat
->node_zones
+ zone_type
;
2927 if (populated_zone(zone
)) {
2928 zoneref_set_zone(zone
,
2929 &zonelist
->_zonerefs
[nr_zones
++]);
2930 check_highest_zone(zone_type
);
2933 } while (zone_type
);
2940 * 0 = automatic detection of better ordering.
2941 * 1 = order by ([node] distance, -zonetype)
2942 * 2 = order by (-zonetype, [node] distance)
2944 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2945 * the same zonelist. So only NUMA can configure this param.
2947 #define ZONELIST_ORDER_DEFAULT 0
2948 #define ZONELIST_ORDER_NODE 1
2949 #define ZONELIST_ORDER_ZONE 2
2951 /* zonelist order in the kernel.
2952 * set_zonelist_order() will set this to NODE or ZONE.
2954 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2955 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2959 /* The value user specified ....changed by config */
2960 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2961 /* string for sysctl */
2962 #define NUMA_ZONELIST_ORDER_LEN 16
2963 char numa_zonelist_order
[16] = "default";
2966 * interface for configure zonelist ordering.
2967 * command line option "numa_zonelist_order"
2968 * = "[dD]efault - default, automatic configuration.
2969 * = "[nN]ode - order by node locality, then by zone within node
2970 * = "[zZ]one - order by zone, then by locality within zone
2973 static int __parse_numa_zonelist_order(char *s
)
2975 if (*s
== 'd' || *s
== 'D') {
2976 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2977 } else if (*s
== 'n' || *s
== 'N') {
2978 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2979 } else if (*s
== 'z' || *s
== 'Z') {
2980 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2983 "Ignoring invalid numa_zonelist_order value: "
2990 static __init
int setup_numa_zonelist_order(char *s
)
2997 ret
= __parse_numa_zonelist_order(s
);
2999 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3003 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3006 * sysctl handler for numa_zonelist_order
3008 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3009 void __user
*buffer
, size_t *length
,
3012 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3014 static DEFINE_MUTEX(zl_order_mutex
);
3016 mutex_lock(&zl_order_mutex
);
3018 strcpy(saved_string
, (char*)table
->data
);
3019 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3023 int oldval
= user_zonelist_order
;
3024 if (__parse_numa_zonelist_order((char*)table
->data
)) {
3026 * bogus value. restore saved string
3028 strncpy((char*)table
->data
, saved_string
,
3029 NUMA_ZONELIST_ORDER_LEN
);
3030 user_zonelist_order
= oldval
;
3031 } else if (oldval
!= user_zonelist_order
) {
3032 mutex_lock(&zonelists_mutex
);
3033 build_all_zonelists(NULL
);
3034 mutex_unlock(&zonelists_mutex
);
3038 mutex_unlock(&zl_order_mutex
);
3043 #define MAX_NODE_LOAD (nr_online_nodes)
3044 static int node_load
[MAX_NUMNODES
];
3047 * find_next_best_node - find the next node that should appear in a given node's fallback list
3048 * @node: node whose fallback list we're appending
3049 * @used_node_mask: nodemask_t of already used nodes
3051 * We use a number of factors to determine which is the next node that should
3052 * appear on a given node's fallback list. The node should not have appeared
3053 * already in @node's fallback list, and it should be the next closest node
3054 * according to the distance array (which contains arbitrary distance values
3055 * from each node to each node in the system), and should also prefer nodes
3056 * with no CPUs, since presumably they'll have very little allocation pressure
3057 * on them otherwise.
3058 * It returns -1 if no node is found.
3060 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3063 int min_val
= INT_MAX
;
3065 const struct cpumask
*tmp
= cpumask_of_node(0);
3067 /* Use the local node if we haven't already */
3068 if (!node_isset(node
, *used_node_mask
)) {
3069 node_set(node
, *used_node_mask
);
3073 for_each_node_state(n
, N_HIGH_MEMORY
) {
3075 /* Don't want a node to appear more than once */
3076 if (node_isset(n
, *used_node_mask
))
3079 /* Use the distance array to find the distance */
3080 val
= node_distance(node
, n
);
3082 /* Penalize nodes under us ("prefer the next node") */
3085 /* Give preference to headless and unused nodes */
3086 tmp
= cpumask_of_node(n
);
3087 if (!cpumask_empty(tmp
))
3088 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3090 /* Slight preference for less loaded node */
3091 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3092 val
+= node_load
[n
];
3094 if (val
< min_val
) {
3101 node_set(best_node
, *used_node_mask
);
3108 * Build zonelists ordered by node and zones within node.
3109 * This results in maximum locality--normal zone overflows into local
3110 * DMA zone, if any--but risks exhausting DMA zone.
3112 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3115 struct zonelist
*zonelist
;
3117 zonelist
= &pgdat
->node_zonelists
[0];
3118 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3120 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3122 zonelist
->_zonerefs
[j
].zone
= NULL
;
3123 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3127 * Build gfp_thisnode zonelists
3129 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3132 struct zonelist
*zonelist
;
3134 zonelist
= &pgdat
->node_zonelists
[1];
3135 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3136 zonelist
->_zonerefs
[j
].zone
= NULL
;
3137 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3141 * Build zonelists ordered by zone and nodes within zones.
3142 * This results in conserving DMA zone[s] until all Normal memory is
3143 * exhausted, but results in overflowing to remote node while memory
3144 * may still exist in local DMA zone.
3146 static int node_order
[MAX_NUMNODES
];
3148 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3151 int zone_type
; /* needs to be signed */
3153 struct zonelist
*zonelist
;
3155 zonelist
= &pgdat
->node_zonelists
[0];
3157 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3158 for (j
= 0; j
< nr_nodes
; j
++) {
3159 node
= node_order
[j
];
3160 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3161 if (populated_zone(z
)) {
3163 &zonelist
->_zonerefs
[pos
++]);
3164 check_highest_zone(zone_type
);
3168 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3169 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3172 static int default_zonelist_order(void)
3175 unsigned long low_kmem_size
,total_size
;
3179 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3180 * If they are really small and used heavily, the system can fall
3181 * into OOM very easily.
3182 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3184 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3187 for_each_online_node(nid
) {
3188 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3189 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3190 if (populated_zone(z
)) {
3191 if (zone_type
< ZONE_NORMAL
)
3192 low_kmem_size
+= z
->present_pages
;
3193 total_size
+= z
->present_pages
;
3194 } else if (zone_type
== ZONE_NORMAL
) {
3196 * If any node has only lowmem, then node order
3197 * is preferred to allow kernel allocations
3198 * locally; otherwise, they can easily infringe
3199 * on other nodes when there is an abundance of
3200 * lowmem available to allocate from.
3202 return ZONELIST_ORDER_NODE
;
3206 if (!low_kmem_size
|| /* there are no DMA area. */
3207 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3208 return ZONELIST_ORDER_NODE
;
3210 * look into each node's config.
3211 * If there is a node whose DMA/DMA32 memory is very big area on
3212 * local memory, NODE_ORDER may be suitable.
3214 average_size
= total_size
/
3215 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3216 for_each_online_node(nid
) {
3219 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3220 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3221 if (populated_zone(z
)) {
3222 if (zone_type
< ZONE_NORMAL
)
3223 low_kmem_size
+= z
->present_pages
;
3224 total_size
+= z
->present_pages
;
3227 if (low_kmem_size
&&
3228 total_size
> average_size
&& /* ignore small node */
3229 low_kmem_size
> total_size
* 70/100)
3230 return ZONELIST_ORDER_NODE
;
3232 return ZONELIST_ORDER_ZONE
;
3235 static void set_zonelist_order(void)
3237 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3238 current_zonelist_order
= default_zonelist_order();
3240 current_zonelist_order
= user_zonelist_order
;
3243 static void build_zonelists(pg_data_t
*pgdat
)
3247 nodemask_t used_mask
;
3248 int local_node
, prev_node
;
3249 struct zonelist
*zonelist
;
3250 int order
= current_zonelist_order
;
3252 /* initialize zonelists */
3253 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3254 zonelist
= pgdat
->node_zonelists
+ i
;
3255 zonelist
->_zonerefs
[0].zone
= NULL
;
3256 zonelist
->_zonerefs
[0].zone_idx
= 0;
3259 /* NUMA-aware ordering of nodes */
3260 local_node
= pgdat
->node_id
;
3261 load
= nr_online_nodes
;
3262 prev_node
= local_node
;
3263 nodes_clear(used_mask
);
3265 memset(node_order
, 0, sizeof(node_order
));
3268 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3269 int distance
= node_distance(local_node
, node
);
3272 * If another node is sufficiently far away then it is better
3273 * to reclaim pages in a zone before going off node.
3275 if (distance
> RECLAIM_DISTANCE
)
3276 zone_reclaim_mode
= 1;
3279 * We don't want to pressure a particular node.
3280 * So adding penalty to the first node in same
3281 * distance group to make it round-robin.
3283 if (distance
!= node_distance(local_node
, prev_node
))
3284 node_load
[node
] = load
;
3288 if (order
== ZONELIST_ORDER_NODE
)
3289 build_zonelists_in_node_order(pgdat
, node
);
3291 node_order
[j
++] = node
; /* remember order */
3294 if (order
== ZONELIST_ORDER_ZONE
) {
3295 /* calculate node order -- i.e., DMA last! */
3296 build_zonelists_in_zone_order(pgdat
, j
);
3299 build_thisnode_zonelists(pgdat
);
3302 /* Construct the zonelist performance cache - see further mmzone.h */
3303 static void build_zonelist_cache(pg_data_t
*pgdat
)
3305 struct zonelist
*zonelist
;
3306 struct zonelist_cache
*zlc
;
3309 zonelist
= &pgdat
->node_zonelists
[0];
3310 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3311 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3312 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3313 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3316 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3318 * Return node id of node used for "local" allocations.
3319 * I.e., first node id of first zone in arg node's generic zonelist.
3320 * Used for initializing percpu 'numa_mem', which is used primarily
3321 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3323 int local_memory_node(int node
)
3327 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3328 gfp_zone(GFP_KERNEL
),
3335 #else /* CONFIG_NUMA */
3337 static void set_zonelist_order(void)
3339 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3342 static void build_zonelists(pg_data_t
*pgdat
)
3344 int node
, local_node
;
3346 struct zonelist
*zonelist
;
3348 local_node
= pgdat
->node_id
;
3350 zonelist
= &pgdat
->node_zonelists
[0];
3351 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3354 * Now we build the zonelist so that it contains the zones
3355 * of all the other nodes.
3356 * We don't want to pressure a particular node, so when
3357 * building the zones for node N, we make sure that the
3358 * zones coming right after the local ones are those from
3359 * node N+1 (modulo N)
3361 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3362 if (!node_online(node
))
3364 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3367 for (node
= 0; node
< local_node
; node
++) {
3368 if (!node_online(node
))
3370 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3374 zonelist
->_zonerefs
[j
].zone
= NULL
;
3375 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3378 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3379 static void build_zonelist_cache(pg_data_t
*pgdat
)
3381 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3384 #endif /* CONFIG_NUMA */
3387 * Boot pageset table. One per cpu which is going to be used for all
3388 * zones and all nodes. The parameters will be set in such a way
3389 * that an item put on a list will immediately be handed over to
3390 * the buddy list. This is safe since pageset manipulation is done
3391 * with interrupts disabled.
3393 * The boot_pagesets must be kept even after bootup is complete for
3394 * unused processors and/or zones. They do play a role for bootstrapping
3395 * hotplugged processors.
3397 * zoneinfo_show() and maybe other functions do
3398 * not check if the processor is online before following the pageset pointer.
3399 * Other parts of the kernel may not check if the zone is available.
3401 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3402 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3403 static void setup_zone_pageset(struct zone
*zone
);
3406 * Global mutex to protect against size modification of zonelists
3407 * as well as to serialize pageset setup for the new populated zone.
3409 DEFINE_MUTEX(zonelists_mutex
);
3411 /* return values int ....just for stop_machine() */
3412 static __init_refok
int __build_all_zonelists(void *data
)
3418 memset(node_load
, 0, sizeof(node_load
));
3420 for_each_online_node(nid
) {
3421 pg_data_t
*pgdat
= NODE_DATA(nid
);
3423 build_zonelists(pgdat
);
3424 build_zonelist_cache(pgdat
);
3428 * Initialize the boot_pagesets that are going to be used
3429 * for bootstrapping processors. The real pagesets for
3430 * each zone will be allocated later when the per cpu
3431 * allocator is available.
3433 * boot_pagesets are used also for bootstrapping offline
3434 * cpus if the system is already booted because the pagesets
3435 * are needed to initialize allocators on a specific cpu too.
3436 * F.e. the percpu allocator needs the page allocator which
3437 * needs the percpu allocator in order to allocate its pagesets
3438 * (a chicken-egg dilemma).
3440 for_each_possible_cpu(cpu
) {
3441 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3443 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3445 * We now know the "local memory node" for each node--
3446 * i.e., the node of the first zone in the generic zonelist.
3447 * Set up numa_mem percpu variable for on-line cpus. During
3448 * boot, only the boot cpu should be on-line; we'll init the
3449 * secondary cpus' numa_mem as they come on-line. During
3450 * node/memory hotplug, we'll fixup all on-line cpus.
3452 if (cpu_online(cpu
))
3453 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3461 * Called with zonelists_mutex held always
3462 * unless system_state == SYSTEM_BOOTING.
3464 void __ref
build_all_zonelists(void *data
)
3466 set_zonelist_order();
3468 if (system_state
== SYSTEM_BOOTING
) {
3469 __build_all_zonelists(NULL
);
3470 mminit_verify_zonelist();
3471 cpuset_init_current_mems_allowed();
3473 /* we have to stop all cpus to guarantee there is no user
3475 #ifdef CONFIG_MEMORY_HOTPLUG
3477 setup_zone_pageset((struct zone
*)data
);
3479 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3480 /* cpuset refresh routine should be here */
3482 vm_total_pages
= nr_free_pagecache_pages();
3484 * Disable grouping by mobility if the number of pages in the
3485 * system is too low to allow the mechanism to work. It would be
3486 * more accurate, but expensive to check per-zone. This check is
3487 * made on memory-hotadd so a system can start with mobility
3488 * disabled and enable it later
3490 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3491 page_group_by_mobility_disabled
= 1;
3493 page_group_by_mobility_disabled
= 0;
3495 printk("Built %i zonelists in %s order, mobility grouping %s. "
3496 "Total pages: %ld\n",
3498 zonelist_order_name
[current_zonelist_order
],
3499 page_group_by_mobility_disabled
? "off" : "on",
3502 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3507 * Helper functions to size the waitqueue hash table.
3508 * Essentially these want to choose hash table sizes sufficiently
3509 * large so that collisions trying to wait on pages are rare.
3510 * But in fact, the number of active page waitqueues on typical
3511 * systems is ridiculously low, less than 200. So this is even
3512 * conservative, even though it seems large.
3514 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3515 * waitqueues, i.e. the size of the waitq table given the number of pages.
3517 #define PAGES_PER_WAITQUEUE 256
3519 #ifndef CONFIG_MEMORY_HOTPLUG
3520 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3522 unsigned long size
= 1;
3524 pages
/= PAGES_PER_WAITQUEUE
;
3526 while (size
< pages
)
3530 * Once we have dozens or even hundreds of threads sleeping
3531 * on IO we've got bigger problems than wait queue collision.
3532 * Limit the size of the wait table to a reasonable size.
3534 size
= min(size
, 4096UL);
3536 return max(size
, 4UL);
3540 * A zone's size might be changed by hot-add, so it is not possible to determine
3541 * a suitable size for its wait_table. So we use the maximum size now.
3543 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3545 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3546 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3547 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3549 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3550 * or more by the traditional way. (See above). It equals:
3552 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3553 * ia64(16K page size) : = ( 8G + 4M)byte.
3554 * powerpc (64K page size) : = (32G +16M)byte.
3556 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3563 * This is an integer logarithm so that shifts can be used later
3564 * to extract the more random high bits from the multiplicative
3565 * hash function before the remainder is taken.
3567 static inline unsigned long wait_table_bits(unsigned long size
)
3572 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3575 * Check if a pageblock contains reserved pages
3577 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3581 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3582 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3589 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3590 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3591 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3592 * higher will lead to a bigger reserve which will get freed as contiguous
3593 * blocks as reclaim kicks in
3595 static void setup_zone_migrate_reserve(struct zone
*zone
)
3597 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3599 unsigned long block_migratetype
;
3603 * Get the start pfn, end pfn and the number of blocks to reserve
3604 * We have to be careful to be aligned to pageblock_nr_pages to
3605 * make sure that we always check pfn_valid for the first page in
3608 start_pfn
= zone
->zone_start_pfn
;
3609 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3610 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3611 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3615 * Reserve blocks are generally in place to help high-order atomic
3616 * allocations that are short-lived. A min_free_kbytes value that
3617 * would result in more than 2 reserve blocks for atomic allocations
3618 * is assumed to be in place to help anti-fragmentation for the
3619 * future allocation of hugepages at runtime.
3621 reserve
= min(2, reserve
);
3623 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3624 if (!pfn_valid(pfn
))
3626 page
= pfn_to_page(pfn
);
3628 /* Watch out for overlapping nodes */
3629 if (page_to_nid(page
) != zone_to_nid(zone
))
3632 block_migratetype
= get_pageblock_migratetype(page
);
3634 /* Only test what is necessary when the reserves are not met */
3637 * Blocks with reserved pages will never free, skip
3640 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3641 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3644 /* If this block is reserved, account for it */
3645 if (block_migratetype
== MIGRATE_RESERVE
) {
3650 /* Suitable for reserving if this block is movable */
3651 if (block_migratetype
== MIGRATE_MOVABLE
) {
3652 set_pageblock_migratetype(page
,
3654 move_freepages_block(zone
, page
,
3662 * If the reserve is met and this is a previous reserved block,
3665 if (block_migratetype
== MIGRATE_RESERVE
) {
3666 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3667 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3673 * Initially all pages are reserved - free ones are freed
3674 * up by free_all_bootmem() once the early boot process is
3675 * done. Non-atomic initialization, single-pass.
3677 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3678 unsigned long start_pfn
, enum memmap_context context
)
3681 unsigned long end_pfn
= start_pfn
+ size
;
3685 if (highest_memmap_pfn
< end_pfn
- 1)
3686 highest_memmap_pfn
= end_pfn
- 1;
3688 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3689 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3691 * There can be holes in boot-time mem_map[]s
3692 * handed to this function. They do not
3693 * exist on hotplugged memory.
3695 if (context
== MEMMAP_EARLY
) {
3696 if (!early_pfn_valid(pfn
))
3698 if (!early_pfn_in_nid(pfn
, nid
))
3701 page
= pfn_to_page(pfn
);
3702 set_page_links(page
, zone
, nid
, pfn
);
3703 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3704 init_page_count(page
);
3705 reset_page_mapcount(page
);
3706 SetPageReserved(page
);
3708 * Mark the block movable so that blocks are reserved for
3709 * movable at startup. This will force kernel allocations
3710 * to reserve their blocks rather than leaking throughout
3711 * the address space during boot when many long-lived
3712 * kernel allocations are made. Later some blocks near
3713 * the start are marked MIGRATE_RESERVE by
3714 * setup_zone_migrate_reserve()
3716 * bitmap is created for zone's valid pfn range. but memmap
3717 * can be created for invalid pages (for alignment)
3718 * check here not to call set_pageblock_migratetype() against
3721 if ((z
->zone_start_pfn
<= pfn
)
3722 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3723 && !(pfn
& (pageblock_nr_pages
- 1)))
3724 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3726 INIT_LIST_HEAD(&page
->lru
);
3727 #ifdef WANT_PAGE_VIRTUAL
3728 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3729 if (!is_highmem_idx(zone
))
3730 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3735 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3738 for_each_migratetype_order(order
, t
) {
3739 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3740 zone
->free_area
[order
].nr_free
= 0;
3744 #ifndef __HAVE_ARCH_MEMMAP_INIT
3745 #define memmap_init(size, nid, zone, start_pfn) \
3746 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3749 static int zone_batchsize(struct zone
*zone
)
3755 * The per-cpu-pages pools are set to around 1000th of the
3756 * size of the zone. But no more than 1/2 of a meg.
3758 * OK, so we don't know how big the cache is. So guess.
3760 batch
= zone
->present_pages
/ 1024;
3761 if (batch
* PAGE_SIZE
> 512 * 1024)
3762 batch
= (512 * 1024) / PAGE_SIZE
;
3763 batch
/= 4; /* We effectively *= 4 below */
3768 * Clamp the batch to a 2^n - 1 value. Having a power
3769 * of 2 value was found to be more likely to have
3770 * suboptimal cache aliasing properties in some cases.
3772 * For example if 2 tasks are alternately allocating
3773 * batches of pages, one task can end up with a lot
3774 * of pages of one half of the possible page colors
3775 * and the other with pages of the other colors.
3777 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3782 /* The deferral and batching of frees should be suppressed under NOMMU
3785 * The problem is that NOMMU needs to be able to allocate large chunks
3786 * of contiguous memory as there's no hardware page translation to
3787 * assemble apparent contiguous memory from discontiguous pages.
3789 * Queueing large contiguous runs of pages for batching, however,
3790 * causes the pages to actually be freed in smaller chunks. As there
3791 * can be a significant delay between the individual batches being
3792 * recycled, this leads to the once large chunks of space being
3793 * fragmented and becoming unavailable for high-order allocations.
3799 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3801 struct per_cpu_pages
*pcp
;
3804 memset(p
, 0, sizeof(*p
));
3808 pcp
->high
= 6 * batch
;
3809 pcp
->batch
= max(1UL, 1 * batch
);
3810 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3811 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3815 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3816 * to the value high for the pageset p.
3819 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3822 struct per_cpu_pages
*pcp
;
3826 pcp
->batch
= max(1UL, high
/4);
3827 if ((high
/4) > (PAGE_SHIFT
* 8))
3828 pcp
->batch
= PAGE_SHIFT
* 8;
3831 static void setup_zone_pageset(struct zone
*zone
)
3835 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3837 for_each_possible_cpu(cpu
) {
3838 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3840 setup_pageset(pcp
, zone_batchsize(zone
));
3842 if (percpu_pagelist_fraction
)
3843 setup_pagelist_highmark(pcp
,
3844 (zone
->present_pages
/
3845 percpu_pagelist_fraction
));
3850 * Allocate per cpu pagesets and initialize them.
3851 * Before this call only boot pagesets were available.
3853 void __init
setup_per_cpu_pageset(void)
3857 for_each_populated_zone(zone
)
3858 setup_zone_pageset(zone
);
3861 static noinline __init_refok
3862 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3865 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3869 * The per-page waitqueue mechanism uses hashed waitqueues
3872 zone
->wait_table_hash_nr_entries
=
3873 wait_table_hash_nr_entries(zone_size_pages
);
3874 zone
->wait_table_bits
=
3875 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3876 alloc_size
= zone
->wait_table_hash_nr_entries
3877 * sizeof(wait_queue_head_t
);
3879 if (!slab_is_available()) {
3880 zone
->wait_table
= (wait_queue_head_t
*)
3881 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3884 * This case means that a zone whose size was 0 gets new memory
3885 * via memory hot-add.
3886 * But it may be the case that a new node was hot-added. In
3887 * this case vmalloc() will not be able to use this new node's
3888 * memory - this wait_table must be initialized to use this new
3889 * node itself as well.
3890 * To use this new node's memory, further consideration will be
3893 zone
->wait_table
= vmalloc(alloc_size
);
3895 if (!zone
->wait_table
)
3898 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3899 init_waitqueue_head(zone
->wait_table
+ i
);
3904 static int __zone_pcp_update(void *data
)
3906 struct zone
*zone
= data
;
3908 unsigned long batch
= zone_batchsize(zone
), flags
;
3910 for_each_possible_cpu(cpu
) {
3911 struct per_cpu_pageset
*pset
;
3912 struct per_cpu_pages
*pcp
;
3914 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3917 local_irq_save(flags
);
3918 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3919 setup_pageset(pset
, batch
);
3920 local_irq_restore(flags
);
3925 void zone_pcp_update(struct zone
*zone
)
3927 stop_machine(__zone_pcp_update
, zone
, NULL
);
3930 static __meminit
void zone_pcp_init(struct zone
*zone
)
3933 * per cpu subsystem is not up at this point. The following code
3934 * relies on the ability of the linker to provide the
3935 * offset of a (static) per cpu variable into the per cpu area.
3937 zone
->pageset
= &boot_pageset
;
3939 if (zone
->present_pages
)
3940 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3941 zone
->name
, zone
->present_pages
,
3942 zone_batchsize(zone
));
3945 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3946 unsigned long zone_start_pfn
,
3948 enum memmap_context context
)
3950 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3952 ret
= zone_wait_table_init(zone
, size
);
3955 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3957 zone
->zone_start_pfn
= zone_start_pfn
;
3959 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3960 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3962 (unsigned long)zone_idx(zone
),
3963 zone_start_pfn
, (zone_start_pfn
+ size
));
3965 zone_init_free_lists(zone
);
3970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3971 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3973 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3974 * Architectures may implement their own version but if add_active_range()
3975 * was used and there are no special requirements, this is a convenient
3978 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3980 unsigned long start_pfn
, end_pfn
;
3983 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
3984 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3986 /* This is a memory hole */
3989 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3991 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3995 nid
= __early_pfn_to_nid(pfn
);
3998 /* just returns 0 */
4002 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4003 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4007 nid
= __early_pfn_to_nid(pfn
);
4008 if (nid
>= 0 && nid
!= node
)
4015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4019 * If an architecture guarantees that all ranges registered with
4020 * add_active_ranges() contain no holes and may be freed, this
4021 * this function may be used instead of calling free_bootmem() manually.
4023 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4025 unsigned long start_pfn
, end_pfn
;
4028 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4029 start_pfn
= min(start_pfn
, max_low_pfn
);
4030 end_pfn
= min(end_pfn
, max_low_pfn
);
4032 if (start_pfn
< end_pfn
)
4033 free_bootmem_node(NODE_DATA(this_nid
),
4034 PFN_PHYS(start_pfn
),
4035 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4040 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4041 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4043 * If an architecture guarantees that all ranges registered with
4044 * add_active_ranges() contain no holes and may be freed, this
4045 * function may be used instead of calling memory_present() manually.
4047 void __init
sparse_memory_present_with_active_regions(int nid
)
4049 unsigned long start_pfn
, end_pfn
;
4052 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4053 memory_present(this_nid
, start_pfn
, end_pfn
);
4057 * get_pfn_range_for_nid - Return the start and end page frames for a node
4058 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4059 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4060 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4062 * It returns the start and end page frame of a node based on information
4063 * provided by an arch calling add_active_range(). If called for a node
4064 * with no available memory, a warning is printed and the start and end
4067 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4068 unsigned long *start_pfn
, unsigned long *end_pfn
)
4070 unsigned long this_start_pfn
, this_end_pfn
;
4076 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4077 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4078 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4081 if (*start_pfn
== -1UL)
4086 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4087 * assumption is made that zones within a node are ordered in monotonic
4088 * increasing memory addresses so that the "highest" populated zone is used
4090 static void __init
find_usable_zone_for_movable(void)
4093 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4094 if (zone_index
== ZONE_MOVABLE
)
4097 if (arch_zone_highest_possible_pfn
[zone_index
] >
4098 arch_zone_lowest_possible_pfn
[zone_index
])
4102 VM_BUG_ON(zone_index
== -1);
4103 movable_zone
= zone_index
;
4107 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4108 * because it is sized independent of architecture. Unlike the other zones,
4109 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4110 * in each node depending on the size of each node and how evenly kernelcore
4111 * is distributed. This helper function adjusts the zone ranges
4112 * provided by the architecture for a given node by using the end of the
4113 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4114 * zones within a node are in order of monotonic increases memory addresses
4116 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4117 unsigned long zone_type
,
4118 unsigned long node_start_pfn
,
4119 unsigned long node_end_pfn
,
4120 unsigned long *zone_start_pfn
,
4121 unsigned long *zone_end_pfn
)
4123 /* Only adjust if ZONE_MOVABLE is on this node */
4124 if (zone_movable_pfn
[nid
]) {
4125 /* Size ZONE_MOVABLE */
4126 if (zone_type
== ZONE_MOVABLE
) {
4127 *zone_start_pfn
= zone_movable_pfn
[nid
];
4128 *zone_end_pfn
= min(node_end_pfn
,
4129 arch_zone_highest_possible_pfn
[movable_zone
]);
4131 /* Adjust for ZONE_MOVABLE starting within this range */
4132 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4133 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4134 *zone_end_pfn
= zone_movable_pfn
[nid
];
4136 /* Check if this whole range is within ZONE_MOVABLE */
4137 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4138 *zone_start_pfn
= *zone_end_pfn
;
4143 * Return the number of pages a zone spans in a node, including holes
4144 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4146 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4147 unsigned long zone_type
,
4148 unsigned long *ignored
)
4150 unsigned long node_start_pfn
, node_end_pfn
;
4151 unsigned long zone_start_pfn
, zone_end_pfn
;
4153 /* Get the start and end of the node and zone */
4154 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4155 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4156 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4157 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4158 node_start_pfn
, node_end_pfn
,
4159 &zone_start_pfn
, &zone_end_pfn
);
4161 /* Check that this node has pages within the zone's required range */
4162 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4165 /* Move the zone boundaries inside the node if necessary */
4166 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4167 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4169 /* Return the spanned pages */
4170 return zone_end_pfn
- zone_start_pfn
;
4174 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4175 * then all holes in the requested range will be accounted for.
4177 unsigned long __meminit
__absent_pages_in_range(int nid
,
4178 unsigned long range_start_pfn
,
4179 unsigned long range_end_pfn
)
4181 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4182 unsigned long start_pfn
, end_pfn
;
4185 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4186 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4187 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4188 nr_absent
-= end_pfn
- start_pfn
;
4194 * absent_pages_in_range - Return number of page frames in holes within a range
4195 * @start_pfn: The start PFN to start searching for holes
4196 * @end_pfn: The end PFN to stop searching for holes
4198 * It returns the number of pages frames in memory holes within a range.
4200 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4201 unsigned long end_pfn
)
4203 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4206 /* Return the number of page frames in holes in a zone on a node */
4207 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4208 unsigned long zone_type
,
4209 unsigned long *ignored
)
4211 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4212 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4213 unsigned long node_start_pfn
, node_end_pfn
;
4214 unsigned long zone_start_pfn
, zone_end_pfn
;
4216 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4217 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4218 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4220 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4221 node_start_pfn
, node_end_pfn
,
4222 &zone_start_pfn
, &zone_end_pfn
);
4223 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4226 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4227 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4228 unsigned long zone_type
,
4229 unsigned long *zones_size
)
4231 return zones_size
[zone_type
];
4234 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4235 unsigned long zone_type
,
4236 unsigned long *zholes_size
)
4241 return zholes_size
[zone_type
];
4244 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4246 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4247 unsigned long *zones_size
, unsigned long *zholes_size
)
4249 unsigned long realtotalpages
, totalpages
= 0;
4252 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4253 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4255 pgdat
->node_spanned_pages
= totalpages
;
4257 realtotalpages
= totalpages
;
4258 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4260 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4262 pgdat
->node_present_pages
= realtotalpages
;
4263 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4267 #ifndef CONFIG_SPARSEMEM
4269 * Calculate the size of the zone->blockflags rounded to an unsigned long
4270 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4271 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4272 * round what is now in bits to nearest long in bits, then return it in
4275 static unsigned long __init
usemap_size(unsigned long zonesize
)
4277 unsigned long usemapsize
;
4279 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4280 usemapsize
= usemapsize
>> pageblock_order
;
4281 usemapsize
*= NR_PAGEBLOCK_BITS
;
4282 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4284 return usemapsize
/ 8;
4287 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4288 struct zone
*zone
, unsigned long zonesize
)
4290 unsigned long usemapsize
= usemap_size(zonesize
);
4291 zone
->pageblock_flags
= NULL
;
4293 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4297 static inline void setup_usemap(struct pglist_data
*pgdat
,
4298 struct zone
*zone
, unsigned long zonesize
) {}
4299 #endif /* CONFIG_SPARSEMEM */
4301 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4303 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4304 static inline void __init
set_pageblock_order(void)
4308 /* Check that pageblock_nr_pages has not already been setup */
4309 if (pageblock_order
)
4312 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4313 order
= HUGETLB_PAGE_ORDER
;
4315 order
= MAX_ORDER
- 1;
4318 * Assume the largest contiguous order of interest is a huge page.
4319 * This value may be variable depending on boot parameters on IA64 and
4322 pageblock_order
= order
;
4324 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4327 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4328 * is unused as pageblock_order is set at compile-time. See
4329 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4332 static inline void set_pageblock_order(void)
4336 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4339 * Set up the zone data structures:
4340 * - mark all pages reserved
4341 * - mark all memory queues empty
4342 * - clear the memory bitmaps
4344 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4345 unsigned long *zones_size
, unsigned long *zholes_size
)
4348 int nid
= pgdat
->node_id
;
4349 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4352 pgdat_resize_init(pgdat
);
4353 pgdat
->nr_zones
= 0;
4354 init_waitqueue_head(&pgdat
->kswapd_wait
);
4355 pgdat
->kswapd_max_order
= 0;
4356 pgdat_page_cgroup_init(pgdat
);
4358 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4359 struct zone
*zone
= pgdat
->node_zones
+ j
;
4360 unsigned long size
, realsize
, memmap_pages
;
4362 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4363 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4367 * Adjust realsize so that it accounts for how much memory
4368 * is used by this zone for memmap. This affects the watermark
4369 * and per-cpu initialisations
4372 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4373 if (realsize
>= memmap_pages
) {
4374 realsize
-= memmap_pages
;
4377 " %s zone: %lu pages used for memmap\n",
4378 zone_names
[j
], memmap_pages
);
4381 " %s zone: %lu pages exceeds realsize %lu\n",
4382 zone_names
[j
], memmap_pages
, realsize
);
4384 /* Account for reserved pages */
4385 if (j
== 0 && realsize
> dma_reserve
) {
4386 realsize
-= dma_reserve
;
4387 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4388 zone_names
[0], dma_reserve
);
4391 if (!is_highmem_idx(j
))
4392 nr_kernel_pages
+= realsize
;
4393 nr_all_pages
+= realsize
;
4395 zone
->spanned_pages
= size
;
4396 zone
->present_pages
= realsize
;
4399 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4401 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4403 zone
->name
= zone_names
[j
];
4404 spin_lock_init(&zone
->lock
);
4405 spin_lock_init(&zone
->lru_lock
);
4406 zone_seqlock_init(zone
);
4407 zone
->zone_pgdat
= pgdat
;
4409 zone_pcp_init(zone
);
4410 lruvec_init(&zone
->lruvec
, zone
);
4411 zap_zone_vm_stats(zone
);
4416 set_pageblock_order();
4417 setup_usemap(pgdat
, zone
, size
);
4418 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4419 size
, MEMMAP_EARLY
);
4421 memmap_init(size
, nid
, j
, zone_start_pfn
);
4422 zone_start_pfn
+= size
;
4426 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4428 /* Skip empty nodes */
4429 if (!pgdat
->node_spanned_pages
)
4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 /* ia64 gets its own node_mem_map, before this, without bootmem */
4434 if (!pgdat
->node_mem_map
) {
4435 unsigned long size
, start
, end
;
4439 * The zone's endpoints aren't required to be MAX_ORDER
4440 * aligned but the node_mem_map endpoints must be in order
4441 * for the buddy allocator to function correctly.
4443 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4444 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4445 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4446 size
= (end
- start
) * sizeof(struct page
);
4447 map
= alloc_remap(pgdat
->node_id
, size
);
4449 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4450 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4452 #ifndef CONFIG_NEED_MULTIPLE_NODES
4454 * With no DISCONTIG, the global mem_map is just set as node 0's
4456 if (pgdat
== NODE_DATA(0)) {
4457 mem_map
= NODE_DATA(0)->node_mem_map
;
4458 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4459 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4460 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4467 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4468 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4470 pg_data_t
*pgdat
= NODE_DATA(nid
);
4472 pgdat
->node_id
= nid
;
4473 pgdat
->node_start_pfn
= node_start_pfn
;
4474 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4476 alloc_node_mem_map(pgdat
);
4477 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4478 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4479 nid
, (unsigned long)pgdat
,
4480 (unsigned long)pgdat
->node_mem_map
);
4483 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4488 #if MAX_NUMNODES > 1
4490 * Figure out the number of possible node ids.
4492 static void __init
setup_nr_node_ids(void)
4495 unsigned int highest
= 0;
4497 for_each_node_mask(node
, node_possible_map
)
4499 nr_node_ids
= highest
+ 1;
4502 static inline void setup_nr_node_ids(void)
4508 * node_map_pfn_alignment - determine the maximum internode alignment
4510 * This function should be called after node map is populated and sorted.
4511 * It calculates the maximum power of two alignment which can distinguish
4514 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4515 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4516 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4517 * shifted, 1GiB is enough and this function will indicate so.
4519 * This is used to test whether pfn -> nid mapping of the chosen memory
4520 * model has fine enough granularity to avoid incorrect mapping for the
4521 * populated node map.
4523 * Returns the determined alignment in pfn's. 0 if there is no alignment
4524 * requirement (single node).
4526 unsigned long __init
node_map_pfn_alignment(void)
4528 unsigned long accl_mask
= 0, last_end
= 0;
4529 unsigned long start
, end
, mask
;
4533 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4534 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4541 * Start with a mask granular enough to pin-point to the
4542 * start pfn and tick off bits one-by-one until it becomes
4543 * too coarse to separate the current node from the last.
4545 mask
= ~((1 << __ffs(start
)) - 1);
4546 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4549 /* accumulate all internode masks */
4553 /* convert mask to number of pages */
4554 return ~accl_mask
+ 1;
4557 /* Find the lowest pfn for a node */
4558 static unsigned long __init
find_min_pfn_for_node(int nid
)
4560 unsigned long min_pfn
= ULONG_MAX
;
4561 unsigned long start_pfn
;
4564 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4565 min_pfn
= min(min_pfn
, start_pfn
);
4567 if (min_pfn
== ULONG_MAX
) {
4569 "Could not find start_pfn for node %d\n", nid
);
4577 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4579 * It returns the minimum PFN based on information provided via
4580 * add_active_range().
4582 unsigned long __init
find_min_pfn_with_active_regions(void)
4584 return find_min_pfn_for_node(MAX_NUMNODES
);
4588 * early_calculate_totalpages()
4589 * Sum pages in active regions for movable zone.
4590 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4592 static unsigned long __init
early_calculate_totalpages(void)
4594 unsigned long totalpages
= 0;
4595 unsigned long start_pfn
, end_pfn
;
4598 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4599 unsigned long pages
= end_pfn
- start_pfn
;
4601 totalpages
+= pages
;
4603 node_set_state(nid
, N_HIGH_MEMORY
);
4609 * Find the PFN the Movable zone begins in each node. Kernel memory
4610 * is spread evenly between nodes as long as the nodes have enough
4611 * memory. When they don't, some nodes will have more kernelcore than
4614 static void __init
find_zone_movable_pfns_for_nodes(void)
4617 unsigned long usable_startpfn
;
4618 unsigned long kernelcore_node
, kernelcore_remaining
;
4619 /* save the state before borrow the nodemask */
4620 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4621 unsigned long totalpages
= early_calculate_totalpages();
4622 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4625 * If movablecore was specified, calculate what size of
4626 * kernelcore that corresponds so that memory usable for
4627 * any allocation type is evenly spread. If both kernelcore
4628 * and movablecore are specified, then the value of kernelcore
4629 * will be used for required_kernelcore if it's greater than
4630 * what movablecore would have allowed.
4632 if (required_movablecore
) {
4633 unsigned long corepages
;
4636 * Round-up so that ZONE_MOVABLE is at least as large as what
4637 * was requested by the user
4639 required_movablecore
=
4640 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4641 corepages
= totalpages
- required_movablecore
;
4643 required_kernelcore
= max(required_kernelcore
, corepages
);
4646 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4647 if (!required_kernelcore
)
4650 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4651 find_usable_zone_for_movable();
4652 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4655 /* Spread kernelcore memory as evenly as possible throughout nodes */
4656 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4657 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4658 unsigned long start_pfn
, end_pfn
;
4661 * Recalculate kernelcore_node if the division per node
4662 * now exceeds what is necessary to satisfy the requested
4663 * amount of memory for the kernel
4665 if (required_kernelcore
< kernelcore_node
)
4666 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4669 * As the map is walked, we track how much memory is usable
4670 * by the kernel using kernelcore_remaining. When it is
4671 * 0, the rest of the node is usable by ZONE_MOVABLE
4673 kernelcore_remaining
= kernelcore_node
;
4675 /* Go through each range of PFNs within this node */
4676 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4677 unsigned long size_pages
;
4679 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
4680 if (start_pfn
>= end_pfn
)
4683 /* Account for what is only usable for kernelcore */
4684 if (start_pfn
< usable_startpfn
) {
4685 unsigned long kernel_pages
;
4686 kernel_pages
= min(end_pfn
, usable_startpfn
)
4689 kernelcore_remaining
-= min(kernel_pages
,
4690 kernelcore_remaining
);
4691 required_kernelcore
-= min(kernel_pages
,
4692 required_kernelcore
);
4694 /* Continue if range is now fully accounted */
4695 if (end_pfn
<= usable_startpfn
) {
4698 * Push zone_movable_pfn to the end so
4699 * that if we have to rebalance
4700 * kernelcore across nodes, we will
4701 * not double account here
4703 zone_movable_pfn
[nid
] = end_pfn
;
4706 start_pfn
= usable_startpfn
;
4710 * The usable PFN range for ZONE_MOVABLE is from
4711 * start_pfn->end_pfn. Calculate size_pages as the
4712 * number of pages used as kernelcore
4714 size_pages
= end_pfn
- start_pfn
;
4715 if (size_pages
> kernelcore_remaining
)
4716 size_pages
= kernelcore_remaining
;
4717 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4720 * Some kernelcore has been met, update counts and
4721 * break if the kernelcore for this node has been
4724 required_kernelcore
-= min(required_kernelcore
,
4726 kernelcore_remaining
-= size_pages
;
4727 if (!kernelcore_remaining
)
4733 * If there is still required_kernelcore, we do another pass with one
4734 * less node in the count. This will push zone_movable_pfn[nid] further
4735 * along on the nodes that still have memory until kernelcore is
4739 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4742 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4743 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4744 zone_movable_pfn
[nid
] =
4745 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4748 /* restore the node_state */
4749 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4752 /* Any regular memory on that node ? */
4753 static void check_for_regular_memory(pg_data_t
*pgdat
)
4755 #ifdef CONFIG_HIGHMEM
4756 enum zone_type zone_type
;
4758 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4759 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4760 if (zone
->present_pages
) {
4761 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4769 * free_area_init_nodes - Initialise all pg_data_t and zone data
4770 * @max_zone_pfn: an array of max PFNs for each zone
4772 * This will call free_area_init_node() for each active node in the system.
4773 * Using the page ranges provided by add_active_range(), the size of each
4774 * zone in each node and their holes is calculated. If the maximum PFN
4775 * between two adjacent zones match, it is assumed that the zone is empty.
4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778 * starts where the previous one ended. For example, ZONE_DMA32 starts
4779 * at arch_max_dma_pfn.
4781 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4783 unsigned long start_pfn
, end_pfn
;
4786 /* Record where the zone boundaries are */
4787 memset(arch_zone_lowest_possible_pfn
, 0,
4788 sizeof(arch_zone_lowest_possible_pfn
));
4789 memset(arch_zone_highest_possible_pfn
, 0,
4790 sizeof(arch_zone_highest_possible_pfn
));
4791 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4792 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4793 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4794 if (i
== ZONE_MOVABLE
)
4796 arch_zone_lowest_possible_pfn
[i
] =
4797 arch_zone_highest_possible_pfn
[i
-1];
4798 arch_zone_highest_possible_pfn
[i
] =
4799 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4801 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4802 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4804 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4805 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4806 find_zone_movable_pfns_for_nodes();
4808 /* Print out the zone ranges */
4809 printk("Zone ranges:\n");
4810 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4811 if (i
== ZONE_MOVABLE
)
4813 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
4814 if (arch_zone_lowest_possible_pfn
[i
] ==
4815 arch_zone_highest_possible_pfn
[i
])
4816 printk(KERN_CONT
"empty\n");
4818 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
4819 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
4820 (arch_zone_highest_possible_pfn
[i
]
4821 << PAGE_SHIFT
) - 1);
4824 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4825 printk("Movable zone start for each node\n");
4826 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4827 if (zone_movable_pfn
[i
])
4828 printk(" Node %d: %#010lx\n", i
,
4829 zone_movable_pfn
[i
] << PAGE_SHIFT
);
4832 /* Print out the early_node_map[] */
4833 printk("Early memory node ranges\n");
4834 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4835 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
4836 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
4838 /* Initialise every node */
4839 mminit_verify_pageflags_layout();
4840 setup_nr_node_ids();
4841 for_each_online_node(nid
) {
4842 pg_data_t
*pgdat
= NODE_DATA(nid
);
4843 free_area_init_node(nid
, NULL
,
4844 find_min_pfn_for_node(nid
), NULL
);
4846 /* Any memory on that node */
4847 if (pgdat
->node_present_pages
)
4848 node_set_state(nid
, N_HIGH_MEMORY
);
4849 check_for_regular_memory(pgdat
);
4853 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4855 unsigned long long coremem
;
4859 coremem
= memparse(p
, &p
);
4860 *core
= coremem
>> PAGE_SHIFT
;
4862 /* Paranoid check that UL is enough for the coremem value */
4863 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4869 * kernelcore=size sets the amount of memory for use for allocations that
4870 * cannot be reclaimed or migrated.
4872 static int __init
cmdline_parse_kernelcore(char *p
)
4874 return cmdline_parse_core(p
, &required_kernelcore
);
4878 * movablecore=size sets the amount of memory for use for allocations that
4879 * can be reclaimed or migrated.
4881 static int __init
cmdline_parse_movablecore(char *p
)
4883 return cmdline_parse_core(p
, &required_movablecore
);
4886 early_param("kernelcore", cmdline_parse_kernelcore
);
4887 early_param("movablecore", cmdline_parse_movablecore
);
4889 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4892 * set_dma_reserve - set the specified number of pages reserved in the first zone
4893 * @new_dma_reserve: The number of pages to mark reserved
4895 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4896 * In the DMA zone, a significant percentage may be consumed by kernel image
4897 * and other unfreeable allocations which can skew the watermarks badly. This
4898 * function may optionally be used to account for unfreeable pages in the
4899 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4900 * smaller per-cpu batchsize.
4902 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4904 dma_reserve
= new_dma_reserve
;
4907 void __init
free_area_init(unsigned long *zones_size
)
4909 free_area_init_node(0, zones_size
,
4910 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4913 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4914 unsigned long action
, void *hcpu
)
4916 int cpu
= (unsigned long)hcpu
;
4918 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4919 lru_add_drain_cpu(cpu
);
4923 * Spill the event counters of the dead processor
4924 * into the current processors event counters.
4925 * This artificially elevates the count of the current
4928 vm_events_fold_cpu(cpu
);
4931 * Zero the differential counters of the dead processor
4932 * so that the vm statistics are consistent.
4934 * This is only okay since the processor is dead and cannot
4935 * race with what we are doing.
4937 refresh_cpu_vm_stats(cpu
);
4942 void __init
page_alloc_init(void)
4944 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4948 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4949 * or min_free_kbytes changes.
4951 static void calculate_totalreserve_pages(void)
4953 struct pglist_data
*pgdat
;
4954 unsigned long reserve_pages
= 0;
4955 enum zone_type i
, j
;
4957 for_each_online_pgdat(pgdat
) {
4958 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4959 struct zone
*zone
= pgdat
->node_zones
+ i
;
4960 unsigned long max
= 0;
4962 /* Find valid and maximum lowmem_reserve in the zone */
4963 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4964 if (zone
->lowmem_reserve
[j
] > max
)
4965 max
= zone
->lowmem_reserve
[j
];
4968 /* we treat the high watermark as reserved pages. */
4969 max
+= high_wmark_pages(zone
);
4971 if (max
> zone
->present_pages
)
4972 max
= zone
->present_pages
;
4973 reserve_pages
+= max
;
4975 * Lowmem reserves are not available to
4976 * GFP_HIGHUSER page cache allocations and
4977 * kswapd tries to balance zones to their high
4978 * watermark. As a result, neither should be
4979 * regarded as dirtyable memory, to prevent a
4980 * situation where reclaim has to clean pages
4981 * in order to balance the zones.
4983 zone
->dirty_balance_reserve
= max
;
4986 dirty_balance_reserve
= reserve_pages
;
4987 totalreserve_pages
= reserve_pages
;
4991 * setup_per_zone_lowmem_reserve - called whenever
4992 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4993 * has a correct pages reserved value, so an adequate number of
4994 * pages are left in the zone after a successful __alloc_pages().
4996 static void setup_per_zone_lowmem_reserve(void)
4998 struct pglist_data
*pgdat
;
4999 enum zone_type j
, idx
;
5001 for_each_online_pgdat(pgdat
) {
5002 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5003 struct zone
*zone
= pgdat
->node_zones
+ j
;
5004 unsigned long present_pages
= zone
->present_pages
;
5006 zone
->lowmem_reserve
[j
] = 0;
5010 struct zone
*lower_zone
;
5014 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5015 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5017 lower_zone
= pgdat
->node_zones
+ idx
;
5018 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5019 sysctl_lowmem_reserve_ratio
[idx
];
5020 present_pages
+= lower_zone
->present_pages
;
5025 /* update totalreserve_pages */
5026 calculate_totalreserve_pages();
5029 static void __setup_per_zone_wmarks(void)
5031 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5032 unsigned long lowmem_pages
= 0;
5034 unsigned long flags
;
5036 /* Calculate total number of !ZONE_HIGHMEM pages */
5037 for_each_zone(zone
) {
5038 if (!is_highmem(zone
))
5039 lowmem_pages
+= zone
->present_pages
;
5042 for_each_zone(zone
) {
5045 spin_lock_irqsave(&zone
->lock
, flags
);
5046 tmp
= (u64
)pages_min
* zone
->present_pages
;
5047 do_div(tmp
, lowmem_pages
);
5048 if (is_highmem(zone
)) {
5050 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5051 * need highmem pages, so cap pages_min to a small
5054 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5055 * deltas controls asynch page reclaim, and so should
5056 * not be capped for highmem.
5060 min_pages
= zone
->present_pages
/ 1024;
5061 if (min_pages
< SWAP_CLUSTER_MAX
)
5062 min_pages
= SWAP_CLUSTER_MAX
;
5063 if (min_pages
> 128)
5065 zone
->watermark
[WMARK_MIN
] = min_pages
;
5068 * If it's a lowmem zone, reserve a number of pages
5069 * proportionate to the zone's size.
5071 zone
->watermark
[WMARK_MIN
] = tmp
;
5074 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5075 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5077 zone
->watermark
[WMARK_MIN
] += cma_wmark_pages(zone
);
5078 zone
->watermark
[WMARK_LOW
] += cma_wmark_pages(zone
);
5079 zone
->watermark
[WMARK_HIGH
] += cma_wmark_pages(zone
);
5081 setup_zone_migrate_reserve(zone
);
5082 spin_unlock_irqrestore(&zone
->lock
, flags
);
5085 /* update totalreserve_pages */
5086 calculate_totalreserve_pages();
5090 * setup_per_zone_wmarks - called when min_free_kbytes changes
5091 * or when memory is hot-{added|removed}
5093 * Ensures that the watermark[min,low,high] values for each zone are set
5094 * correctly with respect to min_free_kbytes.
5096 void setup_per_zone_wmarks(void)
5098 mutex_lock(&zonelists_mutex
);
5099 __setup_per_zone_wmarks();
5100 mutex_unlock(&zonelists_mutex
);
5104 * The inactive anon list should be small enough that the VM never has to
5105 * do too much work, but large enough that each inactive page has a chance
5106 * to be referenced again before it is swapped out.
5108 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5109 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5110 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5111 * the anonymous pages are kept on the inactive list.
5114 * memory ratio inactive anon
5115 * -------------------------------------
5124 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5126 unsigned int gb
, ratio
;
5128 /* Zone size in gigabytes */
5129 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5131 ratio
= int_sqrt(10 * gb
);
5135 zone
->inactive_ratio
= ratio
;
5138 static void __meminit
setup_per_zone_inactive_ratio(void)
5143 calculate_zone_inactive_ratio(zone
);
5147 * Initialise min_free_kbytes.
5149 * For small machines we want it small (128k min). For large machines
5150 * we want it large (64MB max). But it is not linear, because network
5151 * bandwidth does not increase linearly with machine size. We use
5153 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5154 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5170 int __meminit
init_per_zone_wmark_min(void)
5172 unsigned long lowmem_kbytes
;
5174 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5176 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5177 if (min_free_kbytes
< 128)
5178 min_free_kbytes
= 128;
5179 if (min_free_kbytes
> 65536)
5180 min_free_kbytes
= 65536;
5181 setup_per_zone_wmarks();
5182 refresh_zone_stat_thresholds();
5183 setup_per_zone_lowmem_reserve();
5184 setup_per_zone_inactive_ratio();
5187 module_init(init_per_zone_wmark_min
)
5190 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5191 * that we can call two helper functions whenever min_free_kbytes
5194 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5195 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5197 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5199 setup_per_zone_wmarks();
5204 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5205 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5210 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5215 zone
->min_unmapped_pages
= (zone
->present_pages
*
5216 sysctl_min_unmapped_ratio
) / 100;
5220 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5221 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5226 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5231 zone
->min_slab_pages
= (zone
->present_pages
*
5232 sysctl_min_slab_ratio
) / 100;
5238 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5239 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5240 * whenever sysctl_lowmem_reserve_ratio changes.
5242 * The reserve ratio obviously has absolutely no relation with the
5243 * minimum watermarks. The lowmem reserve ratio can only make sense
5244 * if in function of the boot time zone sizes.
5246 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5247 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5249 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5250 setup_per_zone_lowmem_reserve();
5255 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5256 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5257 * can have before it gets flushed back to buddy allocator.
5260 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5261 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5267 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5268 if (!write
|| (ret
< 0))
5270 for_each_populated_zone(zone
) {
5271 for_each_possible_cpu(cpu
) {
5273 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5274 setup_pagelist_highmark(
5275 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5281 int hashdist
= HASHDIST_DEFAULT
;
5284 static int __init
set_hashdist(char *str
)
5288 hashdist
= simple_strtoul(str
, &str
, 0);
5291 __setup("hashdist=", set_hashdist
);
5295 * allocate a large system hash table from bootmem
5296 * - it is assumed that the hash table must contain an exact power-of-2
5297 * quantity of entries
5298 * - limit is the number of hash buckets, not the total allocation size
5300 void *__init
alloc_large_system_hash(const char *tablename
,
5301 unsigned long bucketsize
,
5302 unsigned long numentries
,
5305 unsigned int *_hash_shift
,
5306 unsigned int *_hash_mask
,
5307 unsigned long low_limit
,
5308 unsigned long high_limit
)
5310 unsigned long long max
= high_limit
;
5311 unsigned long log2qty
, size
;
5314 /* allow the kernel cmdline to have a say */
5316 /* round applicable memory size up to nearest megabyte */
5317 numentries
= nr_kernel_pages
;
5318 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5319 numentries
>>= 20 - PAGE_SHIFT
;
5320 numentries
<<= 20 - PAGE_SHIFT
;
5322 /* limit to 1 bucket per 2^scale bytes of low memory */
5323 if (scale
> PAGE_SHIFT
)
5324 numentries
>>= (scale
- PAGE_SHIFT
);
5326 numentries
<<= (PAGE_SHIFT
- scale
);
5328 /* Make sure we've got at least a 0-order allocation.. */
5329 if (unlikely(flags
& HASH_SMALL
)) {
5330 /* Makes no sense without HASH_EARLY */
5331 WARN_ON(!(flags
& HASH_EARLY
));
5332 if (!(numentries
>> *_hash_shift
)) {
5333 numentries
= 1UL << *_hash_shift
;
5334 BUG_ON(!numentries
);
5336 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5337 numentries
= PAGE_SIZE
/ bucketsize
;
5339 numentries
= roundup_pow_of_two(numentries
);
5341 /* limit allocation size to 1/16 total memory by default */
5343 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5344 do_div(max
, bucketsize
);
5346 max
= min(max
, 0x80000000ULL
);
5348 if (numentries
< low_limit
)
5349 numentries
= low_limit
;
5350 if (numentries
> max
)
5353 log2qty
= ilog2(numentries
);
5356 size
= bucketsize
<< log2qty
;
5357 if (flags
& HASH_EARLY
)
5358 table
= alloc_bootmem_nopanic(size
);
5360 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5363 * If bucketsize is not a power-of-two, we may free
5364 * some pages at the end of hash table which
5365 * alloc_pages_exact() automatically does
5367 if (get_order(size
) < MAX_ORDER
) {
5368 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5369 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5372 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5375 panic("Failed to allocate %s hash table\n", tablename
);
5377 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5380 ilog2(size
) - PAGE_SHIFT
,
5384 *_hash_shift
= log2qty
;
5386 *_hash_mask
= (1 << log2qty
) - 1;
5391 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5392 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5395 #ifdef CONFIG_SPARSEMEM
5396 return __pfn_to_section(pfn
)->pageblock_flags
;
5398 return zone
->pageblock_flags
;
5399 #endif /* CONFIG_SPARSEMEM */
5402 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5404 #ifdef CONFIG_SPARSEMEM
5405 pfn
&= (PAGES_PER_SECTION
-1);
5406 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5408 pfn
= pfn
- zone
->zone_start_pfn
;
5409 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5410 #endif /* CONFIG_SPARSEMEM */
5414 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5415 * @page: The page within the block of interest
5416 * @start_bitidx: The first bit of interest to retrieve
5417 * @end_bitidx: The last bit of interest
5418 * returns pageblock_bits flags
5420 unsigned long get_pageblock_flags_group(struct page
*page
,
5421 int start_bitidx
, int end_bitidx
)
5424 unsigned long *bitmap
;
5425 unsigned long pfn
, bitidx
;
5426 unsigned long flags
= 0;
5427 unsigned long value
= 1;
5429 zone
= page_zone(page
);
5430 pfn
= page_to_pfn(page
);
5431 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5432 bitidx
= pfn_to_bitidx(zone
, pfn
);
5434 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5435 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5442 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5443 * @page: The page within the block of interest
5444 * @start_bitidx: The first bit of interest
5445 * @end_bitidx: The last bit of interest
5446 * @flags: The flags to set
5448 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5449 int start_bitidx
, int end_bitidx
)
5452 unsigned long *bitmap
;
5453 unsigned long pfn
, bitidx
;
5454 unsigned long value
= 1;
5456 zone
= page_zone(page
);
5457 pfn
= page_to_pfn(page
);
5458 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5459 bitidx
= pfn_to_bitidx(zone
, pfn
);
5460 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5461 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5463 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5465 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5467 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5471 * This is designed as sub function...plz see page_isolation.c also.
5472 * set/clear page block's type to be ISOLATE.
5473 * page allocater never alloc memory from ISOLATE block.
5477 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5479 unsigned long pfn
, iter
, found
;
5483 * For avoiding noise data, lru_add_drain_all() should be called
5484 * If ZONE_MOVABLE, the zone never contains immobile pages
5486 if (zone_idx(zone
) == ZONE_MOVABLE
)
5488 mt
= get_pageblock_migratetype(page
);
5489 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5492 pfn
= page_to_pfn(page
);
5493 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5494 unsigned long check
= pfn
+ iter
;
5496 if (!pfn_valid_within(check
))
5499 page
= pfn_to_page(check
);
5500 if (!page_count(page
)) {
5501 if (PageBuddy(page
))
5502 iter
+= (1 << page_order(page
)) - 1;
5508 * If there are RECLAIMABLE pages, we need to check it.
5509 * But now, memory offline itself doesn't call shrink_slab()
5510 * and it still to be fixed.
5513 * If the page is not RAM, page_count()should be 0.
5514 * we don't need more check. This is an _used_ not-movable page.
5516 * The problematic thing here is PG_reserved pages. PG_reserved
5517 * is set to both of a memory hole page and a _used_ kernel
5526 bool is_pageblock_removable_nolock(struct page
*page
)
5532 * We have to be careful here because we are iterating over memory
5533 * sections which are not zone aware so we might end up outside of
5534 * the zone but still within the section.
5535 * We have to take care about the node as well. If the node is offline
5536 * its NODE_DATA will be NULL - see page_zone.
5538 if (!node_online(page_to_nid(page
)))
5541 zone
= page_zone(page
);
5542 pfn
= page_to_pfn(page
);
5543 if (zone
->zone_start_pfn
> pfn
||
5544 zone
->zone_start_pfn
+ zone
->spanned_pages
<= pfn
)
5547 return __count_immobile_pages(zone
, page
, 0);
5550 int set_migratetype_isolate(struct page
*page
)
5553 unsigned long flags
, pfn
;
5554 struct memory_isolate_notify arg
;
5558 zone
= page_zone(page
);
5560 spin_lock_irqsave(&zone
->lock
, flags
);
5562 pfn
= page_to_pfn(page
);
5563 arg
.start_pfn
= pfn
;
5564 arg
.nr_pages
= pageblock_nr_pages
;
5565 arg
.pages_found
= 0;
5568 * It may be possible to isolate a pageblock even if the
5569 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5570 * notifier chain is used by balloon drivers to return the
5571 * number of pages in a range that are held by the balloon
5572 * driver to shrink memory. If all the pages are accounted for
5573 * by balloons, are free, or on the LRU, isolation can continue.
5574 * Later, for example, when memory hotplug notifier runs, these
5575 * pages reported as "can be isolated" should be isolated(freed)
5576 * by the balloon driver through the memory notifier chain.
5578 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5579 notifier_ret
= notifier_to_errno(notifier_ret
);
5583 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5584 * We just check MOVABLE pages.
5586 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5590 * immobile means "not-on-lru" paes. If immobile is larger than
5591 * removable-by-driver pages reported by notifier, we'll fail.
5596 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5597 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5600 spin_unlock_irqrestore(&zone
->lock
, flags
);
5606 void unset_migratetype_isolate(struct page
*page
, unsigned migratetype
)
5609 unsigned long flags
;
5610 zone
= page_zone(page
);
5611 spin_lock_irqsave(&zone
->lock
, flags
);
5612 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5614 set_pageblock_migratetype(page
, migratetype
);
5615 move_freepages_block(zone
, page
, migratetype
);
5617 spin_unlock_irqrestore(&zone
->lock
, flags
);
5622 static unsigned long pfn_max_align_down(unsigned long pfn
)
5624 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5625 pageblock_nr_pages
) - 1);
5628 static unsigned long pfn_max_align_up(unsigned long pfn
)
5630 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5631 pageblock_nr_pages
));
5634 static struct page
*
5635 __alloc_contig_migrate_alloc(struct page
*page
, unsigned long private,
5638 gfp_t gfp_mask
= GFP_USER
| __GFP_MOVABLE
;
5640 if (PageHighMem(page
))
5641 gfp_mask
|= __GFP_HIGHMEM
;
5643 return alloc_page(gfp_mask
);
5646 /* [start, end) must belong to a single zone. */
5647 static int __alloc_contig_migrate_range(unsigned long start
, unsigned long end
)
5649 /* This function is based on compact_zone() from compaction.c. */
5651 unsigned long pfn
= start
;
5652 unsigned int tries
= 0;
5655 struct compact_control cc
= {
5656 .nr_migratepages
= 0,
5658 .zone
= page_zone(pfn_to_page(start
)),
5661 INIT_LIST_HEAD(&cc
.migratepages
);
5663 migrate_prep_local();
5665 while (pfn
< end
|| !list_empty(&cc
.migratepages
)) {
5666 if (fatal_signal_pending(current
)) {
5671 if (list_empty(&cc
.migratepages
)) {
5672 cc
.nr_migratepages
= 0;
5673 pfn
= isolate_migratepages_range(cc
.zone
, &cc
,
5680 } else if (++tries
== 5) {
5681 ret
= ret
< 0 ? ret
: -EBUSY
;
5685 ret
= migrate_pages(&cc
.migratepages
,
5686 __alloc_contig_migrate_alloc
,
5687 0, false, MIGRATE_SYNC
);
5690 putback_lru_pages(&cc
.migratepages
);
5691 return ret
> 0 ? 0 : ret
;
5695 * Update zone's cma pages counter used for watermark level calculation.
5697 static inline void __update_cma_watermarks(struct zone
*zone
, int count
)
5699 unsigned long flags
;
5700 spin_lock_irqsave(&zone
->lock
, flags
);
5701 zone
->min_cma_pages
+= count
;
5702 spin_unlock_irqrestore(&zone
->lock
, flags
);
5703 setup_per_zone_wmarks();
5707 * Trigger memory pressure bump to reclaim some pages in order to be able to
5708 * allocate 'count' pages in single page units. Does similar work as
5709 *__alloc_pages_slowpath() function.
5711 static int __reclaim_pages(struct zone
*zone
, gfp_t gfp_mask
, int count
)
5713 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
5714 struct zonelist
*zonelist
= node_zonelist(0, gfp_mask
);
5715 int did_some_progress
= 0;
5719 * Increase level of watermarks to force kswapd do his job
5720 * to stabilise at new watermark level.
5722 __update_cma_watermarks(zone
, count
);
5724 /* Obey watermarks as if the page was being allocated */
5725 while (!zone_watermark_ok(zone
, 0, low_wmark_pages(zone
), 0, 0)) {
5726 wake_all_kswapd(order
, zonelist
, high_zoneidx
, zone_idx(zone
));
5728 did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
5730 if (!did_some_progress
) {
5731 /* Exhausted what can be done so it's blamo time */
5732 out_of_memory(zonelist
, gfp_mask
, order
, NULL
, false);
5736 /* Restore original watermark levels. */
5737 __update_cma_watermarks(zone
, -count
);
5743 * alloc_contig_range() -- tries to allocate given range of pages
5744 * @start: start PFN to allocate
5745 * @end: one-past-the-last PFN to allocate
5746 * @migratetype: migratetype of the underlaying pageblocks (either
5747 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5748 * in range must have the same migratetype and it must
5749 * be either of the two.
5751 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5752 * aligned, however it's the caller's responsibility to guarantee that
5753 * we are the only thread that changes migrate type of pageblocks the
5756 * The PFN range must belong to a single zone.
5758 * Returns zero on success or negative error code. On success all
5759 * pages which PFN is in [start, end) are allocated for the caller and
5760 * need to be freed with free_contig_range().
5762 int alloc_contig_range(unsigned long start
, unsigned long end
,
5763 unsigned migratetype
)
5765 struct zone
*zone
= page_zone(pfn_to_page(start
));
5766 unsigned long outer_start
, outer_end
;
5770 * What we do here is we mark all pageblocks in range as
5771 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5772 * have different sizes, and due to the way page allocator
5773 * work, we align the range to biggest of the two pages so
5774 * that page allocator won't try to merge buddies from
5775 * different pageblocks and change MIGRATE_ISOLATE to some
5776 * other migration type.
5778 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5779 * migrate the pages from an unaligned range (ie. pages that
5780 * we are interested in). This will put all the pages in
5781 * range back to page allocator as MIGRATE_ISOLATE.
5783 * When this is done, we take the pages in range from page
5784 * allocator removing them from the buddy system. This way
5785 * page allocator will never consider using them.
5787 * This lets us mark the pageblocks back as
5788 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5789 * aligned range but not in the unaligned, original range are
5790 * put back to page allocator so that buddy can use them.
5793 ret
= start_isolate_page_range(pfn_max_align_down(start
),
5794 pfn_max_align_up(end
), migratetype
);
5798 ret
= __alloc_contig_migrate_range(start
, end
);
5803 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5804 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5805 * more, all pages in [start, end) are free in page allocator.
5806 * What we are going to do is to allocate all pages from
5807 * [start, end) (that is remove them from page allocator).
5809 * The only problem is that pages at the beginning and at the
5810 * end of interesting range may be not aligned with pages that
5811 * page allocator holds, ie. they can be part of higher order
5812 * pages. Because of this, we reserve the bigger range and
5813 * once this is done free the pages we are not interested in.
5815 * We don't have to hold zone->lock here because the pages are
5816 * isolated thus they won't get removed from buddy.
5819 lru_add_drain_all();
5823 outer_start
= start
;
5824 while (!PageBuddy(pfn_to_page(outer_start
))) {
5825 if (++order
>= MAX_ORDER
) {
5829 outer_start
&= ~0UL << order
;
5832 /* Make sure the range is really isolated. */
5833 if (test_pages_isolated(outer_start
, end
)) {
5834 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5841 * Reclaim enough pages to make sure that contiguous allocation
5842 * will not starve the system.
5844 __reclaim_pages(zone
, GFP_HIGHUSER_MOVABLE
, end
-start
);
5846 /* Grab isolated pages from freelists. */
5847 outer_end
= isolate_freepages_range(outer_start
, end
);
5853 /* Free head and tail (if any) */
5854 if (start
!= outer_start
)
5855 free_contig_range(outer_start
, start
- outer_start
);
5856 if (end
!= outer_end
)
5857 free_contig_range(end
, outer_end
- end
);
5860 undo_isolate_page_range(pfn_max_align_down(start
),
5861 pfn_max_align_up(end
), migratetype
);
5865 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
5867 for (; nr_pages
--; ++pfn
)
5868 __free_page(pfn_to_page(pfn
));
5872 #ifdef CONFIG_MEMORY_HOTREMOVE
5874 * All pages in the range must be isolated before calling this.
5877 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5883 unsigned long flags
;
5884 /* find the first valid pfn */
5885 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5890 zone
= page_zone(pfn_to_page(pfn
));
5891 spin_lock_irqsave(&zone
->lock
, flags
);
5893 while (pfn
< end_pfn
) {
5894 if (!pfn_valid(pfn
)) {
5898 page
= pfn_to_page(pfn
);
5899 BUG_ON(page_count(page
));
5900 BUG_ON(!PageBuddy(page
));
5901 order
= page_order(page
);
5902 #ifdef CONFIG_DEBUG_VM
5903 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5904 pfn
, 1 << order
, end_pfn
);
5906 list_del(&page
->lru
);
5907 rmv_page_order(page
);
5908 zone
->free_area
[order
].nr_free
--;
5909 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5911 for (i
= 0; i
< (1 << order
); i
++)
5912 SetPageReserved((page
+i
));
5913 pfn
+= (1 << order
);
5915 spin_unlock_irqrestore(&zone
->lock
, flags
);
5919 #ifdef CONFIG_MEMORY_FAILURE
5920 bool is_free_buddy_page(struct page
*page
)
5922 struct zone
*zone
= page_zone(page
);
5923 unsigned long pfn
= page_to_pfn(page
);
5924 unsigned long flags
;
5927 spin_lock_irqsave(&zone
->lock
, flags
);
5928 for (order
= 0; order
< MAX_ORDER
; order
++) {
5929 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5931 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5934 spin_unlock_irqrestore(&zone
->lock
, flags
);
5936 return order
< MAX_ORDER
;
5940 static const struct trace_print_flags pageflag_names
[] = {
5941 {1UL << PG_locked
, "locked" },
5942 {1UL << PG_error
, "error" },
5943 {1UL << PG_referenced
, "referenced" },
5944 {1UL << PG_uptodate
, "uptodate" },
5945 {1UL << PG_dirty
, "dirty" },
5946 {1UL << PG_lru
, "lru" },
5947 {1UL << PG_active
, "active" },
5948 {1UL << PG_slab
, "slab" },
5949 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5950 {1UL << PG_arch_1
, "arch_1" },
5951 {1UL << PG_reserved
, "reserved" },
5952 {1UL << PG_private
, "private" },
5953 {1UL << PG_private_2
, "private_2" },
5954 {1UL << PG_writeback
, "writeback" },
5955 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5956 {1UL << PG_head
, "head" },
5957 {1UL << PG_tail
, "tail" },
5959 {1UL << PG_compound
, "compound" },
5961 {1UL << PG_swapcache
, "swapcache" },
5962 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5963 {1UL << PG_reclaim
, "reclaim" },
5964 {1UL << PG_swapbacked
, "swapbacked" },
5965 {1UL << PG_unevictable
, "unevictable" },
5967 {1UL << PG_mlocked
, "mlocked" },
5969 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5970 {1UL << PG_uncached
, "uncached" },
5972 #ifdef CONFIG_MEMORY_FAILURE
5973 {1UL << PG_hwpoison
, "hwpoison" },
5975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5976 {1UL << PG_compound_lock
, "compound_lock" },
5980 static void dump_page_flags(unsigned long flags
)
5982 const char *delim
= "";
5986 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
5988 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5990 /* remove zone id */
5991 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5993 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
5995 mask
= pageflag_names
[i
].mask
;
5996 if ((flags
& mask
) != mask
)
6000 printk("%s%s", delim
, pageflag_names
[i
].name
);
6004 /* check for left over flags */
6006 printk("%s%#lx", delim
, flags
);
6011 void dump_page(struct page
*page
)
6014 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6015 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6016 page
->mapping
, page
->index
);
6017 dump_page_flags(page
->flags
);
6018 mem_cgroup_print_bad_page(page
);