Xilinx: ARM: I2C: SI570: Driver updated for more error checking
[linux-2.6-xlnx.git] / drivers / dma / amba-pl08x.c
blob49ecbbb8932df2ecbc10aa601edd274acc21cf19
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
88 #include "dmaengine.h"
90 #define DRIVER_NAME "pl08xdmac"
92 static struct amba_driver pl08x_amba_driver;
94 /**
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
98 * @nomadik: whether the channels have Nomadik security extension bits
99 * that need to be checked for permission before use and some registers are
100 * missing
102 struct vendor_data {
103 u8 channels;
104 bool dualmaster;
105 bool nomadik;
109 * PL08X private data structures
110 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
111 * start & end do not - their bus bit info is in cctl. Also note that these
112 * are fixed 32-bit quantities.
114 struct pl08x_lli {
115 u32 src;
116 u32 dst;
117 u32 lli;
118 u32 cctl;
122 * struct pl08x_driver_data - the local state holder for the PL08x
123 * @slave: slave engine for this instance
124 * @memcpy: memcpy engine for this instance
125 * @base: virtual memory base (remapped) for the PL08x
126 * @adev: the corresponding AMBA (PrimeCell) bus entry
127 * @vd: vendor data for this PL08x variant
128 * @pd: platform data passed in from the platform/machine
129 * @phy_chans: array of data for the physical channels
130 * @pool: a pool for the LLI descriptors
131 * @pool_ctr: counter of LLIs in the pool
132 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
133 * fetches
134 * @mem_buses: set to indicate memory transfers on AHB2.
135 * @lock: a spinlock for this struct
137 struct pl08x_driver_data {
138 struct dma_device slave;
139 struct dma_device memcpy;
140 void __iomem *base;
141 struct amba_device *adev;
142 const struct vendor_data *vd;
143 struct pl08x_platform_data *pd;
144 struct pl08x_phy_chan *phy_chans;
145 struct dma_pool *pool;
146 int pool_ctr;
147 u8 lli_buses;
148 u8 mem_buses;
149 spinlock_t lock;
153 * PL08X specific defines
156 /* Size (bytes) of each LLI buffer allocated for one transfer */
157 # define PL08X_LLI_TSFR_SIZE 0x2000
159 /* Maximum times we call dma_pool_alloc on this pool without freeing */
160 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
161 #define PL08X_ALIGN 8
163 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
165 return container_of(chan, struct pl08x_dma_chan, chan);
168 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
170 return container_of(tx, struct pl08x_txd, tx);
174 * Physical channel handling
177 /* Whether a certain channel is busy or not */
178 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
180 unsigned int val;
182 val = readl(ch->base + PL080_CH_CONFIG);
183 return val & PL080_CONFIG_ACTIVE;
187 * Set the initial DMA register values i.e. those for the first LLI
188 * The next LLI pointer and the configuration interrupt bit have
189 * been set when the LLIs were constructed. Poke them into the hardware
190 * and start the transfer.
192 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
193 struct pl08x_txd *txd)
195 struct pl08x_driver_data *pl08x = plchan->host;
196 struct pl08x_phy_chan *phychan = plchan->phychan;
197 struct pl08x_lli *lli = &txd->llis_va[0];
198 u32 val;
200 plchan->at = txd;
202 /* Wait for channel inactive */
203 while (pl08x_phy_channel_busy(phychan))
204 cpu_relax();
206 dev_vdbg(&pl08x->adev->dev,
207 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
208 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
209 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
210 txd->ccfg);
212 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
213 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
214 writel(lli->lli, phychan->base + PL080_CH_LLI);
215 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
216 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
218 /* Enable the DMA channel */
219 /* Do not access config register until channel shows as disabled */
220 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
221 cpu_relax();
223 /* Do not access config register until channel shows as inactive */
224 val = readl(phychan->base + PL080_CH_CONFIG);
225 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
226 val = readl(phychan->base + PL080_CH_CONFIG);
228 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
232 * Pause the channel by setting the HALT bit.
234 * For M->P transfers, pause the DMAC first and then stop the peripheral -
235 * the FIFO can only drain if the peripheral is still requesting data.
236 * (note: this can still timeout if the DMAC FIFO never drains of data.)
238 * For P->M transfers, disable the peripheral first to stop it filling
239 * the DMAC FIFO, and then pause the DMAC.
241 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
243 u32 val;
244 int timeout;
246 /* Set the HALT bit and wait for the FIFO to drain */
247 val = readl(ch->base + PL080_CH_CONFIG);
248 val |= PL080_CONFIG_HALT;
249 writel(val, ch->base + PL080_CH_CONFIG);
251 /* Wait for channel inactive */
252 for (timeout = 1000; timeout; timeout--) {
253 if (!pl08x_phy_channel_busy(ch))
254 break;
255 udelay(1);
257 if (pl08x_phy_channel_busy(ch))
258 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
261 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
263 u32 val;
265 /* Clear the HALT bit */
266 val = readl(ch->base + PL080_CH_CONFIG);
267 val &= ~PL080_CONFIG_HALT;
268 writel(val, ch->base + PL080_CH_CONFIG);
272 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
273 * clears any pending interrupt status. This should not be used for
274 * an on-going transfer, but as a method of shutting down a channel
275 * (eg, when it's no longer used) or terminating a transfer.
277 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
278 struct pl08x_phy_chan *ch)
280 u32 val = readl(ch->base + PL080_CH_CONFIG);
282 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
283 PL080_CONFIG_TC_IRQ_MASK);
285 writel(val, ch->base + PL080_CH_CONFIG);
287 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
288 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
291 static inline u32 get_bytes_in_cctl(u32 cctl)
293 /* The source width defines the number of bytes */
294 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
296 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
297 case PL080_WIDTH_8BIT:
298 break;
299 case PL080_WIDTH_16BIT:
300 bytes *= 2;
301 break;
302 case PL080_WIDTH_32BIT:
303 bytes *= 4;
304 break;
306 return bytes;
309 /* The channel should be paused when calling this */
310 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
312 struct pl08x_phy_chan *ch;
313 struct pl08x_txd *txd;
314 unsigned long flags;
315 size_t bytes = 0;
317 spin_lock_irqsave(&plchan->lock, flags);
318 ch = plchan->phychan;
319 txd = plchan->at;
322 * Follow the LLIs to get the number of remaining
323 * bytes in the currently active transaction.
325 if (ch && txd) {
326 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
328 /* First get the remaining bytes in the active transfer */
329 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
331 if (clli) {
332 struct pl08x_lli *llis_va = txd->llis_va;
333 dma_addr_t llis_bus = txd->llis_bus;
334 int index;
336 BUG_ON(clli < llis_bus || clli >= llis_bus +
337 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
340 * Locate the next LLI - as this is an array,
341 * it's simple maths to find.
343 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
345 for (; index < MAX_NUM_TSFR_LLIS; index++) {
346 bytes += get_bytes_in_cctl(llis_va[index].cctl);
349 * A LLI pointer of 0 terminates the LLI list
351 if (!llis_va[index].lli)
352 break;
357 /* Sum up all queued transactions */
358 if (!list_empty(&plchan->pend_list)) {
359 struct pl08x_txd *txdi;
360 list_for_each_entry(txdi, &plchan->pend_list, node) {
361 struct pl08x_sg *dsg;
362 list_for_each_entry(dsg, &txd->dsg_list, node)
363 bytes += dsg->len;
367 spin_unlock_irqrestore(&plchan->lock, flags);
369 return bytes;
373 * Allocate a physical channel for a virtual channel
375 * Try to locate a physical channel to be used for this transfer. If all
376 * are taken return NULL and the requester will have to cope by using
377 * some fallback PIO mode or retrying later.
379 static struct pl08x_phy_chan *
380 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
381 struct pl08x_dma_chan *virt_chan)
383 struct pl08x_phy_chan *ch = NULL;
384 unsigned long flags;
385 int i;
387 for (i = 0; i < pl08x->vd->channels; i++) {
388 ch = &pl08x->phy_chans[i];
390 spin_lock_irqsave(&ch->lock, flags);
392 if (!ch->locked && !ch->serving) {
393 ch->serving = virt_chan;
394 ch->signal = -1;
395 spin_unlock_irqrestore(&ch->lock, flags);
396 break;
399 spin_unlock_irqrestore(&ch->lock, flags);
402 if (i == pl08x->vd->channels) {
403 /* No physical channel available, cope with it */
404 return NULL;
407 pm_runtime_get_sync(&pl08x->adev->dev);
408 return ch;
411 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
412 struct pl08x_phy_chan *ch)
414 unsigned long flags;
416 spin_lock_irqsave(&ch->lock, flags);
418 /* Stop the channel and clear its interrupts */
419 pl08x_terminate_phy_chan(pl08x, ch);
421 pm_runtime_put(&pl08x->adev->dev);
423 /* Mark it as free */
424 ch->serving = NULL;
425 spin_unlock_irqrestore(&ch->lock, flags);
429 * LLI handling
432 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
434 switch (coded) {
435 case PL080_WIDTH_8BIT:
436 return 1;
437 case PL080_WIDTH_16BIT:
438 return 2;
439 case PL080_WIDTH_32BIT:
440 return 4;
441 default:
442 break;
444 BUG();
445 return 0;
448 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 size_t tsize)
451 u32 retbits = cctl;
453 /* Remove all src, dst and transfer size bits */
454 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
458 /* Then set the bits according to the parameters */
459 switch (srcwidth) {
460 case 1:
461 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 case 2:
464 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 break;
466 case 4:
467 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 break;
469 default:
470 BUG();
471 break;
474 switch (dstwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
489 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 return retbits;
493 struct pl08x_lli_build_data {
494 struct pl08x_txd *txd;
495 struct pl08x_bus_data srcbus;
496 struct pl08x_bus_data dstbus;
497 size_t remainder;
498 u32 lli_bus;
502 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
503 * victim in case src & dest are not similarly aligned. i.e. If after aligning
504 * masters address with width requirements of transfer (by sending few byte by
505 * byte data), slave is still not aligned, then its width will be reduced to
506 * BYTE.
507 * - prefers the destination bus if both available
508 * - prefers bus with fixed address (i.e. peripheral)
510 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
511 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
513 if (!(cctl & PL080_CONTROL_DST_INCR)) {
514 *mbus = &bd->dstbus;
515 *sbus = &bd->srcbus;
516 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
517 *mbus = &bd->srcbus;
518 *sbus = &bd->dstbus;
519 } else {
520 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
521 *mbus = &bd->dstbus;
522 *sbus = &bd->srcbus;
523 } else {
524 *mbus = &bd->srcbus;
525 *sbus = &bd->dstbus;
531 * Fills in one LLI for a certain transfer descriptor and advance the counter
533 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
534 int num_llis, int len, u32 cctl)
536 struct pl08x_lli *llis_va = bd->txd->llis_va;
537 dma_addr_t llis_bus = bd->txd->llis_bus;
539 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
541 llis_va[num_llis].cctl = cctl;
542 llis_va[num_llis].src = bd->srcbus.addr;
543 llis_va[num_llis].dst = bd->dstbus.addr;
544 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
545 sizeof(struct pl08x_lli);
546 llis_va[num_llis].lli |= bd->lli_bus;
548 if (cctl & PL080_CONTROL_SRC_INCR)
549 bd->srcbus.addr += len;
550 if (cctl & PL080_CONTROL_DST_INCR)
551 bd->dstbus.addr += len;
553 BUG_ON(bd->remainder < len);
555 bd->remainder -= len;
558 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
559 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
561 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
562 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
563 (*total_bytes) += len;
567 * This fills in the table of LLIs for the transfer descriptor
568 * Note that we assume we never have to change the burst sizes
569 * Return 0 for error
571 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
572 struct pl08x_txd *txd)
574 struct pl08x_bus_data *mbus, *sbus;
575 struct pl08x_lli_build_data bd;
576 int num_llis = 0;
577 u32 cctl, early_bytes = 0;
578 size_t max_bytes_per_lli, total_bytes;
579 struct pl08x_lli *llis_va;
580 struct pl08x_sg *dsg;
582 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
583 if (!txd->llis_va) {
584 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
585 return 0;
588 pl08x->pool_ctr++;
590 bd.txd = txd;
591 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
592 cctl = txd->cctl;
594 /* Find maximum width of the source bus */
595 bd.srcbus.maxwidth =
596 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
597 PL080_CONTROL_SWIDTH_SHIFT);
599 /* Find maximum width of the destination bus */
600 bd.dstbus.maxwidth =
601 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
602 PL080_CONTROL_DWIDTH_SHIFT);
604 list_for_each_entry(dsg, &txd->dsg_list, node) {
605 total_bytes = 0;
606 cctl = txd->cctl;
608 bd.srcbus.addr = dsg->src_addr;
609 bd.dstbus.addr = dsg->dst_addr;
610 bd.remainder = dsg->len;
611 bd.srcbus.buswidth = bd.srcbus.maxwidth;
612 bd.dstbus.buswidth = bd.dstbus.maxwidth;
614 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
616 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
617 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
618 bd.srcbus.buswidth,
619 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
620 bd.dstbus.buswidth,
621 bd.remainder);
622 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
623 mbus == &bd.srcbus ? "src" : "dst",
624 sbus == &bd.srcbus ? "src" : "dst");
627 * Zero length is only allowed if all these requirements are
628 * met:
629 * - flow controller is peripheral.
630 * - src.addr is aligned to src.width
631 * - dst.addr is aligned to dst.width
633 * sg_len == 1 should be true, as there can be two cases here:
635 * - Memory addresses are contiguous and are not scattered.
636 * Here, Only one sg will be passed by user driver, with
637 * memory address and zero length. We pass this to controller
638 * and after the transfer it will receive the last burst
639 * request from peripheral and so transfer finishes.
641 * - Memory addresses are scattered and are not contiguous.
642 * Here, Obviously as DMA controller doesn't know when a lli's
643 * transfer gets over, it can't load next lli. So in this
644 * case, there has to be an assumption that only one lli is
645 * supported. Thus, we can't have scattered addresses.
647 if (!bd.remainder) {
648 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
649 PL080_CONFIG_FLOW_CONTROL_SHIFT;
650 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
651 (fc <= PL080_FLOW_SRC2DST_SRC))) {
652 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
653 __func__);
654 return 0;
657 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
658 (bd.dstbus.addr % bd.dstbus.buswidth)) {
659 dev_err(&pl08x->adev->dev,
660 "%s src & dst address must be aligned to src"
661 " & dst width if peripheral is flow controller",
662 __func__);
663 return 0;
666 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
667 bd.dstbus.buswidth, 0);
668 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
669 break;
673 * Send byte by byte for following cases
674 * - Less than a bus width available
675 * - until master bus is aligned
677 if (bd.remainder < mbus->buswidth)
678 early_bytes = bd.remainder;
679 else if ((mbus->addr) % (mbus->buswidth)) {
680 early_bytes = mbus->buswidth - (mbus->addr) %
681 (mbus->buswidth);
682 if ((bd.remainder - early_bytes) < mbus->buswidth)
683 early_bytes = bd.remainder;
686 if (early_bytes) {
687 dev_vdbg(&pl08x->adev->dev,
688 "%s byte width LLIs (remain 0x%08x)\n",
689 __func__, bd.remainder);
690 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
691 &total_bytes);
694 if (bd.remainder) {
696 * Master now aligned
697 * - if slave is not then we must set its width down
699 if (sbus->addr % sbus->buswidth) {
700 dev_dbg(&pl08x->adev->dev,
701 "%s set down bus width to one byte\n",
702 __func__);
704 sbus->buswidth = 1;
708 * Bytes transferred = tsize * src width, not
709 * MIN(buswidths)
711 max_bytes_per_lli = bd.srcbus.buswidth *
712 PL080_CONTROL_TRANSFER_SIZE_MASK;
713 dev_vdbg(&pl08x->adev->dev,
714 "%s max bytes per lli = %zu\n",
715 __func__, max_bytes_per_lli);
718 * Make largest possible LLIs until less than one bus
719 * width left
721 while (bd.remainder > (mbus->buswidth - 1)) {
722 size_t lli_len, tsize, width;
725 * If enough left try to send max possible,
726 * otherwise try to send the remainder
728 lli_len = min(bd.remainder, max_bytes_per_lli);
731 * Check against maximum bus alignment:
732 * Calculate actual transfer size in relation to
733 * bus width an get a maximum remainder of the
734 * highest bus width - 1
736 width = max(mbus->buswidth, sbus->buswidth);
737 lli_len = (lli_len / width) * width;
738 tsize = lli_len / bd.srcbus.buswidth;
740 dev_vdbg(&pl08x->adev->dev,
741 "%s fill lli with single lli chunk of "
742 "size 0x%08zx (remainder 0x%08zx)\n",
743 __func__, lli_len, bd.remainder);
745 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
746 bd.dstbus.buswidth, tsize);
747 pl08x_fill_lli_for_desc(&bd, num_llis++,
748 lli_len, cctl);
749 total_bytes += lli_len;
753 * Send any odd bytes
755 if (bd.remainder) {
756 dev_vdbg(&pl08x->adev->dev,
757 "%s align with boundary, send odd bytes (remain %zu)\n",
758 __func__, bd.remainder);
759 prep_byte_width_lli(&bd, &cctl, bd.remainder,
760 num_llis++, &total_bytes);
764 if (total_bytes != dsg->len) {
765 dev_err(&pl08x->adev->dev,
766 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
767 __func__, total_bytes, dsg->len);
768 return 0;
771 if (num_llis >= MAX_NUM_TSFR_LLIS) {
772 dev_err(&pl08x->adev->dev,
773 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
774 __func__, (u32) MAX_NUM_TSFR_LLIS);
775 return 0;
779 llis_va = txd->llis_va;
780 /* The final LLI terminates the LLI. */
781 llis_va[num_llis - 1].lli = 0;
782 /* The final LLI element shall also fire an interrupt. */
783 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
785 #ifdef VERBOSE_DEBUG
787 int i;
789 dev_vdbg(&pl08x->adev->dev,
790 "%-3s %-9s %-10s %-10s %-10s %s\n",
791 "lli", "", "csrc", "cdst", "clli", "cctl");
792 for (i = 0; i < num_llis; i++) {
793 dev_vdbg(&pl08x->adev->dev,
794 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
795 i, &llis_va[i], llis_va[i].src,
796 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
800 #endif
802 return num_llis;
805 /* You should call this with the struct pl08x lock held */
806 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
807 struct pl08x_txd *txd)
809 struct pl08x_sg *dsg, *_dsg;
811 /* Free the LLI */
812 if (txd->llis_va)
813 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
815 pl08x->pool_ctr--;
817 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
818 list_del(&dsg->node);
819 kfree(dsg);
822 kfree(txd);
825 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
826 struct pl08x_dma_chan *plchan)
828 struct pl08x_txd *txdi = NULL;
829 struct pl08x_txd *next;
831 if (!list_empty(&plchan->pend_list)) {
832 list_for_each_entry_safe(txdi,
833 next, &plchan->pend_list, node) {
834 list_del(&txdi->node);
835 pl08x_free_txd(pl08x, txdi);
841 * The DMA ENGINE API
843 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
845 return 0;
848 static void pl08x_free_chan_resources(struct dma_chan *chan)
853 * This should be called with the channel plchan->lock held
855 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
856 struct pl08x_txd *txd)
858 struct pl08x_driver_data *pl08x = plchan->host;
859 struct pl08x_phy_chan *ch;
860 int ret;
862 /* Check if we already have a channel */
863 if (plchan->phychan) {
864 ch = plchan->phychan;
865 goto got_channel;
868 ch = pl08x_get_phy_channel(pl08x, plchan);
869 if (!ch) {
870 /* No physical channel available, cope with it */
871 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
872 return -EBUSY;
876 * OK we have a physical channel: for memcpy() this is all we
877 * need, but for slaves the physical signals may be muxed!
878 * Can the platform allow us to use this channel?
880 if (plchan->slave && pl08x->pd->get_signal) {
881 ret = pl08x->pd->get_signal(plchan);
882 if (ret < 0) {
883 dev_dbg(&pl08x->adev->dev,
884 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
885 ch->id, plchan->name);
886 /* Release physical channel & return */
887 pl08x_put_phy_channel(pl08x, ch);
888 return -EBUSY;
890 ch->signal = ret;
893 plchan->phychan = ch;
894 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
895 ch->id,
896 ch->signal,
897 plchan->name);
899 got_channel:
900 /* Assign the flow control signal to this channel */
901 if (txd->direction == DMA_MEM_TO_DEV)
902 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
903 else if (txd->direction == DMA_DEV_TO_MEM)
904 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
906 plchan->phychan_hold++;
908 return 0;
911 static void release_phy_channel(struct pl08x_dma_chan *plchan)
913 struct pl08x_driver_data *pl08x = plchan->host;
915 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
916 pl08x->pd->put_signal(plchan);
917 plchan->phychan->signal = -1;
919 pl08x_put_phy_channel(pl08x, plchan->phychan);
920 plchan->phychan = NULL;
923 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
925 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
926 struct pl08x_txd *txd = to_pl08x_txd(tx);
927 unsigned long flags;
928 dma_cookie_t cookie;
930 spin_lock_irqsave(&plchan->lock, flags);
931 cookie = dma_cookie_assign(tx);
933 /* Put this onto the pending list */
934 list_add_tail(&txd->node, &plchan->pend_list);
937 * If there was no physical channel available for this memcpy,
938 * stack the request up and indicate that the channel is waiting
939 * for a free physical channel.
941 if (!plchan->slave && !plchan->phychan) {
942 /* Do this memcpy whenever there is a channel ready */
943 plchan->state = PL08X_CHAN_WAITING;
944 plchan->waiting = txd;
945 } else {
946 plchan->phychan_hold--;
949 spin_unlock_irqrestore(&plchan->lock, flags);
951 return cookie;
954 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
955 struct dma_chan *chan, unsigned long flags)
957 struct dma_async_tx_descriptor *retval = NULL;
959 return retval;
963 * Code accessing dma_async_is_complete() in a tight loop may give problems.
964 * If slaves are relying on interrupts to signal completion this function
965 * must not be called with interrupts disabled.
967 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
968 dma_cookie_t cookie, struct dma_tx_state *txstate)
970 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
971 enum dma_status ret;
973 ret = dma_cookie_status(chan, cookie, txstate);
974 if (ret == DMA_SUCCESS)
975 return ret;
978 * This cookie not complete yet
979 * Get number of bytes left in the active transactions and queue
981 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
983 if (plchan->state == PL08X_CHAN_PAUSED)
984 return DMA_PAUSED;
986 /* Whether waiting or running, we're in progress */
987 return DMA_IN_PROGRESS;
990 /* PrimeCell DMA extension */
991 struct burst_table {
992 u32 burstwords;
993 u32 reg;
996 static const struct burst_table burst_sizes[] = {
998 .burstwords = 256,
999 .reg = PL080_BSIZE_256,
1002 .burstwords = 128,
1003 .reg = PL080_BSIZE_128,
1006 .burstwords = 64,
1007 .reg = PL080_BSIZE_64,
1010 .burstwords = 32,
1011 .reg = PL080_BSIZE_32,
1014 .burstwords = 16,
1015 .reg = PL080_BSIZE_16,
1018 .burstwords = 8,
1019 .reg = PL080_BSIZE_8,
1022 .burstwords = 4,
1023 .reg = PL080_BSIZE_4,
1026 .burstwords = 0,
1027 .reg = PL080_BSIZE_1,
1032 * Given the source and destination available bus masks, select which
1033 * will be routed to each port. We try to have source and destination
1034 * on separate ports, but always respect the allowable settings.
1036 static u32 pl08x_select_bus(u8 src, u8 dst)
1038 u32 cctl = 0;
1040 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1041 cctl |= PL080_CONTROL_DST_AHB2;
1042 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1043 cctl |= PL080_CONTROL_SRC_AHB2;
1045 return cctl;
1048 static u32 pl08x_cctl(u32 cctl)
1050 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1051 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1052 PL080_CONTROL_PROT_MASK);
1054 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1055 return cctl | PL080_CONTROL_PROT_SYS;
1058 static u32 pl08x_width(enum dma_slave_buswidth width)
1060 switch (width) {
1061 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1062 return PL080_WIDTH_8BIT;
1063 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1064 return PL080_WIDTH_16BIT;
1065 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1066 return PL080_WIDTH_32BIT;
1067 default:
1068 return ~0;
1072 static u32 pl08x_burst(u32 maxburst)
1074 int i;
1076 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1077 if (burst_sizes[i].burstwords <= maxburst)
1078 break;
1080 return burst_sizes[i].reg;
1083 static int dma_set_runtime_config(struct dma_chan *chan,
1084 struct dma_slave_config *config)
1086 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1087 struct pl08x_driver_data *pl08x = plchan->host;
1088 enum dma_slave_buswidth addr_width;
1089 u32 width, burst, maxburst;
1090 u32 cctl = 0;
1092 if (!plchan->slave)
1093 return -EINVAL;
1095 /* Transfer direction */
1096 plchan->runtime_direction = config->direction;
1097 if (config->direction == DMA_MEM_TO_DEV) {
1098 addr_width = config->dst_addr_width;
1099 maxburst = config->dst_maxburst;
1100 } else if (config->direction == DMA_DEV_TO_MEM) {
1101 addr_width = config->src_addr_width;
1102 maxburst = config->src_maxburst;
1103 } else {
1104 dev_err(&pl08x->adev->dev,
1105 "bad runtime_config: alien transfer direction\n");
1106 return -EINVAL;
1109 width = pl08x_width(addr_width);
1110 if (width == ~0) {
1111 dev_err(&pl08x->adev->dev,
1112 "bad runtime_config: alien address width\n");
1113 return -EINVAL;
1116 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1117 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1120 * If this channel will only request single transfers, set this
1121 * down to ONE element. Also select one element if no maxburst
1122 * is specified.
1124 if (plchan->cd->single)
1125 maxburst = 1;
1127 burst = pl08x_burst(maxburst);
1128 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1129 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1131 plchan->device_fc = config->device_fc;
1133 if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1134 plchan->src_addr = config->src_addr;
1135 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1136 pl08x_select_bus(plchan->cd->periph_buses,
1137 pl08x->mem_buses);
1138 } else {
1139 plchan->dst_addr = config->dst_addr;
1140 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1141 pl08x_select_bus(pl08x->mem_buses,
1142 plchan->cd->periph_buses);
1145 dev_dbg(&pl08x->adev->dev,
1146 "configured channel %s (%s) for %s, data width %d, "
1147 "maxburst %d words, LE, CCTL=0x%08x\n",
1148 dma_chan_name(chan), plchan->name,
1149 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1150 addr_width,
1151 maxburst,
1152 cctl);
1154 return 0;
1158 * Slave transactions callback to the slave device to allow
1159 * synchronization of slave DMA signals with the DMAC enable
1161 static void pl08x_issue_pending(struct dma_chan *chan)
1163 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1164 unsigned long flags;
1166 spin_lock_irqsave(&plchan->lock, flags);
1167 /* Something is already active, or we're waiting for a channel... */
1168 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1169 spin_unlock_irqrestore(&plchan->lock, flags);
1170 return;
1173 /* Take the first element in the queue and execute it */
1174 if (!list_empty(&plchan->pend_list)) {
1175 struct pl08x_txd *next;
1177 next = list_first_entry(&plchan->pend_list,
1178 struct pl08x_txd,
1179 node);
1180 list_del(&next->node);
1181 plchan->state = PL08X_CHAN_RUNNING;
1183 pl08x_start_txd(plchan, next);
1186 spin_unlock_irqrestore(&plchan->lock, flags);
1189 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1190 struct pl08x_txd *txd)
1192 struct pl08x_driver_data *pl08x = plchan->host;
1193 unsigned long flags;
1194 int num_llis, ret;
1196 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1197 if (!num_llis) {
1198 spin_lock_irqsave(&plchan->lock, flags);
1199 pl08x_free_txd(pl08x, txd);
1200 spin_unlock_irqrestore(&plchan->lock, flags);
1201 return -EINVAL;
1204 spin_lock_irqsave(&plchan->lock, flags);
1207 * See if we already have a physical channel allocated,
1208 * else this is the time to try to get one.
1210 ret = prep_phy_channel(plchan, txd);
1211 if (ret) {
1213 * No physical channel was available.
1215 * memcpy transfers can be sorted out at submission time.
1217 * Slave transfers may have been denied due to platform
1218 * channel muxing restrictions. Since there is no guarantee
1219 * that this will ever be resolved, and the signal must be
1220 * acquired AFTER acquiring the physical channel, we will let
1221 * them be NACK:ed with -EBUSY here. The drivers can retry
1222 * the prep() call if they are eager on doing this using DMA.
1224 if (plchan->slave) {
1225 pl08x_free_txd_list(pl08x, plchan);
1226 pl08x_free_txd(pl08x, txd);
1227 spin_unlock_irqrestore(&plchan->lock, flags);
1228 return -EBUSY;
1230 } else
1232 * Else we're all set, paused and ready to roll, status
1233 * will switch to PL08X_CHAN_RUNNING when we call
1234 * issue_pending(). If there is something running on the
1235 * channel already we don't change its state.
1237 if (plchan->state == PL08X_CHAN_IDLE)
1238 plchan->state = PL08X_CHAN_PAUSED;
1240 spin_unlock_irqrestore(&plchan->lock, flags);
1242 return 0;
1245 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1246 unsigned long flags)
1248 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1250 if (txd) {
1251 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1252 txd->tx.flags = flags;
1253 txd->tx.tx_submit = pl08x_tx_submit;
1254 INIT_LIST_HEAD(&txd->node);
1255 INIT_LIST_HEAD(&txd->dsg_list);
1257 /* Always enable error and terminal interrupts */
1258 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1259 PL080_CONFIG_TC_IRQ_MASK;
1261 return txd;
1265 * Initialize a descriptor to be used by memcpy submit
1267 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1268 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1269 size_t len, unsigned long flags)
1271 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1272 struct pl08x_driver_data *pl08x = plchan->host;
1273 struct pl08x_txd *txd;
1274 struct pl08x_sg *dsg;
1275 int ret;
1277 txd = pl08x_get_txd(plchan, flags);
1278 if (!txd) {
1279 dev_err(&pl08x->adev->dev,
1280 "%s no memory for descriptor\n", __func__);
1281 return NULL;
1284 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1285 if (!dsg) {
1286 pl08x_free_txd(pl08x, txd);
1287 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1288 __func__);
1289 return NULL;
1291 list_add_tail(&dsg->node, &txd->dsg_list);
1293 txd->direction = DMA_NONE;
1294 dsg->src_addr = src;
1295 dsg->dst_addr = dest;
1296 dsg->len = len;
1298 /* Set platform data for m2m */
1299 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1300 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1301 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1303 /* Both to be incremented or the code will break */
1304 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1306 if (pl08x->vd->dualmaster)
1307 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1308 pl08x->mem_buses);
1310 ret = pl08x_prep_channel_resources(plchan, txd);
1311 if (ret)
1312 return NULL;
1314 return &txd->tx;
1317 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1318 struct dma_chan *chan, struct scatterlist *sgl,
1319 unsigned int sg_len, enum dma_transfer_direction direction,
1320 unsigned long flags, void *context)
1322 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1323 struct pl08x_driver_data *pl08x = plchan->host;
1324 struct pl08x_txd *txd;
1325 struct pl08x_sg *dsg;
1326 struct scatterlist *sg;
1327 dma_addr_t slave_addr;
1328 int ret, tmp;
1330 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1331 __func__, sg_dma_len(sgl), plchan->name);
1333 txd = pl08x_get_txd(plchan, flags);
1334 if (!txd) {
1335 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1336 return NULL;
1339 if (direction != plchan->runtime_direction)
1340 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1341 "the direction configured for the PrimeCell\n",
1342 __func__);
1345 * Set up addresses, the PrimeCell configured address
1346 * will take precedence since this may configure the
1347 * channel target address dynamically at runtime.
1349 txd->direction = direction;
1351 if (direction == DMA_MEM_TO_DEV) {
1352 txd->cctl = plchan->dst_cctl;
1353 slave_addr = plchan->dst_addr;
1354 } else if (direction == DMA_DEV_TO_MEM) {
1355 txd->cctl = plchan->src_cctl;
1356 slave_addr = plchan->src_addr;
1357 } else {
1358 pl08x_free_txd(pl08x, txd);
1359 dev_err(&pl08x->adev->dev,
1360 "%s direction unsupported\n", __func__);
1361 return NULL;
1364 if (plchan->device_fc)
1365 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1366 PL080_FLOW_PER2MEM_PER;
1367 else
1368 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1369 PL080_FLOW_PER2MEM;
1371 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1373 for_each_sg(sgl, sg, sg_len, tmp) {
1374 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1375 if (!dsg) {
1376 pl08x_free_txd(pl08x, txd);
1377 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1378 __func__);
1379 return NULL;
1381 list_add_tail(&dsg->node, &txd->dsg_list);
1383 dsg->len = sg_dma_len(sg);
1384 if (direction == DMA_MEM_TO_DEV) {
1385 dsg->src_addr = sg_dma_address(sg);
1386 dsg->dst_addr = slave_addr;
1387 } else {
1388 dsg->src_addr = slave_addr;
1389 dsg->dst_addr = sg_dma_address(sg);
1393 ret = pl08x_prep_channel_resources(plchan, txd);
1394 if (ret)
1395 return NULL;
1397 return &txd->tx;
1400 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1401 unsigned long arg)
1403 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1404 struct pl08x_driver_data *pl08x = plchan->host;
1405 unsigned long flags;
1406 int ret = 0;
1408 /* Controls applicable to inactive channels */
1409 if (cmd == DMA_SLAVE_CONFIG) {
1410 return dma_set_runtime_config(chan,
1411 (struct dma_slave_config *)arg);
1415 * Anything succeeds on channels with no physical allocation and
1416 * no queued transfers.
1418 spin_lock_irqsave(&plchan->lock, flags);
1419 if (!plchan->phychan && !plchan->at) {
1420 spin_unlock_irqrestore(&plchan->lock, flags);
1421 return 0;
1424 switch (cmd) {
1425 case DMA_TERMINATE_ALL:
1426 plchan->state = PL08X_CHAN_IDLE;
1428 if (plchan->phychan) {
1429 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1432 * Mark physical channel as free and free any slave
1433 * signal
1435 release_phy_channel(plchan);
1436 plchan->phychan_hold = 0;
1438 /* Dequeue jobs and free LLIs */
1439 if (plchan->at) {
1440 pl08x_free_txd(pl08x, plchan->at);
1441 plchan->at = NULL;
1443 /* Dequeue jobs not yet fired as well */
1444 pl08x_free_txd_list(pl08x, plchan);
1445 break;
1446 case DMA_PAUSE:
1447 pl08x_pause_phy_chan(plchan->phychan);
1448 plchan->state = PL08X_CHAN_PAUSED;
1449 break;
1450 case DMA_RESUME:
1451 pl08x_resume_phy_chan(plchan->phychan);
1452 plchan->state = PL08X_CHAN_RUNNING;
1453 break;
1454 default:
1455 /* Unknown command */
1456 ret = -ENXIO;
1457 break;
1460 spin_unlock_irqrestore(&plchan->lock, flags);
1462 return ret;
1465 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1467 struct pl08x_dma_chan *plchan;
1468 char *name = chan_id;
1470 /* Reject channels for devices not bound to this driver */
1471 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1472 return false;
1474 plchan = to_pl08x_chan(chan);
1476 /* Check that the channel is not taken! */
1477 if (!strcmp(plchan->name, name))
1478 return true;
1480 return false;
1484 * Just check that the device is there and active
1485 * TODO: turn this bit on/off depending on the number of physical channels
1486 * actually used, if it is zero... well shut it off. That will save some
1487 * power. Cut the clock at the same time.
1489 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1491 /* The Nomadik variant does not have the config register */
1492 if (pl08x->vd->nomadik)
1493 return;
1494 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1497 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1499 struct device *dev = txd->tx.chan->device->dev;
1500 struct pl08x_sg *dsg;
1502 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1503 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1504 list_for_each_entry(dsg, &txd->dsg_list, node)
1505 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1506 DMA_TO_DEVICE);
1507 else {
1508 list_for_each_entry(dsg, &txd->dsg_list, node)
1509 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1510 DMA_TO_DEVICE);
1513 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1514 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1515 list_for_each_entry(dsg, &txd->dsg_list, node)
1516 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1517 DMA_FROM_DEVICE);
1518 else
1519 list_for_each_entry(dsg, &txd->dsg_list, node)
1520 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1521 DMA_FROM_DEVICE);
1525 static void pl08x_tasklet(unsigned long data)
1527 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1528 struct pl08x_driver_data *pl08x = plchan->host;
1529 struct pl08x_txd *txd;
1530 unsigned long flags;
1532 spin_lock_irqsave(&plchan->lock, flags);
1534 txd = plchan->at;
1535 plchan->at = NULL;
1537 if (txd) {
1538 /* Update last completed */
1539 dma_cookie_complete(&txd->tx);
1542 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1543 if (!list_empty(&plchan->pend_list)) {
1544 struct pl08x_txd *next;
1546 next = list_first_entry(&plchan->pend_list,
1547 struct pl08x_txd,
1548 node);
1549 list_del(&next->node);
1551 pl08x_start_txd(plchan, next);
1552 } else if (plchan->phychan_hold) {
1554 * This channel is still in use - we have a new txd being
1555 * prepared and will soon be queued. Don't give up the
1556 * physical channel.
1558 } else {
1559 struct pl08x_dma_chan *waiting = NULL;
1562 * No more jobs, so free up the physical channel
1563 * Free any allocated signal on slave transfers too
1565 release_phy_channel(plchan);
1566 plchan->state = PL08X_CHAN_IDLE;
1569 * And NOW before anyone else can grab that free:d up
1570 * physical channel, see if there is some memcpy pending
1571 * that seriously needs to start because of being stacked
1572 * up while we were choking the physical channels with data.
1574 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1575 chan.device_node) {
1576 if (waiting->state == PL08X_CHAN_WAITING &&
1577 waiting->waiting != NULL) {
1578 int ret;
1580 /* This should REALLY not fail now */
1581 ret = prep_phy_channel(waiting,
1582 waiting->waiting);
1583 BUG_ON(ret);
1584 waiting->phychan_hold--;
1585 waiting->state = PL08X_CHAN_RUNNING;
1586 waiting->waiting = NULL;
1587 pl08x_issue_pending(&waiting->chan);
1588 break;
1593 spin_unlock_irqrestore(&plchan->lock, flags);
1595 if (txd) {
1596 dma_async_tx_callback callback = txd->tx.callback;
1597 void *callback_param = txd->tx.callback_param;
1599 /* Don't try to unmap buffers on slave channels */
1600 if (!plchan->slave)
1601 pl08x_unmap_buffers(txd);
1603 /* Free the descriptor */
1604 spin_lock_irqsave(&plchan->lock, flags);
1605 pl08x_free_txd(pl08x, txd);
1606 spin_unlock_irqrestore(&plchan->lock, flags);
1608 /* Callback to signal completion */
1609 if (callback)
1610 callback(callback_param);
1614 static irqreturn_t pl08x_irq(int irq, void *dev)
1616 struct pl08x_driver_data *pl08x = dev;
1617 u32 mask = 0, err, tc, i;
1619 /* check & clear - ERR & TC interrupts */
1620 err = readl(pl08x->base + PL080_ERR_STATUS);
1621 if (err) {
1622 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1623 __func__, err);
1624 writel(err, pl08x->base + PL080_ERR_CLEAR);
1626 tc = readl(pl08x->base + PL080_TC_STATUS);
1627 if (tc)
1628 writel(tc, pl08x->base + PL080_TC_CLEAR);
1630 if (!err && !tc)
1631 return IRQ_NONE;
1633 for (i = 0; i < pl08x->vd->channels; i++) {
1634 if (((1 << i) & err) || ((1 << i) & tc)) {
1635 /* Locate physical channel */
1636 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1637 struct pl08x_dma_chan *plchan = phychan->serving;
1639 if (!plchan) {
1640 dev_err(&pl08x->adev->dev,
1641 "%s Error TC interrupt on unused channel: 0x%08x\n",
1642 __func__, i);
1643 continue;
1646 /* Schedule tasklet on this channel */
1647 tasklet_schedule(&plchan->tasklet);
1648 mask |= (1 << i);
1652 return mask ? IRQ_HANDLED : IRQ_NONE;
1655 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1657 u32 cctl = pl08x_cctl(chan->cd->cctl);
1659 chan->slave = true;
1660 chan->name = chan->cd->bus_id;
1661 chan->src_addr = chan->cd->addr;
1662 chan->dst_addr = chan->cd->addr;
1663 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1664 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1665 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1666 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1670 * Initialise the DMAC memcpy/slave channels.
1671 * Make a local wrapper to hold required data
1673 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1674 struct dma_device *dmadev, unsigned int channels, bool slave)
1676 struct pl08x_dma_chan *chan;
1677 int i;
1679 INIT_LIST_HEAD(&dmadev->channels);
1682 * Register as many many memcpy as we have physical channels,
1683 * we won't always be able to use all but the code will have
1684 * to cope with that situation.
1686 for (i = 0; i < channels; i++) {
1687 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1688 if (!chan) {
1689 dev_err(&pl08x->adev->dev,
1690 "%s no memory for channel\n", __func__);
1691 return -ENOMEM;
1694 chan->host = pl08x;
1695 chan->state = PL08X_CHAN_IDLE;
1697 if (slave) {
1698 chan->cd = &pl08x->pd->slave_channels[i];
1699 pl08x_dma_slave_init(chan);
1700 } else {
1701 chan->cd = &pl08x->pd->memcpy_channel;
1702 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1703 if (!chan->name) {
1704 kfree(chan);
1705 return -ENOMEM;
1708 if (chan->cd->circular_buffer) {
1709 dev_err(&pl08x->adev->dev,
1710 "channel %s: circular buffers not supported\n",
1711 chan->name);
1712 kfree(chan);
1713 continue;
1715 dev_dbg(&pl08x->adev->dev,
1716 "initialize virtual channel \"%s\"\n",
1717 chan->name);
1719 chan->chan.device = dmadev;
1720 dma_cookie_init(&chan->chan);
1722 spin_lock_init(&chan->lock);
1723 INIT_LIST_HEAD(&chan->pend_list);
1724 tasklet_init(&chan->tasklet, pl08x_tasklet,
1725 (unsigned long) chan);
1727 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1729 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1730 i, slave ? "slave" : "memcpy");
1731 return i;
1734 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1736 struct pl08x_dma_chan *chan = NULL;
1737 struct pl08x_dma_chan *next;
1739 list_for_each_entry_safe(chan,
1740 next, &dmadev->channels, chan.device_node) {
1741 list_del(&chan->chan.device_node);
1742 kfree(chan);
1746 #ifdef CONFIG_DEBUG_FS
1747 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1749 switch (state) {
1750 case PL08X_CHAN_IDLE:
1751 return "idle";
1752 case PL08X_CHAN_RUNNING:
1753 return "running";
1754 case PL08X_CHAN_PAUSED:
1755 return "paused";
1756 case PL08X_CHAN_WAITING:
1757 return "waiting";
1758 default:
1759 break;
1761 return "UNKNOWN STATE";
1764 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1766 struct pl08x_driver_data *pl08x = s->private;
1767 struct pl08x_dma_chan *chan;
1768 struct pl08x_phy_chan *ch;
1769 unsigned long flags;
1770 int i;
1772 seq_printf(s, "PL08x physical channels:\n");
1773 seq_printf(s, "CHANNEL:\tUSER:\n");
1774 seq_printf(s, "--------\t-----\n");
1775 for (i = 0; i < pl08x->vd->channels; i++) {
1776 struct pl08x_dma_chan *virt_chan;
1778 ch = &pl08x->phy_chans[i];
1780 spin_lock_irqsave(&ch->lock, flags);
1781 virt_chan = ch->serving;
1783 seq_printf(s, "%d\t\t%s%s\n",
1784 ch->id,
1785 virt_chan ? virt_chan->name : "(none)",
1786 ch->locked ? " LOCKED" : "");
1788 spin_unlock_irqrestore(&ch->lock, flags);
1791 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1792 seq_printf(s, "CHANNEL:\tSTATE:\n");
1793 seq_printf(s, "--------\t------\n");
1794 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1795 seq_printf(s, "%s\t\t%s\n", chan->name,
1796 pl08x_state_str(chan->state));
1799 seq_printf(s, "\nPL08x virtual slave channels:\n");
1800 seq_printf(s, "CHANNEL:\tSTATE:\n");
1801 seq_printf(s, "--------\t------\n");
1802 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1803 seq_printf(s, "%s\t\t%s\n", chan->name,
1804 pl08x_state_str(chan->state));
1807 return 0;
1810 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1812 return single_open(file, pl08x_debugfs_show, inode->i_private);
1815 static const struct file_operations pl08x_debugfs_operations = {
1816 .open = pl08x_debugfs_open,
1817 .read = seq_read,
1818 .llseek = seq_lseek,
1819 .release = single_release,
1822 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1824 /* Expose a simple debugfs interface to view all clocks */
1825 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1826 S_IFREG | S_IRUGO, NULL, pl08x,
1827 &pl08x_debugfs_operations);
1830 #else
1831 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1834 #endif
1836 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1838 struct pl08x_driver_data *pl08x;
1839 const struct vendor_data *vd = id->data;
1840 int ret = 0;
1841 int i;
1843 ret = amba_request_regions(adev, NULL);
1844 if (ret)
1845 return ret;
1847 /* Create the driver state holder */
1848 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1849 if (!pl08x) {
1850 ret = -ENOMEM;
1851 goto out_no_pl08x;
1854 pm_runtime_set_active(&adev->dev);
1855 pm_runtime_enable(&adev->dev);
1857 /* Initialize memcpy engine */
1858 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1859 pl08x->memcpy.dev = &adev->dev;
1860 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1861 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1862 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1863 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1864 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1865 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1866 pl08x->memcpy.device_control = pl08x_control;
1868 /* Initialize slave engine */
1869 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1870 pl08x->slave.dev = &adev->dev;
1871 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1873 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1874 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1875 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1876 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1877 pl08x->slave.device_control = pl08x_control;
1879 /* Get the platform data */
1880 pl08x->pd = dev_get_platdata(&adev->dev);
1881 if (!pl08x->pd) {
1882 dev_err(&adev->dev, "no platform data supplied\n");
1883 goto out_no_platdata;
1886 /* Assign useful pointers to the driver state */
1887 pl08x->adev = adev;
1888 pl08x->vd = vd;
1890 /* By default, AHB1 only. If dualmaster, from platform */
1891 pl08x->lli_buses = PL08X_AHB1;
1892 pl08x->mem_buses = PL08X_AHB1;
1893 if (pl08x->vd->dualmaster) {
1894 pl08x->lli_buses = pl08x->pd->lli_buses;
1895 pl08x->mem_buses = pl08x->pd->mem_buses;
1898 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1899 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1900 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1901 if (!pl08x->pool) {
1902 ret = -ENOMEM;
1903 goto out_no_lli_pool;
1906 spin_lock_init(&pl08x->lock);
1908 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1909 if (!pl08x->base) {
1910 ret = -ENOMEM;
1911 goto out_no_ioremap;
1914 /* Turn on the PL08x */
1915 pl08x_ensure_on(pl08x);
1917 /* Attach the interrupt handler */
1918 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1919 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1921 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1922 DRIVER_NAME, pl08x);
1923 if (ret) {
1924 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1925 __func__, adev->irq[0]);
1926 goto out_no_irq;
1929 /* Initialize physical channels */
1930 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1931 GFP_KERNEL);
1932 if (!pl08x->phy_chans) {
1933 dev_err(&adev->dev, "%s failed to allocate "
1934 "physical channel holders\n",
1935 __func__);
1936 goto out_no_phychans;
1939 for (i = 0; i < vd->channels; i++) {
1940 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1942 ch->id = i;
1943 ch->base = pl08x->base + PL080_Cx_BASE(i);
1944 spin_lock_init(&ch->lock);
1945 ch->signal = -1;
1948 * Nomadik variants can have channels that are locked
1949 * down for the secure world only. Lock up these channels
1950 * by perpetually serving a dummy virtual channel.
1952 if (vd->nomadik) {
1953 u32 val;
1955 val = readl(ch->base + PL080_CH_CONFIG);
1956 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1957 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1958 ch->locked = true;
1962 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1963 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1966 /* Register as many memcpy channels as there are physical channels */
1967 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1968 pl08x->vd->channels, false);
1969 if (ret <= 0) {
1970 dev_warn(&pl08x->adev->dev,
1971 "%s failed to enumerate memcpy channels - %d\n",
1972 __func__, ret);
1973 goto out_no_memcpy;
1975 pl08x->memcpy.chancnt = ret;
1977 /* Register slave channels */
1978 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1979 pl08x->pd->num_slave_channels, true);
1980 if (ret <= 0) {
1981 dev_warn(&pl08x->adev->dev,
1982 "%s failed to enumerate slave channels - %d\n",
1983 __func__, ret);
1984 goto out_no_slave;
1986 pl08x->slave.chancnt = ret;
1988 ret = dma_async_device_register(&pl08x->memcpy);
1989 if (ret) {
1990 dev_warn(&pl08x->adev->dev,
1991 "%s failed to register memcpy as an async device - %d\n",
1992 __func__, ret);
1993 goto out_no_memcpy_reg;
1996 ret = dma_async_device_register(&pl08x->slave);
1997 if (ret) {
1998 dev_warn(&pl08x->adev->dev,
1999 "%s failed to register slave as an async device - %d\n",
2000 __func__, ret);
2001 goto out_no_slave_reg;
2004 amba_set_drvdata(adev, pl08x);
2005 init_pl08x_debugfs(pl08x);
2006 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2007 amba_part(adev), amba_rev(adev),
2008 (unsigned long long)adev->res.start, adev->irq[0]);
2010 pm_runtime_put(&adev->dev);
2011 return 0;
2013 out_no_slave_reg:
2014 dma_async_device_unregister(&pl08x->memcpy);
2015 out_no_memcpy_reg:
2016 pl08x_free_virtual_channels(&pl08x->slave);
2017 out_no_slave:
2018 pl08x_free_virtual_channels(&pl08x->memcpy);
2019 out_no_memcpy:
2020 kfree(pl08x->phy_chans);
2021 out_no_phychans:
2022 free_irq(adev->irq[0], pl08x);
2023 out_no_irq:
2024 iounmap(pl08x->base);
2025 out_no_ioremap:
2026 dma_pool_destroy(pl08x->pool);
2027 out_no_lli_pool:
2028 out_no_platdata:
2029 pm_runtime_put(&adev->dev);
2030 pm_runtime_disable(&adev->dev);
2032 kfree(pl08x);
2033 out_no_pl08x:
2034 amba_release_regions(adev);
2035 return ret;
2038 /* PL080 has 8 channels and the PL080 have just 2 */
2039 static struct vendor_data vendor_pl080 = {
2040 .channels = 8,
2041 .dualmaster = true,
2044 static struct vendor_data vendor_nomadik = {
2045 .channels = 8,
2046 .dualmaster = true,
2047 .nomadik = true,
2050 static struct vendor_data vendor_pl081 = {
2051 .channels = 2,
2052 .dualmaster = false,
2055 static struct amba_id pl08x_ids[] = {
2056 /* PL080 */
2058 .id = 0x00041080,
2059 .mask = 0x000fffff,
2060 .data = &vendor_pl080,
2062 /* PL081 */
2064 .id = 0x00041081,
2065 .mask = 0x000fffff,
2066 .data = &vendor_pl081,
2068 /* Nomadik 8815 PL080 variant */
2070 .id = 0x00280080,
2071 .mask = 0x00ffffff,
2072 .data = &vendor_nomadik,
2074 { 0, 0 },
2077 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2079 static struct amba_driver pl08x_amba_driver = {
2080 .drv.name = DRIVER_NAME,
2081 .id_table = pl08x_ids,
2082 .probe = pl08x_probe,
2085 static int __init pl08x_init(void)
2087 int retval;
2088 retval = amba_driver_register(&pl08x_amba_driver);
2089 if (retval)
2090 printk(KERN_WARNING DRIVER_NAME
2091 "failed to register as an AMBA device (%d)\n",
2092 retval);
2093 return retval;
2095 subsys_initcall(pl08x_init);