Fix type predicates/docstrings for two music properties.
[lilypond/mpolesky.git] / lily / bezier.cc
blob9a8d5ab87925d6bfe9666b7479eb15e133f5b848
1 /*
2 This file is part of LilyPond, the GNU music typesetter.
4 Copyright (C) 1998--2010 Jan Nieuwenhuizen <janneke@gnu.org>
6 LilyPond is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 LilyPond is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with LilyPond. If not, see <http://www.gnu.org/licenses/>.
20 #include "bezier.hh"
21 #include "warn.hh"
22 #include "libc-extension.hh"
24 Real binomial_coefficient_3[] = {
25 1, 3, 3, 1
28 void
29 scale (vector<Offset> *array, Real x, Real y)
31 for (vsize i = 0; i < array->size (); i++)
33 (*array)[i][X_AXIS] = x * (*array)[i][X_AXIS];
34 (*array)[i][Y_AXIS] = y * (*array)[i][Y_AXIS];
38 void
39 rotate (vector<Offset> *array, Real phi)
41 Offset rot (complex_exp (Offset (0, phi)));
42 for (vsize i = 0; i < array->size (); i++)
43 (*array)[i] = complex_multiply (rot, (*array)[i]);
46 void
47 translate (vector<Offset> *array, Offset o)
49 for (vsize i = 0; i < array->size (); i++)
50 (*array)[i] += o;
54 Formula of the bezier 3-spline
56 sum_{j = 0}^3 (3 over j) z_j (1-t)^ (3-j) t^j
59 A is the axis of X coordinate.
62 Real
63 Bezier::get_other_coordinate (Axis a, Real x) const
65 Axis other = Axis ((a +1) % NO_AXES);
66 vector<Real> ts = solve_point (a, x);
68 if (ts.size () == 0)
70 programming_error ("no solution found for Bezier intersection");
71 return 0.0;
74 #ifdef PARANOID
75 Offset c = curve_point (ts[0]);
76 if (fabs (c[a] - x) > 1e-8)
77 programming_error ("bezier intersection not correct?");
78 #endif
80 return curve_coordinate (ts[0], other);
83 Real
84 Bezier::curve_coordinate (Real t, Axis a) const
86 Real tj = 1;
87 Real one_min_tj[4];
88 one_min_tj[0] = 1;
89 for (int i = 1; i < 4; i++)
90 one_min_tj[i] = one_min_tj[i - 1] * (1 - t);
92 Real r = 0.0;
93 for (int j = 0; j < 4; j++)
95 r += control_[j][a] * binomial_coefficient_3[j]
96 * tj * one_min_tj[3 - j];
98 tj *= t;
101 return r;
104 Offset
105 Bezier::curve_point (Real t) const
107 Real tj = 1;
108 Real one_min_tj[4];
109 one_min_tj[0] = 1;
110 for (int i = 1; i < 4; i++)
111 one_min_tj[i] = one_min_tj[i - 1] * (1 - t);
113 Offset o;
114 for (int j = 0; j < 4; j++)
116 o += control_[j] * binomial_coefficient_3[j]
117 * tj * one_min_tj[3 - j];
119 tj *= t;
122 #ifdef PARANOID
123 assert (fabs (o[X_AXIS] - polynomial (X_AXIS).eval (t)) < 1e-8);
124 assert (fabs (o[Y_AXIS] - polynomial (Y_AXIS).eval (t)) < 1e-8);
125 #endif
127 return o;
131 Cache binom (3, j) t^j (1-t)^{3-j}
133 struct Polynomial_cache {
134 Polynomial terms_[4];
135 Polynomial_cache ()
137 for (int j = 0; j <= 3; j++)
138 terms_[j]
139 = binomial_coefficient_3[j]
140 * Polynomial::power (j, Polynomial (0, 1))
141 * Polynomial::power (3 - j, Polynomial (1, -1));
145 static Polynomial_cache poly_cache;
147 Polynomial
148 Bezier::polynomial (Axis a) const
150 Polynomial p (0.0);
151 Polynomial q;
152 for (int j = 0; j <= 3; j++)
154 q = poly_cache.terms_[j];
155 q *= control_[j][a];
156 p += q;
159 return p;
163 Remove all numbers outside [0, 1] from SOL
165 vector<Real>
166 filter_solutions (vector<Real> sol)
168 for (vsize i = sol.size (); i--;)
169 if (sol[i] < 0 || sol[i] > 1)
170 sol.erase (sol.begin () + i);
171 return sol;
175 find t such that derivative is proportional to DERIV
177 vector<Real>
178 Bezier::solve_derivative (Offset deriv) const
180 Polynomial xp = polynomial (X_AXIS);
181 Polynomial yp = polynomial (Y_AXIS);
182 xp.differentiate ();
183 yp.differentiate ();
185 Polynomial combine = xp * deriv[Y_AXIS] - yp * deriv [X_AXIS];
187 return filter_solutions (combine.solve ());
191 Find t such that curve_point (t)[AX] == COORDINATE
193 vector<Real>
194 Bezier::solve_point (Axis ax, Real coordinate) const
196 Polynomial p (polynomial (ax));
197 p.coefs_[0] -= coordinate;
199 vector<Real> sol (p.solve ());
200 return filter_solutions (sol);
204 Compute the bounding box dimensions in direction of A.
206 Interval
207 Bezier::extent (Axis a) const
209 int o = (a + 1)%NO_AXES;
210 Offset d;
211 d[Axis (o)] = 1.0;
212 Interval iv;
213 vector<Real> sols (solve_derivative (d));
214 sols.push_back (1.0);
215 sols.push_back (0.0);
216 for (vsize i = sols.size (); i--;)
218 Offset o (curve_point (sols[i]));
219 iv.unite (Interval (o[a], o[a]));
221 return iv;
224 Interval
225 Bezier::control_point_extent (Axis a) const
227 Interval ext;
228 for (int i = CONTROL_COUNT; i--;)
229 ext.add_point (control_[i][a]);
231 return ext;
236 Flip around axis A
238 void
239 Bezier::scale (Real x, Real y)
241 for (int i = CONTROL_COUNT; i--;)
243 control_[i][X_AXIS] = x * control_[i][X_AXIS];
244 control_[i][Y_AXIS] = y * control_[i][Y_AXIS];
248 void
249 Bezier::rotate (Real phi)
251 Offset rot (complex_exp (Offset (0, phi)));
252 for (int i = 0; i < CONTROL_COUNT; i++)
253 control_[i] = complex_multiply (rot, control_[i]);
256 void
257 Bezier::translate (Offset o)
259 for (int i = 0; i < CONTROL_COUNT; i++)
260 control_[i] += o;
263 void
264 Bezier::assert_sanity () const
266 for (int i = 0; i < CONTROL_COUNT; i++)
267 assert (!isnan (control_[i].length ())
268 && !isinf (control_[i].length ()));
271 void
272 Bezier::reverse ()
274 Bezier b2;
275 for (int i = 0; i < CONTROL_COUNT; i++)
276 b2.control_[CONTROL_COUNT - i - 1] = control_[i];
277 *this = b2;
282 Subdivide a bezier at T into LEFT_PART and RIGHT_PART
283 using deCasteljau's algorithm.
285 void
286 Bezier::subdivide (Real t, Bezier *left_part, Bezier *right_part) const
288 Offset p[CONTROL_COUNT][CONTROL_COUNT];
290 for (int i = 0; i < CONTROL_COUNT ; i++)
291 p[i][CONTROL_COUNT - 1 ] = control_[i];
292 for (int j = CONTROL_COUNT - 2; j >= 0 ; j--)
293 for (int i = 0; i < CONTROL_COUNT -1; i++)
294 p[i][j] = p[i][j+1] + t * (p[i+1][j+1] - p[i][j+1]);
295 for (int i = 0; i < CONTROL_COUNT; i++)
297 left_part->control_[i]=p[0][CONTROL_COUNT - 1 - i];
298 right_part->control_[i]=p[i][i];
303 Extract a portion of a bezier from T_MIN to T_MAX
306 Bezier
307 Bezier::extract (Real t_min, Real t_max) const
309 if ((t_min < 0) || (t_max) > 1)
310 programming_error
311 ("bezier extract arguments outside of limits: curve may have bad shape");
312 if (t_min >= t_max)
313 programming_error
314 ("lower bezier extract value not less than upper value: curve may have bad shape");
315 Bezier bez1, bez2, bez3, bez4;
316 if (t_min == 0.0)
317 bez2 = *this;
318 else
319 subdivide (t_min, &bez1, &bez2);
320 if (t_max == 1.0)
321 return bez2;
322 else
324 bez2.subdivide ((t_max-t_min)/(1-t_min), &bez3, &bez4);
325 return bez3;