serial: xilinx_uartps: fix bad register write in console_write
[linux-2.6-xlnx.git] / drivers / remoteproc / remoteproc_core.c
blob66324ee4678f45984348519813119dc41d71ade9
1 /*
2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/klist.h>
39 #include <linux/elf.h>
40 #include <linux/virtio_ids.h>
41 #include <linux/virtio_ring.h>
42 #include <asm/byteorder.h>
44 #include "remoteproc_internal.h"
46 static void klist_rproc_get(struct klist_node *n);
47 static void klist_rproc_put(struct klist_node *n);
50 * klist of the available remote processors.
52 * We need this in order to support name-based lookups (needed by the
53 * rproc_get_by_name()).
55 * That said, we don't use rproc_get_by_name() at this point.
56 * The use cases that do require its existence should be
57 * scrutinized, and hopefully migrated to rproc_boot() using device-based
58 * binding.
60 * If/when this materializes, we could drop the klist (and the by_name
61 * API).
63 static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
65 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
66 struct resource_table *table, int len);
67 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
70 * This is the IOMMU fault handler we register with the IOMMU API
71 * (when relevant; not all remote processors access memory through
72 * an IOMMU).
74 * IOMMU core will invoke this handler whenever the remote processor
75 * will try to access an unmapped device address.
77 * Currently this is mostly a stub, but it will be later used to trigger
78 * the recovery of the remote processor.
80 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81 unsigned long iova, int flags, void *token)
83 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
86 * Let the iommu core know we're not really handling this fault;
87 * we just plan to use this as a recovery trigger.
89 return -ENOSYS;
92 static int rproc_enable_iommu(struct rproc *rproc)
94 struct iommu_domain *domain;
95 struct device *dev = rproc->dev;
96 int ret;
99 * We currently use iommu_present() to decide if an IOMMU
100 * setup is needed.
102 * This works for simple cases, but will easily fail with
103 * platforms that do have an IOMMU, but not for this specific
104 * rproc.
106 * This will be easily solved by introducing hw capabilities
107 * that will be set by the remoteproc driver.
109 if (!iommu_present(dev->bus)) {
110 dev_dbg(dev, "iommu not found\n");
111 return 0;
114 domain = iommu_domain_alloc(dev->bus);
115 if (!domain) {
116 dev_err(dev, "can't alloc iommu domain\n");
117 return -ENOMEM;
120 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
122 ret = iommu_attach_device(domain, dev);
123 if (ret) {
124 dev_err(dev, "can't attach iommu device: %d\n", ret);
125 goto free_domain;
128 rproc->domain = domain;
130 return 0;
132 free_domain:
133 iommu_domain_free(domain);
134 return ret;
137 static void rproc_disable_iommu(struct rproc *rproc)
139 struct iommu_domain *domain = rproc->domain;
140 struct device *dev = rproc->dev;
142 if (!domain)
143 return;
145 iommu_detach_device(domain, dev);
146 iommu_domain_free(domain);
148 return;
152 * Some remote processors will ask us to allocate them physically contiguous
153 * memory regions (which we call "carveouts"), and map them to specific
154 * device addresses (which are hardcoded in the firmware).
156 * They may then ask us to copy objects into specific device addresses (e.g.
157 * code/data sections) or expose us certain symbols in other device address
158 * (e.g. their trace buffer).
160 * This function is an internal helper with which we can go over the allocated
161 * carveouts and translate specific device address to kernel virtual addresses
162 * so we can access the referenced memory.
164 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
165 * but only on kernel direct mapped RAM memory. Instead, we're just using
166 * here the output of the DMA API, which should be more correct.
168 static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
170 struct rproc_mem_entry *carveout;
171 void *ptr = NULL;
173 list_for_each_entry(carveout, &rproc->carveouts, node) {
174 int offset = da - carveout->da;
176 /* try next carveout if da is too small */
177 if (offset < 0)
178 continue;
180 /* try next carveout if da is too large */
181 if (offset + len > carveout->len)
182 continue;
184 ptr = carveout->va + offset;
186 break;
189 return ptr;
193 * rproc_load_segments() - load firmware segments to memory
194 * @rproc: remote processor which will be booted using these fw segments
195 * @elf_data: the content of the ELF firmware image
196 * @len: firmware size (in bytes)
198 * This function loads the firmware segments to memory, where the remote
199 * processor expects them.
201 * Some remote processors will expect their code and data to be placed
202 * in specific device addresses, and can't have them dynamically assigned.
204 * We currently support only those kind of remote processors, and expect
205 * the program header's paddr member to contain those addresses. We then go
206 * through the physically contiguous "carveout" memory regions which we
207 * allocated (and mapped) earlier on behalf of the remote processor,
208 * and "translate" device address to kernel addresses, so we can copy the
209 * segments where they are expected.
211 * Currently we only support remote processors that required carveout
212 * allocations and got them mapped onto their iommus. Some processors
213 * might be different: they might not have iommus, and would prefer to
214 * directly allocate memory for every segment/resource. This is not yet
215 * supported, though.
217 static int
218 rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
220 struct device *dev = rproc->dev;
221 struct elf32_hdr *ehdr;
222 struct elf32_phdr *phdr;
223 int i, ret = 0;
225 ehdr = (struct elf32_hdr *)elf_data;
226 phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
228 /* go through the available ELF segments */
229 for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
230 u32 da = phdr->p_paddr;
231 u32 memsz = phdr->p_memsz;
232 u32 filesz = phdr->p_filesz;
233 u32 offset = phdr->p_offset;
234 void *ptr;
236 if (phdr->p_type != PT_LOAD)
237 continue;
239 dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
240 phdr->p_type, da, memsz, filesz);
242 if (filesz > memsz) {
243 dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
244 filesz, memsz);
245 ret = -EINVAL;
246 break;
249 if (offset + filesz > len) {
250 dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
251 offset + filesz, len);
252 ret = -EINVAL;
253 break;
256 /* grab the kernel address for this device address */
257 ptr = rproc_da_to_va(rproc, da, memsz);
258 if (!ptr) {
259 dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
260 ret = -EINVAL;
261 break;
264 /* put the segment where the remote processor expects it */
265 if (phdr->p_filesz)
266 memcpy(ptr, elf_data + phdr->p_offset, filesz);
269 * Zero out remaining memory for this segment.
271 * This isn't strictly required since dma_alloc_coherent already
272 * did this for us. albeit harmless, we may consider removing
273 * this.
275 if (memsz > filesz)
276 memset(ptr + filesz, 0, memsz - filesz);
279 return ret;
282 static int
283 __rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
285 struct rproc *rproc = rvdev->rproc;
286 struct device *dev = rproc->dev;
287 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
288 dma_addr_t dma;
289 void *va;
290 int ret, size, notifyid;
292 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
293 i, vring->da, vring->num, vring->align);
295 /* make sure reserved bytes are zeroes */
296 if (vring->reserved) {
297 dev_err(dev, "vring rsc has non zero reserved bytes\n");
298 return -EINVAL;
301 /* verify queue size and vring alignment are sane */
302 if (!vring->num || !vring->align) {
303 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
304 vring->num, vring->align);
305 return -EINVAL;
308 /* actual size of vring (in bytes) */
309 size = PAGE_ALIGN(vring_size(vring->num, vring->align));
311 if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
312 dev_err(dev, "idr_pre_get failed\n");
313 return -ENOMEM;
317 * Allocate non-cacheable memory for the vring. In the future
318 * this call will also configure the IOMMU for us
320 va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
321 if (!va) {
322 dev_err(dev, "dma_alloc_coherent failed\n");
323 return -EINVAL;
326 /* assign an rproc-wide unique index for this vring */
327 /* TODO: assign a notifyid for rvdev updates as well */
328 ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], &notifyid);
329 if (ret) {
330 dev_err(dev, "idr_get_new failed: %d\n", ret);
331 dma_free_coherent(dev, size, va, dma);
332 return ret;
335 /* let the rproc know the da and notifyid of this vring */
336 /* TODO: expose this to remote processor */
337 vring->da = dma;
338 vring->notifyid = notifyid;
340 dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
341 dma, size, notifyid);
343 rvdev->vring[i].len = vring->num;
344 rvdev->vring[i].align = vring->align;
345 rvdev->vring[i].va = va;
346 rvdev->vring[i].dma = dma;
347 rvdev->vring[i].notifyid = notifyid;
348 rvdev->vring[i].rvdev = rvdev;
350 return 0;
353 static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
355 struct rproc *rproc = rvdev->rproc;
357 for (i--; i >= 0; i--) {
358 struct rproc_vring *rvring = &rvdev->vring[i];
359 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
361 dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
362 idr_remove(&rproc->notifyids, rvring->notifyid);
367 * rproc_handle_vdev() - handle a vdev fw resource
368 * @rproc: the remote processor
369 * @rsc: the vring resource descriptor
370 * @avail: size of available data (for sanity checking the image)
372 * This resource entry requests the host to statically register a virtio
373 * device (vdev), and setup everything needed to support it. It contains
374 * everything needed to make it possible: the virtio device id, virtio
375 * device features, vrings information, virtio config space, etc...
377 * Before registering the vdev, the vrings are allocated from non-cacheable
378 * physically contiguous memory. Currently we only support two vrings per
379 * remote processor (temporary limitation). We might also want to consider
380 * doing the vring allocation only later when ->find_vqs() is invoked, and
381 * then release them upon ->del_vqs().
383 * Note: @da is currently not really handled correctly: we dynamically
384 * allocate it using the DMA API, ignoring requested hard coded addresses,
385 * and we don't take care of any required IOMMU programming. This is all
386 * going to be taken care of when the generic iommu-based DMA API will be
387 * merged. Meanwhile, statically-addressed iommu-based firmware images should
388 * use RSC_DEVMEM resource entries to map their required @da to the physical
389 * address of their base CMA region (ouch, hacky!).
391 * Returns 0 on success, or an appropriate error code otherwise
393 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
394 int avail)
396 struct device *dev = rproc->dev;
397 struct rproc_vdev *rvdev;
398 int i, ret;
400 /* make sure resource isn't truncated */
401 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
402 + rsc->config_len > avail) {
403 dev_err(rproc->dev, "vdev rsc is truncated\n");
404 return -EINVAL;
407 /* make sure reserved bytes are zeroes */
408 if (rsc->reserved[0] || rsc->reserved[1]) {
409 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
410 return -EINVAL;
413 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
414 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
416 /* we currently support only two vrings per rvdev */
417 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
418 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
419 return -EINVAL;
422 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
423 if (!rvdev)
424 return -ENOMEM;
426 rvdev->rproc = rproc;
428 /* allocate the vrings */
429 for (i = 0; i < rsc->num_of_vrings; i++) {
430 ret = __rproc_handle_vring(rvdev, rsc, i);
431 if (ret)
432 goto free_vrings;
435 /* remember the device features */
436 rvdev->dfeatures = rsc->dfeatures;
438 list_add_tail(&rvdev->node, &rproc->rvdevs);
440 /* it is now safe to add the virtio device */
441 ret = rproc_add_virtio_dev(rvdev, rsc->id);
442 if (ret)
443 goto free_vrings;
445 return 0;
447 free_vrings:
448 __rproc_free_vrings(rvdev, i);
449 kfree(rvdev);
450 return ret;
454 * rproc_handle_trace() - handle a shared trace buffer resource
455 * @rproc: the remote processor
456 * @rsc: the trace resource descriptor
457 * @avail: size of available data (for sanity checking the image)
459 * In case the remote processor dumps trace logs into memory,
460 * export it via debugfs.
462 * Currently, the 'da' member of @rsc should contain the device address
463 * where the remote processor is dumping the traces. Later we could also
464 * support dynamically allocating this address using the generic
465 * DMA API (but currently there isn't a use case for that).
467 * Returns 0 on success, or an appropriate error code otherwise
469 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
470 int avail)
472 struct rproc_mem_entry *trace;
473 struct device *dev = rproc->dev;
474 void *ptr;
475 char name[15];
477 if (sizeof(*rsc) > avail) {
478 dev_err(rproc->dev, "trace rsc is truncated\n");
479 return -EINVAL;
482 /* make sure reserved bytes are zeroes */
483 if (rsc->reserved) {
484 dev_err(dev, "trace rsc has non zero reserved bytes\n");
485 return -EINVAL;
488 /* what's the kernel address of this resource ? */
489 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
490 if (!ptr) {
491 dev_err(dev, "erroneous trace resource entry\n");
492 return -EINVAL;
495 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
496 if (!trace) {
497 dev_err(dev, "kzalloc trace failed\n");
498 return -ENOMEM;
501 /* set the trace buffer dma properties */
502 trace->len = rsc->len;
503 trace->va = ptr;
505 /* make sure snprintf always null terminates, even if truncating */
506 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
508 /* create the debugfs entry */
509 trace->priv = rproc_create_trace_file(name, rproc, trace);
510 if (!trace->priv) {
511 trace->va = NULL;
512 kfree(trace);
513 return -EINVAL;
516 list_add_tail(&trace->node, &rproc->traces);
518 rproc->num_traces++;
520 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
521 rsc->da, rsc->len);
523 return 0;
527 * rproc_handle_devmem() - handle devmem resource entry
528 * @rproc: remote processor handle
529 * @rsc: the devmem resource entry
530 * @avail: size of available data (for sanity checking the image)
532 * Remote processors commonly need to access certain on-chip peripherals.
534 * Some of these remote processors access memory via an iommu device,
535 * and might require us to configure their iommu before they can access
536 * the on-chip peripherals they need.
538 * This resource entry is a request to map such a peripheral device.
540 * These devmem entries will contain the physical address of the device in
541 * the 'pa' member. If a specific device address is expected, then 'da' will
542 * contain it (currently this is the only use case supported). 'len' will
543 * contain the size of the physical region we need to map.
545 * Currently we just "trust" those devmem entries to contain valid physical
546 * addresses, but this is going to change: we want the implementations to
547 * tell us ranges of physical addresses the firmware is allowed to request,
548 * and not allow firmwares to request access to physical addresses that
549 * are outside those ranges.
551 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
552 int avail)
554 struct rproc_mem_entry *mapping;
555 int ret;
557 /* no point in handling this resource without a valid iommu domain */
558 if (!rproc->domain)
559 return -EINVAL;
561 if (sizeof(*rsc) > avail) {
562 dev_err(rproc->dev, "devmem rsc is truncated\n");
563 return -EINVAL;
566 /* make sure reserved bytes are zeroes */
567 if (rsc->reserved) {
568 dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
569 return -EINVAL;
572 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
573 if (!mapping) {
574 dev_err(rproc->dev, "kzalloc mapping failed\n");
575 return -ENOMEM;
578 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
579 if (ret) {
580 dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
581 goto out;
585 * We'll need this info later when we'll want to unmap everything
586 * (e.g. on shutdown).
588 * We can't trust the remote processor not to change the resource
589 * table, so we must maintain this info independently.
591 mapping->da = rsc->da;
592 mapping->len = rsc->len;
593 list_add_tail(&mapping->node, &rproc->mappings);
595 dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
596 rsc->pa, rsc->da, rsc->len);
598 return 0;
600 out:
601 kfree(mapping);
602 return ret;
606 * rproc_handle_carveout() - handle phys contig memory allocation requests
607 * @rproc: rproc handle
608 * @rsc: the resource entry
609 * @avail: size of available data (for image validation)
611 * This function will handle firmware requests for allocation of physically
612 * contiguous memory regions.
614 * These request entries should come first in the firmware's resource table,
615 * as other firmware entries might request placing other data objects inside
616 * these memory regions (e.g. data/code segments, trace resource entries, ...).
618 * Allocating memory this way helps utilizing the reserved physical memory
619 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
620 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
621 * pressure is important; it may have a substantial impact on performance.
623 static int rproc_handle_carveout(struct rproc *rproc,
624 struct fw_rsc_carveout *rsc, int avail)
626 struct rproc_mem_entry *carveout, *mapping;
627 struct device *dev = rproc->dev;
628 dma_addr_t dma;
629 void *va;
630 int ret;
632 if (sizeof(*rsc) > avail) {
633 dev_err(rproc->dev, "carveout rsc is truncated\n");
634 return -EINVAL;
637 /* make sure reserved bytes are zeroes */
638 if (rsc->reserved) {
639 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
640 return -EINVAL;
643 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
644 rsc->da, rsc->pa, rsc->len, rsc->flags);
646 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
647 if (!mapping) {
648 dev_err(dev, "kzalloc mapping failed\n");
649 return -ENOMEM;
652 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
653 if (!carveout) {
654 dev_err(dev, "kzalloc carveout failed\n");
655 ret = -ENOMEM;
656 goto free_mapping;
659 va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
660 if (!va) {
661 dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
662 ret = -ENOMEM;
663 goto free_carv;
666 dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
669 * Ok, this is non-standard.
671 * Sometimes we can't rely on the generic iommu-based DMA API
672 * to dynamically allocate the device address and then set the IOMMU
673 * tables accordingly, because some remote processors might
674 * _require_ us to use hard coded device addresses that their
675 * firmware was compiled with.
677 * In this case, we must use the IOMMU API directly and map
678 * the memory to the device address as expected by the remote
679 * processor.
681 * Obviously such remote processor devices should not be configured
682 * to use the iommu-based DMA API: we expect 'dma' to contain the
683 * physical address in this case.
685 if (rproc->domain) {
686 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
687 rsc->flags);
688 if (ret) {
689 dev_err(dev, "iommu_map failed: %d\n", ret);
690 goto dma_free;
694 * We'll need this info later when we'll want to unmap
695 * everything (e.g. on shutdown).
697 * We can't trust the remote processor not to change the
698 * resource table, so we must maintain this info independently.
700 mapping->da = rsc->da;
701 mapping->len = rsc->len;
702 list_add_tail(&mapping->node, &rproc->mappings);
704 dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
707 * Some remote processors might need to know the pa
708 * even though they are behind an IOMMU. E.g., OMAP4's
709 * remote M3 processor needs this so it can control
710 * on-chip hardware accelerators that are not behind
711 * the IOMMU, and therefor must know the pa.
713 * Generally we don't want to expose physical addresses
714 * if we don't have to (remote processors are generally
715 * _not_ trusted), so we might want to do this only for
716 * remote processor that _must_ have this (e.g. OMAP4's
717 * dual M3 subsystem).
719 rsc->pa = dma;
722 carveout->va = va;
723 carveout->len = rsc->len;
724 carveout->dma = dma;
725 carveout->da = rsc->da;
727 list_add_tail(&carveout->node, &rproc->carveouts);
729 return 0;
731 dma_free:
732 dma_free_coherent(dev, rsc->len, va, dma);
733 free_carv:
734 kfree(carveout);
735 free_mapping:
736 kfree(mapping);
737 return ret;
741 * A lookup table for resource handlers. The indices are defined in
742 * enum fw_resource_type.
744 static rproc_handle_resource_t rproc_handle_rsc[] = {
745 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
746 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
747 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
748 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
751 /* handle firmware resource entries before booting the remote processor */
752 static int
753 rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
755 struct device *dev = rproc->dev;
756 rproc_handle_resource_t handler;
757 int ret = 0, i;
759 for (i = 0; i < table->num; i++) {
760 int offset = table->offset[i];
761 struct fw_rsc_hdr *hdr = (void *)table + offset;
762 int avail = len - offset - sizeof(*hdr);
763 void *rsc = (void *)hdr + sizeof(*hdr);
765 /* make sure table isn't truncated */
766 if (avail < 0) {
767 dev_err(dev, "rsc table is truncated\n");
768 return -EINVAL;
771 dev_dbg(dev, "rsc: type %d\n", hdr->type);
773 if (hdr->type >= RSC_LAST) {
774 dev_warn(dev, "unsupported resource %d\n", hdr->type);
775 continue;
778 handler = rproc_handle_rsc[hdr->type];
779 if (!handler)
780 continue;
782 ret = handler(rproc, rsc, avail);
783 if (ret)
784 break;
787 return ret;
790 /* handle firmware resource entries while registering the remote processor */
791 static int
792 rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
794 struct device *dev = rproc->dev;
795 int ret = 0, i;
797 for (i = 0; i < table->num; i++) {
798 int offset = table->offset[i];
799 struct fw_rsc_hdr *hdr = (void *)table + offset;
800 int avail = len - offset - sizeof(*hdr);
801 struct fw_rsc_vdev *vrsc;
803 /* make sure table isn't truncated */
804 if (avail < 0) {
805 dev_err(dev, "rsc table is truncated\n");
806 return -EINVAL;
809 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
811 if (hdr->type != RSC_VDEV)
812 continue;
814 vrsc = (struct fw_rsc_vdev *)hdr->data;
816 ret = rproc_handle_vdev(rproc, vrsc, avail);
817 if (ret)
818 break;
821 return ret;
825 * rproc_find_rsc_table() - find the resource table
826 * @rproc: the rproc handle
827 * @elf_data: the content of the ELF firmware image
828 * @len: firmware size (in bytes)
829 * @tablesz: place holder for providing back the table size
831 * This function finds the resource table inside the remote processor's
832 * firmware. It is used both upon the registration of @rproc (in order
833 * to look for and register the supported virito devices), and when the
834 * @rproc is booted.
836 * Returns the pointer to the resource table if it is found, and write its
837 * size into @tablesz. If a valid table isn't found, NULL is returned
838 * (and @tablesz isn't set).
840 static struct resource_table *
841 rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
842 int *tablesz)
844 struct elf32_hdr *ehdr;
845 struct elf32_shdr *shdr;
846 const char *name_table;
847 struct device *dev = rproc->dev;
848 struct resource_table *table = NULL;
849 int i;
851 ehdr = (struct elf32_hdr *)elf_data;
852 shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
853 name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
855 /* look for the resource table and handle it */
856 for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
857 int size = shdr->sh_size;
858 int offset = shdr->sh_offset;
860 if (strcmp(name_table + shdr->sh_name, ".resource_table"))
861 continue;
863 table = (struct resource_table *)(elf_data + offset);
865 /* make sure we have the entire table */
866 if (offset + size > len) {
867 dev_err(dev, "resource table truncated\n");
868 return NULL;
871 /* make sure table has at least the header */
872 if (sizeof(struct resource_table) > size) {
873 dev_err(dev, "header-less resource table\n");
874 return NULL;
877 /* we don't support any version beyond the first */
878 if (table->ver != 1) {
879 dev_err(dev, "unsupported fw ver: %d\n", table->ver);
880 return NULL;
883 /* make sure reserved bytes are zeroes */
884 if (table->reserved[0] || table->reserved[1]) {
885 dev_err(dev, "non zero reserved bytes\n");
886 return NULL;
889 /* make sure the offsets array isn't truncated */
890 if (table->num * sizeof(table->offset[0]) +
891 sizeof(struct resource_table) > size) {
892 dev_err(dev, "resource table incomplete\n");
893 return NULL;
896 *tablesz = shdr->sh_size;
897 break;
900 return table;
904 * rproc_resource_cleanup() - clean up and free all acquired resources
905 * @rproc: rproc handle
907 * This function will free all resources acquired for @rproc, and it
908 * is called whenever @rproc either shuts down or fails to boot.
910 static void rproc_resource_cleanup(struct rproc *rproc)
912 struct rproc_mem_entry *entry, *tmp;
913 struct device *dev = rproc->dev;
915 /* clean up debugfs trace entries */
916 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
917 rproc_remove_trace_file(entry->priv);
918 rproc->num_traces--;
919 list_del(&entry->node);
920 kfree(entry);
923 /* clean up carveout allocations */
924 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
925 dma_free_coherent(dev, entry->len, entry->va, entry->dma);
926 list_del(&entry->node);
927 kfree(entry);
930 /* clean up iommu mapping entries */
931 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
932 size_t unmapped;
934 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
935 if (unmapped != entry->len) {
936 /* nothing much to do besides complaining */
937 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
938 unmapped);
941 list_del(&entry->node);
942 kfree(entry);
946 /* make sure this fw image is sane */
947 static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
949 const char *name = rproc->firmware;
950 struct device *dev = rproc->dev;
951 struct elf32_hdr *ehdr;
952 char class;
954 if (!fw) {
955 dev_err(dev, "failed to load %s\n", name);
956 return -EINVAL;
959 if (fw->size < sizeof(struct elf32_hdr)) {
960 dev_err(dev, "Image is too small\n");
961 return -EINVAL;
964 ehdr = (struct elf32_hdr *)fw->data;
966 /* We only support ELF32 at this point */
967 class = ehdr->e_ident[EI_CLASS];
968 if (class != ELFCLASS32) {
969 dev_err(dev, "Unsupported class: %d\n", class);
970 return -EINVAL;
973 /* We assume the firmware has the same endianess as the host */
974 # ifdef __LITTLE_ENDIAN
975 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
976 # else /* BIG ENDIAN */
977 if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
978 # endif
979 dev_err(dev, "Unsupported firmware endianess\n");
980 return -EINVAL;
983 if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
984 dev_err(dev, "Image is too small\n");
985 return -EINVAL;
988 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
989 dev_err(dev, "Image is corrupted (bad magic)\n");
990 return -EINVAL;
993 if (ehdr->e_phnum == 0) {
994 dev_err(dev, "No loadable segments\n");
995 return -EINVAL;
998 if (ehdr->e_phoff > fw->size) {
999 dev_err(dev, "Firmware size is too small\n");
1000 return -EINVAL;
1003 return 0;
1007 * take a firmware and boot a remote processor with it.
1009 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1011 struct device *dev = rproc->dev;
1012 const char *name = rproc->firmware;
1013 struct elf32_hdr *ehdr;
1014 struct resource_table *table;
1015 int ret, tablesz;
1017 ret = rproc_fw_sanity_check(rproc, fw);
1018 if (ret)
1019 return ret;
1021 ehdr = (struct elf32_hdr *)fw->data;
1023 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1026 * if enabling an IOMMU isn't relevant for this rproc, this is
1027 * just a nop
1029 ret = rproc_enable_iommu(rproc);
1030 if (ret) {
1031 dev_err(dev, "can't enable iommu: %d\n", ret);
1032 return ret;
1036 * The ELF entry point is the rproc's boot addr (though this is not
1037 * a configurable property of all remote processors: some will always
1038 * boot at a specific hardcoded address).
1040 rproc->bootaddr = ehdr->e_entry;
1042 /* look for the resource table */
1043 table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1044 if (!table) {
1045 ret = -EINVAL;
1046 goto clean_up;
1049 /* handle fw resources which are required to boot rproc */
1050 ret = rproc_handle_boot_rsc(rproc, table, tablesz);
1051 if (ret) {
1052 dev_err(dev, "Failed to process resources: %d\n", ret);
1053 goto clean_up;
1056 /* load the ELF segments to memory */
1057 ret = rproc_load_segments(rproc, fw->data, fw->size);
1058 if (ret) {
1059 dev_err(dev, "Failed to load program segments: %d\n", ret);
1060 goto clean_up;
1063 /* power up the remote processor */
1064 ret = rproc->ops->start(rproc);
1065 if (ret) {
1066 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1067 goto clean_up;
1070 rproc->state = RPROC_RUNNING;
1072 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1074 return 0;
1076 clean_up:
1077 rproc_resource_cleanup(rproc);
1078 rproc_disable_iommu(rproc);
1079 return ret;
1083 * take a firmware and look for virtio devices to register.
1085 * Note: this function is called asynchronously upon registration of the
1086 * remote processor (so we must wait until it completes before we try
1087 * to unregister the device. one other option is just to use kref here,
1088 * that might be cleaner).
1090 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
1092 struct rproc *rproc = context;
1093 struct resource_table *table;
1094 int ret, tablesz;
1096 if (rproc_fw_sanity_check(rproc, fw) < 0)
1097 goto out;
1099 /* look for the resource table */
1100 table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
1101 if (!table)
1102 goto out;
1104 /* look for virtio devices and register them */
1105 ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
1106 if (ret)
1107 goto out;
1109 out:
1110 release_firmware(fw);
1111 /* allow rproc_unregister() contexts, if any, to proceed */
1112 complete_all(&rproc->firmware_loading_complete);
1116 * rproc_boot() - boot a remote processor
1117 * @rproc: handle of a remote processor
1119 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1121 * If the remote processor is already powered on, this function immediately
1122 * returns (successfully).
1124 * Returns 0 on success, and an appropriate error value otherwise.
1126 int rproc_boot(struct rproc *rproc)
1128 const struct firmware *firmware_p;
1129 struct device *dev;
1130 int ret;
1132 if (!rproc) {
1133 pr_err("invalid rproc handle\n");
1134 return -EINVAL;
1137 dev = rproc->dev;
1139 ret = mutex_lock_interruptible(&rproc->lock);
1140 if (ret) {
1141 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1142 return ret;
1145 /* loading a firmware is required */
1146 if (!rproc->firmware) {
1147 dev_err(dev, "%s: no firmware to load\n", __func__);
1148 ret = -EINVAL;
1149 goto unlock_mutex;
1152 /* prevent underlying implementation from being removed */
1153 if (!try_module_get(dev->driver->owner)) {
1154 dev_err(dev, "%s: can't get owner\n", __func__);
1155 ret = -EINVAL;
1156 goto unlock_mutex;
1159 /* skip the boot process if rproc is already powered up */
1160 if (atomic_inc_return(&rproc->power) > 1) {
1161 ret = 0;
1162 goto unlock_mutex;
1165 dev_info(dev, "powering up %s\n", rproc->name);
1167 /* load firmware */
1168 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1169 if (ret < 0) {
1170 dev_err(dev, "request_firmware failed: %d\n", ret);
1171 goto downref_rproc;
1174 ret = rproc_fw_boot(rproc, firmware_p);
1176 release_firmware(firmware_p);
1178 downref_rproc:
1179 if (ret) {
1180 module_put(dev->driver->owner);
1181 atomic_dec(&rproc->power);
1183 unlock_mutex:
1184 mutex_unlock(&rproc->lock);
1185 return ret;
1187 EXPORT_SYMBOL(rproc_boot);
1190 * rproc_shutdown() - power off the remote processor
1191 * @rproc: the remote processor
1193 * Power off a remote processor (previously booted with rproc_boot()).
1195 * In case @rproc is still being used by an additional user(s), then
1196 * this function will just decrement the power refcount and exit,
1197 * without really powering off the device.
1199 * Every call to rproc_boot() must (eventually) be accompanied by a call
1200 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1202 * Notes:
1203 * - we're not decrementing the rproc's refcount, only the power refcount.
1204 * which means that the @rproc handle stays valid even after rproc_shutdown()
1205 * returns, and users can still use it with a subsequent rproc_boot(), if
1206 * needed.
1207 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
1208 * because rproc_shutdown() _does not_ decrement the refcount of @rproc.
1209 * To decrement the refcount of @rproc, use rproc_put() (but _only_ if
1210 * you acquired @rproc using rproc_get_by_name()).
1212 void rproc_shutdown(struct rproc *rproc)
1214 struct device *dev = rproc->dev;
1215 int ret;
1217 ret = mutex_lock_interruptible(&rproc->lock);
1218 if (ret) {
1219 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1220 return;
1223 /* if the remote proc is still needed, bail out */
1224 if (!atomic_dec_and_test(&rproc->power))
1225 goto out;
1227 /* power off the remote processor */
1228 ret = rproc->ops->stop(rproc);
1229 if (ret) {
1230 atomic_inc(&rproc->power);
1231 dev_err(dev, "can't stop rproc: %d\n", ret);
1232 goto out;
1235 /* clean up all acquired resources */
1236 rproc_resource_cleanup(rproc);
1238 rproc_disable_iommu(rproc);
1240 rproc->state = RPROC_OFFLINE;
1242 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1244 out:
1245 mutex_unlock(&rproc->lock);
1246 if (!ret)
1247 module_put(dev->driver->owner);
1249 EXPORT_SYMBOL(rproc_shutdown);
1252 * rproc_release() - completely deletes the existence of a remote processor
1253 * @kref: the rproc's kref
1255 * This function should _never_ be called directly.
1257 * The only reasonable location to use it is as an argument when kref_put'ing
1258 * @rproc's refcount.
1260 * This way it will be called when no one holds a valid pointer to this @rproc
1261 * anymore (and obviously after it is removed from the rprocs klist).
1263 * Note: this function is not static because rproc_vdev_release() needs it when
1264 * it decrements @rproc's refcount.
1266 void rproc_release(struct kref *kref)
1268 struct rproc *rproc = container_of(kref, struct rproc, refcount);
1269 struct rproc_vdev *rvdev, *rvtmp;
1271 dev_info(rproc->dev, "removing %s\n", rproc->name);
1273 rproc_delete_debug_dir(rproc);
1275 /* clean up remote vdev entries */
1276 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
1277 __rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
1278 list_del(&rvdev->node);
1282 * At this point no one holds a reference to rproc anymore,
1283 * so we can directly unroll rproc_alloc()
1285 rproc_free(rproc);
1288 /* will be called when an rproc is added to the rprocs klist */
1289 static void klist_rproc_get(struct klist_node *n)
1291 struct rproc *rproc = container_of(n, struct rproc, node);
1293 kref_get(&rproc->refcount);
1296 /* will be called when an rproc is removed from the rprocs klist */
1297 static void klist_rproc_put(struct klist_node *n)
1299 struct rproc *rproc = container_of(n, struct rproc, node);
1301 kref_put(&rproc->refcount, rproc_release);
1304 static struct rproc *next_rproc(struct klist_iter *i)
1306 struct klist_node *n;
1308 n = klist_next(i);
1309 if (!n)
1310 return NULL;
1312 return container_of(n, struct rproc, node);
1316 * rproc_get_by_name() - find a remote processor by name and boot it
1317 * @name: name of the remote processor
1319 * Finds an rproc handle using the remote processor's name, and then
1320 * boot it. If it's already powered on, then just immediately return
1321 * (successfully).
1323 * Returns the rproc handle on success, and NULL on failure.
1325 * This function increments the remote processor's refcount, so always
1326 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1328 * Note: currently this function (and its counterpart rproc_put()) are not
1329 * being used. We need to scrutinize the use cases
1330 * that still need them, and see if we can migrate them to use the non
1331 * name-based boot/shutdown interface.
1333 struct rproc *rproc_get_by_name(const char *name)
1335 struct rproc *rproc;
1336 struct klist_iter i;
1337 int ret;
1339 /* find the remote processor, and upref its refcount */
1340 klist_iter_init(&rprocs, &i);
1341 while ((rproc = next_rproc(&i)) != NULL)
1342 if (!strcmp(rproc->name, name)) {
1343 kref_get(&rproc->refcount);
1344 break;
1346 klist_iter_exit(&i);
1348 /* can't find this rproc ? */
1349 if (!rproc) {
1350 pr_err("can't find remote processor %s\n", name);
1351 return NULL;
1354 ret = rproc_boot(rproc);
1355 if (ret < 0) {
1356 kref_put(&rproc->refcount, rproc_release);
1357 return NULL;
1360 return rproc;
1362 EXPORT_SYMBOL(rproc_get_by_name);
1365 * rproc_put() - decrement the refcount of a remote processor, and shut it down
1366 * @rproc: the remote processor
1368 * This function tries to shutdown @rproc, and it then decrements its
1369 * refcount.
1371 * After this function returns, @rproc may _not_ be used anymore, and its
1372 * handle should be considered invalid.
1374 * This function should be called _iff_ the @rproc handle was grabbed by
1375 * calling rproc_get_by_name().
1377 void rproc_put(struct rproc *rproc)
1379 /* try to power off the remote processor */
1380 rproc_shutdown(rproc);
1382 /* downref rproc's refcount */
1383 kref_put(&rproc->refcount, rproc_release);
1385 EXPORT_SYMBOL(rproc_put);
1388 * rproc_register() - register a remote processor
1389 * @rproc: the remote processor handle to register
1391 * Registers @rproc with the remoteproc framework, after it has been
1392 * allocated with rproc_alloc().
1394 * This is called by the platform-specific rproc implementation, whenever
1395 * a new remote processor device is probed.
1397 * Returns 0 on success and an appropriate error code otherwise.
1399 * Note: this function initiates an asynchronous firmware loading
1400 * context, which will look for virtio devices supported by the rproc's
1401 * firmware.
1403 * If found, those virtio devices will be created and added, so as a result
1404 * of registering this remote processor, additional virtio drivers might be
1405 * probed.
1407 int rproc_register(struct rproc *rproc)
1409 struct device *dev = rproc->dev;
1410 int ret = 0;
1412 /* expose to rproc_get_by_name users */
1413 klist_add_tail(&rproc->node, &rprocs);
1415 dev_info(rproc->dev, "%s is available\n", rproc->name);
1417 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1418 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1420 /* create debugfs entries */
1421 rproc_create_debug_dir(rproc);
1423 /* rproc_unregister() calls must wait until async loader completes */
1424 init_completion(&rproc->firmware_loading_complete);
1427 * We must retrieve early virtio configuration info from
1428 * the firmware (e.g. whether to register a virtio device,
1429 * what virtio features does it support, ...).
1431 * We're initiating an asynchronous firmware loading, so we can
1432 * be built-in kernel code, without hanging the boot process.
1434 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1435 rproc->firmware, dev, GFP_KERNEL,
1436 rproc, rproc_fw_config_virtio);
1437 if (ret < 0) {
1438 dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
1439 complete_all(&rproc->firmware_loading_complete);
1440 klist_remove(&rproc->node);
1443 return ret;
1445 EXPORT_SYMBOL(rproc_register);
1448 * rproc_alloc() - allocate a remote processor handle
1449 * @dev: the underlying device
1450 * @name: name of this remote processor
1451 * @ops: platform-specific handlers (mainly start/stop)
1452 * @firmware: name of firmware file to load
1453 * @len: length of private data needed by the rproc driver (in bytes)
1455 * Allocates a new remote processor handle, but does not register
1456 * it yet.
1458 * This function should be used by rproc implementations during initialization
1459 * of the remote processor.
1461 * After creating an rproc handle using this function, and when ready,
1462 * implementations should then call rproc_register() to complete
1463 * the registration of the remote processor.
1465 * On success the new rproc is returned, and on failure, NULL.
1467 * Note: _never_ directly deallocate @rproc, even if it was not registered
1468 * yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
1470 struct rproc *rproc_alloc(struct device *dev, const char *name,
1471 const struct rproc_ops *ops,
1472 const char *firmware, int len)
1474 struct rproc *rproc;
1476 if (!dev || !name || !ops)
1477 return NULL;
1479 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1480 if (!rproc) {
1481 dev_err(dev, "%s: kzalloc failed\n", __func__);
1482 return NULL;
1485 rproc->dev = dev;
1486 rproc->name = name;
1487 rproc->ops = ops;
1488 rproc->firmware = firmware;
1489 rproc->priv = &rproc[1];
1491 atomic_set(&rproc->power, 0);
1493 kref_init(&rproc->refcount);
1495 mutex_init(&rproc->lock);
1497 idr_init(&rproc->notifyids);
1499 INIT_LIST_HEAD(&rproc->carveouts);
1500 INIT_LIST_HEAD(&rproc->mappings);
1501 INIT_LIST_HEAD(&rproc->traces);
1502 INIT_LIST_HEAD(&rproc->rvdevs);
1504 rproc->state = RPROC_OFFLINE;
1506 return rproc;
1508 EXPORT_SYMBOL(rproc_alloc);
1511 * rproc_free() - free an rproc handle that was allocated by rproc_alloc
1512 * @rproc: the remote processor handle
1514 * This function should _only_ be used if @rproc was only allocated,
1515 * but not registered yet.
1517 * If @rproc was already successfully registered (by calling rproc_register()),
1518 * then use rproc_unregister() instead.
1520 void rproc_free(struct rproc *rproc)
1522 idr_remove_all(&rproc->notifyids);
1523 idr_destroy(&rproc->notifyids);
1525 kfree(rproc);
1527 EXPORT_SYMBOL(rproc_free);
1530 * rproc_unregister() - unregister a remote processor
1531 * @rproc: rproc handle to unregister
1533 * Unregisters a remote processor, and decrements its refcount.
1534 * If its refcount drops to zero, then @rproc will be freed. If not,
1535 * it will be freed later once the last reference is dropped.
1537 * This function should be called when the platform specific rproc
1538 * implementation decides to remove the rproc device. it should
1539 * _only_ be called if a previous invocation of rproc_register()
1540 * has completed successfully.
1542 * After rproc_unregister() returns, @rproc is _not_ valid anymore and
1543 * it shouldn't be used. More specifically, don't call rproc_free()
1544 * or try to directly free @rproc after rproc_unregister() returns;
1545 * none of these are needed, and calling them is a bug.
1547 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1549 int rproc_unregister(struct rproc *rproc)
1551 struct rproc_vdev *rvdev;
1553 if (!rproc)
1554 return -EINVAL;
1556 /* if rproc is just being registered, wait */
1557 wait_for_completion(&rproc->firmware_loading_complete);
1559 /* clean up remote vdev entries */
1560 list_for_each_entry(rvdev, &rproc->rvdevs, node)
1561 rproc_remove_virtio_dev(rvdev);
1563 /* the rproc is downref'ed as soon as it's removed from the klist */
1564 klist_del(&rproc->node);
1566 /* the rproc will only be released after its refcount drops to zero */
1567 kref_put(&rproc->refcount, rproc_release);
1569 return 0;
1571 EXPORT_SYMBOL(rproc_unregister);
1573 static int __init remoteproc_init(void)
1575 rproc_init_debugfs();
1576 return 0;
1578 module_init(remoteproc_init);
1580 static void __exit remoteproc_exit(void)
1582 rproc_exit_debugfs();
1584 module_exit(remoteproc_exit);
1586 MODULE_LICENSE("GPL v2");
1587 MODULE_DESCRIPTION("Generic Remote Processor Framework");