Microblaze: AXIPCIE: Added support for configuring 2 RC BARs.
[linux-2.6-xlnx.git] / net / ipv4 / tcp.c
blob3ba605f60e4e18b0b83cfc882cf8fd9ed39569f3
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
297 * Current number of TCP sockets.
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
303 * TCP splice context
305 struct tcp_splice_state {
306 struct pipe_inode_info *pipe;
307 size_t len;
308 unsigned int flags;
312 * Pressure flag: try to collapse.
313 * Technical note: it is used by multiple contexts non atomically.
314 * All the __sk_mem_schedule() is of this nature: accounting
315 * is strict, actions are advisory and have some latency.
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
320 void tcp_enter_memory_pressure(struct sock *sk)
322 if (!tcp_memory_pressure) {
323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 tcp_memory_pressure = 1;
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 u8 res = 0;
334 if (seconds > 0) {
335 int period = timeout;
337 res = 1;
338 while (seconds > period && res < 255) {
339 res++;
340 timeout <<= 1;
341 if (timeout > rto_max)
342 timeout = rto_max;
343 period += timeout;
346 return res;
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 int period = 0;
354 if (retrans > 0) {
355 period = timeout;
356 while (--retrans) {
357 timeout <<= 1;
358 if (timeout > rto_max)
359 timeout = rto_max;
360 period += timeout;
363 return period;
366 /* Address-family independent initialization for a tcp_sock.
368 * NOTE: A lot of things set to zero explicitly by call to
369 * sk_alloc() so need not be done here.
371 void tcp_init_sock(struct sock *sk)
373 struct inet_connection_sock *icsk = inet_csk(sk);
374 struct tcp_sock *tp = tcp_sk(sk);
376 skb_queue_head_init(&tp->out_of_order_queue);
377 tcp_init_xmit_timers(sk);
378 tcp_prequeue_init(tp);
380 icsk->icsk_rto = TCP_TIMEOUT_INIT;
381 tp->mdev = TCP_TIMEOUT_INIT;
383 /* So many TCP implementations out there (incorrectly) count the
384 * initial SYN frame in their delayed-ACK and congestion control
385 * algorithms that we must have the following bandaid to talk
386 * efficiently to them. -DaveM
388 tp->snd_cwnd = TCP_INIT_CWND;
390 /* See draft-stevens-tcpca-spec-01 for discussion of the
391 * initialization of these values.
393 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
394 tp->snd_cwnd_clamp = ~0;
395 tp->mss_cache = TCP_MSS_DEFAULT;
397 tp->reordering = sysctl_tcp_reordering;
398 tcp_enable_early_retrans(tp);
399 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
401 sk->sk_state = TCP_CLOSE;
403 sk->sk_write_space = sk_stream_write_space;
404 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
406 icsk->icsk_sync_mss = tcp_sync_mss;
408 /* TCP Cookie Transactions */
409 if (sysctl_tcp_cookie_size > 0) {
410 /* Default, cookies without s_data_payload. */
411 tp->cookie_values =
412 kzalloc(sizeof(*tp->cookie_values),
413 sk->sk_allocation);
414 if (tp->cookie_values != NULL)
415 kref_init(&tp->cookie_values->kref);
417 /* Presumed zeroed, in order of appearance:
418 * cookie_in_always, cookie_out_never,
419 * s_data_constant, s_data_in, s_data_out
421 sk->sk_sndbuf = sysctl_tcp_wmem[1];
422 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424 local_bh_disable();
425 sock_update_memcg(sk);
426 sk_sockets_allocated_inc(sk);
427 local_bh_enable();
429 EXPORT_SYMBOL(tcp_init_sock);
432 * Wait for a TCP event.
434 * Note that we don't need to lock the socket, as the upper poll layers
435 * take care of normal races (between the test and the event) and we don't
436 * go look at any of the socket buffers directly.
438 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
440 unsigned int mask;
441 struct sock *sk = sock->sk;
442 const struct tcp_sock *tp = tcp_sk(sk);
444 sock_poll_wait(file, sk_sleep(sk), wait);
445 if (sk->sk_state == TCP_LISTEN)
446 return inet_csk_listen_poll(sk);
448 /* Socket is not locked. We are protected from async events
449 * by poll logic and correct handling of state changes
450 * made by other threads is impossible in any case.
453 mask = 0;
456 * POLLHUP is certainly not done right. But poll() doesn't
457 * have a notion of HUP in just one direction, and for a
458 * socket the read side is more interesting.
460 * Some poll() documentation says that POLLHUP is incompatible
461 * with the POLLOUT/POLLWR flags, so somebody should check this
462 * all. But careful, it tends to be safer to return too many
463 * bits than too few, and you can easily break real applications
464 * if you don't tell them that something has hung up!
466 * Check-me.
468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469 * our fs/select.c). It means that after we received EOF,
470 * poll always returns immediately, making impossible poll() on write()
471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472 * if and only if shutdown has been made in both directions.
473 * Actually, it is interesting to look how Solaris and DUX
474 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475 * then we could set it on SND_SHUTDOWN. BTW examples given
476 * in Stevens' books assume exactly this behaviour, it explains
477 * why POLLHUP is incompatible with POLLOUT. --ANK
479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480 * blocking on fresh not-connected or disconnected socket. --ANK
482 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
483 mask |= POLLHUP;
484 if (sk->sk_shutdown & RCV_SHUTDOWN)
485 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
487 /* Connected? */
488 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
489 int target = sock_rcvlowat(sk, 0, INT_MAX);
491 if (tp->urg_seq == tp->copied_seq &&
492 !sock_flag(sk, SOCK_URGINLINE) &&
493 tp->urg_data)
494 target++;
496 /* Potential race condition. If read of tp below will
497 * escape above sk->sk_state, we can be illegally awaken
498 * in SYN_* states. */
499 if (tp->rcv_nxt - tp->copied_seq >= target)
500 mask |= POLLIN | POLLRDNORM;
502 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
503 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
504 mask |= POLLOUT | POLLWRNORM;
505 } else { /* send SIGIO later */
506 set_bit(SOCK_ASYNC_NOSPACE,
507 &sk->sk_socket->flags);
508 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
510 /* Race breaker. If space is freed after
511 * wspace test but before the flags are set,
512 * IO signal will be lost.
514 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
515 mask |= POLLOUT | POLLWRNORM;
517 } else
518 mask |= POLLOUT | POLLWRNORM;
520 if (tp->urg_data & TCP_URG_VALID)
521 mask |= POLLPRI;
523 /* This barrier is coupled with smp_wmb() in tcp_reset() */
524 smp_rmb();
525 if (sk->sk_err)
526 mask |= POLLERR;
528 return mask;
530 EXPORT_SYMBOL(tcp_poll);
532 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
534 struct tcp_sock *tp = tcp_sk(sk);
535 int answ;
537 switch (cmd) {
538 case SIOCINQ:
539 if (sk->sk_state == TCP_LISTEN)
540 return -EINVAL;
542 lock_sock(sk);
543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
544 answ = 0;
545 else if (sock_flag(sk, SOCK_URGINLINE) ||
546 !tp->urg_data ||
547 before(tp->urg_seq, tp->copied_seq) ||
548 !before(tp->urg_seq, tp->rcv_nxt)) {
549 struct sk_buff *skb;
551 answ = tp->rcv_nxt - tp->copied_seq;
553 /* Subtract 1, if FIN is in queue. */
554 skb = skb_peek_tail(&sk->sk_receive_queue);
555 if (answ && skb)
556 answ -= tcp_hdr(skb)->fin;
557 } else
558 answ = tp->urg_seq - tp->copied_seq;
559 release_sock(sk);
560 break;
561 case SIOCATMARK:
562 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
563 break;
564 case SIOCOUTQ:
565 if (sk->sk_state == TCP_LISTEN)
566 return -EINVAL;
568 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
569 answ = 0;
570 else
571 answ = tp->write_seq - tp->snd_una;
572 break;
573 case SIOCOUTQNSD:
574 if (sk->sk_state == TCP_LISTEN)
575 return -EINVAL;
577 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
578 answ = 0;
579 else
580 answ = tp->write_seq - tp->snd_nxt;
581 break;
582 default:
583 return -ENOIOCTLCMD;
586 return put_user(answ, (int __user *)arg);
588 EXPORT_SYMBOL(tcp_ioctl);
590 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
593 tp->pushed_seq = tp->write_seq;
596 static inline bool forced_push(const struct tcp_sock *tp)
598 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
603 struct tcp_sock *tp = tcp_sk(sk);
604 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606 skb->csum = 0;
607 tcb->seq = tcb->end_seq = tp->write_seq;
608 tcb->tcp_flags = TCPHDR_ACK;
609 tcb->sacked = 0;
610 skb_header_release(skb);
611 tcp_add_write_queue_tail(sk, skb);
612 sk->sk_wmem_queued += skb->truesize;
613 sk_mem_charge(sk, skb->truesize);
614 if (tp->nonagle & TCP_NAGLE_PUSH)
615 tp->nonagle &= ~TCP_NAGLE_PUSH;
618 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
620 if (flags & MSG_OOB)
621 tp->snd_up = tp->write_seq;
624 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
625 int nonagle)
627 if (tcp_send_head(sk)) {
628 struct tcp_sock *tp = tcp_sk(sk);
630 if (!(flags & MSG_MORE) || forced_push(tp))
631 tcp_mark_push(tp, tcp_write_queue_tail(sk));
633 tcp_mark_urg(tp, flags);
634 __tcp_push_pending_frames(sk, mss_now,
635 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
639 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
640 unsigned int offset, size_t len)
642 struct tcp_splice_state *tss = rd_desc->arg.data;
643 int ret;
645 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
646 tss->flags);
647 if (ret > 0)
648 rd_desc->count -= ret;
649 return ret;
652 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
654 /* Store TCP splice context information in read_descriptor_t. */
655 read_descriptor_t rd_desc = {
656 .arg.data = tss,
657 .count = tss->len,
660 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
664 * tcp_splice_read - splice data from TCP socket to a pipe
665 * @sock: socket to splice from
666 * @ppos: position (not valid)
667 * @pipe: pipe to splice to
668 * @len: number of bytes to splice
669 * @flags: splice modifier flags
671 * Description:
672 * Will read pages from given socket and fill them into a pipe.
675 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
676 struct pipe_inode_info *pipe, size_t len,
677 unsigned int flags)
679 struct sock *sk = sock->sk;
680 struct tcp_splice_state tss = {
681 .pipe = pipe,
682 .len = len,
683 .flags = flags,
685 long timeo;
686 ssize_t spliced;
687 int ret;
689 sock_rps_record_flow(sk);
691 * We can't seek on a socket input
693 if (unlikely(*ppos))
694 return -ESPIPE;
696 ret = spliced = 0;
698 lock_sock(sk);
700 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
701 while (tss.len) {
702 ret = __tcp_splice_read(sk, &tss);
703 if (ret < 0)
704 break;
705 else if (!ret) {
706 if (spliced)
707 break;
708 if (sock_flag(sk, SOCK_DONE))
709 break;
710 if (sk->sk_err) {
711 ret = sock_error(sk);
712 break;
714 if (sk->sk_shutdown & RCV_SHUTDOWN)
715 break;
716 if (sk->sk_state == TCP_CLOSE) {
718 * This occurs when user tries to read
719 * from never connected socket.
721 if (!sock_flag(sk, SOCK_DONE))
722 ret = -ENOTCONN;
723 break;
725 if (!timeo) {
726 ret = -EAGAIN;
727 break;
729 sk_wait_data(sk, &timeo);
730 if (signal_pending(current)) {
731 ret = sock_intr_errno(timeo);
732 break;
734 continue;
736 tss.len -= ret;
737 spliced += ret;
739 if (!timeo)
740 break;
741 release_sock(sk);
742 lock_sock(sk);
744 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
745 (sk->sk_shutdown & RCV_SHUTDOWN) ||
746 signal_pending(current))
747 break;
750 release_sock(sk);
752 if (spliced)
753 return spliced;
755 return ret;
757 EXPORT_SYMBOL(tcp_splice_read);
759 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
761 struct sk_buff *skb;
763 /* The TCP header must be at least 32-bit aligned. */
764 size = ALIGN(size, 4);
766 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
767 if (skb) {
768 if (sk_wmem_schedule(sk, skb->truesize)) {
769 skb_reserve(skb, sk->sk_prot->max_header);
771 * Make sure that we have exactly size bytes
772 * available to the caller, no more, no less.
774 skb->avail_size = size;
775 return skb;
777 __kfree_skb(skb);
778 } else {
779 sk->sk_prot->enter_memory_pressure(sk);
780 sk_stream_moderate_sndbuf(sk);
782 return NULL;
785 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
786 int large_allowed)
788 struct tcp_sock *tp = tcp_sk(sk);
789 u32 xmit_size_goal, old_size_goal;
791 xmit_size_goal = mss_now;
793 if (large_allowed && sk_can_gso(sk)) {
794 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
795 inet_csk(sk)->icsk_af_ops->net_header_len -
796 inet_csk(sk)->icsk_ext_hdr_len -
797 tp->tcp_header_len);
799 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
801 /* We try hard to avoid divides here */
802 old_size_goal = tp->xmit_size_goal_segs * mss_now;
804 if (likely(old_size_goal <= xmit_size_goal &&
805 old_size_goal + mss_now > xmit_size_goal)) {
806 xmit_size_goal = old_size_goal;
807 } else {
808 tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
809 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
813 return max(xmit_size_goal, mss_now);
816 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
818 int mss_now;
820 mss_now = tcp_current_mss(sk);
821 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
823 return mss_now;
826 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
827 size_t psize, int flags)
829 struct tcp_sock *tp = tcp_sk(sk);
830 int mss_now, size_goal;
831 int err;
832 ssize_t copied;
833 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
835 /* Wait for a connection to finish. */
836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
837 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
838 goto out_err;
840 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
842 mss_now = tcp_send_mss(sk, &size_goal, flags);
843 copied = 0;
845 err = -EPIPE;
846 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
847 goto out_err;
849 while (psize > 0) {
850 struct sk_buff *skb = tcp_write_queue_tail(sk);
851 struct page *page = pages[poffset / PAGE_SIZE];
852 int copy, i;
853 int offset = poffset % PAGE_SIZE;
854 int size = min_t(size_t, psize, PAGE_SIZE - offset);
855 bool can_coalesce;
857 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
858 new_segment:
859 if (!sk_stream_memory_free(sk))
860 goto wait_for_sndbuf;
862 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
863 if (!skb)
864 goto wait_for_memory;
866 skb_entail(sk, skb);
867 copy = size_goal;
870 if (copy > size)
871 copy = size;
873 i = skb_shinfo(skb)->nr_frags;
874 can_coalesce = skb_can_coalesce(skb, i, page, offset);
875 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
876 tcp_mark_push(tp, skb);
877 goto new_segment;
879 if (!sk_wmem_schedule(sk, copy))
880 goto wait_for_memory;
882 if (can_coalesce) {
883 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
884 } else {
885 get_page(page);
886 skb_fill_page_desc(skb, i, page, offset, copy);
889 skb->len += copy;
890 skb->data_len += copy;
891 skb->truesize += copy;
892 sk->sk_wmem_queued += copy;
893 sk_mem_charge(sk, copy);
894 skb->ip_summed = CHECKSUM_PARTIAL;
895 tp->write_seq += copy;
896 TCP_SKB_CB(skb)->end_seq += copy;
897 skb_shinfo(skb)->gso_segs = 0;
899 if (!copied)
900 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
902 copied += copy;
903 poffset += copy;
904 if (!(psize -= copy))
905 goto out;
907 if (skb->len < size_goal || (flags & MSG_OOB))
908 continue;
910 if (forced_push(tp)) {
911 tcp_mark_push(tp, skb);
912 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
913 } else if (skb == tcp_send_head(sk))
914 tcp_push_one(sk, mss_now);
915 continue;
917 wait_for_sndbuf:
918 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
919 wait_for_memory:
920 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
922 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
923 goto do_error;
925 mss_now = tcp_send_mss(sk, &size_goal, flags);
928 out:
929 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
930 tcp_push(sk, flags, mss_now, tp->nonagle);
931 return copied;
933 do_error:
934 if (copied)
935 goto out;
936 out_err:
937 return sk_stream_error(sk, flags, err);
940 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
941 size_t size, int flags)
943 ssize_t res;
945 if (!(sk->sk_route_caps & NETIF_F_SG) ||
946 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
947 return sock_no_sendpage(sk->sk_socket, page, offset, size,
948 flags);
950 lock_sock(sk);
951 res = do_tcp_sendpages(sk, &page, offset, size, flags);
952 release_sock(sk);
953 return res;
955 EXPORT_SYMBOL(tcp_sendpage);
957 static inline int select_size(const struct sock *sk, bool sg)
959 const struct tcp_sock *tp = tcp_sk(sk);
960 int tmp = tp->mss_cache;
962 if (sg) {
963 if (sk_can_gso(sk)) {
964 /* Small frames wont use a full page:
965 * Payload will immediately follow tcp header.
967 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
968 } else {
969 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
971 if (tmp >= pgbreak &&
972 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
973 tmp = pgbreak;
977 return tmp;
980 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
981 size_t size)
983 struct iovec *iov;
984 struct tcp_sock *tp = tcp_sk(sk);
985 struct sk_buff *skb;
986 int iovlen, flags, err, copied;
987 int mss_now = 0, size_goal;
988 bool sg;
989 long timeo;
991 lock_sock(sk);
993 flags = msg->msg_flags;
994 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
996 /* Wait for a connection to finish. */
997 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
998 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
999 goto out_err;
1001 if (unlikely(tp->repair)) {
1002 if (tp->repair_queue == TCP_RECV_QUEUE) {
1003 copied = tcp_send_rcvq(sk, msg, size);
1004 goto out;
1007 err = -EINVAL;
1008 if (tp->repair_queue == TCP_NO_QUEUE)
1009 goto out_err;
1011 /* 'common' sending to sendq */
1014 /* This should be in poll */
1015 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1017 mss_now = tcp_send_mss(sk, &size_goal, flags);
1019 /* Ok commence sending. */
1020 iovlen = msg->msg_iovlen;
1021 iov = msg->msg_iov;
1022 copied = 0;
1024 err = -EPIPE;
1025 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1026 goto out_err;
1028 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1030 while (--iovlen >= 0) {
1031 size_t seglen = iov->iov_len;
1032 unsigned char __user *from = iov->iov_base;
1034 iov++;
1036 while (seglen > 0) {
1037 int copy = 0;
1038 int max = size_goal;
1040 skb = tcp_write_queue_tail(sk);
1041 if (tcp_send_head(sk)) {
1042 if (skb->ip_summed == CHECKSUM_NONE)
1043 max = mss_now;
1044 copy = max - skb->len;
1047 if (copy <= 0) {
1048 new_segment:
1049 /* Allocate new segment. If the interface is SG,
1050 * allocate skb fitting to single page.
1052 if (!sk_stream_memory_free(sk))
1053 goto wait_for_sndbuf;
1055 skb = sk_stream_alloc_skb(sk,
1056 select_size(sk, sg),
1057 sk->sk_allocation);
1058 if (!skb)
1059 goto wait_for_memory;
1062 * Check whether we can use HW checksum.
1064 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1065 skb->ip_summed = CHECKSUM_PARTIAL;
1067 skb_entail(sk, skb);
1068 copy = size_goal;
1069 max = size_goal;
1072 /* Try to append data to the end of skb. */
1073 if (copy > seglen)
1074 copy = seglen;
1076 /* Where to copy to? */
1077 if (skb_availroom(skb) > 0) {
1078 /* We have some space in skb head. Superb! */
1079 copy = min_t(int, copy, skb_availroom(skb));
1080 err = skb_add_data_nocache(sk, skb, from, copy);
1081 if (err)
1082 goto do_fault;
1083 } else {
1084 bool merge = false;
1085 int i = skb_shinfo(skb)->nr_frags;
1086 struct page *page = sk->sk_sndmsg_page;
1087 int off;
1089 if (page && page_count(page) == 1)
1090 sk->sk_sndmsg_off = 0;
1092 off = sk->sk_sndmsg_off;
1094 if (skb_can_coalesce(skb, i, page, off) &&
1095 off != PAGE_SIZE) {
1096 /* We can extend the last page
1097 * fragment. */
1098 merge = true;
1099 } else if (i == MAX_SKB_FRAGS || !sg) {
1100 /* Need to add new fragment and cannot
1101 * do this because interface is non-SG,
1102 * or because all the page slots are
1103 * busy. */
1104 tcp_mark_push(tp, skb);
1105 goto new_segment;
1106 } else if (page) {
1107 if (off == PAGE_SIZE) {
1108 put_page(page);
1109 sk->sk_sndmsg_page = page = NULL;
1110 off = 0;
1112 } else
1113 off = 0;
1115 if (copy > PAGE_SIZE - off)
1116 copy = PAGE_SIZE - off;
1118 if (!sk_wmem_schedule(sk, copy))
1119 goto wait_for_memory;
1121 if (!page) {
1122 /* Allocate new cache page. */
1123 if (!(page = sk_stream_alloc_page(sk)))
1124 goto wait_for_memory;
1127 /* Time to copy data. We are close to
1128 * the end! */
1129 err = skb_copy_to_page_nocache(sk, from, skb,
1130 page, off, copy);
1131 if (err) {
1132 /* If this page was new, give it to the
1133 * socket so it does not get leaked.
1135 if (!sk->sk_sndmsg_page) {
1136 sk->sk_sndmsg_page = page;
1137 sk->sk_sndmsg_off = 0;
1139 goto do_error;
1142 /* Update the skb. */
1143 if (merge) {
1144 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1145 } else {
1146 skb_fill_page_desc(skb, i, page, off, copy);
1147 if (sk->sk_sndmsg_page) {
1148 get_page(page);
1149 } else if (off + copy < PAGE_SIZE) {
1150 get_page(page);
1151 sk->sk_sndmsg_page = page;
1155 sk->sk_sndmsg_off = off + copy;
1158 if (!copied)
1159 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1161 tp->write_seq += copy;
1162 TCP_SKB_CB(skb)->end_seq += copy;
1163 skb_shinfo(skb)->gso_segs = 0;
1165 from += copy;
1166 copied += copy;
1167 if ((seglen -= copy) == 0 && iovlen == 0)
1168 goto out;
1170 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1171 continue;
1173 if (forced_push(tp)) {
1174 tcp_mark_push(tp, skb);
1175 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1176 } else if (skb == tcp_send_head(sk))
1177 tcp_push_one(sk, mss_now);
1178 continue;
1180 wait_for_sndbuf:
1181 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1182 wait_for_memory:
1183 if (copied && likely(!tp->repair))
1184 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1186 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1187 goto do_error;
1189 mss_now = tcp_send_mss(sk, &size_goal, flags);
1193 out:
1194 if (copied && likely(!tp->repair))
1195 tcp_push(sk, flags, mss_now, tp->nonagle);
1196 release_sock(sk);
1197 return copied;
1199 do_fault:
1200 if (!skb->len) {
1201 tcp_unlink_write_queue(skb, sk);
1202 /* It is the one place in all of TCP, except connection
1203 * reset, where we can be unlinking the send_head.
1205 tcp_check_send_head(sk, skb);
1206 sk_wmem_free_skb(sk, skb);
1209 do_error:
1210 if (copied)
1211 goto out;
1212 out_err:
1213 err = sk_stream_error(sk, flags, err);
1214 release_sock(sk);
1215 return err;
1217 EXPORT_SYMBOL(tcp_sendmsg);
1220 * Handle reading urgent data. BSD has very simple semantics for
1221 * this, no blocking and very strange errors 8)
1224 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1226 struct tcp_sock *tp = tcp_sk(sk);
1228 /* No URG data to read. */
1229 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1230 tp->urg_data == TCP_URG_READ)
1231 return -EINVAL; /* Yes this is right ! */
1233 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1234 return -ENOTCONN;
1236 if (tp->urg_data & TCP_URG_VALID) {
1237 int err = 0;
1238 char c = tp->urg_data;
1240 if (!(flags & MSG_PEEK))
1241 tp->urg_data = TCP_URG_READ;
1243 /* Read urgent data. */
1244 msg->msg_flags |= MSG_OOB;
1246 if (len > 0) {
1247 if (!(flags & MSG_TRUNC))
1248 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1249 len = 1;
1250 } else
1251 msg->msg_flags |= MSG_TRUNC;
1253 return err ? -EFAULT : len;
1256 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1257 return 0;
1259 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1260 * the available implementations agree in this case:
1261 * this call should never block, independent of the
1262 * blocking state of the socket.
1263 * Mike <pall@rz.uni-karlsruhe.de>
1265 return -EAGAIN;
1268 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1270 struct sk_buff *skb;
1271 int copied = 0, err = 0;
1273 /* XXX -- need to support SO_PEEK_OFF */
1275 skb_queue_walk(&sk->sk_write_queue, skb) {
1276 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1277 if (err)
1278 break;
1280 copied += skb->len;
1283 return err ?: copied;
1286 /* Clean up the receive buffer for full frames taken by the user,
1287 * then send an ACK if necessary. COPIED is the number of bytes
1288 * tcp_recvmsg has given to the user so far, it speeds up the
1289 * calculation of whether or not we must ACK for the sake of
1290 * a window update.
1292 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 bool time_to_ack = false;
1297 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1299 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1300 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1301 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1303 if (inet_csk_ack_scheduled(sk)) {
1304 const struct inet_connection_sock *icsk = inet_csk(sk);
1305 /* Delayed ACKs frequently hit locked sockets during bulk
1306 * receive. */
1307 if (icsk->icsk_ack.blocked ||
1308 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1309 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1311 * If this read emptied read buffer, we send ACK, if
1312 * connection is not bidirectional, user drained
1313 * receive buffer and there was a small segment
1314 * in queue.
1316 (copied > 0 &&
1317 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1318 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1319 !icsk->icsk_ack.pingpong)) &&
1320 !atomic_read(&sk->sk_rmem_alloc)))
1321 time_to_ack = true;
1324 /* We send an ACK if we can now advertise a non-zero window
1325 * which has been raised "significantly".
1327 * Even if window raised up to infinity, do not send window open ACK
1328 * in states, where we will not receive more. It is useless.
1330 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1331 __u32 rcv_window_now = tcp_receive_window(tp);
1333 /* Optimize, __tcp_select_window() is not cheap. */
1334 if (2*rcv_window_now <= tp->window_clamp) {
1335 __u32 new_window = __tcp_select_window(sk);
1337 /* Send ACK now, if this read freed lots of space
1338 * in our buffer. Certainly, new_window is new window.
1339 * We can advertise it now, if it is not less than current one.
1340 * "Lots" means "at least twice" here.
1342 if (new_window && new_window >= 2 * rcv_window_now)
1343 time_to_ack = true;
1346 if (time_to_ack)
1347 tcp_send_ack(sk);
1350 static void tcp_prequeue_process(struct sock *sk)
1352 struct sk_buff *skb;
1353 struct tcp_sock *tp = tcp_sk(sk);
1355 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1357 /* RX process wants to run with disabled BHs, though it is not
1358 * necessary */
1359 local_bh_disable();
1360 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1361 sk_backlog_rcv(sk, skb);
1362 local_bh_enable();
1364 /* Clear memory counter. */
1365 tp->ucopy.memory = 0;
1368 #ifdef CONFIG_NET_DMA
1369 static void tcp_service_net_dma(struct sock *sk, bool wait)
1371 dma_cookie_t done, used;
1372 dma_cookie_t last_issued;
1373 struct tcp_sock *tp = tcp_sk(sk);
1375 if (!tp->ucopy.dma_chan)
1376 return;
1378 last_issued = tp->ucopy.dma_cookie;
1379 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1381 do {
1382 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1383 last_issued, &done,
1384 &used) == DMA_SUCCESS) {
1385 /* Safe to free early-copied skbs now */
1386 __skb_queue_purge(&sk->sk_async_wait_queue);
1387 break;
1388 } else {
1389 struct sk_buff *skb;
1390 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1391 (dma_async_is_complete(skb->dma_cookie, done,
1392 used) == DMA_SUCCESS)) {
1393 __skb_dequeue(&sk->sk_async_wait_queue);
1394 kfree_skb(skb);
1397 } while (wait);
1399 #endif
1401 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1403 struct sk_buff *skb;
1404 u32 offset;
1406 skb_queue_walk(&sk->sk_receive_queue, skb) {
1407 offset = seq - TCP_SKB_CB(skb)->seq;
1408 if (tcp_hdr(skb)->syn)
1409 offset--;
1410 if (offset < skb->len || tcp_hdr(skb)->fin) {
1411 *off = offset;
1412 return skb;
1415 return NULL;
1419 * This routine provides an alternative to tcp_recvmsg() for routines
1420 * that would like to handle copying from skbuffs directly in 'sendfile'
1421 * fashion.
1422 * Note:
1423 * - It is assumed that the socket was locked by the caller.
1424 * - The routine does not block.
1425 * - At present, there is no support for reading OOB data
1426 * or for 'peeking' the socket using this routine
1427 * (although both would be easy to implement).
1429 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1430 sk_read_actor_t recv_actor)
1432 struct sk_buff *skb;
1433 struct tcp_sock *tp = tcp_sk(sk);
1434 u32 seq = tp->copied_seq;
1435 u32 offset;
1436 int copied = 0;
1438 if (sk->sk_state == TCP_LISTEN)
1439 return -ENOTCONN;
1440 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1441 if (offset < skb->len) {
1442 int used;
1443 size_t len;
1445 len = skb->len - offset;
1446 /* Stop reading if we hit a patch of urgent data */
1447 if (tp->urg_data) {
1448 u32 urg_offset = tp->urg_seq - seq;
1449 if (urg_offset < len)
1450 len = urg_offset;
1451 if (!len)
1452 break;
1454 used = recv_actor(desc, skb, offset, len);
1455 if (used < 0) {
1456 if (!copied)
1457 copied = used;
1458 break;
1459 } else if (used <= len) {
1460 seq += used;
1461 copied += used;
1462 offset += used;
1465 * If recv_actor drops the lock (e.g. TCP splice
1466 * receive) the skb pointer might be invalid when
1467 * getting here: tcp_collapse might have deleted it
1468 * while aggregating skbs from the socket queue.
1470 skb = tcp_recv_skb(sk, seq-1, &offset);
1471 if (!skb || (offset+1 != skb->len))
1472 break;
1474 if (tcp_hdr(skb)->fin) {
1475 sk_eat_skb(sk, skb, false);
1476 ++seq;
1477 break;
1479 sk_eat_skb(sk, skb, false);
1480 if (!desc->count)
1481 break;
1482 tp->copied_seq = seq;
1484 tp->copied_seq = seq;
1486 tcp_rcv_space_adjust(sk);
1488 /* Clean up data we have read: This will do ACK frames. */
1489 if (copied > 0)
1490 tcp_cleanup_rbuf(sk, copied);
1491 return copied;
1493 EXPORT_SYMBOL(tcp_read_sock);
1496 * This routine copies from a sock struct into the user buffer.
1498 * Technical note: in 2.3 we work on _locked_ socket, so that
1499 * tricks with *seq access order and skb->users are not required.
1500 * Probably, code can be easily improved even more.
1503 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1504 size_t len, int nonblock, int flags, int *addr_len)
1506 struct tcp_sock *tp = tcp_sk(sk);
1507 int copied = 0;
1508 u32 peek_seq;
1509 u32 *seq;
1510 unsigned long used;
1511 int err;
1512 int target; /* Read at least this many bytes */
1513 long timeo;
1514 struct task_struct *user_recv = NULL;
1515 bool copied_early = false;
1516 struct sk_buff *skb;
1517 u32 urg_hole = 0;
1519 lock_sock(sk);
1521 err = -ENOTCONN;
1522 if (sk->sk_state == TCP_LISTEN)
1523 goto out;
1525 timeo = sock_rcvtimeo(sk, nonblock);
1527 /* Urgent data needs to be handled specially. */
1528 if (flags & MSG_OOB)
1529 goto recv_urg;
1531 if (unlikely(tp->repair)) {
1532 err = -EPERM;
1533 if (!(flags & MSG_PEEK))
1534 goto out;
1536 if (tp->repair_queue == TCP_SEND_QUEUE)
1537 goto recv_sndq;
1539 err = -EINVAL;
1540 if (tp->repair_queue == TCP_NO_QUEUE)
1541 goto out;
1543 /* 'common' recv queue MSG_PEEK-ing */
1546 seq = &tp->copied_seq;
1547 if (flags & MSG_PEEK) {
1548 peek_seq = tp->copied_seq;
1549 seq = &peek_seq;
1552 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1554 #ifdef CONFIG_NET_DMA
1555 tp->ucopy.dma_chan = NULL;
1556 preempt_disable();
1557 skb = skb_peek_tail(&sk->sk_receive_queue);
1559 int available = 0;
1561 if (skb)
1562 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1563 if ((available < target) &&
1564 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1565 !sysctl_tcp_low_latency &&
1566 net_dma_find_channel()) {
1567 preempt_enable_no_resched();
1568 tp->ucopy.pinned_list =
1569 dma_pin_iovec_pages(msg->msg_iov, len);
1570 } else {
1571 preempt_enable_no_resched();
1574 #endif
1576 do {
1577 u32 offset;
1579 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1580 if (tp->urg_data && tp->urg_seq == *seq) {
1581 if (copied)
1582 break;
1583 if (signal_pending(current)) {
1584 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1585 break;
1589 /* Next get a buffer. */
1591 skb_queue_walk(&sk->sk_receive_queue, skb) {
1592 /* Now that we have two receive queues this
1593 * shouldn't happen.
1595 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1596 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1597 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1598 flags))
1599 break;
1601 offset = *seq - TCP_SKB_CB(skb)->seq;
1602 if (tcp_hdr(skb)->syn)
1603 offset--;
1604 if (offset < skb->len)
1605 goto found_ok_skb;
1606 if (tcp_hdr(skb)->fin)
1607 goto found_fin_ok;
1608 WARN(!(flags & MSG_PEEK),
1609 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1610 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1613 /* Well, if we have backlog, try to process it now yet. */
1615 if (copied >= target && !sk->sk_backlog.tail)
1616 break;
1618 if (copied) {
1619 if (sk->sk_err ||
1620 sk->sk_state == TCP_CLOSE ||
1621 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1622 !timeo ||
1623 signal_pending(current))
1624 break;
1625 } else {
1626 if (sock_flag(sk, SOCK_DONE))
1627 break;
1629 if (sk->sk_err) {
1630 copied = sock_error(sk);
1631 break;
1634 if (sk->sk_shutdown & RCV_SHUTDOWN)
1635 break;
1637 if (sk->sk_state == TCP_CLOSE) {
1638 if (!sock_flag(sk, SOCK_DONE)) {
1639 /* This occurs when user tries to read
1640 * from never connected socket.
1642 copied = -ENOTCONN;
1643 break;
1645 break;
1648 if (!timeo) {
1649 copied = -EAGAIN;
1650 break;
1653 if (signal_pending(current)) {
1654 copied = sock_intr_errno(timeo);
1655 break;
1659 tcp_cleanup_rbuf(sk, copied);
1661 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1662 /* Install new reader */
1663 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1664 user_recv = current;
1665 tp->ucopy.task = user_recv;
1666 tp->ucopy.iov = msg->msg_iov;
1669 tp->ucopy.len = len;
1671 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1672 !(flags & (MSG_PEEK | MSG_TRUNC)));
1674 /* Ugly... If prequeue is not empty, we have to
1675 * process it before releasing socket, otherwise
1676 * order will be broken at second iteration.
1677 * More elegant solution is required!!!
1679 * Look: we have the following (pseudo)queues:
1681 * 1. packets in flight
1682 * 2. backlog
1683 * 3. prequeue
1684 * 4. receive_queue
1686 * Each queue can be processed only if the next ones
1687 * are empty. At this point we have empty receive_queue.
1688 * But prequeue _can_ be not empty after 2nd iteration,
1689 * when we jumped to start of loop because backlog
1690 * processing added something to receive_queue.
1691 * We cannot release_sock(), because backlog contains
1692 * packets arrived _after_ prequeued ones.
1694 * Shortly, algorithm is clear --- to process all
1695 * the queues in order. We could make it more directly,
1696 * requeueing packets from backlog to prequeue, if
1697 * is not empty. It is more elegant, but eats cycles,
1698 * unfortunately.
1700 if (!skb_queue_empty(&tp->ucopy.prequeue))
1701 goto do_prequeue;
1703 /* __ Set realtime policy in scheduler __ */
1706 #ifdef CONFIG_NET_DMA
1707 if (tp->ucopy.dma_chan)
1708 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1709 #endif
1710 if (copied >= target) {
1711 /* Do not sleep, just process backlog. */
1712 release_sock(sk);
1713 lock_sock(sk);
1714 } else
1715 sk_wait_data(sk, &timeo);
1717 #ifdef CONFIG_NET_DMA
1718 tcp_service_net_dma(sk, false); /* Don't block */
1719 tp->ucopy.wakeup = 0;
1720 #endif
1722 if (user_recv) {
1723 int chunk;
1725 /* __ Restore normal policy in scheduler __ */
1727 if ((chunk = len - tp->ucopy.len) != 0) {
1728 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1729 len -= chunk;
1730 copied += chunk;
1733 if (tp->rcv_nxt == tp->copied_seq &&
1734 !skb_queue_empty(&tp->ucopy.prequeue)) {
1735 do_prequeue:
1736 tcp_prequeue_process(sk);
1738 if ((chunk = len - tp->ucopy.len) != 0) {
1739 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1740 len -= chunk;
1741 copied += chunk;
1745 if ((flags & MSG_PEEK) &&
1746 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1747 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1748 current->comm,
1749 task_pid_nr(current));
1750 peek_seq = tp->copied_seq;
1752 continue;
1754 found_ok_skb:
1755 /* Ok so how much can we use? */
1756 used = skb->len - offset;
1757 if (len < used)
1758 used = len;
1760 /* Do we have urgent data here? */
1761 if (tp->urg_data) {
1762 u32 urg_offset = tp->urg_seq - *seq;
1763 if (urg_offset < used) {
1764 if (!urg_offset) {
1765 if (!sock_flag(sk, SOCK_URGINLINE)) {
1766 ++*seq;
1767 urg_hole++;
1768 offset++;
1769 used--;
1770 if (!used)
1771 goto skip_copy;
1773 } else
1774 used = urg_offset;
1778 if (!(flags & MSG_TRUNC)) {
1779 #ifdef CONFIG_NET_DMA
1780 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1781 tp->ucopy.dma_chan = net_dma_find_channel();
1783 if (tp->ucopy.dma_chan) {
1784 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1785 tp->ucopy.dma_chan, skb, offset,
1786 msg->msg_iov, used,
1787 tp->ucopy.pinned_list);
1789 if (tp->ucopy.dma_cookie < 0) {
1791 pr_alert("%s: dma_cookie < 0\n",
1792 __func__);
1794 /* Exception. Bailout! */
1795 if (!copied)
1796 copied = -EFAULT;
1797 break;
1800 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1802 if ((offset + used) == skb->len)
1803 copied_early = true;
1805 } else
1806 #endif
1808 err = skb_copy_datagram_iovec(skb, offset,
1809 msg->msg_iov, used);
1810 if (err) {
1811 /* Exception. Bailout! */
1812 if (!copied)
1813 copied = -EFAULT;
1814 break;
1819 *seq += used;
1820 copied += used;
1821 len -= used;
1823 tcp_rcv_space_adjust(sk);
1825 skip_copy:
1826 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1827 tp->urg_data = 0;
1828 tcp_fast_path_check(sk);
1830 if (used + offset < skb->len)
1831 continue;
1833 if (tcp_hdr(skb)->fin)
1834 goto found_fin_ok;
1835 if (!(flags & MSG_PEEK)) {
1836 sk_eat_skb(sk, skb, copied_early);
1837 copied_early = false;
1839 continue;
1841 found_fin_ok:
1842 /* Process the FIN. */
1843 ++*seq;
1844 if (!(flags & MSG_PEEK)) {
1845 sk_eat_skb(sk, skb, copied_early);
1846 copied_early = false;
1848 break;
1849 } while (len > 0);
1851 if (user_recv) {
1852 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1853 int chunk;
1855 tp->ucopy.len = copied > 0 ? len : 0;
1857 tcp_prequeue_process(sk);
1859 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1860 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1861 len -= chunk;
1862 copied += chunk;
1866 tp->ucopy.task = NULL;
1867 tp->ucopy.len = 0;
1870 #ifdef CONFIG_NET_DMA
1871 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1872 tp->ucopy.dma_chan = NULL;
1874 if (tp->ucopy.pinned_list) {
1875 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1876 tp->ucopy.pinned_list = NULL;
1878 #endif
1880 /* According to UNIX98, msg_name/msg_namelen are ignored
1881 * on connected socket. I was just happy when found this 8) --ANK
1884 /* Clean up data we have read: This will do ACK frames. */
1885 tcp_cleanup_rbuf(sk, copied);
1887 release_sock(sk);
1888 return copied;
1890 out:
1891 release_sock(sk);
1892 return err;
1894 recv_urg:
1895 err = tcp_recv_urg(sk, msg, len, flags);
1896 goto out;
1898 recv_sndq:
1899 err = tcp_peek_sndq(sk, msg, len);
1900 goto out;
1902 EXPORT_SYMBOL(tcp_recvmsg);
1904 void tcp_set_state(struct sock *sk, int state)
1906 int oldstate = sk->sk_state;
1908 switch (state) {
1909 case TCP_ESTABLISHED:
1910 if (oldstate != TCP_ESTABLISHED)
1911 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1912 break;
1914 case TCP_CLOSE:
1915 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1916 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1918 sk->sk_prot->unhash(sk);
1919 if (inet_csk(sk)->icsk_bind_hash &&
1920 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1921 inet_put_port(sk);
1922 /* fall through */
1923 default:
1924 if (oldstate == TCP_ESTABLISHED)
1925 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1928 /* Change state AFTER socket is unhashed to avoid closed
1929 * socket sitting in hash tables.
1931 sk->sk_state = state;
1933 #ifdef STATE_TRACE
1934 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1935 #endif
1937 EXPORT_SYMBOL_GPL(tcp_set_state);
1940 * State processing on a close. This implements the state shift for
1941 * sending our FIN frame. Note that we only send a FIN for some
1942 * states. A shutdown() may have already sent the FIN, or we may be
1943 * closed.
1946 static const unsigned char new_state[16] = {
1947 /* current state: new state: action: */
1948 /* (Invalid) */ TCP_CLOSE,
1949 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1950 /* TCP_SYN_SENT */ TCP_CLOSE,
1951 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1952 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1953 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1954 /* TCP_TIME_WAIT */ TCP_CLOSE,
1955 /* TCP_CLOSE */ TCP_CLOSE,
1956 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1957 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1958 /* TCP_LISTEN */ TCP_CLOSE,
1959 /* TCP_CLOSING */ TCP_CLOSING,
1962 static int tcp_close_state(struct sock *sk)
1964 int next = (int)new_state[sk->sk_state];
1965 int ns = next & TCP_STATE_MASK;
1967 tcp_set_state(sk, ns);
1969 return next & TCP_ACTION_FIN;
1973 * Shutdown the sending side of a connection. Much like close except
1974 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1977 void tcp_shutdown(struct sock *sk, int how)
1979 /* We need to grab some memory, and put together a FIN,
1980 * and then put it into the queue to be sent.
1981 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1983 if (!(how & SEND_SHUTDOWN))
1984 return;
1986 /* If we've already sent a FIN, or it's a closed state, skip this. */
1987 if ((1 << sk->sk_state) &
1988 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1989 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1990 /* Clear out any half completed packets. FIN if needed. */
1991 if (tcp_close_state(sk))
1992 tcp_send_fin(sk);
1995 EXPORT_SYMBOL(tcp_shutdown);
1997 bool tcp_check_oom(struct sock *sk, int shift)
1999 bool too_many_orphans, out_of_socket_memory;
2001 too_many_orphans = tcp_too_many_orphans(sk, shift);
2002 out_of_socket_memory = tcp_out_of_memory(sk);
2004 if (too_many_orphans)
2005 net_info_ratelimited("too many orphaned sockets\n");
2006 if (out_of_socket_memory)
2007 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2008 return too_many_orphans || out_of_socket_memory;
2011 void tcp_close(struct sock *sk, long timeout)
2013 struct sk_buff *skb;
2014 int data_was_unread = 0;
2015 int state;
2017 lock_sock(sk);
2018 sk->sk_shutdown = SHUTDOWN_MASK;
2020 if (sk->sk_state == TCP_LISTEN) {
2021 tcp_set_state(sk, TCP_CLOSE);
2023 /* Special case. */
2024 inet_csk_listen_stop(sk);
2026 goto adjudge_to_death;
2029 /* We need to flush the recv. buffs. We do this only on the
2030 * descriptor close, not protocol-sourced closes, because the
2031 * reader process may not have drained the data yet!
2033 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2034 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2035 tcp_hdr(skb)->fin;
2036 data_was_unread += len;
2037 __kfree_skb(skb);
2040 sk_mem_reclaim(sk);
2042 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2043 if (sk->sk_state == TCP_CLOSE)
2044 goto adjudge_to_death;
2046 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2047 * data was lost. To witness the awful effects of the old behavior of
2048 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2049 * GET in an FTP client, suspend the process, wait for the client to
2050 * advertise a zero window, then kill -9 the FTP client, wheee...
2051 * Note: timeout is always zero in such a case.
2053 if (unlikely(tcp_sk(sk)->repair)) {
2054 sk->sk_prot->disconnect(sk, 0);
2055 } else if (data_was_unread) {
2056 /* Unread data was tossed, zap the connection. */
2057 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2058 tcp_set_state(sk, TCP_CLOSE);
2059 tcp_send_active_reset(sk, sk->sk_allocation);
2060 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2061 /* Check zero linger _after_ checking for unread data. */
2062 sk->sk_prot->disconnect(sk, 0);
2063 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2064 } else if (tcp_close_state(sk)) {
2065 /* We FIN if the application ate all the data before
2066 * zapping the connection.
2069 /* RED-PEN. Formally speaking, we have broken TCP state
2070 * machine. State transitions:
2072 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2073 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2074 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2076 * are legal only when FIN has been sent (i.e. in window),
2077 * rather than queued out of window. Purists blame.
2079 * F.e. "RFC state" is ESTABLISHED,
2080 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2082 * The visible declinations are that sometimes
2083 * we enter time-wait state, when it is not required really
2084 * (harmless), do not send active resets, when they are
2085 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2086 * they look as CLOSING or LAST_ACK for Linux)
2087 * Probably, I missed some more holelets.
2088 * --ANK
2090 tcp_send_fin(sk);
2093 sk_stream_wait_close(sk, timeout);
2095 adjudge_to_death:
2096 state = sk->sk_state;
2097 sock_hold(sk);
2098 sock_orphan(sk);
2100 /* It is the last release_sock in its life. It will remove backlog. */
2101 release_sock(sk);
2104 /* Now socket is owned by kernel and we acquire BH lock
2105 to finish close. No need to check for user refs.
2107 local_bh_disable();
2108 bh_lock_sock(sk);
2109 WARN_ON(sock_owned_by_user(sk));
2111 percpu_counter_inc(sk->sk_prot->orphan_count);
2113 /* Have we already been destroyed by a softirq or backlog? */
2114 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2115 goto out;
2117 /* This is a (useful) BSD violating of the RFC. There is a
2118 * problem with TCP as specified in that the other end could
2119 * keep a socket open forever with no application left this end.
2120 * We use a 3 minute timeout (about the same as BSD) then kill
2121 * our end. If they send after that then tough - BUT: long enough
2122 * that we won't make the old 4*rto = almost no time - whoops
2123 * reset mistake.
2125 * Nope, it was not mistake. It is really desired behaviour
2126 * f.e. on http servers, when such sockets are useless, but
2127 * consume significant resources. Let's do it with special
2128 * linger2 option. --ANK
2131 if (sk->sk_state == TCP_FIN_WAIT2) {
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 if (tp->linger2 < 0) {
2134 tcp_set_state(sk, TCP_CLOSE);
2135 tcp_send_active_reset(sk, GFP_ATOMIC);
2136 NET_INC_STATS_BH(sock_net(sk),
2137 LINUX_MIB_TCPABORTONLINGER);
2138 } else {
2139 const int tmo = tcp_fin_time(sk);
2141 if (tmo > TCP_TIMEWAIT_LEN) {
2142 inet_csk_reset_keepalive_timer(sk,
2143 tmo - TCP_TIMEWAIT_LEN);
2144 } else {
2145 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2146 goto out;
2150 if (sk->sk_state != TCP_CLOSE) {
2151 sk_mem_reclaim(sk);
2152 if (tcp_check_oom(sk, 0)) {
2153 tcp_set_state(sk, TCP_CLOSE);
2154 tcp_send_active_reset(sk, GFP_ATOMIC);
2155 NET_INC_STATS_BH(sock_net(sk),
2156 LINUX_MIB_TCPABORTONMEMORY);
2160 if (sk->sk_state == TCP_CLOSE)
2161 inet_csk_destroy_sock(sk);
2162 /* Otherwise, socket is reprieved until protocol close. */
2164 out:
2165 bh_unlock_sock(sk);
2166 local_bh_enable();
2167 sock_put(sk);
2169 EXPORT_SYMBOL(tcp_close);
2171 /* These states need RST on ABORT according to RFC793 */
2173 static inline bool tcp_need_reset(int state)
2175 return (1 << state) &
2176 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2177 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2180 int tcp_disconnect(struct sock *sk, int flags)
2182 struct inet_sock *inet = inet_sk(sk);
2183 struct inet_connection_sock *icsk = inet_csk(sk);
2184 struct tcp_sock *tp = tcp_sk(sk);
2185 int err = 0;
2186 int old_state = sk->sk_state;
2188 if (old_state != TCP_CLOSE)
2189 tcp_set_state(sk, TCP_CLOSE);
2191 /* ABORT function of RFC793 */
2192 if (old_state == TCP_LISTEN) {
2193 inet_csk_listen_stop(sk);
2194 } else if (unlikely(tp->repair)) {
2195 sk->sk_err = ECONNABORTED;
2196 } else if (tcp_need_reset(old_state) ||
2197 (tp->snd_nxt != tp->write_seq &&
2198 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2199 /* The last check adjusts for discrepancy of Linux wrt. RFC
2200 * states
2202 tcp_send_active_reset(sk, gfp_any());
2203 sk->sk_err = ECONNRESET;
2204 } else if (old_state == TCP_SYN_SENT)
2205 sk->sk_err = ECONNRESET;
2207 tcp_clear_xmit_timers(sk);
2208 __skb_queue_purge(&sk->sk_receive_queue);
2209 tcp_write_queue_purge(sk);
2210 __skb_queue_purge(&tp->out_of_order_queue);
2211 #ifdef CONFIG_NET_DMA
2212 __skb_queue_purge(&sk->sk_async_wait_queue);
2213 #endif
2215 inet->inet_dport = 0;
2217 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2218 inet_reset_saddr(sk);
2220 sk->sk_shutdown = 0;
2221 sock_reset_flag(sk, SOCK_DONE);
2222 tp->srtt = 0;
2223 if ((tp->write_seq += tp->max_window + 2) == 0)
2224 tp->write_seq = 1;
2225 icsk->icsk_backoff = 0;
2226 tp->snd_cwnd = 2;
2227 icsk->icsk_probes_out = 0;
2228 tp->packets_out = 0;
2229 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2230 tp->snd_cwnd_cnt = 0;
2231 tp->bytes_acked = 0;
2232 tp->window_clamp = 0;
2233 tcp_set_ca_state(sk, TCP_CA_Open);
2234 tcp_clear_retrans(tp);
2235 inet_csk_delack_init(sk);
2236 tcp_init_send_head(sk);
2237 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2238 __sk_dst_reset(sk);
2240 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2242 sk->sk_error_report(sk);
2243 return err;
2245 EXPORT_SYMBOL(tcp_disconnect);
2247 static inline bool tcp_can_repair_sock(const struct sock *sk)
2249 return capable(CAP_NET_ADMIN) &&
2250 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2253 static int tcp_repair_options_est(struct tcp_sock *tp,
2254 struct tcp_repair_opt __user *optbuf, unsigned int len)
2256 struct tcp_repair_opt opt;
2258 while (len >= sizeof(opt)) {
2259 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2260 return -EFAULT;
2262 optbuf++;
2263 len -= sizeof(opt);
2265 switch (opt.opt_code) {
2266 case TCPOPT_MSS:
2267 tp->rx_opt.mss_clamp = opt.opt_val;
2268 break;
2269 case TCPOPT_WINDOW:
2270 if (opt.opt_val > 14)
2271 return -EFBIG;
2273 tp->rx_opt.snd_wscale = opt.opt_val;
2274 break;
2275 case TCPOPT_SACK_PERM:
2276 if (opt.opt_val != 0)
2277 return -EINVAL;
2279 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2280 if (sysctl_tcp_fack)
2281 tcp_enable_fack(tp);
2282 break;
2283 case TCPOPT_TIMESTAMP:
2284 if (opt.opt_val != 0)
2285 return -EINVAL;
2287 tp->rx_opt.tstamp_ok = 1;
2288 break;
2292 return 0;
2296 * Socket option code for TCP.
2298 static int do_tcp_setsockopt(struct sock *sk, int level,
2299 int optname, char __user *optval, unsigned int optlen)
2301 struct tcp_sock *tp = tcp_sk(sk);
2302 struct inet_connection_sock *icsk = inet_csk(sk);
2303 int val;
2304 int err = 0;
2306 /* These are data/string values, all the others are ints */
2307 switch (optname) {
2308 case TCP_CONGESTION: {
2309 char name[TCP_CA_NAME_MAX];
2311 if (optlen < 1)
2312 return -EINVAL;
2314 val = strncpy_from_user(name, optval,
2315 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2316 if (val < 0)
2317 return -EFAULT;
2318 name[val] = 0;
2320 lock_sock(sk);
2321 err = tcp_set_congestion_control(sk, name);
2322 release_sock(sk);
2323 return err;
2325 case TCP_COOKIE_TRANSACTIONS: {
2326 struct tcp_cookie_transactions ctd;
2327 struct tcp_cookie_values *cvp = NULL;
2329 if (sizeof(ctd) > optlen)
2330 return -EINVAL;
2331 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2332 return -EFAULT;
2334 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2335 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2336 return -EINVAL;
2338 if (ctd.tcpct_cookie_desired == 0) {
2339 /* default to global value */
2340 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2341 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2342 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2343 return -EINVAL;
2346 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2347 /* Supercedes all other values */
2348 lock_sock(sk);
2349 if (tp->cookie_values != NULL) {
2350 kref_put(&tp->cookie_values->kref,
2351 tcp_cookie_values_release);
2352 tp->cookie_values = NULL;
2354 tp->rx_opt.cookie_in_always = 0; /* false */
2355 tp->rx_opt.cookie_out_never = 1; /* true */
2356 release_sock(sk);
2357 return err;
2360 /* Allocate ancillary memory before locking.
2362 if (ctd.tcpct_used > 0 ||
2363 (tp->cookie_values == NULL &&
2364 (sysctl_tcp_cookie_size > 0 ||
2365 ctd.tcpct_cookie_desired > 0 ||
2366 ctd.tcpct_s_data_desired > 0))) {
2367 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2368 GFP_KERNEL);
2369 if (cvp == NULL)
2370 return -ENOMEM;
2372 kref_init(&cvp->kref);
2374 lock_sock(sk);
2375 tp->rx_opt.cookie_in_always =
2376 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2377 tp->rx_opt.cookie_out_never = 0; /* false */
2379 if (tp->cookie_values != NULL) {
2380 if (cvp != NULL) {
2381 /* Changed values are recorded by a changed
2382 * pointer, ensuring the cookie will differ,
2383 * without separately hashing each value later.
2385 kref_put(&tp->cookie_values->kref,
2386 tcp_cookie_values_release);
2387 } else {
2388 cvp = tp->cookie_values;
2392 if (cvp != NULL) {
2393 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2395 if (ctd.tcpct_used > 0) {
2396 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2397 ctd.tcpct_used);
2398 cvp->s_data_desired = ctd.tcpct_used;
2399 cvp->s_data_constant = 1; /* true */
2400 } else {
2401 /* No constant payload data. */
2402 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2403 cvp->s_data_constant = 0; /* false */
2406 tp->cookie_values = cvp;
2408 release_sock(sk);
2409 return err;
2411 default:
2412 /* fallthru */
2413 break;
2416 if (optlen < sizeof(int))
2417 return -EINVAL;
2419 if (get_user(val, (int __user *)optval))
2420 return -EFAULT;
2422 lock_sock(sk);
2424 switch (optname) {
2425 case TCP_MAXSEG:
2426 /* Values greater than interface MTU won't take effect. However
2427 * at the point when this call is done we typically don't yet
2428 * know which interface is going to be used */
2429 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2430 err = -EINVAL;
2431 break;
2433 tp->rx_opt.user_mss = val;
2434 break;
2436 case TCP_NODELAY:
2437 if (val) {
2438 /* TCP_NODELAY is weaker than TCP_CORK, so that
2439 * this option on corked socket is remembered, but
2440 * it is not activated until cork is cleared.
2442 * However, when TCP_NODELAY is set we make
2443 * an explicit push, which overrides even TCP_CORK
2444 * for currently queued segments.
2446 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2447 tcp_push_pending_frames(sk);
2448 } else {
2449 tp->nonagle &= ~TCP_NAGLE_OFF;
2451 break;
2453 case TCP_THIN_LINEAR_TIMEOUTS:
2454 if (val < 0 || val > 1)
2455 err = -EINVAL;
2456 else
2457 tp->thin_lto = val;
2458 break;
2460 case TCP_THIN_DUPACK:
2461 if (val < 0 || val > 1)
2462 err = -EINVAL;
2463 else
2464 tp->thin_dupack = val;
2465 if (tp->thin_dupack)
2466 tcp_disable_early_retrans(tp);
2467 break;
2469 case TCP_REPAIR:
2470 if (!tcp_can_repair_sock(sk))
2471 err = -EPERM;
2472 else if (val == 1) {
2473 tp->repair = 1;
2474 sk->sk_reuse = SK_FORCE_REUSE;
2475 tp->repair_queue = TCP_NO_QUEUE;
2476 } else if (val == 0) {
2477 tp->repair = 0;
2478 sk->sk_reuse = SK_NO_REUSE;
2479 tcp_send_window_probe(sk);
2480 } else
2481 err = -EINVAL;
2483 break;
2485 case TCP_REPAIR_QUEUE:
2486 if (!tp->repair)
2487 err = -EPERM;
2488 else if (val < TCP_QUEUES_NR)
2489 tp->repair_queue = val;
2490 else
2491 err = -EINVAL;
2492 break;
2494 case TCP_QUEUE_SEQ:
2495 if (sk->sk_state != TCP_CLOSE)
2496 err = -EPERM;
2497 else if (tp->repair_queue == TCP_SEND_QUEUE)
2498 tp->write_seq = val;
2499 else if (tp->repair_queue == TCP_RECV_QUEUE)
2500 tp->rcv_nxt = val;
2501 else
2502 err = -EINVAL;
2503 break;
2505 case TCP_REPAIR_OPTIONS:
2506 if (!tp->repair)
2507 err = -EINVAL;
2508 else if (sk->sk_state == TCP_ESTABLISHED)
2509 err = tcp_repair_options_est(tp,
2510 (struct tcp_repair_opt __user *)optval,
2511 optlen);
2512 else
2513 err = -EPERM;
2514 break;
2516 case TCP_CORK:
2517 /* When set indicates to always queue non-full frames.
2518 * Later the user clears this option and we transmit
2519 * any pending partial frames in the queue. This is
2520 * meant to be used alongside sendfile() to get properly
2521 * filled frames when the user (for example) must write
2522 * out headers with a write() call first and then use
2523 * sendfile to send out the data parts.
2525 * TCP_CORK can be set together with TCP_NODELAY and it is
2526 * stronger than TCP_NODELAY.
2528 if (val) {
2529 tp->nonagle |= TCP_NAGLE_CORK;
2530 } else {
2531 tp->nonagle &= ~TCP_NAGLE_CORK;
2532 if (tp->nonagle&TCP_NAGLE_OFF)
2533 tp->nonagle |= TCP_NAGLE_PUSH;
2534 tcp_push_pending_frames(sk);
2536 break;
2538 case TCP_KEEPIDLE:
2539 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2540 err = -EINVAL;
2541 else {
2542 tp->keepalive_time = val * HZ;
2543 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2544 !((1 << sk->sk_state) &
2545 (TCPF_CLOSE | TCPF_LISTEN))) {
2546 u32 elapsed = keepalive_time_elapsed(tp);
2547 if (tp->keepalive_time > elapsed)
2548 elapsed = tp->keepalive_time - elapsed;
2549 else
2550 elapsed = 0;
2551 inet_csk_reset_keepalive_timer(sk, elapsed);
2554 break;
2555 case TCP_KEEPINTVL:
2556 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2557 err = -EINVAL;
2558 else
2559 tp->keepalive_intvl = val * HZ;
2560 break;
2561 case TCP_KEEPCNT:
2562 if (val < 1 || val > MAX_TCP_KEEPCNT)
2563 err = -EINVAL;
2564 else
2565 tp->keepalive_probes = val;
2566 break;
2567 case TCP_SYNCNT:
2568 if (val < 1 || val > MAX_TCP_SYNCNT)
2569 err = -EINVAL;
2570 else
2571 icsk->icsk_syn_retries = val;
2572 break;
2574 case TCP_LINGER2:
2575 if (val < 0)
2576 tp->linger2 = -1;
2577 else if (val > sysctl_tcp_fin_timeout / HZ)
2578 tp->linger2 = 0;
2579 else
2580 tp->linger2 = val * HZ;
2581 break;
2583 case TCP_DEFER_ACCEPT:
2584 /* Translate value in seconds to number of retransmits */
2585 icsk->icsk_accept_queue.rskq_defer_accept =
2586 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2587 TCP_RTO_MAX / HZ);
2588 break;
2590 case TCP_WINDOW_CLAMP:
2591 if (!val) {
2592 if (sk->sk_state != TCP_CLOSE) {
2593 err = -EINVAL;
2594 break;
2596 tp->window_clamp = 0;
2597 } else
2598 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2599 SOCK_MIN_RCVBUF / 2 : val;
2600 break;
2602 case TCP_QUICKACK:
2603 if (!val) {
2604 icsk->icsk_ack.pingpong = 1;
2605 } else {
2606 icsk->icsk_ack.pingpong = 0;
2607 if ((1 << sk->sk_state) &
2608 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2609 inet_csk_ack_scheduled(sk)) {
2610 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2611 tcp_cleanup_rbuf(sk, 1);
2612 if (!(val & 1))
2613 icsk->icsk_ack.pingpong = 1;
2616 break;
2618 #ifdef CONFIG_TCP_MD5SIG
2619 case TCP_MD5SIG:
2620 /* Read the IP->Key mappings from userspace */
2621 err = tp->af_specific->md5_parse(sk, optval, optlen);
2622 break;
2623 #endif
2624 case TCP_USER_TIMEOUT:
2625 /* Cap the max timeout in ms TCP will retry/retrans
2626 * before giving up and aborting (ETIMEDOUT) a connection.
2628 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2629 break;
2630 default:
2631 err = -ENOPROTOOPT;
2632 break;
2635 release_sock(sk);
2636 return err;
2639 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2640 unsigned int optlen)
2642 const struct inet_connection_sock *icsk = inet_csk(sk);
2644 if (level != SOL_TCP)
2645 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2646 optval, optlen);
2647 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2649 EXPORT_SYMBOL(tcp_setsockopt);
2651 #ifdef CONFIG_COMPAT
2652 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2653 char __user *optval, unsigned int optlen)
2655 if (level != SOL_TCP)
2656 return inet_csk_compat_setsockopt(sk, level, optname,
2657 optval, optlen);
2658 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2660 EXPORT_SYMBOL(compat_tcp_setsockopt);
2661 #endif
2663 /* Return information about state of tcp endpoint in API format. */
2664 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2666 const struct tcp_sock *tp = tcp_sk(sk);
2667 const struct inet_connection_sock *icsk = inet_csk(sk);
2668 u32 now = tcp_time_stamp;
2670 memset(info, 0, sizeof(*info));
2672 info->tcpi_state = sk->sk_state;
2673 info->tcpi_ca_state = icsk->icsk_ca_state;
2674 info->tcpi_retransmits = icsk->icsk_retransmits;
2675 info->tcpi_probes = icsk->icsk_probes_out;
2676 info->tcpi_backoff = icsk->icsk_backoff;
2678 if (tp->rx_opt.tstamp_ok)
2679 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2680 if (tcp_is_sack(tp))
2681 info->tcpi_options |= TCPI_OPT_SACK;
2682 if (tp->rx_opt.wscale_ok) {
2683 info->tcpi_options |= TCPI_OPT_WSCALE;
2684 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2685 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2688 if (tp->ecn_flags & TCP_ECN_OK)
2689 info->tcpi_options |= TCPI_OPT_ECN;
2690 if (tp->ecn_flags & TCP_ECN_SEEN)
2691 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2693 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2694 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2695 info->tcpi_snd_mss = tp->mss_cache;
2696 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2698 if (sk->sk_state == TCP_LISTEN) {
2699 info->tcpi_unacked = sk->sk_ack_backlog;
2700 info->tcpi_sacked = sk->sk_max_ack_backlog;
2701 } else {
2702 info->tcpi_unacked = tp->packets_out;
2703 info->tcpi_sacked = tp->sacked_out;
2705 info->tcpi_lost = tp->lost_out;
2706 info->tcpi_retrans = tp->retrans_out;
2707 info->tcpi_fackets = tp->fackets_out;
2709 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2710 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2711 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2713 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2714 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2715 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2716 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2717 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2718 info->tcpi_snd_cwnd = tp->snd_cwnd;
2719 info->tcpi_advmss = tp->advmss;
2720 info->tcpi_reordering = tp->reordering;
2722 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2723 info->tcpi_rcv_space = tp->rcvq_space.space;
2725 info->tcpi_total_retrans = tp->total_retrans;
2727 EXPORT_SYMBOL_GPL(tcp_get_info);
2729 static int do_tcp_getsockopt(struct sock *sk, int level,
2730 int optname, char __user *optval, int __user *optlen)
2732 struct inet_connection_sock *icsk = inet_csk(sk);
2733 struct tcp_sock *tp = tcp_sk(sk);
2734 int val, len;
2736 if (get_user(len, optlen))
2737 return -EFAULT;
2739 len = min_t(unsigned int, len, sizeof(int));
2741 if (len < 0)
2742 return -EINVAL;
2744 switch (optname) {
2745 case TCP_MAXSEG:
2746 val = tp->mss_cache;
2747 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2748 val = tp->rx_opt.user_mss;
2749 if (tp->repair)
2750 val = tp->rx_opt.mss_clamp;
2751 break;
2752 case TCP_NODELAY:
2753 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2754 break;
2755 case TCP_CORK:
2756 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2757 break;
2758 case TCP_KEEPIDLE:
2759 val = keepalive_time_when(tp) / HZ;
2760 break;
2761 case TCP_KEEPINTVL:
2762 val = keepalive_intvl_when(tp) / HZ;
2763 break;
2764 case TCP_KEEPCNT:
2765 val = keepalive_probes(tp);
2766 break;
2767 case TCP_SYNCNT:
2768 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2769 break;
2770 case TCP_LINGER2:
2771 val = tp->linger2;
2772 if (val >= 0)
2773 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2774 break;
2775 case TCP_DEFER_ACCEPT:
2776 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2777 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2778 break;
2779 case TCP_WINDOW_CLAMP:
2780 val = tp->window_clamp;
2781 break;
2782 case TCP_INFO: {
2783 struct tcp_info info;
2785 if (get_user(len, optlen))
2786 return -EFAULT;
2788 tcp_get_info(sk, &info);
2790 len = min_t(unsigned int, len, sizeof(info));
2791 if (put_user(len, optlen))
2792 return -EFAULT;
2793 if (copy_to_user(optval, &info, len))
2794 return -EFAULT;
2795 return 0;
2797 case TCP_QUICKACK:
2798 val = !icsk->icsk_ack.pingpong;
2799 break;
2801 case TCP_CONGESTION:
2802 if (get_user(len, optlen))
2803 return -EFAULT;
2804 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2805 if (put_user(len, optlen))
2806 return -EFAULT;
2807 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2808 return -EFAULT;
2809 return 0;
2811 case TCP_COOKIE_TRANSACTIONS: {
2812 struct tcp_cookie_transactions ctd;
2813 struct tcp_cookie_values *cvp = tp->cookie_values;
2815 if (get_user(len, optlen))
2816 return -EFAULT;
2817 if (len < sizeof(ctd))
2818 return -EINVAL;
2820 memset(&ctd, 0, sizeof(ctd));
2821 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2822 TCP_COOKIE_IN_ALWAYS : 0)
2823 | (tp->rx_opt.cookie_out_never ?
2824 TCP_COOKIE_OUT_NEVER : 0);
2826 if (cvp != NULL) {
2827 ctd.tcpct_flags |= (cvp->s_data_in ?
2828 TCP_S_DATA_IN : 0)
2829 | (cvp->s_data_out ?
2830 TCP_S_DATA_OUT : 0);
2832 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2833 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2835 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2836 cvp->cookie_pair_size);
2837 ctd.tcpct_used = cvp->cookie_pair_size;
2840 if (put_user(sizeof(ctd), optlen))
2841 return -EFAULT;
2842 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2843 return -EFAULT;
2844 return 0;
2846 case TCP_THIN_LINEAR_TIMEOUTS:
2847 val = tp->thin_lto;
2848 break;
2849 case TCP_THIN_DUPACK:
2850 val = tp->thin_dupack;
2851 break;
2853 case TCP_REPAIR:
2854 val = tp->repair;
2855 break;
2857 case TCP_REPAIR_QUEUE:
2858 if (tp->repair)
2859 val = tp->repair_queue;
2860 else
2861 return -EINVAL;
2862 break;
2864 case TCP_QUEUE_SEQ:
2865 if (tp->repair_queue == TCP_SEND_QUEUE)
2866 val = tp->write_seq;
2867 else if (tp->repair_queue == TCP_RECV_QUEUE)
2868 val = tp->rcv_nxt;
2869 else
2870 return -EINVAL;
2871 break;
2873 case TCP_USER_TIMEOUT:
2874 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2875 break;
2876 default:
2877 return -ENOPROTOOPT;
2880 if (put_user(len, optlen))
2881 return -EFAULT;
2882 if (copy_to_user(optval, &val, len))
2883 return -EFAULT;
2884 return 0;
2887 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2888 int __user *optlen)
2890 struct inet_connection_sock *icsk = inet_csk(sk);
2892 if (level != SOL_TCP)
2893 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2894 optval, optlen);
2895 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2897 EXPORT_SYMBOL(tcp_getsockopt);
2899 #ifdef CONFIG_COMPAT
2900 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2901 char __user *optval, int __user *optlen)
2903 if (level != SOL_TCP)
2904 return inet_csk_compat_getsockopt(sk, level, optname,
2905 optval, optlen);
2906 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2908 EXPORT_SYMBOL(compat_tcp_getsockopt);
2909 #endif
2911 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2912 netdev_features_t features)
2914 struct sk_buff *segs = ERR_PTR(-EINVAL);
2915 struct tcphdr *th;
2916 unsigned int thlen;
2917 unsigned int seq;
2918 __be32 delta;
2919 unsigned int oldlen;
2920 unsigned int mss;
2922 if (!pskb_may_pull(skb, sizeof(*th)))
2923 goto out;
2925 th = tcp_hdr(skb);
2926 thlen = th->doff * 4;
2927 if (thlen < sizeof(*th))
2928 goto out;
2930 if (!pskb_may_pull(skb, thlen))
2931 goto out;
2933 oldlen = (u16)~skb->len;
2934 __skb_pull(skb, thlen);
2936 mss = skb_shinfo(skb)->gso_size;
2937 if (unlikely(skb->len <= mss))
2938 goto out;
2940 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2941 /* Packet is from an untrusted source, reset gso_segs. */
2942 int type = skb_shinfo(skb)->gso_type;
2944 if (unlikely(type &
2945 ~(SKB_GSO_TCPV4 |
2946 SKB_GSO_DODGY |
2947 SKB_GSO_TCP_ECN |
2948 SKB_GSO_TCPV6 |
2949 0) ||
2950 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2951 goto out;
2953 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2955 segs = NULL;
2956 goto out;
2959 segs = skb_segment(skb, features);
2960 if (IS_ERR(segs))
2961 goto out;
2963 delta = htonl(oldlen + (thlen + mss));
2965 skb = segs;
2966 th = tcp_hdr(skb);
2967 seq = ntohl(th->seq);
2969 do {
2970 th->fin = th->psh = 0;
2972 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2973 (__force u32)delta));
2974 if (skb->ip_summed != CHECKSUM_PARTIAL)
2975 th->check =
2976 csum_fold(csum_partial(skb_transport_header(skb),
2977 thlen, skb->csum));
2979 seq += mss;
2980 skb = skb->next;
2981 th = tcp_hdr(skb);
2983 th->seq = htonl(seq);
2984 th->cwr = 0;
2985 } while (skb->next);
2987 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2988 skb->data_len);
2989 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2990 (__force u32)delta));
2991 if (skb->ip_summed != CHECKSUM_PARTIAL)
2992 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2993 thlen, skb->csum));
2995 out:
2996 return segs;
2998 EXPORT_SYMBOL(tcp_tso_segment);
3000 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3002 struct sk_buff **pp = NULL;
3003 struct sk_buff *p;
3004 struct tcphdr *th;
3005 struct tcphdr *th2;
3006 unsigned int len;
3007 unsigned int thlen;
3008 __be32 flags;
3009 unsigned int mss = 1;
3010 unsigned int hlen;
3011 unsigned int off;
3012 int flush = 1;
3013 int i;
3015 off = skb_gro_offset(skb);
3016 hlen = off + sizeof(*th);
3017 th = skb_gro_header_fast(skb, off);
3018 if (skb_gro_header_hard(skb, hlen)) {
3019 th = skb_gro_header_slow(skb, hlen, off);
3020 if (unlikely(!th))
3021 goto out;
3024 thlen = th->doff * 4;
3025 if (thlen < sizeof(*th))
3026 goto out;
3028 hlen = off + thlen;
3029 if (skb_gro_header_hard(skb, hlen)) {
3030 th = skb_gro_header_slow(skb, hlen, off);
3031 if (unlikely(!th))
3032 goto out;
3035 skb_gro_pull(skb, thlen);
3037 len = skb_gro_len(skb);
3038 flags = tcp_flag_word(th);
3040 for (; (p = *head); head = &p->next) {
3041 if (!NAPI_GRO_CB(p)->same_flow)
3042 continue;
3044 th2 = tcp_hdr(p);
3046 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3047 NAPI_GRO_CB(p)->same_flow = 0;
3048 continue;
3051 goto found;
3054 goto out_check_final;
3056 found:
3057 flush = NAPI_GRO_CB(p)->flush;
3058 flush |= (__force int)(flags & TCP_FLAG_CWR);
3059 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3060 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3061 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3062 for (i = sizeof(*th); i < thlen; i += 4)
3063 flush |= *(u32 *)((u8 *)th + i) ^
3064 *(u32 *)((u8 *)th2 + i);
3066 mss = skb_shinfo(p)->gso_size;
3068 flush |= (len - 1) >= mss;
3069 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3071 if (flush || skb_gro_receive(head, skb)) {
3072 mss = 1;
3073 goto out_check_final;
3076 p = *head;
3077 th2 = tcp_hdr(p);
3078 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3080 out_check_final:
3081 flush = len < mss;
3082 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3083 TCP_FLAG_RST | TCP_FLAG_SYN |
3084 TCP_FLAG_FIN));
3086 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3087 pp = head;
3089 out:
3090 NAPI_GRO_CB(skb)->flush |= flush;
3092 return pp;
3094 EXPORT_SYMBOL(tcp_gro_receive);
3096 int tcp_gro_complete(struct sk_buff *skb)
3098 struct tcphdr *th = tcp_hdr(skb);
3100 skb->csum_start = skb_transport_header(skb) - skb->head;
3101 skb->csum_offset = offsetof(struct tcphdr, check);
3102 skb->ip_summed = CHECKSUM_PARTIAL;
3104 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3106 if (th->cwr)
3107 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3109 return 0;
3111 EXPORT_SYMBOL(tcp_gro_complete);
3113 #ifdef CONFIG_TCP_MD5SIG
3114 static unsigned long tcp_md5sig_users;
3115 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3116 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3118 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3120 int cpu;
3122 for_each_possible_cpu(cpu) {
3123 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3125 if (p->md5_desc.tfm)
3126 crypto_free_hash(p->md5_desc.tfm);
3128 free_percpu(pool);
3131 void tcp_free_md5sig_pool(void)
3133 struct tcp_md5sig_pool __percpu *pool = NULL;
3135 spin_lock_bh(&tcp_md5sig_pool_lock);
3136 if (--tcp_md5sig_users == 0) {
3137 pool = tcp_md5sig_pool;
3138 tcp_md5sig_pool = NULL;
3140 spin_unlock_bh(&tcp_md5sig_pool_lock);
3141 if (pool)
3142 __tcp_free_md5sig_pool(pool);
3144 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3146 static struct tcp_md5sig_pool __percpu *
3147 __tcp_alloc_md5sig_pool(struct sock *sk)
3149 int cpu;
3150 struct tcp_md5sig_pool __percpu *pool;
3152 pool = alloc_percpu(struct tcp_md5sig_pool);
3153 if (!pool)
3154 return NULL;
3156 for_each_possible_cpu(cpu) {
3157 struct crypto_hash *hash;
3159 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3160 if (!hash || IS_ERR(hash))
3161 goto out_free;
3163 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3165 return pool;
3166 out_free:
3167 __tcp_free_md5sig_pool(pool);
3168 return NULL;
3171 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3173 struct tcp_md5sig_pool __percpu *pool;
3174 bool alloc = false;
3176 retry:
3177 spin_lock_bh(&tcp_md5sig_pool_lock);
3178 pool = tcp_md5sig_pool;
3179 if (tcp_md5sig_users++ == 0) {
3180 alloc = true;
3181 spin_unlock_bh(&tcp_md5sig_pool_lock);
3182 } else if (!pool) {
3183 tcp_md5sig_users--;
3184 spin_unlock_bh(&tcp_md5sig_pool_lock);
3185 cpu_relax();
3186 goto retry;
3187 } else
3188 spin_unlock_bh(&tcp_md5sig_pool_lock);
3190 if (alloc) {
3191 /* we cannot hold spinlock here because this may sleep. */
3192 struct tcp_md5sig_pool __percpu *p;
3194 p = __tcp_alloc_md5sig_pool(sk);
3195 spin_lock_bh(&tcp_md5sig_pool_lock);
3196 if (!p) {
3197 tcp_md5sig_users--;
3198 spin_unlock_bh(&tcp_md5sig_pool_lock);
3199 return NULL;
3201 pool = tcp_md5sig_pool;
3202 if (pool) {
3203 /* oops, it has already been assigned. */
3204 spin_unlock_bh(&tcp_md5sig_pool_lock);
3205 __tcp_free_md5sig_pool(p);
3206 } else {
3207 tcp_md5sig_pool = pool = p;
3208 spin_unlock_bh(&tcp_md5sig_pool_lock);
3211 return pool;
3213 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3217 * tcp_get_md5sig_pool - get md5sig_pool for this user
3219 * We use percpu structure, so if we succeed, we exit with preemption
3220 * and BH disabled, to make sure another thread or softirq handling
3221 * wont try to get same context.
3223 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3225 struct tcp_md5sig_pool __percpu *p;
3227 local_bh_disable();
3229 spin_lock(&tcp_md5sig_pool_lock);
3230 p = tcp_md5sig_pool;
3231 if (p)
3232 tcp_md5sig_users++;
3233 spin_unlock(&tcp_md5sig_pool_lock);
3235 if (p)
3236 return this_cpu_ptr(p);
3238 local_bh_enable();
3239 return NULL;
3241 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3243 void tcp_put_md5sig_pool(void)
3245 local_bh_enable();
3246 tcp_free_md5sig_pool();
3248 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3250 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3251 const struct tcphdr *th)
3253 struct scatterlist sg;
3254 struct tcphdr hdr;
3255 int err;
3257 /* We are not allowed to change tcphdr, make a local copy */
3258 memcpy(&hdr, th, sizeof(hdr));
3259 hdr.check = 0;
3261 /* options aren't included in the hash */
3262 sg_init_one(&sg, &hdr, sizeof(hdr));
3263 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3264 return err;
3266 EXPORT_SYMBOL(tcp_md5_hash_header);
3268 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3269 const struct sk_buff *skb, unsigned int header_len)
3271 struct scatterlist sg;
3272 const struct tcphdr *tp = tcp_hdr(skb);
3273 struct hash_desc *desc = &hp->md5_desc;
3274 unsigned int i;
3275 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3276 skb_headlen(skb) - header_len : 0;
3277 const struct skb_shared_info *shi = skb_shinfo(skb);
3278 struct sk_buff *frag_iter;
3280 sg_init_table(&sg, 1);
3282 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3283 if (crypto_hash_update(desc, &sg, head_data_len))
3284 return 1;
3286 for (i = 0; i < shi->nr_frags; ++i) {
3287 const struct skb_frag_struct *f = &shi->frags[i];
3288 struct page *page = skb_frag_page(f);
3289 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3290 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3291 return 1;
3294 skb_walk_frags(skb, frag_iter)
3295 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3296 return 1;
3298 return 0;
3300 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3302 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3304 struct scatterlist sg;
3306 sg_init_one(&sg, key->key, key->keylen);
3307 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3309 EXPORT_SYMBOL(tcp_md5_hash_key);
3311 #endif
3314 * Each Responder maintains up to two secret values concurrently for
3315 * efficient secret rollover. Each secret value has 4 states:
3317 * Generating. (tcp_secret_generating != tcp_secret_primary)
3318 * Generates new Responder-Cookies, but not yet used for primary
3319 * verification. This is a short-term state, typically lasting only
3320 * one round trip time (RTT).
3322 * Primary. (tcp_secret_generating == tcp_secret_primary)
3323 * Used both for generation and primary verification.
3325 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3326 * Used for verification, until the first failure that can be
3327 * verified by the newer Generating secret. At that time, this
3328 * cookie's state is changed to Secondary, and the Generating
3329 * cookie's state is changed to Primary. This is a short-term state,
3330 * typically lasting only one round trip time (RTT).
3332 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3333 * Used for secondary verification, after primary verification
3334 * failures. This state lasts no more than twice the Maximum Segment
3335 * Lifetime (2MSL). Then, the secret is discarded.
3337 struct tcp_cookie_secret {
3338 /* The secret is divided into two parts. The digest part is the
3339 * equivalent of previously hashing a secret and saving the state,
3340 * and serves as an initialization vector (IV). The message part
3341 * serves as the trailing secret.
3343 u32 secrets[COOKIE_WORKSPACE_WORDS];
3344 unsigned long expires;
3347 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3348 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3349 #define TCP_SECRET_LIFE (HZ * 600)
3351 static struct tcp_cookie_secret tcp_secret_one;
3352 static struct tcp_cookie_secret tcp_secret_two;
3354 /* Essentially a circular list, without dynamic allocation. */
3355 static struct tcp_cookie_secret *tcp_secret_generating;
3356 static struct tcp_cookie_secret *tcp_secret_primary;
3357 static struct tcp_cookie_secret *tcp_secret_retiring;
3358 static struct tcp_cookie_secret *tcp_secret_secondary;
3360 static DEFINE_SPINLOCK(tcp_secret_locker);
3362 /* Select a pseudo-random word in the cookie workspace.
3364 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3366 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3369 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3370 * Called in softirq context.
3371 * Returns: 0 for success.
3373 int tcp_cookie_generator(u32 *bakery)
3375 unsigned long jiffy = jiffies;
3377 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3378 spin_lock_bh(&tcp_secret_locker);
3379 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3380 /* refreshed by another */
3381 memcpy(bakery,
3382 &tcp_secret_generating->secrets[0],
3383 COOKIE_WORKSPACE_WORDS);
3384 } else {
3385 /* still needs refreshing */
3386 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3388 /* The first time, paranoia assumes that the
3389 * randomization function isn't as strong. But,
3390 * this secret initialization is delayed until
3391 * the last possible moment (packet arrival).
3392 * Although that time is observable, it is
3393 * unpredictably variable. Mash in the most
3394 * volatile clock bits available, and expire the
3395 * secret extra quickly.
3397 if (unlikely(tcp_secret_primary->expires ==
3398 tcp_secret_secondary->expires)) {
3399 struct timespec tv;
3401 getnstimeofday(&tv);
3402 bakery[COOKIE_DIGEST_WORDS+0] ^=
3403 (u32)tv.tv_nsec;
3405 tcp_secret_secondary->expires = jiffy
3406 + TCP_SECRET_1MSL
3407 + (0x0f & tcp_cookie_work(bakery, 0));
3408 } else {
3409 tcp_secret_secondary->expires = jiffy
3410 + TCP_SECRET_LIFE
3411 + (0xff & tcp_cookie_work(bakery, 1));
3412 tcp_secret_primary->expires = jiffy
3413 + TCP_SECRET_2MSL
3414 + (0x1f & tcp_cookie_work(bakery, 2));
3416 memcpy(&tcp_secret_secondary->secrets[0],
3417 bakery, COOKIE_WORKSPACE_WORDS);
3419 rcu_assign_pointer(tcp_secret_generating,
3420 tcp_secret_secondary);
3421 rcu_assign_pointer(tcp_secret_retiring,
3422 tcp_secret_primary);
3424 * Neither call_rcu() nor synchronize_rcu() needed.
3425 * Retiring data is not freed. It is replaced after
3426 * further (locked) pointer updates, and a quiet time
3427 * (minimum 1MSL, maximum LIFE - 2MSL).
3430 spin_unlock_bh(&tcp_secret_locker);
3431 } else {
3432 rcu_read_lock_bh();
3433 memcpy(bakery,
3434 &rcu_dereference(tcp_secret_generating)->secrets[0],
3435 COOKIE_WORKSPACE_WORDS);
3436 rcu_read_unlock_bh();
3438 return 0;
3440 EXPORT_SYMBOL(tcp_cookie_generator);
3442 void tcp_done(struct sock *sk)
3444 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3445 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3447 tcp_set_state(sk, TCP_CLOSE);
3448 tcp_clear_xmit_timers(sk);
3450 sk->sk_shutdown = SHUTDOWN_MASK;
3452 if (!sock_flag(sk, SOCK_DEAD))
3453 sk->sk_state_change(sk);
3454 else
3455 inet_csk_destroy_sock(sk);
3457 EXPORT_SYMBOL_GPL(tcp_done);
3459 extern struct tcp_congestion_ops tcp_reno;
3461 static __initdata unsigned long thash_entries;
3462 static int __init set_thash_entries(char *str)
3464 ssize_t ret;
3466 if (!str)
3467 return 0;
3469 ret = kstrtoul(str, 0, &thash_entries);
3470 if (ret)
3471 return 0;
3473 return 1;
3475 __setup("thash_entries=", set_thash_entries);
3477 void tcp_init_mem(struct net *net)
3479 unsigned long limit = nr_free_buffer_pages() / 8;
3480 limit = max(limit, 128UL);
3481 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3482 net->ipv4.sysctl_tcp_mem[1] = limit;
3483 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3486 void __init tcp_init(void)
3488 struct sk_buff *skb = NULL;
3489 unsigned long limit;
3490 int max_rshare, max_wshare, cnt;
3491 unsigned int i;
3492 unsigned long jiffy = jiffies;
3494 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3496 percpu_counter_init(&tcp_sockets_allocated, 0);
3497 percpu_counter_init(&tcp_orphan_count, 0);
3498 tcp_hashinfo.bind_bucket_cachep =
3499 kmem_cache_create("tcp_bind_bucket",
3500 sizeof(struct inet_bind_bucket), 0,
3501 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3503 /* Size and allocate the main established and bind bucket
3504 * hash tables.
3506 * The methodology is similar to that of the buffer cache.
3508 tcp_hashinfo.ehash =
3509 alloc_large_system_hash("TCP established",
3510 sizeof(struct inet_ehash_bucket),
3511 thash_entries,
3512 (totalram_pages >= 128 * 1024) ?
3513 13 : 15,
3515 NULL,
3516 &tcp_hashinfo.ehash_mask,
3518 thash_entries ? 0 : 512 * 1024);
3519 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3520 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3521 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3523 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3524 panic("TCP: failed to alloc ehash_locks");
3525 tcp_hashinfo.bhash =
3526 alloc_large_system_hash("TCP bind",
3527 sizeof(struct inet_bind_hashbucket),
3528 tcp_hashinfo.ehash_mask + 1,
3529 (totalram_pages >= 128 * 1024) ?
3530 13 : 15,
3532 &tcp_hashinfo.bhash_size,
3533 NULL,
3535 64 * 1024);
3536 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3537 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3538 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3539 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3543 cnt = tcp_hashinfo.ehash_mask + 1;
3545 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3546 sysctl_tcp_max_orphans = cnt / 2;
3547 sysctl_max_syn_backlog = max(128, cnt / 256);
3549 tcp_init_mem(&init_net);
3550 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3551 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3552 max_wshare = min(4UL*1024*1024, limit);
3553 max_rshare = min(6UL*1024*1024, limit);
3555 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3556 sysctl_tcp_wmem[1] = 16*1024;
3557 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3559 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3560 sysctl_tcp_rmem[1] = 87380;
3561 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3563 pr_info("Hash tables configured (established %u bind %u)\n",
3564 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3566 tcp_register_congestion_control(&tcp_reno);
3568 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3569 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3570 tcp_secret_one.expires = jiffy; /* past due */
3571 tcp_secret_two.expires = jiffy; /* past due */
3572 tcp_secret_generating = &tcp_secret_one;
3573 tcp_secret_primary = &tcp_secret_one;
3574 tcp_secret_retiring = &tcp_secret_two;
3575 tcp_secret_secondary = &tcp_secret_two;