serial: xilinx_uartps: fix bad register write in console_write
[linux-2.6-xlnx.git] / drivers / staging / rtl8187se / r8185b_init.c
blob914495783c06e2c23362d7137fec6cd9b55b3d1a
1 /*
2 * Copyright (c) Realtek Semiconductor Corp. All rights reserved.
4 * Module Name:
5 * r8185b_init.c
7 * Abstract:
8 * Hardware Initialization and Hardware IO for RTL8185B
10 * Major Change History:
11 * When Who What
12 * ---------- --------------- -------------------------------
13 * 2006-11-15 Xiong Created
15 * Notes:
16 * This file is ported from RTL8185B Windows driver.
21 /*--------------------------Include File------------------------------------*/
22 #include <linux/spinlock.h>
23 #include "r8180_hw.h"
24 #include "r8180.h"
25 #include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
26 #include "r8180_93cx6.h" /* Card EEPROM */
27 #include "r8180_wx.h"
28 #include "ieee80211/dot11d.h"
29 /* #define CONFIG_RTL8180_IO_MAP */
30 #define TC_3W_POLL_MAX_TRY_CNT 5
32 static u8 MAC_REG_TABLE[][2] = {
33 /*PAGA 0: */
34 /* 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185() */
35 /* 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185(). */
36 /* 0x1F0~0x1F8 set in MacConfig_85BASIC() */
37 {0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
38 {0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
39 {0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
40 {0x94, 0x0F}, {0x95, 0x32},
41 {0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
42 {0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
43 {0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
44 {0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
45 {0xff, 0x00},
47 /*PAGE 1: */
48 /* For Flextronics system Logo PCIHCT failure: */
49 /* 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1 */
50 {0x5e, 0x01},
51 {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
52 {0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
53 {0x82, 0xFF}, {0x83, 0x03},
54 {0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, /* lzm add 080826 */
55 {0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22}, /* lzm add 080826 */
56 {0xe2, 0x00},
59 /* PAGE 2: */
60 {0x5e, 0x02},
61 {0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
62 {0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
63 {0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
64 {0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
65 {0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
66 {0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
67 {0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
69 /* PAGA 0: */
70 {0x5e, 0x00}, {0x9f, 0x03}
74 static u8 ZEBRA_AGC[] = {
76 0x7E, 0x7E, 0x7E, 0x7E, 0x7D, 0x7C, 0x7B, 0x7A, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72,
77 0x71, 0x70, 0x6F, 0x6E, 0x6D, 0x6C, 0x6B, 0x6A, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62,
78 0x48, 0x47, 0x46, 0x45, 0x44, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x08, 0x07,
79 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
80 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x15, 0x16,
81 0x17, 0x17, 0x18, 0x18, 0x19, 0x1a, 0x1a, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d, 0x1d, 0x1e, 0x1e,
82 0x1f, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x20, 0x21, 0x21, 0x21, 0x22, 0x22, 0x22, 0x23, 0x23, 0x24,
83 0x24, 0x25, 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F, 0x2F
86 static u32 ZEBRA_RF_RX_GAIN_TABLE[] = {
87 0x0096, 0x0076, 0x0056, 0x0036, 0x0016, 0x01f6, 0x01d6, 0x01b6,
88 0x0196, 0x0176, 0x00F7, 0x00D7, 0x00B7, 0x0097, 0x0077, 0x0057,
89 0x0037, 0x00FB, 0x00DB, 0x00BB, 0x00FF, 0x00E3, 0x00C3, 0x00A3,
90 0x0083, 0x0063, 0x0043, 0x0023, 0x0003, 0x01E3, 0x01C3, 0x01A3,
91 0x0183, 0x0163, 0x0143, 0x0123, 0x0103
94 static u8 OFDM_CONFIG[] = {
95 /* OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX */
96 /* OFDM reg0x3C[4]=1'b1: Enable RX power saving mode */
97 /* ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test */
98 /* 0x00 */
99 0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
100 0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
101 /* 0x10 */
102 0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
103 0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
104 /* 0x20 */
105 0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
106 0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
107 /* 0x30 */
108 0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
109 0xD8, 0x3C, 0x7B, 0x10, 0x10
112 /*---------------------------------------------------------------
113 * Hardware IO
114 * the code is ported from Windows source code
115 *---------------------------------------------------------------
118 void PlatformIOWrite1Byte(struct net_device *dev, u32 offset, u8 data)
120 write_nic_byte(dev, offset, data);
121 read_nic_byte(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
124 void PlatformIOWrite2Byte(struct net_device *dev, u32 offset, u16 data)
126 write_nic_word(dev, offset, data);
127 read_nic_word(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
130 u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
132 void PlatformIOWrite4Byte(struct net_device *dev, u32 offset, u32 data)
134 if (offset == PhyAddr) {
135 /* For Base Band configuration. */
136 unsigned char cmdByte;
137 unsigned long dataBytes;
138 unsigned char idx;
139 u8 u1bTmp;
141 cmdByte = (u8)(data & 0x000000ff);
142 dataBytes = data>>8;
145 * 071010, rcnjko:
146 * The critical section is only BB read/write race condition.
147 * Assumption:
148 * 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
149 * acquiring the spinlock in such context.
150 * 2. PlatformIOWrite4Byte() MUST NOT be recursive.
152 /* NdisAcquireSpinLock( &(pDevice->IoSpinLock) ); */
154 for (idx = 0; idx < 30; idx++) {
155 /* Make sure command bit is clear before access it. */
156 u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
157 if ((u1bTmp & BIT7) == 0)
158 break;
159 else
160 mdelay(10);
163 for (idx = 0; idx < 3; idx++)
164 PlatformIOWrite1Byte(dev, offset+1+idx, ((u8 *)&dataBytes)[idx]);
166 write_nic_byte(dev, offset, cmdByte);
168 /* NdisReleaseSpinLock( &(pDevice->IoSpinLock) ); */
169 } else {
170 write_nic_dword(dev, offset, data);
171 read_nic_dword(dev, offset); /* To make sure write operation is completed, 2005.11.09, by rcnjko. */
175 u8 PlatformIORead1Byte(struct net_device *dev, u32 offset)
177 u8 data = 0;
179 data = read_nic_byte(dev, offset);
182 return data;
185 u16 PlatformIORead2Byte(struct net_device *dev, u32 offset)
187 u16 data = 0;
189 data = read_nic_word(dev, offset);
192 return data;
195 u32 PlatformIORead4Byte(struct net_device *dev, u32 offset)
197 u32 data = 0;
199 data = read_nic_dword(dev, offset);
202 return data;
205 void SetOutputEnableOfRfPins(struct net_device *dev)
207 write_nic_word(dev, RFPinsEnable, 0x1bff);
210 static int HwHSSIThreeWire(struct net_device *dev,
211 u8 *pDataBuf,
212 u8 nDataBufBitCnt,
213 int bSI,
214 int bWrite)
216 int bResult = 1;
217 u8 TryCnt;
218 u8 u1bTmp;
220 do {
221 /* Check if WE and RE are cleared. */
222 for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
223 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
224 if ((u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0)
225 break;
227 udelay(10);
229 if (TryCnt == TC_3W_POLL_MAX_TRY_CNT) {
230 printk(KERN_ERR "rtl8187se: HwThreeWire(): CmdReg:"
231 " %#X RE|WE bits are not clear!!\n", u1bTmp);
232 dump_stack();
233 return 0;
236 /* RTL8187S HSSI Read/Write Function */
237 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
239 if (bSI)
240 u1bTmp |= RF_SW_CFG_SI; /* reg08[1]=1 Serial Interface(SI) */
242 else
243 u1bTmp &= ~RF_SW_CFG_SI; /* reg08[1]=0 Parallel Interface(PI) */
246 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
248 if (bSI) {
249 /* jong: HW SI read must set reg84[3]=0. */
250 u1bTmp = read_nic_byte(dev, RFPinsSelect);
251 u1bTmp &= ~BIT3;
252 write_nic_byte(dev, RFPinsSelect, u1bTmp);
254 /* Fill up data buffer for write operation. */
256 if (bWrite) {
257 if (nDataBufBitCnt == 16) {
258 write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
259 } else if (nDataBufBitCnt == 64) {
260 /* RTL8187S shouldn't enter this case */
261 write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
262 write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
263 } else {
264 int idx;
265 int ByteCnt = nDataBufBitCnt / 8;
266 /* printk("%d\n",nDataBufBitCnt); */
267 if ((nDataBufBitCnt % 8) != 0) {
268 printk(KERN_ERR "rtl8187se: "
269 "HwThreeWire(): nDataBufBitCnt(%d)"
270 " should be multiple of 8!!!\n",
271 nDataBufBitCnt);
272 dump_stack();
273 nDataBufBitCnt += 8;
274 nDataBufBitCnt &= ~7;
277 if (nDataBufBitCnt > 64) {
278 printk(KERN_ERR "rtl8187se: HwThreeWire():"
279 " nDataBufBitCnt(%d) should <= 64!!!\n",
280 nDataBufBitCnt);
281 dump_stack();
282 nDataBufBitCnt = 64;
285 for (idx = 0; idx < ByteCnt; idx++)
286 write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
289 } else { /* read */
290 if (bSI) {
291 /* SI - reg274[3:0] : RF register's Address */
292 write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
293 } else {
294 /* PI - reg274[15:12] : RF register's Address */
295 write_nic_word(dev, SW_3W_DB0, (*((u16 *)pDataBuf)) << 12);
299 /* Set up command: WE or RE. */
300 if (bWrite)
301 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
303 else
304 write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
307 /* Check if DONE is set. */
308 for (TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++) {
309 u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
310 if ((u1bTmp & SW_3W_CMD1_DONE) != 0)
311 break;
313 udelay(10);
316 write_nic_byte(dev, SW_3W_CMD1, 0);
318 /* Read back data for read operation. */
319 if (bWrite == 0) {
320 if (bSI) {
321 /* Serial Interface : reg363_362[11:0] */
322 *((u16 *)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
323 } else {
324 /* Parallel Interface : reg361_360[11:0] */
325 *((u16 *)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
328 *((u16 *)pDataBuf) &= 0x0FFF;
331 } while (0);
333 return bResult;
336 void RF_WriteReg(struct net_device *dev, u8 offset, u32 data)
338 u32 data2Write;
339 u8 len;
341 /* Pure HW 3-wire. */
342 data2Write = (data << 4) | (u32)(offset & 0x0f);
343 len = 16;
345 HwHSSIThreeWire(dev, (u8 *)(&data2Write), len, 1, 1);
348 u32 RF_ReadReg(struct net_device *dev, u8 offset)
350 u32 data2Write;
351 u8 wlen;
352 u32 dataRead;
354 data2Write = ((u32)(offset & 0x0f));
355 wlen = 16;
356 HwHSSIThreeWire(dev, (u8 *)(&data2Write), wlen, 1, 0);
357 dataRead = data2Write;
359 return dataRead;
363 /* by Owen on 04/07/14 for writing BB register successfully */
364 void WriteBBPortUchar(struct net_device *dev, u32 Data)
366 /* u8 TimeoutCounter; */
367 u8 RegisterContent;
368 u8 UCharData;
370 UCharData = (u8)((Data & 0x0000ff00) >> 8);
371 PlatformIOWrite4Byte(dev, PhyAddr, Data);
372 /* for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--) */
374 PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
375 RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
376 /*if(UCharData == RegisterContent) */
377 /* break; */
381 u8 ReadBBPortUchar(struct net_device *dev, u32 addr)
383 /*u8 TimeoutCounter; */
384 u8 RegisterContent;
386 PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
387 RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
389 return RegisterContent;
392 * Description:
393 * Perform Antenna settings with antenna diversity on 87SE.
394 * Created by Roger, 2008.01.25.
396 bool SetAntennaConfig87SE(struct net_device *dev,
397 u8 DefaultAnt, /* 0: Main, 1: Aux. */
398 bool bAntDiversity) /* 1:Enable, 0: Disable. */
400 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
401 bool bAntennaSwitched = true;
403 /* printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity); */
405 /* Threshold for antenna diversity. */
406 write_phy_cck(dev, 0x0c, 0x09); /* Reg0c : 09 */
408 if (bAntDiversity) { /* Enable Antenna Diversity. */
409 if (DefaultAnt == 1) { /* aux antenna */
411 /* Mac register, aux antenna */
412 write_nic_byte(dev, ANTSEL, 0x00);
414 /* Config CCK RX antenna. */
415 write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
416 write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
418 /* Config OFDM RX antenna. */
419 write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
420 write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
421 } else { /* use main antenna */
422 /* Mac register, main antenna */
423 write_nic_byte(dev, ANTSEL, 0x03);
424 /* base band */
425 /* Config CCK RX antenna. */
426 write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
427 write_phy_cck(dev, 0x01, 0xc7); /* Reg01 : c7 */
429 /* Config OFDM RX antenna. */
430 write_phy_ofdm(dev, 0x0d, 0x5c); /* Reg0d : 5c */
431 write_phy_ofdm(dev, 0x18, 0xb2); /* Reg18 : b2 */
433 } else {
434 /* Disable Antenna Diversity. */
435 if (DefaultAnt == 1) { /* aux Antenna */
436 /* Mac register, aux antenna */
437 write_nic_byte(dev, ANTSEL, 0x00);
439 /* Config CCK RX antenna. */
440 write_phy_cck(dev, 0x11, 0xbb); /* Reg11 : bb */
441 write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
443 /* Config OFDM RX antenna. */
444 write_phy_ofdm(dev, 0x0D, 0x54); /* Reg0d : 54 */
445 write_phy_ofdm(dev, 0x18, 0x32); /* Reg18 : 32 */
446 } else { /* main Antenna */
447 /* Mac register, main antenna */
448 write_nic_byte(dev, ANTSEL, 0x03);
450 /* Config CCK RX antenna. */
451 write_phy_cck(dev, 0x11, 0x9b); /* Reg11 : 9b */
452 write_phy_cck(dev, 0x01, 0x47); /* Reg01 : 47 */
454 /* Config OFDM RX antenna. */
455 write_phy_ofdm(dev, 0x0D, 0x5c); /* Reg0d : 5c */
456 write_phy_ofdm(dev, 0x18, 0x32); /*Reg18 : 32 */
459 priv->CurrAntennaIndex = DefaultAnt; /* Update default settings. */
460 return bAntennaSwitched;
463 *--------------------------------------------------------------
464 * Hardware Initialization.
465 * the code is ported from Windows source code
466 *--------------------------------------------------------------
469 void ZEBRA_Config_85BASIC_HardCode(struct net_device *dev)
472 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
473 u32 i;
474 u32 addr, data;
475 u32 u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
476 u8 u1b24E;
477 int d_cut = 0;
481 *===========================================================================
482 * 87S_PCIE :: RADIOCFG.TXT
483 *===========================================================================
487 /* Page1 : reg16-reg30 */
488 RF_WriteReg(dev, 0x00, 0x013f); mdelay(1); /* switch to page1 */
489 u4bRF23 = RF_ReadReg(dev, 0x08); mdelay(1);
490 u4bRF24 = RF_ReadReg(dev, 0x09); mdelay(1);
492 if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
493 d_cut = 1;
494 printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
497 /* Page0 : reg0-reg15 */
499 RF_WriteReg(dev, 0x00, 0x009f); mdelay(1);/* 1 */
500 RF_WriteReg(dev, 0x01, 0x06e0); mdelay(1);
501 RF_WriteReg(dev, 0x02, 0x004d); mdelay(1);/* 2 */
502 RF_WriteReg(dev, 0x03, 0x07f1); mdelay(1);/* 3 */
503 RF_WriteReg(dev, 0x04, 0x0975); mdelay(1);
504 RF_WriteReg(dev, 0x05, 0x0c72); mdelay(1);
505 RF_WriteReg(dev, 0x06, 0x0ae6); mdelay(1);
506 RF_WriteReg(dev, 0x07, 0x00ca); mdelay(1);
507 RF_WriteReg(dev, 0x08, 0x0e1c); mdelay(1);
508 RF_WriteReg(dev, 0x09, 0x02f0); mdelay(1);
509 RF_WriteReg(dev, 0x0a, 0x09d0); mdelay(1);
510 RF_WriteReg(dev, 0x0b, 0x01ba); mdelay(1);
511 RF_WriteReg(dev, 0x0c, 0x0640); mdelay(1);
512 RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1);
513 RF_WriteReg(dev, 0x0e, 0x0020); mdelay(1);
514 RF_WriteReg(dev, 0x0f, 0x0990); mdelay(1);
516 /* Page1 : reg16-reg30 */
517 RF_WriteReg(dev, 0x00, 0x013f); mdelay(1);
518 RF_WriteReg(dev, 0x03, 0x0806); mdelay(1);
519 RF_WriteReg(dev, 0x04, 0x03a7); mdelay(1);
520 RF_WriteReg(dev, 0x05, 0x059b); mdelay(1);
521 RF_WriteReg(dev, 0x06, 0x0081); mdelay(1);
522 RF_WriteReg(dev, 0x07, 0x01A0); mdelay(1);
523 /* Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl. */
524 RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
525 RF_WriteReg(dev, 0x0b, 0x0418); mdelay(1);
527 if (d_cut) {
528 RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
529 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
530 RF_WriteReg(dev, 0x0e, 0x0807); mdelay(1); /* RX LO buffer */
531 } else {
532 RF_WriteReg(dev, 0x0c, 0x0fbe); mdelay(1);
533 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1);
534 RF_WriteReg(dev, 0x0e, 0x0806); mdelay(1); /* RX LO buffer */
537 RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
538 RF_WriteReg(dev, 0x00, 0x01d7); mdelay(1); /* 6 */
539 RF_WriteReg(dev, 0x03, 0x0e00); mdelay(1);
540 RF_WriteReg(dev, 0x04, 0x0e50); mdelay(1);
542 for (i = 0; i <= 36; i++) {
543 RF_WriteReg(dev, 0x01, i); mdelay(1);
544 RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
547 RF_WriteReg(dev, 0x05, 0x0203); mdelay(1); /* 203, 343 */
548 RF_WriteReg(dev, 0x06, 0x0200); mdelay(1); /* 400 */
549 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30, and HSSI disable 137 */
550 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
552 RF_WriteReg(dev, 0x0d, 0x0008); mdelay(1); /* Z4 synthesizer loop filter setting, 392 */
553 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
555 RF_WriteReg(dev, 0x00, 0x0037); mdelay(1); /* switch to reg0-reg15, and HSSI disable */
556 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
558 RF_WriteReg(dev, 0x04, 0x0160); mdelay(1); /* CBC on, Tx Rx disable, High gain */
559 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
561 RF_WriteReg(dev, 0x07, 0x0080); mdelay(1); /* Z4 setted channel 1 */
562 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
564 RF_WriteReg(dev, 0x02, 0x088D); mdelay(1); /* LC calibration */
565 mdelay(200); /* Deay 200 ms. */ /* 0xfd */
566 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
567 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
569 RF_WriteReg(dev, 0x00, 0x0137); mdelay(1); /* switch to reg16-reg30 137, and HSSI disable 137 */
570 mdelay(10); /* Deay 10 ms. */ /* 0xfd */
572 RF_WriteReg(dev, 0x07, 0x0000); mdelay(1);
573 RF_WriteReg(dev, 0x07, 0x0180); mdelay(1);
574 RF_WriteReg(dev, 0x07, 0x0220); mdelay(1);
575 RF_WriteReg(dev, 0x07, 0x03E0); mdelay(1);
577 /* DAC calibration off 20070702 */
578 RF_WriteReg(dev, 0x06, 0x00c1); mdelay(1);
579 RF_WriteReg(dev, 0x0a, 0x0001); mdelay(1);
580 /* For crystal calibration, added by Roger, 2007.12.11. */
581 if (priv->bXtalCalibration) { /* reg 30. */
583 * enable crystal calibration.
584 * RF Reg[30], (1)Xin:[12:9], Xout:[8:5], addr[4:0].
585 * (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
586 * (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
587 * So we should minus 4 BITs offset.
589 RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9); mdelay(1);
590 printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
591 (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11 | BIT9);
592 } else {
593 /* using default value. Xin=6, Xout=6. */
594 RF_WriteReg(dev, 0x0f, 0x0acc); mdelay(1);
597 RF_WriteReg(dev, 0x00, 0x00bf); mdelay(1); /* switch to reg0-reg15, and HSSI enable */
598 RF_WriteReg(dev, 0x0d, 0x08df); mdelay(1); /* Rx BB start calibration, 00c//+edward */
599 RF_WriteReg(dev, 0x02, 0x004d); mdelay(1); /* temperature meter off */
600 RF_WriteReg(dev, 0x04, 0x0975); mdelay(1); /* Rx mode */
601 mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
602 mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
603 mdelay(10); /* Deay 10 ms.*/ /* 0xfe */
604 RF_WriteReg(dev, 0x00, 0x0197); mdelay(1); /* Rx mode*/ /*+edward */
605 RF_WriteReg(dev, 0x05, 0x05ab); mdelay(1); /* Rx mode*/ /*+edward */
606 RF_WriteReg(dev, 0x00, 0x009f); mdelay(1); /* Rx mode*/ /*+edward */
607 RF_WriteReg(dev, 0x01, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
608 RF_WriteReg(dev, 0x02, 0x0000); mdelay(1); /* Rx mode*/ /*+edward */
609 /* power save parameters. */
610 u1b24E = read_nic_byte(dev, 0x24E);
611 write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
613 /*=============================================================================
615 *===========================================================================
616 * CCKCONF.TXT
617 *===========================================================================
619 * [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
620 * CCK reg0x00[7]=1'b1 :power saving for TX (default)
621 * CCK reg0x00[6]=1'b1: power saving for RX (default)
622 * CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
623 * CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
624 * CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
627 write_phy_cck(dev, 0x00, 0xc8);
628 write_phy_cck(dev, 0x06, 0x1c);
629 write_phy_cck(dev, 0x10, 0x78);
630 write_phy_cck(dev, 0x2e, 0xd0);
631 write_phy_cck(dev, 0x2f, 0x06);
632 write_phy_cck(dev, 0x01, 0x46);
634 /* power control */
635 write_nic_byte(dev, CCK_TXAGC, 0x10);
636 write_nic_byte(dev, OFDM_TXAGC, 0x1B);
637 write_nic_byte(dev, ANTSEL, 0x03);
642 *===========================================================================
643 * AGC.txt
644 *===========================================================================
647 write_phy_ofdm(dev, 0x00, 0x12);
649 for (i = 0; i < 128; i++) {
651 data = ZEBRA_AGC[i+1];
652 data = data << 8;
653 data = data | 0x0000008F;
655 addr = i + 0x80; /* enable writing AGC table */
656 addr = addr << 8;
657 addr = addr | 0x0000008E;
659 WriteBBPortUchar(dev, data);
660 WriteBBPortUchar(dev, addr);
661 WriteBBPortUchar(dev, 0x0000008E);
664 PlatformIOWrite4Byte(dev, PhyAddr, 0x00001080); /* Annie, 2006-05-05 */
667 *===========================================================================
669 *===========================================================================
670 * OFDMCONF.TXT
671 *===========================================================================
674 for (i = 0; i < 60; i++) {
675 u4bRegOffset = i;
676 u4bRegValue = OFDM_CONFIG[i];
678 WriteBBPortUchar(dev,
679 (0x00000080 |
680 (u4bRegOffset & 0x7f) |
681 ((u4bRegValue & 0xff) << 8)));
685 *===========================================================================
686 * by amy for antenna
687 *===========================================================================
689 /* Config Sw/Hw Combinational Antenna Diversity. Added by Roger, 2008.02.26. */
690 SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
694 void UpdateInitialGain(struct net_device *dev)
696 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
698 /* lzm add 080826 */
699 if (priv->eRFPowerState != eRfOn) {
700 /* Don't access BB/RF under disable PLL situation.
701 * RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
702 * Back to the original state
704 priv->InitialGain = priv->InitialGainBackUp;
705 return;
708 switch (priv->InitialGain) {
709 case 1: /* m861dBm */
710 write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
711 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
712 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
713 break;
715 case 2: /* m862dBm */
716 write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
717 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
718 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
719 break;
721 case 3: /* m863dBm */
722 write_phy_ofdm(dev, 0x17, 0x36); mdelay(1);
723 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
724 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
725 break;
727 case 4: /* m864dBm */
728 write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
729 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
730 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
731 break;
733 case 5: /* m82dBm */
734 write_phy_ofdm(dev, 0x17, 0x46); mdelay(1);
735 write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
736 write_phy_ofdm(dev, 0x05, 0xfb); mdelay(1);
737 break;
739 case 6: /* m78dBm */
740 write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
741 write_phy_ofdm(dev, 0x24, 0x96); mdelay(1);
742 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
743 break;
745 case 7: /* m74dBm */
746 write_phy_ofdm(dev, 0x17, 0x56); mdelay(1);
747 write_phy_ofdm(dev, 0x24, 0xa6); mdelay(1);
748 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
749 break;
751 case 8:
752 write_phy_ofdm(dev, 0x17, 0x66); mdelay(1);
753 write_phy_ofdm(dev, 0x24, 0xb6); mdelay(1);
754 write_phy_ofdm(dev, 0x05, 0xfc); mdelay(1);
755 break;
757 default: /* MP */
758 write_phy_ofdm(dev, 0x17, 0x26); mdelay(1);
759 write_phy_ofdm(dev, 0x24, 0x86); mdelay(1);
760 write_phy_ofdm(dev, 0x05, 0xfa); mdelay(1);
761 break;
765 * Description:
766 * Tx Power tracking mechanism routine on 87SE.
767 * Created by Roger, 2007.12.11.
769 void InitTxPwrTracking87SE(struct net_device *dev)
771 u32 u4bRfReg;
773 u4bRfReg = RF_ReadReg(dev, 0x02);
775 /* Enable Thermal meter indication. */
776 RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN); mdelay(1);
779 void PhyConfig8185(struct net_device *dev)
781 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
782 write_nic_dword(dev, RCR, priv->ReceiveConfig);
783 priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
784 /* RF config */
785 ZEBRA_Config_85BASIC_HardCode(dev);
786 /* Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06. */
787 if (priv->bDigMechanism) {
788 if (priv->InitialGain == 0)
789 priv->InitialGain = 4;
793 * Enable thermal meter indication to implement TxPower tracking on 87SE.
794 * We initialize thermal meter here to avoid unsuccessful configuration.
795 * Added by Roger, 2007.12.11.
797 if (priv->bTxPowerTrack)
798 InitTxPwrTracking87SE(dev);
800 priv->InitialGainBackUp = priv->InitialGain;
801 UpdateInitialGain(dev);
803 return;
806 void HwConfigureRTL8185(struct net_device *dev)
808 /* RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control. */
809 u8 bUNIVERSAL_CONTROL_RL = 0;
810 u8 bUNIVERSAL_CONTROL_AGC = 1;
811 u8 bUNIVERSAL_CONTROL_ANT = 1;
812 u8 bAUTO_RATE_FALLBACK_CTL = 1;
813 u8 val8;
814 write_nic_word(dev, BRSR, 0x0fff);
815 /* Retry limit */
816 val8 = read_nic_byte(dev, CW_CONF);
818 if (bUNIVERSAL_CONTROL_RL)
819 val8 = val8 & 0xfd;
820 else
821 val8 = val8 | 0x02;
823 write_nic_byte(dev, CW_CONF, val8);
825 /* Tx AGC */
826 val8 = read_nic_byte(dev, TXAGC_CTL);
827 if (bUNIVERSAL_CONTROL_AGC) {
828 write_nic_byte(dev, CCK_TXAGC, 128);
829 write_nic_byte(dev, OFDM_TXAGC, 128);
830 val8 = val8 & 0xfe;
831 } else {
832 val8 = val8 | 0x01 ;
836 write_nic_byte(dev, TXAGC_CTL, val8);
838 /* Tx Antenna including Feedback control */
839 val8 = read_nic_byte(dev, TXAGC_CTL);
841 if (bUNIVERSAL_CONTROL_ANT) {
842 write_nic_byte(dev, ANTSEL, 0x00);
843 val8 = val8 & 0xfd;
844 } else {
845 val8 = val8 & (val8|0x02); /* xiong-2006-11-15 */
848 write_nic_byte(dev, TXAGC_CTL, val8);
850 /* Auto Rate fallback control */
851 val8 = read_nic_byte(dev, RATE_FALLBACK);
852 val8 &= 0x7c;
853 if (bAUTO_RATE_FALLBACK_CTL) {
854 val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
856 /* <RJ_TODO_8185B> We shall set up the ARFR according to user's setting. */
857 PlatformIOWrite2Byte(dev, ARFR, 0x0fff); /* set 1M ~ 54Mbps. */
859 write_nic_byte(dev, RATE_FALLBACK, val8);
862 static void MacConfig_85BASIC_HardCode(struct net_device *dev)
865 *==========================================================================
866 * MACREG.TXT
867 *==========================================================================
869 int nLinesRead = 0;
870 u32 u4bRegOffset, u4bRegValue, u4bPageIndex = 0;
871 int i;
873 nLinesRead = sizeof(MAC_REG_TABLE)/2;
875 for (i = 0; i < nLinesRead; i++) { /* nLinesRead=101 */
876 u4bRegOffset = MAC_REG_TABLE[i][0];
877 u4bRegValue = MAC_REG_TABLE[i][1];
879 if (u4bRegOffset == 0x5e)
880 u4bPageIndex = u4bRegValue;
881 else
882 u4bRegOffset |= (u4bPageIndex << 8);
884 write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
886 /* ============================================================================ */
889 static void MacConfig_85BASIC(struct net_device *dev)
892 u8 u1DA;
893 MacConfig_85BASIC_HardCode(dev);
895 /* ============================================================================ */
897 /* Follow TID_AC_MAP of WMac. */
898 write_nic_word(dev, TID_AC_MAP, 0xfa50);
900 /* Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko. */
901 write_nic_word(dev, IntMig, 0x0000);
903 /* Prevent TPC to cause CRC error. Added by Annie, 2006-06-10. */
904 PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
905 PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
906 PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
908 /* Asked for by SD3 CM Lin, 2006.06.27, by rcnjko. */
909 /* power save parameter based on "87SE power save parameters 20071127.doc", as follow. */
911 /* Enable DA10 TX power saving */
912 u1DA = read_nic_byte(dev, PHYPR);
913 write_nic_byte(dev, PHYPR, (u1DA | BIT2));
915 /* POWER: */
916 write_nic_word(dev, 0x360, 0x1000);
917 write_nic_word(dev, 0x362, 0x1000);
919 /* AFE. */
920 write_nic_word(dev, 0x370, 0x0560);
921 write_nic_word(dev, 0x372, 0x0560);
922 write_nic_word(dev, 0x374, 0x0DA4);
923 write_nic_word(dev, 0x376, 0x0DA4);
924 write_nic_word(dev, 0x378, 0x0560);
925 write_nic_word(dev, 0x37A, 0x0560);
926 write_nic_word(dev, 0x37C, 0x00EC);
927 write_nic_word(dev, 0x37E, 0x00EC); /* +edward */
928 write_nic_byte(dev, 0x24E, 0x01);
931 u8 GetSupportedWirelessMode8185(struct net_device *dev)
933 u8 btSupportedWirelessMode = 0;
935 btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
936 return btSupportedWirelessMode;
939 void ActUpdateChannelAccessSetting(struct net_device *dev,
940 WIRELESS_MODE WirelessMode,
941 PCHANNEL_ACCESS_SETTING ChnlAccessSetting)
943 struct r8180_priv *priv = ieee80211_priv(dev);
944 struct ieee80211_device *ieee = priv->ieee80211;
945 AC_CODING eACI;
946 AC_PARAM AcParam;
947 u8 bFollowLegacySetting = 0;
948 u8 u1bAIFS;
951 * <RJ_TODO_8185B>
952 * TODO: We still don't know how to set up these registers, just follow WMAC to
953 * verify 8185B FPAG.
955 * <RJ_TODO_8185B>
956 * Jong said CWmin/CWmax register are not functional in 8185B,
957 * so we shall fill channel access realted register into AC parameter registers,
958 * even in nQBss.
960 ChnlAccessSetting->SIFS_Timer = 0x22; /* Suggested by Jong, 2005.12.08. */
961 ChnlAccessSetting->DIFS_Timer = 0x1C; /* 2006.06.02, by rcnjko. */
962 ChnlAccessSetting->SlotTimeTimer = 9; /* 2006.06.02, by rcnjko. */
963 ChnlAccessSetting->EIFS_Timer = 0x5B; /* Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
964 ChnlAccessSetting->CWminIndex = 3; /* 2006.06.02, by rcnjko. */
965 ChnlAccessSetting->CWmaxIndex = 7; /* 2006.06.02, by rcnjko. */
967 write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
968 write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer); /* Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29. */
970 u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer);
972 write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
974 write_nic_byte(dev, AckTimeOutReg, 0x5B); /* <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08. */
976 { /* Legacy 802.11. */
977 bFollowLegacySetting = 1;
981 /* this setting is copied from rtl8187B. xiong-2006-11-13 */
982 if (bFollowLegacySetting) {
985 * Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
986 * 2005.12.01, by rcnjko.
988 AcParam.longData = 0;
989 AcParam.f.AciAifsn.f.AIFSN = 2; /* Follow 802.11 DIFS. */
990 AcParam.f.AciAifsn.f.ACM = 0;
991 AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; /* Follow 802.11 CWmin. */
992 AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; /* Follow 802.11 CWmax. */
993 AcParam.f.TXOPLimit = 0;
995 /* lzm reserved 080826 */
996 /* For turbo mode setting. port from 87B by Isaiah 2008-08-01 */
997 if (ieee->current_network.Turbo_Enable == 1)
998 AcParam.f.TXOPLimit = 0x01FF;
999 /* For 87SE with Intel 4965 Ad-Hoc mode have poor throughput (19MB) */
1000 if (ieee->iw_mode == IW_MODE_ADHOC)
1001 AcParam.f.TXOPLimit = 0x0020;
1003 for (eACI = 0; eACI < AC_MAX; eACI++) {
1004 AcParam.f.AciAifsn.f.ACI = (u8)eACI;
1006 PAC_PARAM pAcParam = (PAC_PARAM)(&AcParam);
1007 AC_CODING eACI;
1008 u8 u1bAIFS;
1009 u32 u4bAcParam;
1011 /* Retrieve paramters to update. */
1012 eACI = pAcParam->f.AciAifsn.f.ACI;
1013 u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
1014 u4bAcParam = ((((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET) |
1015 (((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET) |
1016 (((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET) |
1017 (((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
1019 switch (eACI) {
1020 case AC1_BK:
1021 /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
1022 break;
1024 case AC0_BE:
1025 /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
1026 break;
1028 case AC2_VI:
1029 /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
1030 break;
1032 case AC3_VO:
1033 /* write_nic_dword(dev, AC_BK_PARAM, u4bAcParam); */
1034 break;
1036 default:
1037 DMESGW("SetHwReg8185(): invalid ACI: %d !\n", eACI);
1038 break;
1041 /* Cehck ACM bit. */
1042 /* If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13. */
1044 PACI_AIFSN pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
1045 AC_CODING eACI = pAciAifsn->f.ACI;
1047 /*for 8187B AsynIORead issue */
1048 u8 AcmCtrl = 0;
1049 if (pAciAifsn->f.ACM) {
1050 /* ACM bit is 1. */
1051 switch (eACI) {
1052 case AC0_BE:
1053 AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN); /* or 0x21 */
1054 break;
1056 case AC2_VI:
1057 AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN); /* or 0x42 */
1058 break;
1060 case AC3_VO:
1061 AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN); /* or 0x84 */
1062 break;
1064 default:
1065 DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI);
1066 break;
1068 } else {
1069 /* ACM bit is 0. */
1070 switch (eACI) {
1071 case AC0_BE:
1072 AcmCtrl &= ((~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xDE */
1073 break;
1075 case AC2_VI:
1076 AcmCtrl &= ((~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0xBD */
1077 break;
1079 case AC3_VO:
1080 AcmCtrl &= ((~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN)); /* and 0x7B */
1081 break;
1083 default:
1084 break;
1087 write_nic_byte(dev, ACM_CONTROL, 0);
1094 void ActSetWirelessMode8185(struct net_device *dev, u8 btWirelessMode)
1096 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1097 struct ieee80211_device *ieee = priv->ieee80211;
1098 u8 btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
1100 if ((btWirelessMode & btSupportedWirelessMode) == 0) {
1101 /* Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko. */
1102 DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
1103 btWirelessMode, btSupportedWirelessMode);
1104 return;
1107 /* 1. Assign wireless mode to switch if necessary. */
1108 if (btWirelessMode == WIRELESS_MODE_AUTO) {
1109 if ((btSupportedWirelessMode & WIRELESS_MODE_A)) {
1110 btWirelessMode = WIRELESS_MODE_A;
1111 } else if (btSupportedWirelessMode & WIRELESS_MODE_G) {
1112 btWirelessMode = WIRELESS_MODE_G;
1114 } else if ((btSupportedWirelessMode & WIRELESS_MODE_B)) {
1115 btWirelessMode = WIRELESS_MODE_B;
1116 } else {
1117 DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
1118 btSupportedWirelessMode);
1119 btWirelessMode = WIRELESS_MODE_B;
1124 * 2. Swtich band: RF or BB specific actions,
1125 * for example, refresh tables in omc8255, or change initial gain if necessary.
1126 * Nothing to do for Zebra to switch band.
1127 * Update current wireless mode if we switch to specified band successfully.
1130 ieee->mode = (WIRELESS_MODE)btWirelessMode;
1132 /* 3. Change related setting. */
1133 if( ieee->mode == WIRELESS_MODE_A ) {
1134 DMESG("WIRELESS_MODE_A\n");
1135 } else if( ieee->mode == WIRELESS_MODE_B ) {
1136 DMESG("WIRELESS_MODE_B\n");
1137 } else if( ieee->mode == WIRELESS_MODE_G ) {
1138 DMESG("WIRELESS_MODE_G\n");
1140 ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
1143 void rtl8185b_irq_enable(struct net_device *dev)
1145 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1147 priv->irq_enabled = 1;
1148 write_nic_dword(dev, IMR, priv->IntrMask);
1151 void DrvIFIndicateDisassociation(struct net_device *dev, u16 reason)
1153 /* nothing is needed after disassociation request. */
1156 void MgntDisconnectIBSS(struct net_device *dev)
1158 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1159 u8 i;
1161 DrvIFIndicateDisassociation(dev, unspec_reason);
1163 for (i = 0; i < 6 ; i++)
1164 priv->ieee80211->current_network.bssid[i] = 0x55;
1168 priv->ieee80211->state = IEEE80211_NOLINK;
1170 * Stop Beacon.
1172 * Vista add a Adhoc profile, HW radio off until OID_DOT11_RESET_REQUEST
1173 * Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
1174 * Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
1176 * Disable Beacon Queue Own bit, suggested by jong
1178 ieee80211_stop_send_beacons(priv->ieee80211);
1180 priv->ieee80211->link_change(dev);
1181 notify_wx_assoc_event(priv->ieee80211);
1184 void MlmeDisassociateRequest(struct net_device *dev, u8 *asSta, u8 asRsn)
1186 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1187 u8 i;
1189 SendDisassociation(priv->ieee80211, asSta, asRsn);
1191 if (memcmp(priv->ieee80211->current_network.bssid, asSta, 6) == 0) {
1192 /* ShuChen TODO: change media status. */
1193 /* ShuChen TODO: What to do when disassociate. */
1194 DrvIFIndicateDisassociation(dev, unspec_reason);
1196 for (i = 0; i < 6; i++)
1197 priv->ieee80211->current_network.bssid[i] = 0x22;
1199 ieee80211_disassociate(priv->ieee80211);
1203 void MgntDisconnectAP(struct net_device *dev, u8 asRsn)
1205 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1208 * Commented out by rcnjko, 2005.01.27:
1209 * I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
1211 * 2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
1213 * In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
1214 * 2004.10.11, by rcnjko.
1216 MlmeDisassociateRequest(dev, priv->ieee80211->current_network.bssid, asRsn);
1218 priv->ieee80211->state = IEEE80211_NOLINK;
1221 bool MgntDisconnect(struct net_device *dev, u8 asRsn)
1223 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1225 * Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
1228 if (IS_DOT11D_ENABLE(priv->ieee80211))
1229 Dot11d_Reset(priv->ieee80211);
1230 /* In adhoc mode, update beacon frame. */
1231 if (priv->ieee80211->state == IEEE80211_LINKED) {
1232 if (priv->ieee80211->iw_mode == IW_MODE_ADHOC)
1233 MgntDisconnectIBSS(dev);
1235 if (priv->ieee80211->iw_mode == IW_MODE_INFRA) {
1237 * We clear key here instead of MgntDisconnectAP() because that
1238 * MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
1239 * e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
1240 * used to handle disassociation related things to AP, e.g. send Disassoc
1241 * frame to AP. 2005.01.27, by rcnjko.
1243 MgntDisconnectAP(dev, asRsn);
1245 /* Indicate Disconnect, 2005.02.23, by rcnjko. */
1247 return true;
1250 * Description:
1251 * Chang RF Power State.
1252 * Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
1254 * Assumption:
1255 * PASSIVE LEVEL.
1257 bool SetRFPowerState(struct net_device *dev, RT_RF_POWER_STATE eRFPowerState)
1259 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1260 bool bResult = false;
1262 if (eRFPowerState == priv->eRFPowerState)
1263 return bResult;
1265 bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
1267 return bResult;
1270 void HalEnableRx8185Dummy(struct net_device *dev)
1274 void HalDisableRx8185Dummy(struct net_device *dev)
1278 bool MgntActSet_RF_State(struct net_device *dev, RT_RF_POWER_STATE StateToSet, u32 ChangeSource)
1280 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1281 bool bActionAllowed = false;
1282 bool bConnectBySSID = false;
1283 RT_RF_POWER_STATE rtState;
1284 u16 RFWaitCounter = 0;
1285 unsigned long flag;
1287 * Prevent the race condition of RF state change. By Bruce, 2007-11-28.
1288 * Only one thread can change the RF state at one time, and others should wait to be executed.
1290 while (true) {
1291 spin_lock_irqsave(&priv->rf_ps_lock, flag);
1292 if (priv->RFChangeInProgress) {
1293 spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
1294 /* Set RF after the previous action is done. */
1295 while (priv->RFChangeInProgress) {
1296 RFWaitCounter++;
1297 udelay(1000); /* 1 ms */
1299 /* Wait too long, return FALSE to avoid to be stuck here. */
1300 if (RFWaitCounter > 1000) { /* 1sec */
1301 printk("MgntActSet_RF_State(): Wait too long to set RF\n");
1302 /* TODO: Reset RF state? */
1303 return false;
1306 } else {
1307 priv->RFChangeInProgress = true;
1308 spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
1309 break;
1312 rtState = priv->eRFPowerState;
1314 switch (StateToSet) {
1315 case eRfOn:
1317 * Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
1318 * the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
1320 priv->RfOffReason &= (~ChangeSource);
1322 if (!priv->RfOffReason) {
1323 priv->RfOffReason = 0;
1324 bActionAllowed = true;
1326 if (rtState == eRfOff && ChangeSource >= RF_CHANGE_BY_HW && !priv->bInHctTest)
1327 bConnectBySSID = true;
1329 } else
1331 break;
1333 case eRfOff:
1334 /* 070125, rcnjko: we always keep connected in AP mode. */
1336 if (priv->RfOffReason > RF_CHANGE_BY_IPS) {
1338 * 060808, Annie:
1339 * Disconnect to current BSS when radio off. Asked by QuanTa.
1341 * Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
1342 * because we do NOT need to set ssid to dummy ones.
1344 MgntDisconnect(dev, disas_lv_ss);
1345 /* Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI. */
1348 priv->RfOffReason |= ChangeSource;
1349 bActionAllowed = true;
1350 break;
1351 case eRfSleep:
1352 priv->RfOffReason |= ChangeSource;
1353 bActionAllowed = true;
1354 break;
1355 default:
1356 break;
1359 if (bActionAllowed) {
1360 /* Config HW to the specified mode. */
1361 SetRFPowerState(dev, StateToSet);
1363 /* Turn on RF. */
1364 if (StateToSet == eRfOn) {
1365 HalEnableRx8185Dummy(dev);
1366 if (bConnectBySSID) {
1367 /* by amy not supported */
1370 /* Turn off RF. */
1371 else if (StateToSet == eRfOff)
1372 HalDisableRx8185Dummy(dev);
1376 /* Release RF spinlock */
1377 spin_lock_irqsave(&priv->rf_ps_lock, flag);
1378 priv->RFChangeInProgress = false;
1379 spin_unlock_irqrestore(&priv->rf_ps_lock, flag);
1380 return bActionAllowed;
1383 void InactivePowerSave(struct net_device *dev)
1385 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1387 * This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
1388 * is really scheduled.
1389 * The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
1390 * previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
1391 * blocks the IPS procedure of switching RF.
1393 priv->bSwRfProcessing = true;
1395 MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
1398 * To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
1401 priv->bSwRfProcessing = false;
1405 * Description:
1406 * Enter the inactive power save mode. RF will be off
1408 void IPSEnter(struct net_device *dev)
1410 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1411 RT_RF_POWER_STATE rtState;
1412 if (priv->bInactivePs) {
1413 rtState = priv->eRFPowerState;
1416 * Do not enter IPS in the following conditions:
1417 * (1) RF is already OFF or Sleep
1418 * (2) bSwRfProcessing (indicates the IPS is still under going)
1419 * (3) Connected (only disconnected can trigger IPS)
1420 * (4) IBSS (send Beacon)
1421 * (5) AP mode (send Beacon)
1423 if (rtState == eRfOn && !priv->bSwRfProcessing
1424 && (priv->ieee80211->state != IEEE80211_LINKED)) {
1425 priv->eInactivePowerState = eRfOff;
1426 InactivePowerSave(dev);
1430 void IPSLeave(struct net_device *dev)
1432 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1433 RT_RF_POWER_STATE rtState;
1434 if (priv->bInactivePs) {
1435 rtState = priv->eRFPowerState;
1436 if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS) {
1437 priv->eInactivePowerState = eRfOn;
1438 InactivePowerSave(dev);
1443 void rtl8185b_adapter_start(struct net_device *dev)
1445 struct r8180_priv *priv = ieee80211_priv(dev);
1446 struct ieee80211_device *ieee = priv->ieee80211;
1448 u8 SupportedWirelessMode;
1449 u8 InitWirelessMode;
1450 u8 bInvalidWirelessMode = 0;
1451 u8 tmpu8;
1452 u8 btCR9346;
1453 u8 TmpU1b;
1454 u8 btPSR;
1456 write_nic_byte(dev, 0x24e, (BIT5|BIT6|BIT0));
1457 rtl8180_reset(dev);
1459 priv->dma_poll_mask = 0;
1460 priv->dma_poll_stop_mask = 0;
1462 HwConfigureRTL8185(dev);
1463 write_nic_dword(dev, MAC0, ((u32 *)dev->dev_addr)[0]);
1464 write_nic_word(dev, MAC4, ((u32 *)dev->dev_addr)[1] & 0xffff);
1465 write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3); /* default network type to 'No Link' */
1466 write_nic_word(dev, BcnItv, 100);
1467 write_nic_word(dev, AtimWnd, 2);
1468 PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
1469 write_nic_byte(dev, WPA_CONFIG, 0);
1470 MacConfig_85BASIC(dev);
1471 /* Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko. */
1472 /* BT_DEMO_BOARD type */
1473 PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
1476 *---------------------------------------------------------------------------
1477 * Set up PHY related.
1478 *---------------------------------------------------------------------------
1480 /* Enable Config3.PARAM_En to revise AnaaParm. */
1481 write_nic_byte(dev, CR9346, 0xc0); /* enable config register write */
1482 tmpu8 = read_nic_byte(dev, CONFIG3);
1483 write_nic_byte(dev, CONFIG3, (tmpu8 | CONFIG3_PARM_En));
1484 /* Turn on Analog power. */
1485 /* Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko. */
1486 write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
1487 write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
1488 write_nic_word(dev, ANAPARAM3, 0x0010);
1490 write_nic_byte(dev, CONFIG3, tmpu8);
1491 write_nic_byte(dev, CR9346, 0x00);
1492 /* enable EEM0 and EEM1 in 9346CR */
1493 btCR9346 = read_nic_byte(dev, CR9346);
1494 write_nic_byte(dev, CR9346, (btCR9346 | 0xC0));
1496 /* B cut use LED1 to control HW RF on/off */
1497 TmpU1b = read_nic_byte(dev, CONFIG5);
1498 TmpU1b = TmpU1b & ~BIT3;
1499 write_nic_byte(dev, CONFIG5, TmpU1b);
1501 /* disable EEM0 and EEM1 in 9346CR */
1502 btCR9346 &= ~(0xC0);
1503 write_nic_byte(dev, CR9346, btCR9346);
1505 /* Enable Led (suggested by Jong) */
1506 /* B-cut RF Radio on/off 5e[3]=0 */
1507 btPSR = read_nic_byte(dev, PSR);
1508 write_nic_byte(dev, PSR, (btPSR | BIT3));
1509 /* setup initial timing for RFE. */
1510 write_nic_word(dev, RFPinsOutput, 0x0480);
1511 SetOutputEnableOfRfPins(dev);
1512 write_nic_word(dev, RFPinsSelect, 0x2488);
1514 /* PHY config. */
1515 PhyConfig8185(dev);
1518 * We assume RegWirelessMode has already been initialized before,
1519 * however, we has to validate the wireless mode here and provide a
1520 * reasonable initialized value if necessary. 2005.01.13, by rcnjko.
1522 SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
1523 if ((ieee->mode != WIRELESS_MODE_B) &&
1524 (ieee->mode != WIRELESS_MODE_G) &&
1525 (ieee->mode != WIRELESS_MODE_A) &&
1526 (ieee->mode != WIRELESS_MODE_AUTO)) {
1527 /* It should be one of B, G, A, or AUTO. */
1528 bInvalidWirelessMode = 1;
1529 } else {
1530 /* One of B, G, A, or AUTO. */
1531 /* Check if the wireless mode is supported by RF. */
1532 if ((ieee->mode != WIRELESS_MODE_AUTO) &&
1533 (ieee->mode & SupportedWirelessMode) == 0) {
1534 bInvalidWirelessMode = 1;
1538 if (bInvalidWirelessMode || ieee->mode == WIRELESS_MODE_AUTO) {
1539 /* Auto or other invalid value. */
1540 /* Assigne a wireless mode to initialize. */
1541 if ((SupportedWirelessMode & WIRELESS_MODE_A)) {
1542 InitWirelessMode = WIRELESS_MODE_A;
1543 } else if ((SupportedWirelessMode & WIRELESS_MODE_G)) {
1544 InitWirelessMode = WIRELESS_MODE_G;
1545 } else if ((SupportedWirelessMode & WIRELESS_MODE_B)) {
1546 InitWirelessMode = WIRELESS_MODE_B;
1547 } else {
1548 DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
1549 SupportedWirelessMode);
1550 InitWirelessMode = WIRELESS_MODE_B;
1553 /* Initialize RegWirelessMode if it is not a valid one. */
1554 if (bInvalidWirelessMode)
1555 ieee->mode = (WIRELESS_MODE)InitWirelessMode;
1557 } else {
1558 /* One of B, G, A. */
1559 InitWirelessMode = ieee->mode;
1561 priv->eRFPowerState = eRfOff;
1562 priv->RfOffReason = 0;
1564 MgntActSet_RF_State(dev, eRfOn, 0);
1567 * If inactive power mode is enabled, disable rf while in disconnected state.
1569 if (priv->bInactivePs)
1570 MgntActSet_RF_State(dev , eRfOff, RF_CHANGE_BY_IPS);
1572 ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
1574 /* ----------------------------------------------------------------------------- */
1576 rtl8185b_irq_enable(dev);
1578 netif_start_queue(dev);
1581 void rtl8185b_rx_enable(struct net_device *dev)
1583 u8 cmd;
1584 /* for now we accept data, management & ctl frame*/
1585 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1588 if (dev->flags & IFF_PROMISC)
1589 DMESG("NIC in promisc mode");
1591 if (priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
1592 dev->flags & IFF_PROMISC) {
1593 priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
1594 priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
1597 if (priv->ieee80211->iw_mode == IW_MODE_MONITOR)
1598 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
1601 if (priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
1602 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
1604 write_nic_dword(dev, RCR, priv->ReceiveConfig);
1606 fix_rx_fifo(dev);
1608 cmd = read_nic_byte(dev, CMD);
1609 write_nic_byte(dev, CMD, cmd | (1<<CMD_RX_ENABLE_SHIFT));
1613 void rtl8185b_tx_enable(struct net_device *dev)
1615 u8 cmd;
1616 u8 byte;
1617 struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1619 write_nic_dword(dev, TCR, priv->TransmitConfig);
1620 byte = read_nic_byte(dev, MSR);
1621 byte |= MSR_LINK_ENEDCA;
1622 write_nic_byte(dev, MSR, byte);
1624 fix_tx_fifo(dev);
1626 cmd = read_nic_byte(dev, CMD);
1627 write_nic_byte(dev, CMD, cmd | (1<<CMD_TX_ENABLE_SHIFT));