[ARM] pxa: introduce pxa{25x,27x,300,320,930}.h for board usage
[linux-2.6-xlnx.git] / drivers / net / gianfar.c
blobacae2d8cd688f879dbc56dbfebf46b1369a8f4f5
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
84 #include <asm/io.h>
85 #include <asm/irq.h>
86 #include <asm/uaccess.h>
87 #include <linux/module.h>
88 #include <linux/dma-mapping.h>
89 #include <linux/crc32.h>
90 #include <linux/mii.h>
91 #include <linux/phy.h>
92 #include <linux/phy_fixed.h>
93 #include <linux/of.h>
95 #include "gianfar.h"
96 #include "gianfar_mii.h"
98 #define TX_TIMEOUT (1*HZ)
99 #undef BRIEF_GFAR_ERRORS
100 #undef VERBOSE_GFAR_ERRORS
102 const char gfar_driver_name[] = "Gianfar Ethernet";
103 const char gfar_driver_version[] = "1.3";
105 static int gfar_enet_open(struct net_device *dev);
106 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
107 static void gfar_reset_task(struct work_struct *work);
108 static void gfar_timeout(struct net_device *dev);
109 static int gfar_close(struct net_device *dev);
110 struct sk_buff *gfar_new_skb(struct net_device *dev);
111 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
112 struct sk_buff *skb);
113 static int gfar_set_mac_address(struct net_device *dev);
114 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
115 static irqreturn_t gfar_error(int irq, void *dev_id);
116 static irqreturn_t gfar_transmit(int irq, void *dev_id);
117 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
118 static void adjust_link(struct net_device *dev);
119 static void init_registers(struct net_device *dev);
120 static int init_phy(struct net_device *dev);
121 static int gfar_probe(struct of_device *ofdev,
122 const struct of_device_id *match);
123 static int gfar_remove(struct of_device *ofdev);
124 static void free_skb_resources(struct gfar_private *priv);
125 static void gfar_set_multi(struct net_device *dev);
126 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
127 static void gfar_configure_serdes(struct net_device *dev);
128 static int gfar_poll(struct napi_struct *napi, int budget);
129 #ifdef CONFIG_NET_POLL_CONTROLLER
130 static void gfar_netpoll(struct net_device *dev);
131 #endif
132 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
133 static int gfar_clean_tx_ring(struct net_device *dev);
134 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
135 int amount_pull);
136 static void gfar_vlan_rx_register(struct net_device *netdev,
137 struct vlan_group *grp);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 extern const struct ethtool_ops gfar_ethtool_ops;
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 /* Returns 1 if incoming frames use an FCB */
151 static inline int gfar_uses_fcb(struct gfar_private *priv)
153 return priv->vlgrp || priv->rx_csum_enable;
156 static int gfar_of_init(struct net_device *dev)
158 struct device_node *phy, *mdio;
159 const unsigned int *id;
160 const char *model;
161 const char *ctype;
162 const void *mac_addr;
163 const phandle *ph;
164 u64 addr, size;
165 int err = 0;
166 struct gfar_private *priv = netdev_priv(dev);
167 struct device_node *np = priv->node;
168 char bus_name[MII_BUS_ID_SIZE];
170 if (!np || !of_device_is_available(np))
171 return -ENODEV;
173 /* get a pointer to the register memory */
174 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
175 priv->regs = ioremap(addr, size);
177 if (priv->regs == NULL)
178 return -ENOMEM;
180 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
182 model = of_get_property(np, "model", NULL);
184 /* If we aren't the FEC we have multiple interrupts */
185 if (model && strcasecmp(model, "FEC")) {
186 priv->interruptReceive = irq_of_parse_and_map(np, 1);
188 priv->interruptError = irq_of_parse_and_map(np, 2);
190 if (priv->interruptTransmit < 0 ||
191 priv->interruptReceive < 0 ||
192 priv->interruptError < 0) {
193 err = -EINVAL;
194 goto err_out;
198 mac_addr = of_get_mac_address(np);
199 if (mac_addr)
200 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
202 if (model && !strcasecmp(model, "TSEC"))
203 priv->device_flags =
204 FSL_GIANFAR_DEV_HAS_GIGABIT |
205 FSL_GIANFAR_DEV_HAS_COALESCE |
206 FSL_GIANFAR_DEV_HAS_RMON |
207 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
208 if (model && !strcasecmp(model, "eTSEC"))
209 priv->device_flags =
210 FSL_GIANFAR_DEV_HAS_GIGABIT |
211 FSL_GIANFAR_DEV_HAS_COALESCE |
212 FSL_GIANFAR_DEV_HAS_RMON |
213 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
214 FSL_GIANFAR_DEV_HAS_PADDING |
215 FSL_GIANFAR_DEV_HAS_CSUM |
216 FSL_GIANFAR_DEV_HAS_VLAN |
217 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
218 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
220 ctype = of_get_property(np, "phy-connection-type", NULL);
222 /* We only care about rgmii-id. The rest are autodetected */
223 if (ctype && !strcmp(ctype, "rgmii-id"))
224 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
225 else
226 priv->interface = PHY_INTERFACE_MODE_MII;
228 if (of_get_property(np, "fsl,magic-packet", NULL))
229 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
231 ph = of_get_property(np, "phy-handle", NULL);
232 if (ph == NULL) {
233 u32 *fixed_link;
235 fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
236 if (!fixed_link) {
237 err = -ENODEV;
238 goto err_out;
241 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id),
242 PHY_ID_FMT, "0", fixed_link[0]);
243 } else {
244 phy = of_find_node_by_phandle(*ph);
246 if (phy == NULL) {
247 err = -ENODEV;
248 goto err_out;
251 mdio = of_get_parent(phy);
253 id = of_get_property(phy, "reg", NULL);
255 of_node_put(phy);
256 of_node_put(mdio);
258 gfar_mdio_bus_name(bus_name, mdio);
259 snprintf(priv->phy_bus_id, sizeof(priv->phy_bus_id), "%s:%02x",
260 bus_name, *id);
263 /* Find the TBI PHY. If it's not there, we don't support SGMII */
264 ph = of_get_property(np, "tbi-handle", NULL);
265 if (ph) {
266 struct device_node *tbi = of_find_node_by_phandle(*ph);
267 struct of_device *ofdev;
268 struct mii_bus *bus;
270 if (!tbi)
271 return 0;
273 mdio = of_get_parent(tbi);
274 if (!mdio)
275 return 0;
277 ofdev = of_find_device_by_node(mdio);
279 of_node_put(mdio);
281 id = of_get_property(tbi, "reg", NULL);
282 if (!id)
283 return 0;
285 of_node_put(tbi);
287 bus = dev_get_drvdata(&ofdev->dev);
289 priv->tbiphy = bus->phy_map[*id];
292 return 0;
294 err_out:
295 iounmap(priv->regs);
296 return err;
299 /* Ioctl MII Interface */
300 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
302 struct gfar_private *priv = netdev_priv(dev);
304 if (!netif_running(dev))
305 return -EINVAL;
307 if (!priv->phydev)
308 return -ENODEV;
310 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
313 /* Set up the ethernet device structure, private data,
314 * and anything else we need before we start */
315 static int gfar_probe(struct of_device *ofdev,
316 const struct of_device_id *match)
318 u32 tempval;
319 struct net_device *dev = NULL;
320 struct gfar_private *priv = NULL;
321 DECLARE_MAC_BUF(mac);
322 int err = 0;
323 int len_devname;
325 /* Create an ethernet device instance */
326 dev = alloc_etherdev(sizeof (*priv));
328 if (NULL == dev)
329 return -ENOMEM;
331 priv = netdev_priv(dev);
332 priv->dev = dev;
333 priv->node = ofdev->node;
335 err = gfar_of_init(dev);
337 if (err)
338 goto regs_fail;
340 spin_lock_init(&priv->txlock);
341 spin_lock_init(&priv->rxlock);
342 spin_lock_init(&priv->bflock);
343 INIT_WORK(&priv->reset_task, gfar_reset_task);
345 dev_set_drvdata(&ofdev->dev, priv);
347 /* Stop the DMA engine now, in case it was running before */
348 /* (The firmware could have used it, and left it running). */
349 gfar_halt(dev);
351 /* Reset MAC layer */
352 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
354 /* We need to delay at least 3 TX clocks */
355 udelay(2);
357 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
358 gfar_write(&priv->regs->maccfg1, tempval);
360 /* Initialize MACCFG2. */
361 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
363 /* Initialize ECNTRL */
364 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
366 /* Set the dev->base_addr to the gfar reg region */
367 dev->base_addr = (unsigned long) (priv->regs);
369 SET_NETDEV_DEV(dev, &ofdev->dev);
371 /* Fill in the dev structure */
372 dev->open = gfar_enet_open;
373 dev->hard_start_xmit = gfar_start_xmit;
374 dev->tx_timeout = gfar_timeout;
375 dev->watchdog_timeo = TX_TIMEOUT;
376 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
377 #ifdef CONFIG_NET_POLL_CONTROLLER
378 dev->poll_controller = gfar_netpoll;
379 #endif
380 dev->stop = gfar_close;
381 dev->change_mtu = gfar_change_mtu;
382 dev->mtu = 1500;
383 dev->set_multicast_list = gfar_set_multi;
385 dev->ethtool_ops = &gfar_ethtool_ops;
386 dev->do_ioctl = gfar_ioctl;
388 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
389 priv->rx_csum_enable = 1;
390 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
391 } else
392 priv->rx_csum_enable = 0;
394 priv->vlgrp = NULL;
396 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
397 dev->vlan_rx_register = gfar_vlan_rx_register;
399 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
402 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
403 priv->extended_hash = 1;
404 priv->hash_width = 9;
406 priv->hash_regs[0] = &priv->regs->igaddr0;
407 priv->hash_regs[1] = &priv->regs->igaddr1;
408 priv->hash_regs[2] = &priv->regs->igaddr2;
409 priv->hash_regs[3] = &priv->regs->igaddr3;
410 priv->hash_regs[4] = &priv->regs->igaddr4;
411 priv->hash_regs[5] = &priv->regs->igaddr5;
412 priv->hash_regs[6] = &priv->regs->igaddr6;
413 priv->hash_regs[7] = &priv->regs->igaddr7;
414 priv->hash_regs[8] = &priv->regs->gaddr0;
415 priv->hash_regs[9] = &priv->regs->gaddr1;
416 priv->hash_regs[10] = &priv->regs->gaddr2;
417 priv->hash_regs[11] = &priv->regs->gaddr3;
418 priv->hash_regs[12] = &priv->regs->gaddr4;
419 priv->hash_regs[13] = &priv->regs->gaddr5;
420 priv->hash_regs[14] = &priv->regs->gaddr6;
421 priv->hash_regs[15] = &priv->regs->gaddr7;
423 } else {
424 priv->extended_hash = 0;
425 priv->hash_width = 8;
427 priv->hash_regs[0] = &priv->regs->gaddr0;
428 priv->hash_regs[1] = &priv->regs->gaddr1;
429 priv->hash_regs[2] = &priv->regs->gaddr2;
430 priv->hash_regs[3] = &priv->regs->gaddr3;
431 priv->hash_regs[4] = &priv->regs->gaddr4;
432 priv->hash_regs[5] = &priv->regs->gaddr5;
433 priv->hash_regs[6] = &priv->regs->gaddr6;
434 priv->hash_regs[7] = &priv->regs->gaddr7;
437 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
438 priv->padding = DEFAULT_PADDING;
439 else
440 priv->padding = 0;
442 if (dev->features & NETIF_F_IP_CSUM)
443 dev->hard_header_len += GMAC_FCB_LEN;
445 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
446 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
447 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
448 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
450 priv->txcoalescing = DEFAULT_TX_COALESCE;
451 priv->txic = DEFAULT_TXIC;
452 priv->rxcoalescing = DEFAULT_RX_COALESCE;
453 priv->rxic = DEFAULT_RXIC;
455 /* Enable most messages by default */
456 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
458 /* Carrier starts down, phylib will bring it up */
459 netif_carrier_off(dev);
461 err = register_netdev(dev);
463 if (err) {
464 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
465 dev->name);
466 goto register_fail;
469 /* fill out IRQ number and name fields */
470 len_devname = strlen(dev->name);
471 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
472 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
473 strncpy(&priv->int_name_tx[len_devname],
474 "_tx", sizeof("_tx") + 1);
476 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
477 strncpy(&priv->int_name_rx[len_devname],
478 "_rx", sizeof("_rx") + 1);
480 strncpy(&priv->int_name_er[0], dev->name, len_devname);
481 strncpy(&priv->int_name_er[len_devname],
482 "_er", sizeof("_er") + 1);
483 } else
484 priv->int_name_tx[len_devname] = '\0';
486 /* Create all the sysfs files */
487 gfar_init_sysfs(dev);
489 /* Print out the device info */
490 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
492 /* Even more device info helps when determining which kernel */
493 /* provided which set of benchmarks. */
494 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
495 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
496 dev->name, priv->rx_ring_size, priv->tx_ring_size);
498 return 0;
500 register_fail:
501 iounmap(priv->regs);
502 regs_fail:
503 free_netdev(dev);
504 return err;
507 static int gfar_remove(struct of_device *ofdev)
509 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
511 dev_set_drvdata(&ofdev->dev, NULL);
513 iounmap(priv->regs);
514 free_netdev(priv->dev);
516 return 0;
519 #ifdef CONFIG_PM
520 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
522 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
523 struct net_device *dev = priv->dev;
524 unsigned long flags;
525 u32 tempval;
527 int magic_packet = priv->wol_en &&
528 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
530 netif_device_detach(dev);
532 if (netif_running(dev)) {
533 spin_lock_irqsave(&priv->txlock, flags);
534 spin_lock(&priv->rxlock);
536 gfar_halt_nodisable(dev);
538 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
539 tempval = gfar_read(&priv->regs->maccfg1);
541 tempval &= ~MACCFG1_TX_EN;
543 if (!magic_packet)
544 tempval &= ~MACCFG1_RX_EN;
546 gfar_write(&priv->regs->maccfg1, tempval);
548 spin_unlock(&priv->rxlock);
549 spin_unlock_irqrestore(&priv->txlock, flags);
551 napi_disable(&priv->napi);
553 if (magic_packet) {
554 /* Enable interrupt on Magic Packet */
555 gfar_write(&priv->regs->imask, IMASK_MAG);
557 /* Enable Magic Packet mode */
558 tempval = gfar_read(&priv->regs->maccfg2);
559 tempval |= MACCFG2_MPEN;
560 gfar_write(&priv->regs->maccfg2, tempval);
561 } else {
562 phy_stop(priv->phydev);
566 return 0;
569 static int gfar_resume(struct of_device *ofdev)
571 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
572 struct net_device *dev = priv->dev;
573 unsigned long flags;
574 u32 tempval;
575 int magic_packet = priv->wol_en &&
576 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
578 if (!netif_running(dev)) {
579 netif_device_attach(dev);
580 return 0;
583 if (!magic_packet && priv->phydev)
584 phy_start(priv->phydev);
586 /* Disable Magic Packet mode, in case something
587 * else woke us up.
590 spin_lock_irqsave(&priv->txlock, flags);
591 spin_lock(&priv->rxlock);
593 tempval = gfar_read(&priv->regs->maccfg2);
594 tempval &= ~MACCFG2_MPEN;
595 gfar_write(&priv->regs->maccfg2, tempval);
597 gfar_start(dev);
599 spin_unlock(&priv->rxlock);
600 spin_unlock_irqrestore(&priv->txlock, flags);
602 netif_device_attach(dev);
604 napi_enable(&priv->napi);
606 return 0;
608 #else
609 #define gfar_suspend NULL
610 #define gfar_resume NULL
611 #endif
613 /* Reads the controller's registers to determine what interface
614 * connects it to the PHY.
616 static phy_interface_t gfar_get_interface(struct net_device *dev)
618 struct gfar_private *priv = netdev_priv(dev);
619 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
621 if (ecntrl & ECNTRL_SGMII_MODE)
622 return PHY_INTERFACE_MODE_SGMII;
624 if (ecntrl & ECNTRL_TBI_MODE) {
625 if (ecntrl & ECNTRL_REDUCED_MODE)
626 return PHY_INTERFACE_MODE_RTBI;
627 else
628 return PHY_INTERFACE_MODE_TBI;
631 if (ecntrl & ECNTRL_REDUCED_MODE) {
632 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
633 return PHY_INTERFACE_MODE_RMII;
634 else {
635 phy_interface_t interface = priv->interface;
638 * This isn't autodetected right now, so it must
639 * be set by the device tree or platform code.
641 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
642 return PHY_INTERFACE_MODE_RGMII_ID;
644 return PHY_INTERFACE_MODE_RGMII;
648 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
649 return PHY_INTERFACE_MODE_GMII;
651 return PHY_INTERFACE_MODE_MII;
655 /* Initializes driver's PHY state, and attaches to the PHY.
656 * Returns 0 on success.
658 static int init_phy(struct net_device *dev)
660 struct gfar_private *priv = netdev_priv(dev);
661 uint gigabit_support =
662 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
663 SUPPORTED_1000baseT_Full : 0;
664 struct phy_device *phydev;
665 phy_interface_t interface;
667 priv->oldlink = 0;
668 priv->oldspeed = 0;
669 priv->oldduplex = -1;
671 interface = gfar_get_interface(dev);
673 phydev = phy_connect(dev, priv->phy_bus_id, &adjust_link, 0, interface);
675 if (interface == PHY_INTERFACE_MODE_SGMII)
676 gfar_configure_serdes(dev);
678 if (IS_ERR(phydev)) {
679 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
680 return PTR_ERR(phydev);
683 /* Remove any features not supported by the controller */
684 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
685 phydev->advertising = phydev->supported;
687 priv->phydev = phydev;
689 return 0;
693 * Initialize TBI PHY interface for communicating with the
694 * SERDES lynx PHY on the chip. We communicate with this PHY
695 * through the MDIO bus on each controller, treating it as a
696 * "normal" PHY at the address found in the TBIPA register. We assume
697 * that the TBIPA register is valid. Either the MDIO bus code will set
698 * it to a value that doesn't conflict with other PHYs on the bus, or the
699 * value doesn't matter, as there are no other PHYs on the bus.
701 static void gfar_configure_serdes(struct net_device *dev)
703 struct gfar_private *priv = netdev_priv(dev);
705 if (!priv->tbiphy) {
706 printk(KERN_WARNING "SGMII mode requires that the device "
707 "tree specify a tbi-handle\n");
708 return;
712 * If the link is already up, we must already be ok, and don't need to
713 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
714 * everything for us? Resetting it takes the link down and requires
715 * several seconds for it to come back.
717 if (phy_read(priv->tbiphy, MII_BMSR) & BMSR_LSTATUS)
718 return;
720 /* Single clk mode, mii mode off(for serdes communication) */
721 phy_write(priv->tbiphy, MII_TBICON, TBICON_CLK_SELECT);
723 phy_write(priv->tbiphy, MII_ADVERTISE,
724 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
725 ADVERTISE_1000XPSE_ASYM);
727 phy_write(priv->tbiphy, MII_BMCR, BMCR_ANENABLE |
728 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
731 static void init_registers(struct net_device *dev)
733 struct gfar_private *priv = netdev_priv(dev);
735 /* Clear IEVENT */
736 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
738 /* Initialize IMASK */
739 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
741 /* Init hash registers to zero */
742 gfar_write(&priv->regs->igaddr0, 0);
743 gfar_write(&priv->regs->igaddr1, 0);
744 gfar_write(&priv->regs->igaddr2, 0);
745 gfar_write(&priv->regs->igaddr3, 0);
746 gfar_write(&priv->regs->igaddr4, 0);
747 gfar_write(&priv->regs->igaddr5, 0);
748 gfar_write(&priv->regs->igaddr6, 0);
749 gfar_write(&priv->regs->igaddr7, 0);
751 gfar_write(&priv->regs->gaddr0, 0);
752 gfar_write(&priv->regs->gaddr1, 0);
753 gfar_write(&priv->regs->gaddr2, 0);
754 gfar_write(&priv->regs->gaddr3, 0);
755 gfar_write(&priv->regs->gaddr4, 0);
756 gfar_write(&priv->regs->gaddr5, 0);
757 gfar_write(&priv->regs->gaddr6, 0);
758 gfar_write(&priv->regs->gaddr7, 0);
760 /* Zero out the rmon mib registers if it has them */
761 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
762 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
764 /* Mask off the CAM interrupts */
765 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
766 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
769 /* Initialize the max receive buffer length */
770 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
772 /* Initialize the Minimum Frame Length Register */
773 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
777 /* Halt the receive and transmit queues */
778 static void gfar_halt_nodisable(struct net_device *dev)
780 struct gfar_private *priv = netdev_priv(dev);
781 struct gfar __iomem *regs = priv->regs;
782 u32 tempval;
784 /* Mask all interrupts */
785 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
787 /* Clear all interrupts */
788 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
790 /* Stop the DMA, and wait for it to stop */
791 tempval = gfar_read(&priv->regs->dmactrl);
792 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
793 != (DMACTRL_GRS | DMACTRL_GTS)) {
794 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
795 gfar_write(&priv->regs->dmactrl, tempval);
797 while (!(gfar_read(&priv->regs->ievent) &
798 (IEVENT_GRSC | IEVENT_GTSC)))
799 cpu_relax();
803 /* Halt the receive and transmit queues */
804 void gfar_halt(struct net_device *dev)
806 struct gfar_private *priv = netdev_priv(dev);
807 struct gfar __iomem *regs = priv->regs;
808 u32 tempval;
810 gfar_halt_nodisable(dev);
812 /* Disable Rx and Tx */
813 tempval = gfar_read(&regs->maccfg1);
814 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
815 gfar_write(&regs->maccfg1, tempval);
818 void stop_gfar(struct net_device *dev)
820 struct gfar_private *priv = netdev_priv(dev);
821 struct gfar __iomem *regs = priv->regs;
822 unsigned long flags;
824 phy_stop(priv->phydev);
826 /* Lock it down */
827 spin_lock_irqsave(&priv->txlock, flags);
828 spin_lock(&priv->rxlock);
830 gfar_halt(dev);
832 spin_unlock(&priv->rxlock);
833 spin_unlock_irqrestore(&priv->txlock, flags);
835 /* Free the IRQs */
836 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
837 free_irq(priv->interruptError, dev);
838 free_irq(priv->interruptTransmit, dev);
839 free_irq(priv->interruptReceive, dev);
840 } else {
841 free_irq(priv->interruptTransmit, dev);
844 free_skb_resources(priv);
846 dma_free_coherent(&dev->dev,
847 sizeof(struct txbd8)*priv->tx_ring_size
848 + sizeof(struct rxbd8)*priv->rx_ring_size,
849 priv->tx_bd_base,
850 gfar_read(&regs->tbase0));
853 /* If there are any tx skbs or rx skbs still around, free them.
854 * Then free tx_skbuff and rx_skbuff */
855 static void free_skb_resources(struct gfar_private *priv)
857 struct rxbd8 *rxbdp;
858 struct txbd8 *txbdp;
859 int i, j;
861 /* Go through all the buffer descriptors and free their data buffers */
862 txbdp = priv->tx_bd_base;
864 for (i = 0; i < priv->tx_ring_size; i++) {
865 if (!priv->tx_skbuff[i])
866 continue;
868 dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
869 txbdp->length, DMA_TO_DEVICE);
870 txbdp->lstatus = 0;
871 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
872 txbdp++;
873 dma_unmap_page(&priv->dev->dev, txbdp->bufPtr,
874 txbdp->length, DMA_TO_DEVICE);
876 txbdp++;
877 dev_kfree_skb_any(priv->tx_skbuff[i]);
878 priv->tx_skbuff[i] = NULL;
881 kfree(priv->tx_skbuff);
883 rxbdp = priv->rx_bd_base;
885 /* rx_skbuff is not guaranteed to be allocated, so only
886 * free it and its contents if it is allocated */
887 if(priv->rx_skbuff != NULL) {
888 for (i = 0; i < priv->rx_ring_size; i++) {
889 if (priv->rx_skbuff[i]) {
890 dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
891 priv->rx_buffer_size,
892 DMA_FROM_DEVICE);
894 dev_kfree_skb_any(priv->rx_skbuff[i]);
895 priv->rx_skbuff[i] = NULL;
898 rxbdp->lstatus = 0;
899 rxbdp->bufPtr = 0;
901 rxbdp++;
904 kfree(priv->rx_skbuff);
908 void gfar_start(struct net_device *dev)
910 struct gfar_private *priv = netdev_priv(dev);
911 struct gfar __iomem *regs = priv->regs;
912 u32 tempval;
914 /* Enable Rx and Tx in MACCFG1 */
915 tempval = gfar_read(&regs->maccfg1);
916 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
917 gfar_write(&regs->maccfg1, tempval);
919 /* Initialize DMACTRL to have WWR and WOP */
920 tempval = gfar_read(&priv->regs->dmactrl);
921 tempval |= DMACTRL_INIT_SETTINGS;
922 gfar_write(&priv->regs->dmactrl, tempval);
924 /* Make sure we aren't stopped */
925 tempval = gfar_read(&priv->regs->dmactrl);
926 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
927 gfar_write(&priv->regs->dmactrl, tempval);
929 /* Clear THLT/RHLT, so that the DMA starts polling now */
930 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
931 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
933 /* Unmask the interrupts we look for */
934 gfar_write(&regs->imask, IMASK_DEFAULT);
936 dev->trans_start = jiffies;
939 /* Bring the controller up and running */
940 int startup_gfar(struct net_device *dev)
942 struct txbd8 *txbdp;
943 struct rxbd8 *rxbdp;
944 dma_addr_t addr = 0;
945 unsigned long vaddr;
946 int i;
947 struct gfar_private *priv = netdev_priv(dev);
948 struct gfar __iomem *regs = priv->regs;
949 int err = 0;
950 u32 rctrl = 0;
951 u32 attrs = 0;
953 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
955 /* Allocate memory for the buffer descriptors */
956 vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
957 sizeof (struct txbd8) * priv->tx_ring_size +
958 sizeof (struct rxbd8) * priv->rx_ring_size,
959 &addr, GFP_KERNEL);
961 if (vaddr == 0) {
962 if (netif_msg_ifup(priv))
963 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
964 dev->name);
965 return -ENOMEM;
968 priv->tx_bd_base = (struct txbd8 *) vaddr;
970 /* enet DMA only understands physical addresses */
971 gfar_write(&regs->tbase0, addr);
973 /* Start the rx descriptor ring where the tx ring leaves off */
974 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
975 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
976 priv->rx_bd_base = (struct rxbd8 *) vaddr;
977 gfar_write(&regs->rbase0, addr);
979 /* Setup the skbuff rings */
980 priv->tx_skbuff =
981 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
982 priv->tx_ring_size, GFP_KERNEL);
984 if (NULL == priv->tx_skbuff) {
985 if (netif_msg_ifup(priv))
986 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
987 dev->name);
988 err = -ENOMEM;
989 goto tx_skb_fail;
992 for (i = 0; i < priv->tx_ring_size; i++)
993 priv->tx_skbuff[i] = NULL;
995 priv->rx_skbuff =
996 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
997 priv->rx_ring_size, GFP_KERNEL);
999 if (NULL == priv->rx_skbuff) {
1000 if (netif_msg_ifup(priv))
1001 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
1002 dev->name);
1003 err = -ENOMEM;
1004 goto rx_skb_fail;
1007 for (i = 0; i < priv->rx_ring_size; i++)
1008 priv->rx_skbuff[i] = NULL;
1010 /* Initialize some variables in our dev structure */
1011 priv->num_txbdfree = priv->tx_ring_size;
1012 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1013 priv->cur_rx = priv->rx_bd_base;
1014 priv->skb_curtx = priv->skb_dirtytx = 0;
1015 priv->skb_currx = 0;
1017 /* Initialize Transmit Descriptor Ring */
1018 txbdp = priv->tx_bd_base;
1019 for (i = 0; i < priv->tx_ring_size; i++) {
1020 txbdp->lstatus = 0;
1021 txbdp->bufPtr = 0;
1022 txbdp++;
1025 /* Set the last descriptor in the ring to indicate wrap */
1026 txbdp--;
1027 txbdp->status |= TXBD_WRAP;
1029 rxbdp = priv->rx_bd_base;
1030 for (i = 0; i < priv->rx_ring_size; i++) {
1031 struct sk_buff *skb;
1033 skb = gfar_new_skb(dev);
1035 if (!skb) {
1036 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1037 dev->name);
1039 goto err_rxalloc_fail;
1042 priv->rx_skbuff[i] = skb;
1044 gfar_new_rxbdp(dev, rxbdp, skb);
1046 rxbdp++;
1049 /* Set the last descriptor in the ring to wrap */
1050 rxbdp--;
1051 rxbdp->status |= RXBD_WRAP;
1053 /* If the device has multiple interrupts, register for
1054 * them. Otherwise, only register for the one */
1055 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1056 /* Install our interrupt handlers for Error,
1057 * Transmit, and Receive */
1058 if (request_irq(priv->interruptError, gfar_error,
1059 0, priv->int_name_er, dev) < 0) {
1060 if (netif_msg_intr(priv))
1061 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1062 dev->name, priv->interruptError);
1064 err = -1;
1065 goto err_irq_fail;
1068 if (request_irq(priv->interruptTransmit, gfar_transmit,
1069 0, priv->int_name_tx, dev) < 0) {
1070 if (netif_msg_intr(priv))
1071 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1072 dev->name, priv->interruptTransmit);
1074 err = -1;
1076 goto tx_irq_fail;
1079 if (request_irq(priv->interruptReceive, gfar_receive,
1080 0, priv->int_name_rx, dev) < 0) {
1081 if (netif_msg_intr(priv))
1082 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1083 dev->name, priv->interruptReceive);
1085 err = -1;
1086 goto rx_irq_fail;
1088 } else {
1089 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1090 0, priv->int_name_tx, dev) < 0) {
1091 if (netif_msg_intr(priv))
1092 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1093 dev->name, priv->interruptTransmit);
1095 err = -1;
1096 goto err_irq_fail;
1100 phy_start(priv->phydev);
1102 /* Configure the coalescing support */
1103 gfar_write(&regs->txic, 0);
1104 if (priv->txcoalescing)
1105 gfar_write(&regs->txic, priv->txic);
1107 gfar_write(&regs->rxic, 0);
1108 if (priv->rxcoalescing)
1109 gfar_write(&regs->rxic, priv->rxic);
1111 if (priv->rx_csum_enable)
1112 rctrl |= RCTRL_CHECKSUMMING;
1114 if (priv->extended_hash) {
1115 rctrl |= RCTRL_EXTHASH;
1117 gfar_clear_exact_match(dev);
1118 rctrl |= RCTRL_EMEN;
1121 if (priv->padding) {
1122 rctrl &= ~RCTRL_PAL_MASK;
1123 rctrl |= RCTRL_PADDING(priv->padding);
1126 /* Init rctrl based on our settings */
1127 gfar_write(&priv->regs->rctrl, rctrl);
1129 if (dev->features & NETIF_F_IP_CSUM)
1130 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
1132 /* Set the extraction length and index */
1133 attrs = ATTRELI_EL(priv->rx_stash_size) |
1134 ATTRELI_EI(priv->rx_stash_index);
1136 gfar_write(&priv->regs->attreli, attrs);
1138 /* Start with defaults, and add stashing or locking
1139 * depending on the approprate variables */
1140 attrs = ATTR_INIT_SETTINGS;
1142 if (priv->bd_stash_en)
1143 attrs |= ATTR_BDSTASH;
1145 if (priv->rx_stash_size != 0)
1146 attrs |= ATTR_BUFSTASH;
1148 gfar_write(&priv->regs->attr, attrs);
1150 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1151 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1152 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1154 /* Start the controller */
1155 gfar_start(dev);
1157 return 0;
1159 rx_irq_fail:
1160 free_irq(priv->interruptTransmit, dev);
1161 tx_irq_fail:
1162 free_irq(priv->interruptError, dev);
1163 err_irq_fail:
1164 err_rxalloc_fail:
1165 rx_skb_fail:
1166 free_skb_resources(priv);
1167 tx_skb_fail:
1168 dma_free_coherent(&dev->dev,
1169 sizeof(struct txbd8)*priv->tx_ring_size
1170 + sizeof(struct rxbd8)*priv->rx_ring_size,
1171 priv->tx_bd_base,
1172 gfar_read(&regs->tbase0));
1174 return err;
1177 /* Called when something needs to use the ethernet device */
1178 /* Returns 0 for success. */
1179 static int gfar_enet_open(struct net_device *dev)
1181 struct gfar_private *priv = netdev_priv(dev);
1182 int err;
1184 napi_enable(&priv->napi);
1186 /* Initialize a bunch of registers */
1187 init_registers(dev);
1189 gfar_set_mac_address(dev);
1191 err = init_phy(dev);
1193 if(err) {
1194 napi_disable(&priv->napi);
1195 return err;
1198 err = startup_gfar(dev);
1199 if (err) {
1200 napi_disable(&priv->napi);
1201 return err;
1204 netif_start_queue(dev);
1206 return err;
1209 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1211 struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
1213 cacheable_memzero(fcb, GMAC_FCB_LEN);
1215 return fcb;
1218 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1220 u8 flags = 0;
1222 /* If we're here, it's a IP packet with a TCP or UDP
1223 * payload. We set it to checksum, using a pseudo-header
1224 * we provide
1226 flags = TXFCB_DEFAULT;
1228 /* Tell the controller what the protocol is */
1229 /* And provide the already calculated phcs */
1230 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1231 flags |= TXFCB_UDP;
1232 fcb->phcs = udp_hdr(skb)->check;
1233 } else
1234 fcb->phcs = tcp_hdr(skb)->check;
1236 /* l3os is the distance between the start of the
1237 * frame (skb->data) and the start of the IP hdr.
1238 * l4os is the distance between the start of the
1239 * l3 hdr and the l4 hdr */
1240 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1241 fcb->l4os = skb_network_header_len(skb);
1243 fcb->flags = flags;
1246 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1248 fcb->flags |= TXFCB_VLN;
1249 fcb->vlctl = vlan_tx_tag_get(skb);
1252 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1253 struct txbd8 *base, int ring_size)
1255 struct txbd8 *new_bd = bdp + stride;
1257 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1260 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1261 int ring_size)
1263 return skip_txbd(bdp, 1, base, ring_size);
1266 /* This is called by the kernel when a frame is ready for transmission. */
1267 /* It is pointed to by the dev->hard_start_xmit function pointer */
1268 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1270 struct gfar_private *priv = netdev_priv(dev);
1271 struct txfcb *fcb = NULL;
1272 struct txbd8 *txbdp, *txbdp_start, *base;
1273 u32 lstatus;
1274 int i;
1275 u32 bufaddr;
1276 unsigned long flags;
1277 unsigned int nr_frags, length;
1279 base = priv->tx_bd_base;
1281 /* total number of fragments in the SKB */
1282 nr_frags = skb_shinfo(skb)->nr_frags;
1284 spin_lock_irqsave(&priv->txlock, flags);
1286 /* check if there is space to queue this packet */
1287 if (nr_frags > priv->num_txbdfree) {
1288 /* no space, stop the queue */
1289 netif_stop_queue(dev);
1290 dev->stats.tx_fifo_errors++;
1291 spin_unlock_irqrestore(&priv->txlock, flags);
1292 return NETDEV_TX_BUSY;
1295 /* Update transmit stats */
1296 dev->stats.tx_bytes += skb->len;
1298 txbdp = txbdp_start = priv->cur_tx;
1300 if (nr_frags == 0) {
1301 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1302 } else {
1303 /* Place the fragment addresses and lengths into the TxBDs */
1304 for (i = 0; i < nr_frags; i++) {
1305 /* Point at the next BD, wrapping as needed */
1306 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1308 length = skb_shinfo(skb)->frags[i].size;
1310 lstatus = txbdp->lstatus | length |
1311 BD_LFLAG(TXBD_READY);
1313 /* Handle the last BD specially */
1314 if (i == nr_frags - 1)
1315 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1317 bufaddr = dma_map_page(&dev->dev,
1318 skb_shinfo(skb)->frags[i].page,
1319 skb_shinfo(skb)->frags[i].page_offset,
1320 length,
1321 DMA_TO_DEVICE);
1323 /* set the TxBD length and buffer pointer */
1324 txbdp->bufPtr = bufaddr;
1325 txbdp->lstatus = lstatus;
1328 lstatus = txbdp_start->lstatus;
1331 /* Set up checksumming */
1332 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1333 fcb = gfar_add_fcb(skb);
1334 lstatus |= BD_LFLAG(TXBD_TOE);
1335 gfar_tx_checksum(skb, fcb);
1338 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1339 if (unlikely(NULL == fcb)) {
1340 fcb = gfar_add_fcb(skb);
1341 lstatus |= BD_LFLAG(TXBD_TOE);
1344 gfar_tx_vlan(skb, fcb);
1347 /* setup the TxBD length and buffer pointer for the first BD */
1348 priv->tx_skbuff[priv->skb_curtx] = skb;
1349 txbdp_start->bufPtr = dma_map_single(&dev->dev, skb->data,
1350 skb_headlen(skb), DMA_TO_DEVICE);
1352 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1355 * The powerpc-specific eieio() is used, as wmb() has too strong
1356 * semantics (it requires synchronization between cacheable and
1357 * uncacheable mappings, which eieio doesn't provide and which we
1358 * don't need), thus requiring a more expensive sync instruction. At
1359 * some point, the set of architecture-independent barrier functions
1360 * should be expanded to include weaker barriers.
1362 eieio();
1364 txbdp_start->lstatus = lstatus;
1366 /* Update the current skb pointer to the next entry we will use
1367 * (wrapping if necessary) */
1368 priv->skb_curtx = (priv->skb_curtx + 1) &
1369 TX_RING_MOD_MASK(priv->tx_ring_size);
1371 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1373 /* reduce TxBD free count */
1374 priv->num_txbdfree -= (nr_frags + 1);
1376 dev->trans_start = jiffies;
1378 /* If the next BD still needs to be cleaned up, then the bds
1379 are full. We need to tell the kernel to stop sending us stuff. */
1380 if (!priv->num_txbdfree) {
1381 netif_stop_queue(dev);
1383 dev->stats.tx_fifo_errors++;
1386 /* Tell the DMA to go go go */
1387 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1389 /* Unlock priv */
1390 spin_unlock_irqrestore(&priv->txlock, flags);
1392 return 0;
1395 /* Stops the kernel queue, and halts the controller */
1396 static int gfar_close(struct net_device *dev)
1398 struct gfar_private *priv = netdev_priv(dev);
1400 napi_disable(&priv->napi);
1402 cancel_work_sync(&priv->reset_task);
1403 stop_gfar(dev);
1405 /* Disconnect from the PHY */
1406 phy_disconnect(priv->phydev);
1407 priv->phydev = NULL;
1409 netif_stop_queue(dev);
1411 return 0;
1414 /* Changes the mac address if the controller is not running. */
1415 static int gfar_set_mac_address(struct net_device *dev)
1417 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1419 return 0;
1423 /* Enables and disables VLAN insertion/extraction */
1424 static void gfar_vlan_rx_register(struct net_device *dev,
1425 struct vlan_group *grp)
1427 struct gfar_private *priv = netdev_priv(dev);
1428 unsigned long flags;
1429 u32 tempval;
1431 spin_lock_irqsave(&priv->rxlock, flags);
1433 priv->vlgrp = grp;
1435 if (grp) {
1436 /* Enable VLAN tag insertion */
1437 tempval = gfar_read(&priv->regs->tctrl);
1438 tempval |= TCTRL_VLINS;
1440 gfar_write(&priv->regs->tctrl, tempval);
1442 /* Enable VLAN tag extraction */
1443 tempval = gfar_read(&priv->regs->rctrl);
1444 tempval |= RCTRL_VLEX;
1445 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1446 gfar_write(&priv->regs->rctrl, tempval);
1447 } else {
1448 /* Disable VLAN tag insertion */
1449 tempval = gfar_read(&priv->regs->tctrl);
1450 tempval &= ~TCTRL_VLINS;
1451 gfar_write(&priv->regs->tctrl, tempval);
1453 /* Disable VLAN tag extraction */
1454 tempval = gfar_read(&priv->regs->rctrl);
1455 tempval &= ~RCTRL_VLEX;
1456 /* If parse is no longer required, then disable parser */
1457 if (tempval & RCTRL_REQ_PARSER)
1458 tempval |= RCTRL_PRSDEP_INIT;
1459 else
1460 tempval &= ~RCTRL_PRSDEP_INIT;
1461 gfar_write(&priv->regs->rctrl, tempval);
1464 gfar_change_mtu(dev, dev->mtu);
1466 spin_unlock_irqrestore(&priv->rxlock, flags);
1469 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1471 int tempsize, tempval;
1472 struct gfar_private *priv = netdev_priv(dev);
1473 int oldsize = priv->rx_buffer_size;
1474 int frame_size = new_mtu + ETH_HLEN;
1476 if (priv->vlgrp)
1477 frame_size += VLAN_HLEN;
1479 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1480 if (netif_msg_drv(priv))
1481 printk(KERN_ERR "%s: Invalid MTU setting\n",
1482 dev->name);
1483 return -EINVAL;
1486 if (gfar_uses_fcb(priv))
1487 frame_size += GMAC_FCB_LEN;
1489 frame_size += priv->padding;
1491 tempsize =
1492 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1493 INCREMENTAL_BUFFER_SIZE;
1495 /* Only stop and start the controller if it isn't already
1496 * stopped, and we changed something */
1497 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1498 stop_gfar(dev);
1500 priv->rx_buffer_size = tempsize;
1502 dev->mtu = new_mtu;
1504 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1505 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1507 /* If the mtu is larger than the max size for standard
1508 * ethernet frames (ie, a jumbo frame), then set maccfg2
1509 * to allow huge frames, and to check the length */
1510 tempval = gfar_read(&priv->regs->maccfg2);
1512 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1513 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1514 else
1515 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1517 gfar_write(&priv->regs->maccfg2, tempval);
1519 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1520 startup_gfar(dev);
1522 return 0;
1525 /* gfar_reset_task gets scheduled when a packet has not been
1526 * transmitted after a set amount of time.
1527 * For now, assume that clearing out all the structures, and
1528 * starting over will fix the problem.
1530 static void gfar_reset_task(struct work_struct *work)
1532 struct gfar_private *priv = container_of(work, struct gfar_private,
1533 reset_task);
1534 struct net_device *dev = priv->dev;
1536 if (dev->flags & IFF_UP) {
1537 stop_gfar(dev);
1538 startup_gfar(dev);
1541 netif_tx_schedule_all(dev);
1544 static void gfar_timeout(struct net_device *dev)
1546 struct gfar_private *priv = netdev_priv(dev);
1548 dev->stats.tx_errors++;
1549 schedule_work(&priv->reset_task);
1552 /* Interrupt Handler for Transmit complete */
1553 static int gfar_clean_tx_ring(struct net_device *dev)
1555 struct gfar_private *priv = netdev_priv(dev);
1556 struct txbd8 *bdp;
1557 struct txbd8 *lbdp = NULL;
1558 struct txbd8 *base = priv->tx_bd_base;
1559 struct sk_buff *skb;
1560 int skb_dirtytx;
1561 int tx_ring_size = priv->tx_ring_size;
1562 int frags = 0;
1563 int i;
1564 int howmany = 0;
1565 u32 lstatus;
1567 bdp = priv->dirty_tx;
1568 skb_dirtytx = priv->skb_dirtytx;
1570 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1571 frags = skb_shinfo(skb)->nr_frags;
1572 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1574 lstatus = lbdp->lstatus;
1576 /* Only clean completed frames */
1577 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1578 (lstatus & BD_LENGTH_MASK))
1579 break;
1581 dma_unmap_single(&dev->dev,
1582 bdp->bufPtr,
1583 bdp->length,
1584 DMA_TO_DEVICE);
1586 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1587 bdp = next_txbd(bdp, base, tx_ring_size);
1589 for (i = 0; i < frags; i++) {
1590 dma_unmap_page(&dev->dev,
1591 bdp->bufPtr,
1592 bdp->length,
1593 DMA_TO_DEVICE);
1594 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1595 bdp = next_txbd(bdp, base, tx_ring_size);
1598 dev_kfree_skb_any(skb);
1599 priv->tx_skbuff[skb_dirtytx] = NULL;
1601 skb_dirtytx = (skb_dirtytx + 1) &
1602 TX_RING_MOD_MASK(tx_ring_size);
1604 howmany++;
1605 priv->num_txbdfree += frags + 1;
1608 /* If we freed a buffer, we can restart transmission, if necessary */
1609 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1610 netif_wake_queue(dev);
1612 /* Update dirty indicators */
1613 priv->skb_dirtytx = skb_dirtytx;
1614 priv->dirty_tx = bdp;
1616 dev->stats.tx_packets += howmany;
1618 return howmany;
1621 static void gfar_schedule_cleanup(struct net_device *dev)
1623 struct gfar_private *priv = netdev_priv(dev);
1624 unsigned long flags;
1626 spin_lock_irqsave(&priv->txlock, flags);
1627 spin_lock(&priv->rxlock);
1629 if (netif_rx_schedule_prep(&priv->napi)) {
1630 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1631 __netif_rx_schedule(&priv->napi);
1634 spin_unlock(&priv->rxlock);
1635 spin_unlock_irqrestore(&priv->txlock, flags);
1638 /* Interrupt Handler for Transmit complete */
1639 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1641 gfar_schedule_cleanup((struct net_device *)dev_id);
1642 return IRQ_HANDLED;
1645 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1646 struct sk_buff *skb)
1648 struct gfar_private *priv = netdev_priv(dev);
1649 u32 lstatus;
1651 bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
1652 priv->rx_buffer_size, DMA_FROM_DEVICE);
1654 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1656 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1657 lstatus |= BD_LFLAG(RXBD_WRAP);
1659 eieio();
1661 bdp->lstatus = lstatus;
1665 struct sk_buff * gfar_new_skb(struct net_device *dev)
1667 unsigned int alignamount;
1668 struct gfar_private *priv = netdev_priv(dev);
1669 struct sk_buff *skb = NULL;
1671 /* We have to allocate the skb, so keep trying till we succeed */
1672 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
1674 if (!skb)
1675 return NULL;
1677 alignamount = RXBUF_ALIGNMENT -
1678 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1680 /* We need the data buffer to be aligned properly. We will reserve
1681 * as many bytes as needed to align the data properly
1683 skb_reserve(skb, alignamount);
1685 return skb;
1688 static inline void count_errors(unsigned short status, struct net_device *dev)
1690 struct gfar_private *priv = netdev_priv(dev);
1691 struct net_device_stats *stats = &dev->stats;
1692 struct gfar_extra_stats *estats = &priv->extra_stats;
1694 /* If the packet was truncated, none of the other errors
1695 * matter */
1696 if (status & RXBD_TRUNCATED) {
1697 stats->rx_length_errors++;
1699 estats->rx_trunc++;
1701 return;
1703 /* Count the errors, if there were any */
1704 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1705 stats->rx_length_errors++;
1707 if (status & RXBD_LARGE)
1708 estats->rx_large++;
1709 else
1710 estats->rx_short++;
1712 if (status & RXBD_NONOCTET) {
1713 stats->rx_frame_errors++;
1714 estats->rx_nonoctet++;
1716 if (status & RXBD_CRCERR) {
1717 estats->rx_crcerr++;
1718 stats->rx_crc_errors++;
1720 if (status & RXBD_OVERRUN) {
1721 estats->rx_overrun++;
1722 stats->rx_crc_errors++;
1726 irqreturn_t gfar_receive(int irq, void *dev_id)
1728 gfar_schedule_cleanup((struct net_device *)dev_id);
1729 return IRQ_HANDLED;
1732 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1734 /* If valid headers were found, and valid sums
1735 * were verified, then we tell the kernel that no
1736 * checksumming is necessary. Otherwise, it is */
1737 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1738 skb->ip_summed = CHECKSUM_UNNECESSARY;
1739 else
1740 skb->ip_summed = CHECKSUM_NONE;
1744 /* gfar_process_frame() -- handle one incoming packet if skb
1745 * isn't NULL. */
1746 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1747 int amount_pull)
1749 struct gfar_private *priv = netdev_priv(dev);
1750 struct rxfcb *fcb = NULL;
1752 int ret;
1754 /* fcb is at the beginning if exists */
1755 fcb = (struct rxfcb *)skb->data;
1757 /* Remove the FCB from the skb */
1758 /* Remove the padded bytes, if there are any */
1759 if (amount_pull)
1760 skb_pull(skb, amount_pull);
1762 if (priv->rx_csum_enable)
1763 gfar_rx_checksum(skb, fcb);
1765 /* Tell the skb what kind of packet this is */
1766 skb->protocol = eth_type_trans(skb, dev);
1768 /* Send the packet up the stack */
1769 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1770 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1771 else
1772 ret = netif_receive_skb(skb);
1774 if (NET_RX_DROP == ret)
1775 priv->extra_stats.kernel_dropped++;
1777 return 0;
1780 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1781 * until the budget/quota has been reached. Returns the number
1782 * of frames handled
1784 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1786 struct rxbd8 *bdp, *base;
1787 struct sk_buff *skb;
1788 int pkt_len;
1789 int amount_pull;
1790 int howmany = 0;
1791 struct gfar_private *priv = netdev_priv(dev);
1793 /* Get the first full descriptor */
1794 bdp = priv->cur_rx;
1795 base = priv->rx_bd_base;
1797 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1798 priv->padding;
1800 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1801 struct sk_buff *newskb;
1802 rmb();
1804 /* Add another skb for the future */
1805 newskb = gfar_new_skb(dev);
1807 skb = priv->rx_skbuff[priv->skb_currx];
1809 dma_unmap_single(&priv->dev->dev, bdp->bufPtr,
1810 priv->rx_buffer_size, DMA_FROM_DEVICE);
1812 /* We drop the frame if we failed to allocate a new buffer */
1813 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1814 bdp->status & RXBD_ERR)) {
1815 count_errors(bdp->status, dev);
1817 if (unlikely(!newskb))
1818 newskb = skb;
1819 else if (skb)
1820 dev_kfree_skb_any(skb);
1821 } else {
1822 /* Increment the number of packets */
1823 dev->stats.rx_packets++;
1824 howmany++;
1826 if (likely(skb)) {
1827 pkt_len = bdp->length - ETH_FCS_LEN;
1828 /* Remove the FCS from the packet length */
1829 skb_put(skb, pkt_len);
1830 dev->stats.rx_bytes += pkt_len;
1832 gfar_process_frame(dev, skb, amount_pull);
1834 } else {
1835 if (netif_msg_rx_err(priv))
1836 printk(KERN_WARNING
1837 "%s: Missing skb!\n", dev->name);
1838 dev->stats.rx_dropped++;
1839 priv->extra_stats.rx_skbmissing++;
1844 priv->rx_skbuff[priv->skb_currx] = newskb;
1846 /* Setup the new bdp */
1847 gfar_new_rxbdp(dev, bdp, newskb);
1849 /* Update to the next pointer */
1850 bdp = next_bd(bdp, base, priv->rx_ring_size);
1852 /* update to point at the next skb */
1853 priv->skb_currx =
1854 (priv->skb_currx + 1) &
1855 RX_RING_MOD_MASK(priv->rx_ring_size);
1858 /* Update the current rxbd pointer to be the next one */
1859 priv->cur_rx = bdp;
1861 return howmany;
1864 static int gfar_poll(struct napi_struct *napi, int budget)
1866 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1867 struct net_device *dev = priv->dev;
1868 int tx_cleaned = 0;
1869 int rx_cleaned = 0;
1870 unsigned long flags;
1872 /* Clear IEVENT, so interrupts aren't called again
1873 * because of the packets that have already arrived */
1874 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1876 /* If we fail to get the lock, don't bother with the TX BDs */
1877 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1878 tx_cleaned = gfar_clean_tx_ring(dev);
1879 spin_unlock_irqrestore(&priv->txlock, flags);
1882 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1884 if (tx_cleaned)
1885 return budget;
1887 if (rx_cleaned < budget) {
1888 netif_rx_complete(napi);
1890 /* Clear the halt bit in RSTAT */
1891 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1893 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1895 /* If we are coalescing interrupts, update the timer */
1896 /* Otherwise, clear it */
1897 if (likely(priv->rxcoalescing)) {
1898 gfar_write(&priv->regs->rxic, 0);
1899 gfar_write(&priv->regs->rxic, priv->rxic);
1901 if (likely(priv->txcoalescing)) {
1902 gfar_write(&priv->regs->txic, 0);
1903 gfar_write(&priv->regs->txic, priv->txic);
1907 return rx_cleaned;
1910 #ifdef CONFIG_NET_POLL_CONTROLLER
1912 * Polling 'interrupt' - used by things like netconsole to send skbs
1913 * without having to re-enable interrupts. It's not called while
1914 * the interrupt routine is executing.
1916 static void gfar_netpoll(struct net_device *dev)
1918 struct gfar_private *priv = netdev_priv(dev);
1920 /* If the device has multiple interrupts, run tx/rx */
1921 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1922 disable_irq(priv->interruptTransmit);
1923 disable_irq(priv->interruptReceive);
1924 disable_irq(priv->interruptError);
1925 gfar_interrupt(priv->interruptTransmit, dev);
1926 enable_irq(priv->interruptError);
1927 enable_irq(priv->interruptReceive);
1928 enable_irq(priv->interruptTransmit);
1929 } else {
1930 disable_irq(priv->interruptTransmit);
1931 gfar_interrupt(priv->interruptTransmit, dev);
1932 enable_irq(priv->interruptTransmit);
1935 #endif
1937 /* The interrupt handler for devices with one interrupt */
1938 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1940 struct net_device *dev = dev_id;
1941 struct gfar_private *priv = netdev_priv(dev);
1943 /* Save ievent for future reference */
1944 u32 events = gfar_read(&priv->regs->ievent);
1946 /* Check for reception */
1947 if (events & IEVENT_RX_MASK)
1948 gfar_receive(irq, dev_id);
1950 /* Check for transmit completion */
1951 if (events & IEVENT_TX_MASK)
1952 gfar_transmit(irq, dev_id);
1954 /* Check for errors */
1955 if (events & IEVENT_ERR_MASK)
1956 gfar_error(irq, dev_id);
1958 return IRQ_HANDLED;
1961 /* Called every time the controller might need to be made
1962 * aware of new link state. The PHY code conveys this
1963 * information through variables in the phydev structure, and this
1964 * function converts those variables into the appropriate
1965 * register values, and can bring down the device if needed.
1967 static void adjust_link(struct net_device *dev)
1969 struct gfar_private *priv = netdev_priv(dev);
1970 struct gfar __iomem *regs = priv->regs;
1971 unsigned long flags;
1972 struct phy_device *phydev = priv->phydev;
1973 int new_state = 0;
1975 spin_lock_irqsave(&priv->txlock, flags);
1976 if (phydev->link) {
1977 u32 tempval = gfar_read(&regs->maccfg2);
1978 u32 ecntrl = gfar_read(&regs->ecntrl);
1980 /* Now we make sure that we can be in full duplex mode.
1981 * If not, we operate in half-duplex mode. */
1982 if (phydev->duplex != priv->oldduplex) {
1983 new_state = 1;
1984 if (!(phydev->duplex))
1985 tempval &= ~(MACCFG2_FULL_DUPLEX);
1986 else
1987 tempval |= MACCFG2_FULL_DUPLEX;
1989 priv->oldduplex = phydev->duplex;
1992 if (phydev->speed != priv->oldspeed) {
1993 new_state = 1;
1994 switch (phydev->speed) {
1995 case 1000:
1996 tempval =
1997 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1999 ecntrl &= ~(ECNTRL_R100);
2000 break;
2001 case 100:
2002 case 10:
2003 tempval =
2004 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2006 /* Reduced mode distinguishes
2007 * between 10 and 100 */
2008 if (phydev->speed == SPEED_100)
2009 ecntrl |= ECNTRL_R100;
2010 else
2011 ecntrl &= ~(ECNTRL_R100);
2012 break;
2013 default:
2014 if (netif_msg_link(priv))
2015 printk(KERN_WARNING
2016 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2017 dev->name, phydev->speed);
2018 break;
2021 priv->oldspeed = phydev->speed;
2024 gfar_write(&regs->maccfg2, tempval);
2025 gfar_write(&regs->ecntrl, ecntrl);
2027 if (!priv->oldlink) {
2028 new_state = 1;
2029 priv->oldlink = 1;
2031 } else if (priv->oldlink) {
2032 new_state = 1;
2033 priv->oldlink = 0;
2034 priv->oldspeed = 0;
2035 priv->oldduplex = -1;
2038 if (new_state && netif_msg_link(priv))
2039 phy_print_status(phydev);
2041 spin_unlock_irqrestore(&priv->txlock, flags);
2044 /* Update the hash table based on the current list of multicast
2045 * addresses we subscribe to. Also, change the promiscuity of
2046 * the device based on the flags (this function is called
2047 * whenever dev->flags is changed */
2048 static void gfar_set_multi(struct net_device *dev)
2050 struct dev_mc_list *mc_ptr;
2051 struct gfar_private *priv = netdev_priv(dev);
2052 struct gfar __iomem *regs = priv->regs;
2053 u32 tempval;
2055 if(dev->flags & IFF_PROMISC) {
2056 /* Set RCTRL to PROM */
2057 tempval = gfar_read(&regs->rctrl);
2058 tempval |= RCTRL_PROM;
2059 gfar_write(&regs->rctrl, tempval);
2060 } else {
2061 /* Set RCTRL to not PROM */
2062 tempval = gfar_read(&regs->rctrl);
2063 tempval &= ~(RCTRL_PROM);
2064 gfar_write(&regs->rctrl, tempval);
2067 if(dev->flags & IFF_ALLMULTI) {
2068 /* Set the hash to rx all multicast frames */
2069 gfar_write(&regs->igaddr0, 0xffffffff);
2070 gfar_write(&regs->igaddr1, 0xffffffff);
2071 gfar_write(&regs->igaddr2, 0xffffffff);
2072 gfar_write(&regs->igaddr3, 0xffffffff);
2073 gfar_write(&regs->igaddr4, 0xffffffff);
2074 gfar_write(&regs->igaddr5, 0xffffffff);
2075 gfar_write(&regs->igaddr6, 0xffffffff);
2076 gfar_write(&regs->igaddr7, 0xffffffff);
2077 gfar_write(&regs->gaddr0, 0xffffffff);
2078 gfar_write(&regs->gaddr1, 0xffffffff);
2079 gfar_write(&regs->gaddr2, 0xffffffff);
2080 gfar_write(&regs->gaddr3, 0xffffffff);
2081 gfar_write(&regs->gaddr4, 0xffffffff);
2082 gfar_write(&regs->gaddr5, 0xffffffff);
2083 gfar_write(&regs->gaddr6, 0xffffffff);
2084 gfar_write(&regs->gaddr7, 0xffffffff);
2085 } else {
2086 int em_num;
2087 int idx;
2089 /* zero out the hash */
2090 gfar_write(&regs->igaddr0, 0x0);
2091 gfar_write(&regs->igaddr1, 0x0);
2092 gfar_write(&regs->igaddr2, 0x0);
2093 gfar_write(&regs->igaddr3, 0x0);
2094 gfar_write(&regs->igaddr4, 0x0);
2095 gfar_write(&regs->igaddr5, 0x0);
2096 gfar_write(&regs->igaddr6, 0x0);
2097 gfar_write(&regs->igaddr7, 0x0);
2098 gfar_write(&regs->gaddr0, 0x0);
2099 gfar_write(&regs->gaddr1, 0x0);
2100 gfar_write(&regs->gaddr2, 0x0);
2101 gfar_write(&regs->gaddr3, 0x0);
2102 gfar_write(&regs->gaddr4, 0x0);
2103 gfar_write(&regs->gaddr5, 0x0);
2104 gfar_write(&regs->gaddr6, 0x0);
2105 gfar_write(&regs->gaddr7, 0x0);
2107 /* If we have extended hash tables, we need to
2108 * clear the exact match registers to prepare for
2109 * setting them */
2110 if (priv->extended_hash) {
2111 em_num = GFAR_EM_NUM + 1;
2112 gfar_clear_exact_match(dev);
2113 idx = 1;
2114 } else {
2115 idx = 0;
2116 em_num = 0;
2119 if(dev->mc_count == 0)
2120 return;
2122 /* Parse the list, and set the appropriate bits */
2123 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2124 if (idx < em_num) {
2125 gfar_set_mac_for_addr(dev, idx,
2126 mc_ptr->dmi_addr);
2127 idx++;
2128 } else
2129 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2133 return;
2137 /* Clears each of the exact match registers to zero, so they
2138 * don't interfere with normal reception */
2139 static void gfar_clear_exact_match(struct net_device *dev)
2141 int idx;
2142 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2144 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2145 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2148 /* Set the appropriate hash bit for the given addr */
2149 /* The algorithm works like so:
2150 * 1) Take the Destination Address (ie the multicast address), and
2151 * do a CRC on it (little endian), and reverse the bits of the
2152 * result.
2153 * 2) Use the 8 most significant bits as a hash into a 256-entry
2154 * table. The table is controlled through 8 32-bit registers:
2155 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2156 * gaddr7. This means that the 3 most significant bits in the
2157 * hash index which gaddr register to use, and the 5 other bits
2158 * indicate which bit (assuming an IBM numbering scheme, which
2159 * for PowerPC (tm) is usually the case) in the register holds
2160 * the entry. */
2161 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2163 u32 tempval;
2164 struct gfar_private *priv = netdev_priv(dev);
2165 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2166 int width = priv->hash_width;
2167 u8 whichbit = (result >> (32 - width)) & 0x1f;
2168 u8 whichreg = result >> (32 - width + 5);
2169 u32 value = (1 << (31-whichbit));
2171 tempval = gfar_read(priv->hash_regs[whichreg]);
2172 tempval |= value;
2173 gfar_write(priv->hash_regs[whichreg], tempval);
2175 return;
2179 /* There are multiple MAC Address register pairs on some controllers
2180 * This function sets the numth pair to a given address
2182 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2184 struct gfar_private *priv = netdev_priv(dev);
2185 int idx;
2186 char tmpbuf[MAC_ADDR_LEN];
2187 u32 tempval;
2188 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2190 macptr += num*2;
2192 /* Now copy it into the mac registers backwards, cuz */
2193 /* little endian is silly */
2194 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2195 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2197 gfar_write(macptr, *((u32 *) (tmpbuf)));
2199 tempval = *((u32 *) (tmpbuf + 4));
2201 gfar_write(macptr+1, tempval);
2204 /* GFAR error interrupt handler */
2205 static irqreturn_t gfar_error(int irq, void *dev_id)
2207 struct net_device *dev = dev_id;
2208 struct gfar_private *priv = netdev_priv(dev);
2210 /* Save ievent for future reference */
2211 u32 events = gfar_read(&priv->regs->ievent);
2213 /* Clear IEVENT */
2214 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2216 /* Magic Packet is not an error. */
2217 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2218 (events & IEVENT_MAG))
2219 events &= ~IEVENT_MAG;
2221 /* Hmm... */
2222 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2223 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2224 dev->name, events, gfar_read(&priv->regs->imask));
2226 /* Update the error counters */
2227 if (events & IEVENT_TXE) {
2228 dev->stats.tx_errors++;
2230 if (events & IEVENT_LC)
2231 dev->stats.tx_window_errors++;
2232 if (events & IEVENT_CRL)
2233 dev->stats.tx_aborted_errors++;
2234 if (events & IEVENT_XFUN) {
2235 if (netif_msg_tx_err(priv))
2236 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2237 "packet dropped.\n", dev->name);
2238 dev->stats.tx_dropped++;
2239 priv->extra_stats.tx_underrun++;
2241 /* Reactivate the Tx Queues */
2242 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2244 if (netif_msg_tx_err(priv))
2245 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2247 if (events & IEVENT_BSY) {
2248 dev->stats.rx_errors++;
2249 priv->extra_stats.rx_bsy++;
2251 gfar_receive(irq, dev_id);
2253 if (netif_msg_rx_err(priv))
2254 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2255 dev->name, gfar_read(&priv->regs->rstat));
2257 if (events & IEVENT_BABR) {
2258 dev->stats.rx_errors++;
2259 priv->extra_stats.rx_babr++;
2261 if (netif_msg_rx_err(priv))
2262 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2264 if (events & IEVENT_EBERR) {
2265 priv->extra_stats.eberr++;
2266 if (netif_msg_rx_err(priv))
2267 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2269 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2270 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2272 if (events & IEVENT_BABT) {
2273 priv->extra_stats.tx_babt++;
2274 if (netif_msg_tx_err(priv))
2275 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2277 return IRQ_HANDLED;
2280 /* work with hotplug and coldplug */
2281 MODULE_ALIAS("platform:fsl-gianfar");
2283 static struct of_device_id gfar_match[] =
2286 .type = "network",
2287 .compatible = "gianfar",
2292 /* Structure for a device driver */
2293 static struct of_platform_driver gfar_driver = {
2294 .name = "fsl-gianfar",
2295 .match_table = gfar_match,
2297 .probe = gfar_probe,
2298 .remove = gfar_remove,
2299 .suspend = gfar_suspend,
2300 .resume = gfar_resume,
2303 static int __init gfar_init(void)
2305 int err = gfar_mdio_init();
2307 if (err)
2308 return err;
2310 err = of_register_platform_driver(&gfar_driver);
2312 if (err)
2313 gfar_mdio_exit();
2315 return err;
2318 static void __exit gfar_exit(void)
2320 of_unregister_platform_driver(&gfar_driver);
2321 gfar_mdio_exit();
2324 module_init(gfar_init);
2325 module_exit(gfar_exit);