Xilinx: ARM: I2C: SI570: driver update
[linux-2.6-xlnx.git] / fs / btrfs / backref.c
blob0436c12da8c2e7d551430639f09e086182b85614
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "backref.h"
22 #include "ulist.h"
23 #include "transaction.h"
24 #include "delayed-ref.h"
27 * this structure records all encountered refs on the way up to the root
29 struct __prelim_ref {
30 struct list_head list;
31 u64 root_id;
32 struct btrfs_key key;
33 int level;
34 int count;
35 u64 parent;
36 u64 wanted_disk_byte;
39 static int __add_prelim_ref(struct list_head *head, u64 root_id,
40 struct btrfs_key *key, int level, u64 parent,
41 u64 wanted_disk_byte, int count)
43 struct __prelim_ref *ref;
45 /* in case we're adding delayed refs, we're holding the refs spinlock */
46 ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
47 if (!ref)
48 return -ENOMEM;
50 ref->root_id = root_id;
51 if (key)
52 ref->key = *key;
53 else
54 memset(&ref->key, 0, sizeof(ref->key));
56 ref->level = level;
57 ref->count = count;
58 ref->parent = parent;
59 ref->wanted_disk_byte = wanted_disk_byte;
60 list_add_tail(&ref->list, head);
62 return 0;
65 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
66 struct ulist *parents,
67 struct extent_buffer *eb, int level,
68 u64 wanted_objectid, u64 wanted_disk_byte)
70 int ret;
71 int slot;
72 struct btrfs_file_extent_item *fi;
73 struct btrfs_key key;
74 u64 disk_byte;
76 add_parent:
77 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
78 if (ret < 0)
79 return ret;
81 if (level != 0)
82 return 0;
85 * if the current leaf is full with EXTENT_DATA items, we must
86 * check the next one if that holds a reference as well.
87 * ref->count cannot be used to skip this check.
88 * repeat this until we don't find any additional EXTENT_DATA items.
90 while (1) {
91 ret = btrfs_next_leaf(root, path);
92 if (ret < 0)
93 return ret;
94 if (ret)
95 return 0;
97 eb = path->nodes[0];
98 for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
99 btrfs_item_key_to_cpu(eb, &key, slot);
100 if (key.objectid != wanted_objectid ||
101 key.type != BTRFS_EXTENT_DATA_KEY)
102 return 0;
103 fi = btrfs_item_ptr(eb, slot,
104 struct btrfs_file_extent_item);
105 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
106 if (disk_byte == wanted_disk_byte)
107 goto add_parent;
111 return 0;
115 * resolve an indirect backref in the form (root_id, key, level)
116 * to a logical address
118 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
119 struct __prelim_ref *ref,
120 struct ulist *parents)
122 struct btrfs_path *path;
123 struct btrfs_root *root;
124 struct btrfs_key root_key;
125 struct btrfs_key key = {0};
126 struct extent_buffer *eb;
127 int ret = 0;
128 int root_level;
129 int level = ref->level;
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
135 root_key.objectid = ref->root_id;
136 root_key.type = BTRFS_ROOT_ITEM_KEY;
137 root_key.offset = (u64)-1;
138 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
139 if (IS_ERR(root)) {
140 ret = PTR_ERR(root);
141 goto out;
144 rcu_read_lock();
145 root_level = btrfs_header_level(root->node);
146 rcu_read_unlock();
148 if (root_level + 1 == level)
149 goto out;
151 path->lowest_level = level;
152 ret = btrfs_search_slot(NULL, root, &ref->key, path, 0, 0);
153 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
154 "%d for key (%llu %u %llu)\n",
155 (unsigned long long)ref->root_id, level, ref->count, ret,
156 (unsigned long long)ref->key.objectid, ref->key.type,
157 (unsigned long long)ref->key.offset);
158 if (ret < 0)
159 goto out;
161 eb = path->nodes[level];
162 if (!eb) {
163 WARN_ON(1);
164 ret = 1;
165 goto out;
168 if (level == 0) {
169 if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
170 ret = btrfs_next_leaf(root, path);
171 if (ret)
172 goto out;
173 eb = path->nodes[0];
176 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
179 /* the last two parameters will only be used for level == 0 */
180 ret = add_all_parents(root, path, parents, eb, level, key.objectid,
181 ref->wanted_disk_byte);
182 out:
183 btrfs_free_path(path);
184 return ret;
188 * resolve all indirect backrefs from the list
190 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
191 struct list_head *head)
193 int err;
194 int ret = 0;
195 struct __prelim_ref *ref;
196 struct __prelim_ref *ref_safe;
197 struct __prelim_ref *new_ref;
198 struct ulist *parents;
199 struct ulist_node *node;
201 parents = ulist_alloc(GFP_NOFS);
202 if (!parents)
203 return -ENOMEM;
206 * _safe allows us to insert directly after the current item without
207 * iterating over the newly inserted items.
208 * we're also allowed to re-assign ref during iteration.
210 list_for_each_entry_safe(ref, ref_safe, head, list) {
211 if (ref->parent) /* already direct */
212 continue;
213 if (ref->count == 0)
214 continue;
215 err = __resolve_indirect_ref(fs_info, ref, parents);
216 if (err) {
217 if (ret == 0)
218 ret = err;
219 continue;
222 /* we put the first parent into the ref at hand */
223 node = ulist_next(parents, NULL);
224 ref->parent = node ? node->val : 0;
226 /* additional parents require new refs being added here */
227 while ((node = ulist_next(parents, node))) {
228 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
229 if (!new_ref) {
230 ret = -ENOMEM;
231 break;
233 memcpy(new_ref, ref, sizeof(*ref));
234 new_ref->parent = node->val;
235 list_add(&new_ref->list, &ref->list);
237 ulist_reinit(parents);
240 ulist_free(parents);
241 return ret;
245 * merge two lists of backrefs and adjust counts accordingly
247 * mode = 1: merge identical keys, if key is set
248 * mode = 2: merge identical parents
250 static int __merge_refs(struct list_head *head, int mode)
252 struct list_head *pos1;
254 list_for_each(pos1, head) {
255 struct list_head *n2;
256 struct list_head *pos2;
257 struct __prelim_ref *ref1;
259 ref1 = list_entry(pos1, struct __prelim_ref, list);
261 if (mode == 1 && ref1->key.type == 0)
262 continue;
263 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
264 pos2 = n2, n2 = pos2->next) {
265 struct __prelim_ref *ref2;
267 ref2 = list_entry(pos2, struct __prelim_ref, list);
269 if (mode == 1) {
270 if (memcmp(&ref1->key, &ref2->key,
271 sizeof(ref1->key)) ||
272 ref1->level != ref2->level ||
273 ref1->root_id != ref2->root_id)
274 continue;
275 ref1->count += ref2->count;
276 } else {
277 if (ref1->parent != ref2->parent)
278 continue;
279 ref1->count += ref2->count;
281 list_del(&ref2->list);
282 kfree(ref2);
286 return 0;
290 * add all currently queued delayed refs from this head whose seq nr is
291 * smaller or equal that seq to the list
293 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
294 struct btrfs_key *info_key,
295 struct list_head *prefs)
297 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
298 struct rb_node *n = &head->node.rb_node;
299 int sgn;
300 int ret = 0;
302 if (extent_op && extent_op->update_key)
303 btrfs_disk_key_to_cpu(info_key, &extent_op->key);
305 while ((n = rb_prev(n))) {
306 struct btrfs_delayed_ref_node *node;
307 node = rb_entry(n, struct btrfs_delayed_ref_node,
308 rb_node);
309 if (node->bytenr != head->node.bytenr)
310 break;
311 WARN_ON(node->is_head);
313 if (node->seq > seq)
314 continue;
316 switch (node->action) {
317 case BTRFS_ADD_DELAYED_EXTENT:
318 case BTRFS_UPDATE_DELAYED_HEAD:
319 WARN_ON(1);
320 continue;
321 case BTRFS_ADD_DELAYED_REF:
322 sgn = 1;
323 break;
324 case BTRFS_DROP_DELAYED_REF:
325 sgn = -1;
326 break;
327 default:
328 BUG_ON(1);
330 switch (node->type) {
331 case BTRFS_TREE_BLOCK_REF_KEY: {
332 struct btrfs_delayed_tree_ref *ref;
334 ref = btrfs_delayed_node_to_tree_ref(node);
335 ret = __add_prelim_ref(prefs, ref->root, info_key,
336 ref->level + 1, 0, node->bytenr,
337 node->ref_mod * sgn);
338 break;
340 case BTRFS_SHARED_BLOCK_REF_KEY: {
341 struct btrfs_delayed_tree_ref *ref;
343 ref = btrfs_delayed_node_to_tree_ref(node);
344 ret = __add_prelim_ref(prefs, ref->root, info_key,
345 ref->level + 1, ref->parent,
346 node->bytenr,
347 node->ref_mod * sgn);
348 break;
350 case BTRFS_EXTENT_DATA_REF_KEY: {
351 struct btrfs_delayed_data_ref *ref;
352 struct btrfs_key key;
354 ref = btrfs_delayed_node_to_data_ref(node);
356 key.objectid = ref->objectid;
357 key.type = BTRFS_EXTENT_DATA_KEY;
358 key.offset = ref->offset;
359 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
360 node->bytenr,
361 node->ref_mod * sgn);
362 break;
364 case BTRFS_SHARED_DATA_REF_KEY: {
365 struct btrfs_delayed_data_ref *ref;
366 struct btrfs_key key;
368 ref = btrfs_delayed_node_to_data_ref(node);
370 key.objectid = ref->objectid;
371 key.type = BTRFS_EXTENT_DATA_KEY;
372 key.offset = ref->offset;
373 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
374 ref->parent, node->bytenr,
375 node->ref_mod * sgn);
376 break;
378 default:
379 WARN_ON(1);
381 BUG_ON(ret);
384 return 0;
388 * add all inline backrefs for bytenr to the list
390 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
391 struct btrfs_path *path, u64 bytenr,
392 struct btrfs_key *info_key, int *info_level,
393 struct list_head *prefs)
395 int ret = 0;
396 int slot;
397 struct extent_buffer *leaf;
398 struct btrfs_key key;
399 unsigned long ptr;
400 unsigned long end;
401 struct btrfs_extent_item *ei;
402 u64 flags;
403 u64 item_size;
406 * enumerate all inline refs
408 leaf = path->nodes[0];
409 slot = path->slots[0] - 1;
411 item_size = btrfs_item_size_nr(leaf, slot);
412 BUG_ON(item_size < sizeof(*ei));
414 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
415 flags = btrfs_extent_flags(leaf, ei);
417 ptr = (unsigned long)(ei + 1);
418 end = (unsigned long)ei + item_size;
420 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
421 struct btrfs_tree_block_info *info;
422 struct btrfs_disk_key disk_key;
424 info = (struct btrfs_tree_block_info *)ptr;
425 *info_level = btrfs_tree_block_level(leaf, info);
426 btrfs_tree_block_key(leaf, info, &disk_key);
427 btrfs_disk_key_to_cpu(info_key, &disk_key);
428 ptr += sizeof(struct btrfs_tree_block_info);
429 BUG_ON(ptr > end);
430 } else {
431 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
434 while (ptr < end) {
435 struct btrfs_extent_inline_ref *iref;
436 u64 offset;
437 int type;
439 iref = (struct btrfs_extent_inline_ref *)ptr;
440 type = btrfs_extent_inline_ref_type(leaf, iref);
441 offset = btrfs_extent_inline_ref_offset(leaf, iref);
443 switch (type) {
444 case BTRFS_SHARED_BLOCK_REF_KEY:
445 ret = __add_prelim_ref(prefs, 0, info_key,
446 *info_level + 1, offset,
447 bytenr, 1);
448 break;
449 case BTRFS_SHARED_DATA_REF_KEY: {
450 struct btrfs_shared_data_ref *sdref;
451 int count;
453 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
454 count = btrfs_shared_data_ref_count(leaf, sdref);
455 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
456 bytenr, count);
457 break;
459 case BTRFS_TREE_BLOCK_REF_KEY:
460 ret = __add_prelim_ref(prefs, offset, info_key,
461 *info_level + 1, 0, bytenr, 1);
462 break;
463 case BTRFS_EXTENT_DATA_REF_KEY: {
464 struct btrfs_extent_data_ref *dref;
465 int count;
466 u64 root;
468 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
469 count = btrfs_extent_data_ref_count(leaf, dref);
470 key.objectid = btrfs_extent_data_ref_objectid(leaf,
471 dref);
472 key.type = BTRFS_EXTENT_DATA_KEY;
473 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
474 root = btrfs_extent_data_ref_root(leaf, dref);
475 ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr,
476 count);
477 break;
479 default:
480 WARN_ON(1);
482 BUG_ON(ret);
483 ptr += btrfs_extent_inline_ref_size(type);
486 return 0;
490 * add all non-inline backrefs for bytenr to the list
492 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
493 struct btrfs_path *path, u64 bytenr,
494 struct btrfs_key *info_key, int info_level,
495 struct list_head *prefs)
497 struct btrfs_root *extent_root = fs_info->extent_root;
498 int ret;
499 int slot;
500 struct extent_buffer *leaf;
501 struct btrfs_key key;
503 while (1) {
504 ret = btrfs_next_item(extent_root, path);
505 if (ret < 0)
506 break;
507 if (ret) {
508 ret = 0;
509 break;
512 slot = path->slots[0];
513 leaf = path->nodes[0];
514 btrfs_item_key_to_cpu(leaf, &key, slot);
516 if (key.objectid != bytenr)
517 break;
518 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
519 continue;
520 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
521 break;
523 switch (key.type) {
524 case BTRFS_SHARED_BLOCK_REF_KEY:
525 ret = __add_prelim_ref(prefs, 0, info_key,
526 info_level + 1, key.offset,
527 bytenr, 1);
528 break;
529 case BTRFS_SHARED_DATA_REF_KEY: {
530 struct btrfs_shared_data_ref *sdref;
531 int count;
533 sdref = btrfs_item_ptr(leaf, slot,
534 struct btrfs_shared_data_ref);
535 count = btrfs_shared_data_ref_count(leaf, sdref);
536 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
537 bytenr, count);
538 break;
540 case BTRFS_TREE_BLOCK_REF_KEY:
541 ret = __add_prelim_ref(prefs, key.offset, info_key,
542 info_level + 1, 0, bytenr, 1);
543 break;
544 case BTRFS_EXTENT_DATA_REF_KEY: {
545 struct btrfs_extent_data_ref *dref;
546 int count;
547 u64 root;
549 dref = btrfs_item_ptr(leaf, slot,
550 struct btrfs_extent_data_ref);
551 count = btrfs_extent_data_ref_count(leaf, dref);
552 key.objectid = btrfs_extent_data_ref_objectid(leaf,
553 dref);
554 key.type = BTRFS_EXTENT_DATA_KEY;
555 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
556 root = btrfs_extent_data_ref_root(leaf, dref);
557 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
558 bytenr, count);
559 break;
561 default:
562 WARN_ON(1);
564 BUG_ON(ret);
567 return ret;
571 * this adds all existing backrefs (inline backrefs, backrefs and delayed
572 * refs) for the given bytenr to the refs list, merges duplicates and resolves
573 * indirect refs to their parent bytenr.
574 * When roots are found, they're added to the roots list
576 * FIXME some caching might speed things up
578 static int find_parent_nodes(struct btrfs_trans_handle *trans,
579 struct btrfs_fs_info *fs_info, u64 bytenr,
580 u64 seq, struct ulist *refs, struct ulist *roots)
582 struct btrfs_key key;
583 struct btrfs_path *path;
584 struct btrfs_key info_key = { 0 };
585 struct btrfs_delayed_ref_root *delayed_refs = NULL;
586 struct btrfs_delayed_ref_head *head;
587 int info_level = 0;
588 int ret;
589 struct list_head prefs_delayed;
590 struct list_head prefs;
591 struct __prelim_ref *ref;
593 INIT_LIST_HEAD(&prefs);
594 INIT_LIST_HEAD(&prefs_delayed);
596 key.objectid = bytenr;
597 key.type = BTRFS_EXTENT_ITEM_KEY;
598 key.offset = (u64)-1;
600 path = btrfs_alloc_path();
601 if (!path)
602 return -ENOMEM;
605 * grab both a lock on the path and a lock on the delayed ref head.
606 * We need both to get a consistent picture of how the refs look
607 * at a specified point in time
609 again:
610 head = NULL;
612 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
613 if (ret < 0)
614 goto out;
615 BUG_ON(ret == 0);
618 * look if there are updates for this ref queued and lock the head
620 delayed_refs = &trans->transaction->delayed_refs;
621 spin_lock(&delayed_refs->lock);
622 head = btrfs_find_delayed_ref_head(trans, bytenr);
623 if (head) {
624 if (!mutex_trylock(&head->mutex)) {
625 atomic_inc(&head->node.refs);
626 spin_unlock(&delayed_refs->lock);
628 btrfs_release_path(path);
631 * Mutex was contended, block until it's
632 * released and try again
634 mutex_lock(&head->mutex);
635 mutex_unlock(&head->mutex);
636 btrfs_put_delayed_ref(&head->node);
637 goto again;
639 ret = __add_delayed_refs(head, seq, &info_key, &prefs_delayed);
640 if (ret) {
641 spin_unlock(&delayed_refs->lock);
642 goto out;
645 spin_unlock(&delayed_refs->lock);
647 if (path->slots[0]) {
648 struct extent_buffer *leaf;
649 int slot;
651 leaf = path->nodes[0];
652 slot = path->slots[0] - 1;
653 btrfs_item_key_to_cpu(leaf, &key, slot);
654 if (key.objectid == bytenr &&
655 key.type == BTRFS_EXTENT_ITEM_KEY) {
656 ret = __add_inline_refs(fs_info, path, bytenr,
657 &info_key, &info_level, &prefs);
658 if (ret)
659 goto out;
660 ret = __add_keyed_refs(fs_info, path, bytenr, &info_key,
661 info_level, &prefs);
662 if (ret)
663 goto out;
666 btrfs_release_path(path);
669 * when adding the delayed refs above, the info_key might not have
670 * been known yet. Go over the list and replace the missing keys
672 list_for_each_entry(ref, &prefs_delayed, list) {
673 if ((ref->key.offset | ref->key.type | ref->key.objectid) == 0)
674 memcpy(&ref->key, &info_key, sizeof(ref->key));
676 list_splice_init(&prefs_delayed, &prefs);
678 ret = __merge_refs(&prefs, 1);
679 if (ret)
680 goto out;
682 ret = __resolve_indirect_refs(fs_info, &prefs);
683 if (ret)
684 goto out;
686 ret = __merge_refs(&prefs, 2);
687 if (ret)
688 goto out;
690 while (!list_empty(&prefs)) {
691 ref = list_first_entry(&prefs, struct __prelim_ref, list);
692 list_del(&ref->list);
693 if (ref->count < 0)
694 WARN_ON(1);
695 if (ref->count && ref->root_id && ref->parent == 0) {
696 /* no parent == root of tree */
697 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
698 BUG_ON(ret < 0);
700 if (ref->count && ref->parent) {
701 ret = ulist_add(refs, ref->parent, 0, GFP_NOFS);
702 BUG_ON(ret < 0);
704 kfree(ref);
707 out:
708 if (head)
709 mutex_unlock(&head->mutex);
710 btrfs_free_path(path);
711 while (!list_empty(&prefs)) {
712 ref = list_first_entry(&prefs, struct __prelim_ref, list);
713 list_del(&ref->list);
714 kfree(ref);
716 while (!list_empty(&prefs_delayed)) {
717 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
718 list);
719 list_del(&ref->list);
720 kfree(ref);
723 return ret;
727 * Finds all leafs with a reference to the specified combination of bytenr and
728 * offset. key_list_head will point to a list of corresponding keys (caller must
729 * free each list element). The leafs will be stored in the leafs ulist, which
730 * must be freed with ulist_free.
732 * returns 0 on success, <0 on error
734 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
735 struct btrfs_fs_info *fs_info, u64 bytenr,
736 u64 num_bytes, u64 seq, struct ulist **leafs)
738 struct ulist *tmp;
739 int ret;
741 tmp = ulist_alloc(GFP_NOFS);
742 if (!tmp)
743 return -ENOMEM;
744 *leafs = ulist_alloc(GFP_NOFS);
745 if (!*leafs) {
746 ulist_free(tmp);
747 return -ENOMEM;
750 ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp);
751 ulist_free(tmp);
753 if (ret < 0 && ret != -ENOENT) {
754 ulist_free(*leafs);
755 return ret;
758 return 0;
762 * walk all backrefs for a given extent to find all roots that reference this
763 * extent. Walking a backref means finding all extents that reference this
764 * extent and in turn walk the backrefs of those, too. Naturally this is a
765 * recursive process, but here it is implemented in an iterative fashion: We
766 * find all referencing extents for the extent in question and put them on a
767 * list. In turn, we find all referencing extents for those, further appending
768 * to the list. The way we iterate the list allows adding more elements after
769 * the current while iterating. The process stops when we reach the end of the
770 * list. Found roots are added to the roots list.
772 * returns 0 on success, < 0 on error.
774 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
775 struct btrfs_fs_info *fs_info, u64 bytenr,
776 u64 num_bytes, u64 seq, struct ulist **roots)
778 struct ulist *tmp;
779 struct ulist_node *node = NULL;
780 int ret;
782 tmp = ulist_alloc(GFP_NOFS);
783 if (!tmp)
784 return -ENOMEM;
785 *roots = ulist_alloc(GFP_NOFS);
786 if (!*roots) {
787 ulist_free(tmp);
788 return -ENOMEM;
791 while (1) {
792 ret = find_parent_nodes(trans, fs_info, bytenr, seq,
793 tmp, *roots);
794 if (ret < 0 && ret != -ENOENT) {
795 ulist_free(tmp);
796 ulist_free(*roots);
797 return ret;
799 node = ulist_next(tmp, node);
800 if (!node)
801 break;
802 bytenr = node->val;
805 ulist_free(tmp);
806 return 0;
810 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
811 struct btrfs_root *fs_root, struct btrfs_path *path,
812 struct btrfs_key *found_key)
814 int ret;
815 struct btrfs_key key;
816 struct extent_buffer *eb;
818 key.type = key_type;
819 key.objectid = inum;
820 key.offset = ioff;
822 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
823 if (ret < 0)
824 return ret;
826 eb = path->nodes[0];
827 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
828 ret = btrfs_next_leaf(fs_root, path);
829 if (ret)
830 return ret;
831 eb = path->nodes[0];
834 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
835 if (found_key->type != key.type || found_key->objectid != key.objectid)
836 return 1;
838 return 0;
842 * this makes the path point to (inum INODE_ITEM ioff)
844 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
845 struct btrfs_path *path)
847 struct btrfs_key key;
848 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
849 &key);
852 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
853 struct btrfs_path *path,
854 struct btrfs_key *found_key)
856 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
857 found_key);
861 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
862 * of the path are separated by '/' and the path is guaranteed to be
863 * 0-terminated. the path is only given within the current file system.
864 * Therefore, it never starts with a '/'. the caller is responsible to provide
865 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
866 * the start point of the resulting string is returned. this pointer is within
867 * dest, normally.
868 * in case the path buffer would overflow, the pointer is decremented further
869 * as if output was written to the buffer, though no more output is actually
870 * generated. that way, the caller can determine how much space would be
871 * required for the path to fit into the buffer. in that case, the returned
872 * value will be smaller than dest. callers must check this!
874 static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
875 struct btrfs_inode_ref *iref,
876 struct extent_buffer *eb_in, u64 parent,
877 char *dest, u32 size)
879 u32 len;
880 int slot;
881 u64 next_inum;
882 int ret;
883 s64 bytes_left = size - 1;
884 struct extent_buffer *eb = eb_in;
885 struct btrfs_key found_key;
887 if (bytes_left >= 0)
888 dest[bytes_left] = '\0';
890 while (1) {
891 len = btrfs_inode_ref_name_len(eb, iref);
892 bytes_left -= len;
893 if (bytes_left >= 0)
894 read_extent_buffer(eb, dest + bytes_left,
895 (unsigned long)(iref + 1), len);
896 if (eb != eb_in)
897 free_extent_buffer(eb);
898 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
899 if (ret > 0)
900 ret = -ENOENT;
901 if (ret)
902 break;
903 next_inum = found_key.offset;
905 /* regular exit ahead */
906 if (parent == next_inum)
907 break;
909 slot = path->slots[0];
910 eb = path->nodes[0];
911 /* make sure we can use eb after releasing the path */
912 if (eb != eb_in)
913 atomic_inc(&eb->refs);
914 btrfs_release_path(path);
916 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
917 parent = next_inum;
918 --bytes_left;
919 if (bytes_left >= 0)
920 dest[bytes_left] = '/';
923 btrfs_release_path(path);
925 if (ret)
926 return ERR_PTR(ret);
928 return dest + bytes_left;
932 * this makes the path point to (logical EXTENT_ITEM *)
933 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
934 * tree blocks and <0 on error.
936 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
937 struct btrfs_path *path, struct btrfs_key *found_key)
939 int ret;
940 u64 flags;
941 u32 item_size;
942 struct extent_buffer *eb;
943 struct btrfs_extent_item *ei;
944 struct btrfs_key key;
946 key.type = BTRFS_EXTENT_ITEM_KEY;
947 key.objectid = logical;
948 key.offset = (u64)-1;
950 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
951 if (ret < 0)
952 return ret;
953 ret = btrfs_previous_item(fs_info->extent_root, path,
954 0, BTRFS_EXTENT_ITEM_KEY);
955 if (ret < 0)
956 return ret;
958 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
959 if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
960 found_key->objectid > logical ||
961 found_key->objectid + found_key->offset <= logical) {
962 pr_debug("logical %llu is not within any extent\n",
963 (unsigned long long)logical);
964 return -ENOENT;
967 eb = path->nodes[0];
968 item_size = btrfs_item_size_nr(eb, path->slots[0]);
969 BUG_ON(item_size < sizeof(*ei));
971 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
972 flags = btrfs_extent_flags(eb, ei);
974 pr_debug("logical %llu is at position %llu within the extent (%llu "
975 "EXTENT_ITEM %llu) flags %#llx size %u\n",
976 (unsigned long long)logical,
977 (unsigned long long)(logical - found_key->objectid),
978 (unsigned long long)found_key->objectid,
979 (unsigned long long)found_key->offset,
980 (unsigned long long)flags, item_size);
981 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
982 return BTRFS_EXTENT_FLAG_TREE_BLOCK;
983 if (flags & BTRFS_EXTENT_FLAG_DATA)
984 return BTRFS_EXTENT_FLAG_DATA;
986 return -EIO;
990 * helper function to iterate extent inline refs. ptr must point to a 0 value
991 * for the first call and may be modified. it is used to track state.
992 * if more refs exist, 0 is returned and the next call to
993 * __get_extent_inline_ref must pass the modified ptr parameter to get the
994 * next ref. after the last ref was processed, 1 is returned.
995 * returns <0 on error
997 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
998 struct btrfs_extent_item *ei, u32 item_size,
999 struct btrfs_extent_inline_ref **out_eiref,
1000 int *out_type)
1002 unsigned long end;
1003 u64 flags;
1004 struct btrfs_tree_block_info *info;
1006 if (!*ptr) {
1007 /* first call */
1008 flags = btrfs_extent_flags(eb, ei);
1009 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1010 info = (struct btrfs_tree_block_info *)(ei + 1);
1011 *out_eiref =
1012 (struct btrfs_extent_inline_ref *)(info + 1);
1013 } else {
1014 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1016 *ptr = (unsigned long)*out_eiref;
1017 if ((void *)*ptr >= (void *)ei + item_size)
1018 return -ENOENT;
1021 end = (unsigned long)ei + item_size;
1022 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1023 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1025 *ptr += btrfs_extent_inline_ref_size(*out_type);
1026 WARN_ON(*ptr > end);
1027 if (*ptr == end)
1028 return 1; /* last */
1030 return 0;
1034 * reads the tree block backref for an extent. tree level and root are returned
1035 * through out_level and out_root. ptr must point to a 0 value for the first
1036 * call and may be modified (see __get_extent_inline_ref comment).
1037 * returns 0 if data was provided, 1 if there was no more data to provide or
1038 * <0 on error.
1040 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1041 struct btrfs_extent_item *ei, u32 item_size,
1042 u64 *out_root, u8 *out_level)
1044 int ret;
1045 int type;
1046 struct btrfs_tree_block_info *info;
1047 struct btrfs_extent_inline_ref *eiref;
1049 if (*ptr == (unsigned long)-1)
1050 return 1;
1052 while (1) {
1053 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1054 &eiref, &type);
1055 if (ret < 0)
1056 return ret;
1058 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1059 type == BTRFS_SHARED_BLOCK_REF_KEY)
1060 break;
1062 if (ret == 1)
1063 return 1;
1066 /* we can treat both ref types equally here */
1067 info = (struct btrfs_tree_block_info *)(ei + 1);
1068 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1069 *out_level = btrfs_tree_block_level(eb, info);
1071 if (ret == 1)
1072 *ptr = (unsigned long)-1;
1074 return 0;
1077 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1078 struct btrfs_path *path, u64 logical,
1079 u64 orig_extent_item_objectid,
1080 u64 extent_item_pos, u64 root,
1081 iterate_extent_inodes_t *iterate, void *ctx)
1083 u64 disk_byte;
1084 struct btrfs_key key;
1085 struct btrfs_file_extent_item *fi;
1086 struct extent_buffer *eb;
1087 int slot;
1088 int nritems;
1089 int ret = 0;
1090 int extent_type;
1091 u64 data_offset;
1092 u64 data_len;
1094 eb = read_tree_block(fs_info->tree_root, logical,
1095 fs_info->tree_root->leafsize, 0);
1096 if (!eb)
1097 return -EIO;
1100 * from the shared data ref, we only have the leaf but we need
1101 * the key. thus, we must look into all items and see that we
1102 * find one (some) with a reference to our extent item.
1104 nritems = btrfs_header_nritems(eb);
1105 for (slot = 0; slot < nritems; ++slot) {
1106 btrfs_item_key_to_cpu(eb, &key, slot);
1107 if (key.type != BTRFS_EXTENT_DATA_KEY)
1108 continue;
1109 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
1110 extent_type = btrfs_file_extent_type(eb, fi);
1111 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1112 continue;
1113 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
1114 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1115 if (disk_byte != orig_extent_item_objectid)
1116 continue;
1118 data_offset = btrfs_file_extent_offset(eb, fi);
1119 data_len = btrfs_file_extent_num_bytes(eb, fi);
1121 if (extent_item_pos < data_offset ||
1122 extent_item_pos >= data_offset + data_len)
1123 continue;
1125 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1126 "root %llu\n", orig_extent_item_objectid,
1127 key.objectid, key.offset, root);
1128 ret = iterate(key.objectid,
1129 key.offset + (extent_item_pos - data_offset),
1130 root, ctx);
1131 if (ret) {
1132 pr_debug("stopping iteration because ret=%d\n", ret);
1133 break;
1137 free_extent_buffer(eb);
1139 return ret;
1143 * calls iterate() for every inode that references the extent identified by
1144 * the given parameters.
1145 * when the iterator function returns a non-zero value, iteration stops.
1146 * path is guaranteed to be in released state when iterate() is called.
1148 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1149 struct btrfs_path *path,
1150 u64 extent_item_objectid, u64 extent_item_pos,
1151 iterate_extent_inodes_t *iterate, void *ctx)
1153 int ret;
1154 struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1155 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1156 struct btrfs_trans_handle *trans;
1157 struct ulist *refs;
1158 struct ulist *roots;
1159 struct ulist_node *ref_node = NULL;
1160 struct ulist_node *root_node = NULL;
1161 struct seq_list seq_elem;
1162 struct btrfs_delayed_ref_root *delayed_refs;
1164 trans = btrfs_join_transaction(fs_info->extent_root);
1165 if (IS_ERR(trans))
1166 return PTR_ERR(trans);
1168 pr_debug("resolving all inodes for extent %llu\n",
1169 extent_item_objectid);
1171 delayed_refs = &trans->transaction->delayed_refs;
1172 spin_lock(&delayed_refs->lock);
1173 btrfs_get_delayed_seq(delayed_refs, &seq_elem);
1174 spin_unlock(&delayed_refs->lock);
1176 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1177 extent_item_pos, seq_elem.seq,
1178 &refs);
1180 if (ret)
1181 goto out;
1183 while (!ret && (ref_node = ulist_next(refs, ref_node))) {
1184 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, -1,
1185 seq_elem.seq, &roots);
1186 if (ret)
1187 break;
1188 while (!ret && (root_node = ulist_next(roots, root_node))) {
1189 pr_debug("root %llu references leaf %llu\n",
1190 root_node->val, ref_node->val);
1191 ret = iterate_leaf_refs(fs_info, path, ref_node->val,
1192 extent_item_objectid,
1193 extent_item_pos, root_node->val,
1194 iterate, ctx);
1198 ulist_free(refs);
1199 ulist_free(roots);
1200 out:
1201 btrfs_put_delayed_seq(delayed_refs, &seq_elem);
1202 btrfs_end_transaction(trans, fs_info->extent_root);
1203 return ret;
1206 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1207 struct btrfs_path *path,
1208 iterate_extent_inodes_t *iterate, void *ctx)
1210 int ret;
1211 u64 extent_item_pos;
1212 struct btrfs_key found_key;
1214 ret = extent_from_logical(fs_info, logical, path,
1215 &found_key);
1216 btrfs_release_path(path);
1217 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1218 ret = -EINVAL;
1219 if (ret < 0)
1220 return ret;
1222 extent_item_pos = logical - found_key.objectid;
1223 ret = iterate_extent_inodes(fs_info, path, found_key.objectid,
1224 extent_item_pos, iterate, ctx);
1226 return ret;
1229 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1230 struct btrfs_path *path,
1231 iterate_irefs_t *iterate, void *ctx)
1233 int ret;
1234 int slot;
1235 u32 cur;
1236 u32 len;
1237 u32 name_len;
1238 u64 parent = 0;
1239 int found = 0;
1240 struct extent_buffer *eb;
1241 struct btrfs_item *item;
1242 struct btrfs_inode_ref *iref;
1243 struct btrfs_key found_key;
1245 while (1) {
1246 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1247 &found_key);
1248 if (ret < 0)
1249 break;
1250 if (ret) {
1251 ret = found ? 0 : -ENOENT;
1252 break;
1254 ++found;
1256 parent = found_key.offset;
1257 slot = path->slots[0];
1258 eb = path->nodes[0];
1259 /* make sure we can use eb after releasing the path */
1260 atomic_inc(&eb->refs);
1261 btrfs_release_path(path);
1263 item = btrfs_item_nr(eb, slot);
1264 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1266 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1267 name_len = btrfs_inode_ref_name_len(eb, iref);
1268 /* path must be released before calling iterate()! */
1269 pr_debug("following ref at offset %u for inode %llu in "
1270 "tree %llu\n", cur,
1271 (unsigned long long)found_key.objectid,
1272 (unsigned long long)fs_root->objectid);
1273 ret = iterate(parent, iref, eb, ctx);
1274 if (ret) {
1275 free_extent_buffer(eb);
1276 break;
1278 len = sizeof(*iref) + name_len;
1279 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1281 free_extent_buffer(eb);
1284 btrfs_release_path(path);
1286 return ret;
1290 * returns 0 if the path could be dumped (probably truncated)
1291 * returns <0 in case of an error
1293 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1294 struct extent_buffer *eb, void *ctx)
1296 struct inode_fs_paths *ipath = ctx;
1297 char *fspath;
1298 char *fspath_min;
1299 int i = ipath->fspath->elem_cnt;
1300 const int s_ptr = sizeof(char *);
1301 u32 bytes_left;
1303 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1304 ipath->fspath->bytes_left - s_ptr : 0;
1306 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1307 fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1308 inum, fspath_min, bytes_left);
1309 if (IS_ERR(fspath))
1310 return PTR_ERR(fspath);
1312 if (fspath > fspath_min) {
1313 pr_debug("path resolved: %s\n", fspath);
1314 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1315 ++ipath->fspath->elem_cnt;
1316 ipath->fspath->bytes_left = fspath - fspath_min;
1317 } else {
1318 pr_debug("missed path, not enough space. missing bytes: %lu, "
1319 "constructed so far: %s\n",
1320 (unsigned long)(fspath_min - fspath), fspath_min);
1321 ++ipath->fspath->elem_missed;
1322 ipath->fspath->bytes_missing += fspath_min - fspath;
1323 ipath->fspath->bytes_left = 0;
1326 return 0;
1330 * this dumps all file system paths to the inode into the ipath struct, provided
1331 * is has been created large enough. each path is zero-terminated and accessed
1332 * from ipath->fspath->val[i].
1333 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1334 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1335 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1336 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1337 * have been needed to return all paths.
1339 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1341 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1342 inode_to_path, ipath);
1346 * allocates space to return multiple file system paths for an inode.
1347 * total_bytes to allocate are passed, note that space usable for actual path
1348 * information will be total_bytes - sizeof(struct inode_fs_paths).
1349 * the returned pointer must be freed with free_ipath() in the end.
1351 struct btrfs_data_container *init_data_container(u32 total_bytes)
1353 struct btrfs_data_container *data;
1354 size_t alloc_bytes;
1356 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1357 data = kmalloc(alloc_bytes, GFP_NOFS);
1358 if (!data)
1359 return ERR_PTR(-ENOMEM);
1361 if (total_bytes >= sizeof(*data)) {
1362 data->bytes_left = total_bytes - sizeof(*data);
1363 data->bytes_missing = 0;
1364 } else {
1365 data->bytes_missing = sizeof(*data) - total_bytes;
1366 data->bytes_left = 0;
1369 data->elem_cnt = 0;
1370 data->elem_missed = 0;
1372 return data;
1376 * allocates space to return multiple file system paths for an inode.
1377 * total_bytes to allocate are passed, note that space usable for actual path
1378 * information will be total_bytes - sizeof(struct inode_fs_paths).
1379 * the returned pointer must be freed with free_ipath() in the end.
1381 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1382 struct btrfs_path *path)
1384 struct inode_fs_paths *ifp;
1385 struct btrfs_data_container *fspath;
1387 fspath = init_data_container(total_bytes);
1388 if (IS_ERR(fspath))
1389 return (void *)fspath;
1391 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1392 if (!ifp) {
1393 kfree(fspath);
1394 return ERR_PTR(-ENOMEM);
1397 ifp->btrfs_path = path;
1398 ifp->fspath = fspath;
1399 ifp->fs_root = fs_root;
1401 return ifp;
1404 void free_ipath(struct inode_fs_paths *ipath)
1406 kfree(ipath);