fix problems with html output
[light-and-matter.git] / cp / ch01 / ch01.rbtex
bloba7d72dc8e21ecae839ec5ec1529bb003b7b67b64
1 <%
2   require "../eruby_util.rb"
3 %>
4 <% figure_in_toc("poolskater") %>
5 <%
6   chapter(
7     '01',
8     %q{Conservation of Mass and Energy},
9     'ch:energy',
10     ''
11   )
15 <% begin_sec("Symmetry and Conservation Laws",0) %>
17 <% marg(0) %>
20   fig(
21     'startrails',
22     %q{%
23         Due to the rotation of the earth, everything in the sky appears to spin in circles.
24         In this time-exposure photograph, each star appears as a streak.
25     }
26   )
28 <% end_marg %>
30 Even before history began, people must already have noticed certain facts
31 about the sky. The sun and moon both rise in
32 the east and set in the west. Another fact that can be settled to a
33 fair degree of accuracy using the naked eye is that the apparent
34 sizes of the sun and moon don't change noticeably. (There is an
35 optical illusion that makes the moon appear bigger when it's near
36 the horizon, but you can easily verify that it's nothing more
37 than an illusion by checking its angular size against some standard,
38 such as your pinkie held at arm's length.) If the sun and moon were
39 varying their distances from us, they would appear to get bigger and
40 smaller, and since they don't appear to change in size,
41 it appears, at least approximately, that they always stay
42 at the same distance from us.
44 From observations like these, the ancients constructed a scientific
45 \emph{model},\index{model} in which the sun and moon traveled around
46 the earth in perfect circles. Of course, we now know that the earth isn't
47 the center of the universe, but that doesn't mean the model wasn't
48 useful. That's the way science always works. Science never aims to
49 reveal the ultimate reality. Science only tries to make models of
50 reality that have predictive power.
52 Our modern approach to understanding physics revolves around the
53 concepts of \emph{symmetry}\index{symmetry} and \emph{conservation laws}, both
54 of which are demonstrated by this example.
56 The sun and moon were believed to move in circles, and a circle
57 is a very symmetric shape. If you rotate a circle about its center,
58 like a spinning wheel, it doesn't change. Therefore, we say that
59 the circle is \emph{symmetric} with respect to rotation about its
60 center. The ancients thought it was beautiful that the universe
61 seemed to have this type of symmetry built in, and they became very
62 attached to the idea.
64 A \emph{conservation law}\index{conservation law} is a statement that some number stays the
65 same with the passage of time. In our example, the distance between
66 the sun and the earth is conserved, and so is the distance between
67 the moon and the earth. (The ancient Greeks were even able to determine
68 that earth-moon distance.)
71   fig(
72     'noether',
73     %q{%
74 Emmy Noether (1882-1935). The daughter of a prominent German mathematician, she did not show
75 any early precocity at mathematics --- as a teenager she was more interested in music and dancing.
76 She received her doctorate in 1907 and rapidly built a world-wide reputation, but the University
77 of G\"{o}ttingen refused to let her teach, and her colleague Hilbert had to advertise her courses in the
78 university's catalog under his own name. A long controversy ensued, with her opponents asking
79 what the country's soldiers would think when they returned home and were expected to learn
80 at the feet of a woman. Allowing her on the faculty would also mean letting her vote
81 in the academic senate. Said Hilbert, ``I do not see that the sex of the candidate is against
82 her admission as a privatdozent [instructor]. After all, the university senate is not a bathhouse.''
83 She was finally admitted to the faculty in 1919. A Jew, Noether fled Germany in 1933 and
84 joined the faculty at Bryn Mawr in the U.S.
85     },
86     {
87       'width'=>'wide',
88       'narrowfigwidecaption'=>true,
89       'float'=>false
90     }
91   )
94 In our example, the symmetry and the conservation law both give the
95 same information. Either statement can be satisfied only by a circular
96 orbit. That isn't a coincidence. Physicist
97 Emmy Noether\index{Noether, Emmy} showed on very general mathematical grounds that for
98 physical theories of a certain type, every symmetry leads to
99 a corresponding conservation law. Although the precise
100 formulation of Noether's theorem,\index{Noether's theorem} and its proof, are too mathematical for this
101 book, we'll see many examples like this one, in which the physical
102 content of the theorem is fairly straightforward.
104 The idea of perfect circular orbits seems very beautiful and intuitively appealing. It came as a great disappointment, therefore, when
105 the astronomer Johannes Kepler\index{Kepler, Johannes} discovered, by the painstaking analysis of
106 precise observations, that orbits such as the moon's were actually
107 ellipses, not circles. This is the sort of thing that led the biologist
108 Huxley to say, ``The great tragedy of science is the slaying of a beautiful theory by an ugly fact.''
109 The lesson of the story, then, is that symmetries are important and beautiful,
110 but we can't decide which symmetries are right based only on common sense or
111 aesthetics; their validity has to be determined based on observations and
112 experiments.
114 <% marg(0) %>
115 <% fig(
116      'swan-lake-symmetry',
117      %q{In this scene from Swan Lake, the choreography has a symmetry with respect to left and right.}
118    )
120 \spacebetweenfigs
121 <% fig(
122      'c-s-wu-with-beamline',
123      %q{C.S.~Wu at Columbia University in 1963.}
124    )
126 <% end_marg %>
128 As a more modern example, consider the symmetry between right and left. For example,
129 we observe that a top spinning clockwise has exactly the same behavior as a top
130 spinning counterclockwise. This kind of observation led physicists to believe,
131 for hundreds of years, that the laws of physics were perfectly symmetric with
132 respect to right and left. This mirror symmetry appealed to physicists' common sense.
133 However, experiments by Chien-Shiung Wu\index{Wu, Chien-Shiung} et al. in 1957 showed that right-left
134 symmetry was violated in certain types of nuclear reactions.
135 Physicists were thus forced to change their opinions about what constituted
136 common sense.
138 <% end_sec() %>
139 <% begin_sec("Conservation of Mass",0) %>\index{mass!conservation of}\index{conservation!of mass}
140 We intuitively feel that matter shouldn't appear or disappear out of nowhere: that
141 the amount of matter should be a conserved quantity.
142 If that was to happen, then it seems as though atoms would have to be created or destroyed,
143 which doesn't happen in any physical processes that are familiar from everyday life, such
144 as chemical reactions. On the other hand, I've already cautioned you against believing that
145 a law of physics must be true just because it seems appealing. The laws of physics have
146 to be found by experiment, and there seem to be experiments that are exceptions
147 to the conservation of matter. A log weighs more than its
148 ashes. Did some matter simply disappear when the log was burned?
150 The French chemist Antoine-Laurent Lavoisier was the first scientist to realize\index{Lavoisier!Antoine-Laurent}
151 that there were no such exceptions. Lavoisier hypothesized that
152 when wood burns, for example, the supposed loss of weight is actually accounted for by the
153 escaping hot gases that the flames are made of.
154 Before Lavoisier, chemists had almost never
155 weighed their chemicals to quantify the amount of each substance that was undergoing
156 reactions.
157 They also didn't completely understand that gases were just another
158 state of matter, and hadn't tried performing reactions in sealed chambers to determine
159 whether gases were being consumed from or released into the air. For this they had at least one
160 practical excuse, which is that if you perform a gas-releasing reaction in a sealed chamber
161 with no room for expansion, you get an explosion! Lavoisier invented a balance that was capable
162 of measuring milligram masses, and figured out how to do reactions in an upside-down
163 bowl in a basin of water, so that the gases could expand by pushing out some of the water.
164 In one crucial experiment, Lavoisier heated a red mercury compound, which we would now
165 describe as mercury oxide (HgO), in such a sealed chamber.
166 A gas was produced (Lavoisier later named
167 it ``oxygen''), driving out some of the water, and the red compound was transformed into
168 silvery liquid mercury metal. The crucial point was that the total mass of the entire
169 apparatus was exactly the same before and after the reaction. Based on many observations
170 of this type, Lavoisier proposed a general law of nature, that matter is always conserved.
172 <% self_check('conservation',<<-'SELF_CHECK'
173 In ordinary speech, we say that you should ``conserve'' something, because if
174 you don't, pretty soon it will all be gone. How is this different from the meaning of
175 the term ``conservation'' in physics?
176   SELF_CHECK
177   ) %>
179 <% marg(150) %>
182   fig(
183     'lavoisier',
184     %q{%
185         Portrait of Monsieur Lavoisier and His Wife,
186         by Jacques-Louis David, 1788. Lavoisier invented the
187         concept of conservation of mass. The husband is depicted with his scientific apparatus,
188         while in the background
189         on the left is the portfolio belonging to Madame Lavoisier, who is thought to have
190         been a student of David's.
191     }
192   )
194 <% end_marg %>
196 Although Lavoisier was an honest and energetic public official, he was caught up
197 in the Terror and sentenced to death in 1794. 
198 He requested a fifteen-day
199 delay of his execution so that he could complete some experiments that he thought might
200 be of value to the Republic. 
201 The judge, Coffinhal, infamously replied that ``the state has no need of scientists.''
202 As a scientific
203 experiment, Lavoisier decided to try to determine how long his consciousness would continue
204 after he was guillotined, by blinking his eyes for as long as possible. He blinked twelve times
205 after his head was chopped off. Ironically, Judge Coffinhal 
206 was himself executed only three months later, falling victim to the same chaos.
209 \begin{eg}{A stream of water}\label{eg:faucet}
210 The stream of water is fatter near the mouth of the faucet, and skinnier lower down. This can be understood
211 using conservation of mass. Since water is being neither created nor destroyed, the mass of the
212 water that leaves the faucet in one second must be the same as the amount that flows past a lower
213 point in the same time interval. The water speeds up as it falls, so the two quantities of water can
214 only be equal if the stream is narrower at the bottom.
215 \end{eg}
216 <% marg(100) %>
218   fig(
219     'faucet',
220     %q{%
221       Example \ref{eg:faucet}.
222     }
223   )
225 <% end_marg %>
227 Physicists are no different than plumbers or ballerinas in that they have a technical vocabulary
228 that allows them to make precise distinctions. A pipe isn't
229 just a pipe, it's a PVC pipe. A jump isn't just a jump, it's a grand jet\'{e}.
230 We need to be more precise now about what we really mean by ``the amount of matter,'' which is
231 what we're saying is conserved.
232 Since physics is a mathematical science, definitions in physics are usually definitions
233 of numbers, and we define these numbers \emph{operationally}. An operational definition
234 is one that spells out the steps  required in order to \emph{measure}
235 that quantity. For example, one way that an electrician knows that current and voltage are two different
236 things is that she knows she has to do completely different things in order to measure them
237 with a meter.
239 <% marg(0) %>
241   fig(
242     'mass_on_spring',
243     %q{%
244       The time for one cycle of vibration is related to the object's 
245                        mass.
246     }
247   )
249                 \spacebetweenfigs%
250                 %
252   fig(
253     'bodymass',
254     %q{%
255       Astronaut Tam\-ara Jer\-nigan measures her mass
256                       aboard the Space Shuttle. She is strapped into a chair attached to a spring,
257                 like the mass in figure \figref{mass_on_spring}. \photocredit{NASA}
258     }
259   )
261         
262 <% end_marg %>%
264 If you ask a room full of  ordinary people to define what is meant by mass, they'll probably
265 propose a bunch of different, fuzzy ideas, and speak as if they all pretty much meant the same
266 thing: ``how much space it takes up,'' ``how much it weighs,'' ``how much matter is in it.''
267 Of these, the first two can be disposed of easily. If we were to define mass as a measure of how
268 much space an object occupied, then mass wouldn't be conserved when we squished a piece of foam
269 rubber. Although Lavoisier did use weight in his experiments, weight also won't quite work as
270 the ultimate, rigorous definition, because weight is a measure of how hard gravity pulls on
271 an object, and gravity varies in strength from place to place. Gravity is measurably weaker on the top
272 of a mountain that at sea level, and much weaker on the moon. The reason this didn't matter to
273 Lavoisier was that he was doing all his experiments in one location. The third proposal
274 is better, but how exactly should we define ``how much matter?'' To make it into an operational
275 definition, we could do something like figure \figref{mass_on_spring}. 
276 A larger mass is harder to
277 whip back and forth --- it's harder to set into motion, and harder to stop once it's started.
278 For this reason, the vibration of the mass on the spring will take a longer time if the mass is
279 greater. If we put two different masses on the spring, and they both take the same time to complete
280 one oscillation, we can define them as having the same mass.
282 Since I started this chapter by highlighting the relationship between conservation laws and
283 symmetries, you're probably wondering what symmetry is related to conservation of mass. I'll
284 come back to that at the end of the chapter.
286 When you learn about a new physical quantity, such as mass, you need to know what units are used
287 to measure it. This will lead us to a brief digression on the metric system, after which we'll
288 come back to physics.
290 <% end_sec() %>
291 <% begin_sec("Review of the Metric System and Conversions",0) %>
293 <% begin_sec("The Metric System") %>
295 Every country in the world besides the U.S. has adopted a
296 system of units known colloquially as the ``metric system.''
297 Even in the U.S., the system is used universally by scientists, and also by many engineers.
298 This system is entirely decimal, thanks to the same
299 eminently logical people who brought about the \index{French
300 Revolution}French Revolution. In deference to France, the
301 system's official name is the Syst\`{e}me International, or SI,
302 meaning International System. (The phrase ``SI system'' is
303 therefore redundant.)\index{Syst\`{e}me International}
305 The metric system works with a
306 single, consistent set of \index{metric system!prefixes}\index{mega-
307 (metric prefix)}\index{kilo- (metric prefix)}\index{centi-
308 (metric prefix)}\index{milli- (metric prefix)}\index{micro-
309 (metric prefix)}\index{nano- (metric prefix)}prefixes
310 (derived from Greek) that modify the basic units. Each
311 prefix stands for a power of ten, and has an abbreviation
312 that can be combined with the symbol for the unit. For
313 instance, the meter is a unit of distance. The prefix kilo-
314 stands for $1000$, so a kilometer, 1 km, is a thousand meters.
316 In this book, we'll be using a flavor of the metric system, the SI, in which there are three basic units,
317 measuring distance, time, and mass. The basic unit of distance is the meter (m), the one for time
318 is the second (s), and for mass the kilogram (kg). Based on these units, we can define others,
319 e.g., m/s (meters per second) for the speed of a car, or kg/s for the rate at which water flows
320 through a pipe. It might seem odd that we consider the basic
321 unit of mass to be the kilogram, rather than the gram. The reason for doing this is that when we
322 start defining other units starting from the basic three, some of them come out to be a more
323 convenient size for use in everyday life. For example, there is a metric unit of force, the newton (N),
324 which is defined as the push or pull that would be able to change a 1-kg object's velocity by 1 m/s,
325 if it acted on it for 1 s. A newton turns out to be about the amount of force you'd use to pick up
326 your keys. If the system had been based on the gram instead of the kilogram, then the newton would
327 have been a thousand times smaller, something like the amount of force required in order to pick
328 up a breadcrumb.
330 The following are the most common metric prefixes. You
331 should memorize them.
333 \begin{tabular}{llllp{60mm}}
334     \multicolumn{2}{c}{prefix} & meaning & \multicolumn{2}{c}{example} \\
335     kilo-  &   k   & $1000$     &   60 kg     & =  a person's mass  \\
336     centi- &   c   & $1/100$  &   28 cm     & =  height of a piece of paper  \\
337     milli- &   m   & $1/1000$  &   1 ms     & =  time for one vibration of a guitar string playing the note D
338 \end{tabular}
340 The prefix centi-, meaning $1/100$, is only used in the
341 centimeter; a hundredth of a gram would not be written as 1
342 cg but as 10 mg. The centi- prefix can be easily remembered
343 because a cent is $1/100$ of a  dollar. The official SI
344 abbreviation for seconds is ``s'' (not ``sec'') and grams
345 are ``g'' (not ``gm'').
347 You may also encounter the prefixes mega- (a million) and
348 micro- (one millionth).
350 <% end_sec() %>
351 <% begin_sec("Scientific Notation",nil,'scientific-notation') %>\index{scientific notation}
353 Most of the interesting phenomena in our universe
354 are not on the human scale. It would take about 1,000,000,000,000,000,000,000
355 bacteria to equal the mass of a human body. When the
356 physicist Thomas Young discovered that light was a wave, scientific
357 notation hadn't been invented, and
358 he was obliged to write that the time required for one
359 vibration of the wave was 1/500 of a millionth of a
360 millionth of a second. Scientific notation is a less awkward
361 way to write very large and very small numbers such as
362 these.  Here's a quick review.
364 Scientific notation means writing a number in terms of a
365 product of something from 1 to 10 and something else that is
366 a power of ten. For instance,
367 \begin{align*}
368 & 32 = 3.2 \times 10^1\\
369 & 320 =  3.2 \times 10^2\\
370 & 3200 = 3.2 \times 10^3  \quad\ldots
371 \end{align*}
372 Each number is ten times bigger than the last.
374 Since $10^1$  is ten times smaller than $10^2$ , it makes
375 sense to use the notation $10^0$  to stand for one, the
376 number that is in turn ten times smaller than $10^1$ .
377 Continuing on, we can write $10^{-1}$  to stand for 0.1, the
378 number ten times smaller than $10^0$ . Negative exponents
379 are used for small numbers:
381 \begin{align*}
382 &3.2 =  3.2 \times 10^0\\
383 &0.32 = 3.2 \times 10^{-1}\\
384 &0.032 = 3.2 \times 10^{-2} \quad\ldots
385 \end{align*}
387 A common source of confusion is the notation used on the
388 displays of many calculators. Examples:
390 \vspace{8mm}
392 \hspace{10mm}\begin{tabular}{ll}
393 $3.2 \times 10^6$  &     (written notation)\\
394 3.2E+6             &     (notation on some calculators)\\
395 $3.2^6$            &     (notation on some other calculators)
396 \end{tabular}
398 \vspace{8mm}
400 \noindent The last example is particularly unfortunate, because
401 $3.2^6$ really stands for the number 
402 $3.2 \times 3.2 \times 3.2 \times 3.2 \times 3.2 \times 3.2= 1074$, a totally different number from $3.2 \times 10^6=3200000$.
403 The calculator notation should never be used in writing.
404 It's just a way for the manufacturer to save money by
405 making a simpler display.
407 <% self_check('bacteria-queue',<<-'SELF_CHECK'
408 A student learns that $10^4$  bacteria, standing in line to
409 register for classes at Paramecium Community College, would
410 form a queue of this size:
412 \anonymousinlinefig{sc-bacteria-queue-1}
414 \noindent The student concludes that $10^2$  bacteria would form a
415 line of this length:
417 \anonymousinlinefig{sc-bacteria-queue-2}
419 \noindent Why is the student incorrect?
420   SELF_CHECK
421   ) %>
423 <% end_sec() %>
424 <% begin_sec("Conversions") %>\index{conversions of units}\index{units, conversion of}
426 I suggest you avoid memorizing lots of conversion factors
427 between SI units and U.S. units. Suppose the United Nations
428 sends its black helicopters to invade California (after all
429 who wouldn't rather live here than in New York City?), and
430 institutes water fluoridation and the SI, making the use of
431 inches and pounds into a crime punishable by death. I think
432 you could get by with only two mental conversion factors:
434 \begin{indentedblock}
435 \noindent{}1 inch =  2.54 cm
437 \noindent An object with a weight on Earth of 2.2 pounds-force has a mass of 1 kg.
438 \end{indentedblock}
440 \noindent The first one is the present definition of the inch, so it's
441 exact. The second one is not exact, but is good enough for
442 most purposes. (U.S. units of force and mass are confusing,
443 so it's a good thing they're not used in science. In U.S.
444 units, the unit of force is the pound-force, and the best
445 unit to use for mass is the slug, which is about 14.6 kg.)
447 More important than memorizing conversion factors is
448 understanding the right method for doing conversions. Even
449 within the SI, you may need to convert, say, from grams to
450 kilograms. Different people have different ways of thinking
451 about conversions, but the method I'll describe here is
452 systematic and easy to understand. The idea is that if 1 kg
453 and 1000 g represent the same mass, then we can consider a fraction like
454 \begin{equation*}
455   \frac{10^3\ \gunit}{1\ \kgunit}
456 \end{equation*}
457 to be a way of expressing the number one. This may bother
458 you. For instance, if you type 1000/1 into your calculator,
459 you will get 1000, not one. Again, different people have
460 different ways of thinking about it, but the justification
461 is that it helps us to do conversions, and it works! Now if
462 we want to convert 0.7 kg to units of grams, we can multiply
463 kg by the number one:
464 \begin{equation*}
465   0.7\ \kgunit \times \frac{10^3\ \gunit}{1\ \kgunit}
466 \end{equation*}
467 If you're willing to treat symbols such as ``kg'' as if they
468 were variables as used in algebra (which they're really
469 not), you can then cancel the kg on top with the kg on the
470 bottom, resulting in
471 \begin{equation*}
472   0.7\ \cancel{\kgunit} \times \frac{10^3\ \gunit}{1\ \cancel{\kgunit}}  = 700\ \gunit   \qquad   .
473 \end{equation*}
474 To convert grams to kilograms, you would simply flip the
475 fraction upside down.
477 One advantage of this method is that it can easily be
478 applied to a series of conversions. For instance, to convert
479 one year to units of seconds,
481 \begin{multline*}
482 1\ \cancel{\text{year}} \times
483 \frac{365\ \cancel{\text{days}}}{1\ \cancel{\text{year}}} \times
484 \frac{24\ \cancel{\text{hours}}}{1\ \cancel{\text{day}}} \times
485 \frac{60\ \cancel{\text{min}}}{1\ \cancel{\text{hour}}} \times
486 \frac{60\ \sunit}{1\ \cancel{\text{min}}} = \\
487 = 3.15 \times 10^7\ \sunit   \qquad   .
488 \end{multline*}
490 <% begin_sec("Should that exponent be positive or negative?") %>
492 A common mistake is to write the conversion fraction
493 incorrectly. For instance the fraction
494 \begin{equation*}
495   \frac{10^3\ \kgunit}{1\ \gunit} \qquad \text{(incorrect)}
496 \end{equation*}
497 does not equal one, because $10^3$  kg is the mass of a car,
498 and 1 g is the mass of a raisin. One correct way of
499 setting up the conversion factor would be
500 \begin{equation*}
501   \frac{10^{-3}\ \kgunit}{1\ \gunit} \qquad \text{(correct)} \qquad .
502 \end{equation*}
503 You can usually detect such a mistake if you take the time
504 to check your answer and see if it is reasonable.
506 If common sense doesn't rule out either a positive or a
507 negative exponent, here's another way to make sure you get
508 it right. There are big prefixes, like kilo-, and small ones,
509 like milli-.
510 In the example above, we want the
511 top of the fraction to be the same as the bottom. Since $k$
512 is a big prefix, we need to \emph{compensate} by putting a
513 small number like $10^{-3}$  in front of it, not a big
514 number like $10^3$.
516 \startdq
518 \begin{dq}
519 Each of the following conversions contains an error.  In
520 each case, explain what the error is.
522 (a) $1000\ \kgunit \times \frac{1\ \kgunit}{1000\ \gunit}  = 1\ \gunit$
524 (b) $50\ \munit \times \frac{1\ \zu{cm}}{100\ \munit}    =  0.5\ \zu{cm}$
526 \end{dq}
529 <% end_sec() %>
530 <% end_sec() %>
531 <% end_sec %>
532 <% begin_sec("Conservation of Energy",0) %>
534 <% begin_sec("Energy") %>
536 <% marg(10) %>
538   fig(
539     'hockey-puck',
540     %q{%
541        A hockey puck is released at rest. If it spontaneously scooted off in some
542        direction, that would violate the symmetry of all directions in space.
543     }
544   )
546 \spacebetweenfigs
548   fig(
549     'joule',
550     %q{%
551        James Joule (1818-1889) discovered the law of conservation of energy.
552     }
553   )
555 <% end_marg %>%
557 \label{rotational-symmetry}\index{symmetry!rotational}\index{rotational symmetry}
558 Consider the hockey puck in figure \figref{hockey-puck}. If we release it at rest, we expect
559 it to remain at rest. If it did start moving all by itself, that would be strange: it would
560 have to pick some direction in which to move, and why would it pick that direction rather
561 than some other one? If we observed such a phenomenon, we would have to conclude that that
562 direction in space was somehow special. It would be the favored direction in which hockey
563 pucks (and presumably other objects as well) preferred to move. That would violate our
564 intuition about the symmetry of space, and this is a case where our intuition is right:
565 a vast number of experiments have all shown that that symmetry is a correct one. In other
566 words, if you secretly pick up the physics laboratory with a crane, and spin it around
567 gently with all the physicists inside, all their experiments will still come out the same,
568 regardless of the lab's new orientation. If they don't have windows they can look out of,
569 or any other external cues (like the Earth's magnetic field), then they won't notice anything
570 until they hang up their lab coats for the evening and walk out into the parking lot.
572 Another way of thinking about it is that a moving hockey puck would have some
573 \emph{energy}, whereas a stationary one has none. I haven't given you an operational
574 definition of energy yet, but we'll gradually start to build one up, and it will
575 end up fitting in pretty well with your general idea of what energy means from
576 everyday life. Regardless of the mathematical details of how you would actually
577 calculate the energy of a moving hockey puck, it makes sense that a puck
578 at rest has zero energy. It starts to look like energy is conserved. A puck that
579 initially has zero energy must continue to have zero energy, so it can't start
580 moving all by itself.
582 You might conclude from this discussion that we have a new example of Noether's
583 theorem: that the symmetry of space with respect to different directions must be
584 equivalent, in some mysterious way, to conservation of energy. Actually that's not
585 quite right, and the possible confusion is related to the fact that we're not
586 going to deal with the full, precise mathematical statement of Noether's theorem.
587 In fact, we'll see soon that conservation of energy is really more closely related
588 to a different symmetry, which is symmetry with respect to the passage of time.
590 <% end_sec() %>
591 <% begin_sec("The principle of inertia",nil,'principle-of-inertia') %>\index{inertia, principle of}
593 Now there's one very subtle thing about the example of the hockey puck, which wouldn't
594 occur to most people. If we stand on the ice and watch the puck, and we don't see it
595 moving, does that mean that it really is at rest in some absolute sense? Remember,
596 the planet earth spins once on its axis every 24 hours. At the latitude where I live,
597 this results in a speed of about 800 miles per hour, or something like 400 meters per
598 second. We could say, then that the puck wasn't really staying at rest. We could
599 say that it was really in motion at a speed of 400 m/s, and remained in motion at that
600 same speed. This may be inconsistent with our earlier description, but it is still
601 consistent with the same description of the laws of physics. Again, we don't need to
602 know the relevant formula for energy in order to believe that if the puck keeps the same
603 speed (and its mass also stays the same), it's maintaining the same energy.
605 In other words, we have two different \emph{frames of reference}, both equally valid.
606 The person standing on the ice measures all velocities relative to the ice, finds
607 that the puck maintained a velocity of zero, and says that energy was conserved.
608 The astronaut watching the scene from deep space might measure the velocities
609 relative to her own space station; in her frame of reference, the puck is moving
610 at 400 m/s, but energy is still conserved.
612 <% marg(50) %>
614   fig(
615     'aristotle',
616     %q{%
617       Why does Aristotle look so sad? Is it because he's realized that his entire
618       system of physics is wrong?
619     }
620   )
622 \spacebetweenfigs
624   fig(
625     'jets-in-formation-over-ny',
626     %q{The jets are at rest. The Empire State Building is moving.}
627   )
629 <% end_marg %>
631 This probably seems like common sense, but it wasn't common sense to one of the
632 smartest people ever to live, the ancient Greek philosopher Aristotle.\index{Aristotle}
633 He came up with an entire system of physics based on the premise that
634 there is one frame of reference that is special: the frame of reference defined
635 by the dirt under our feet. He believed that all motion had a tendency to slow
636 down unless a force was present to maintain it. Today, we know that Aristotle
637 was wrong. One thing he was missing was that he didn't understand the concept
638 of friction as a force. If you kick a soccer ball, the reason it eventually comes
639 to rest on the grass isn't that it ``naturally'' wants to stop moving. The reason
640 is that there's a frictional force from the grass that is slowing it down. (The energy
641 of the ball's motion is transformed into other forms, such as heat and sound.)
642 Modern people may also have an easier time seeing his mistake, because we
643 have experience with smooth motion at high speeds. For instance, consider a passenger
644 on a jet plane who stands up in the aisle and inadvertently drops his bag of peanuts.
645 According to Aristotle, the bag would naturally slow to a stop, so it would become
646 a life-threatening projectile in the cabin! From the modern point of view,
647 the cabin can just as well be considered to be at rest.\index{Galileo Galilei}
649   fig(
650     'galileo-trial',
651     %q{Galileo Galilei was the first physicist to state the principle of inertia (in a somewhat different formulation than the one given here).
652        His contradiction of Aristotle had serious consequences. He was interrogated by the Church authorities and
653        convicted of teaching that the earth went around the sun as a matter of fact and not, as he had promised previously,
654        as a mere mathematical hypothesis. He was placed under permanent house arrest, and forbidden to write about or
655        teach his theories. Immediately after being forced to recant his claim that the earth revolved around the sun, the old
656        man is said to have muttered defiantly ``and yet it does move.''},
657     {
658       'width'=>'wide',
659       'narrowfigwidecaption'=>true,
660       'float'=>false
661     }
662   )
665 The \emph{principle of inertia} says, roughly, that
666 all frames of reference are equally valid:
668 \begin{important}[The principle of inertia]
669 The results of experiments don't depend on the straight-line,
670 constant-speed motion of the apparatus. 
671 \end{important}
673 \noindent Speaking slightly more precisely, the
674 principle of inertia says that if frame B moves at constant speed, in a straight line,
675 relative to frame A, then frame B is just as valid as frame A, and in fact an observer
676 in frame B will consider B to be at rest, and A to be moving. The laws of physics
677 will be valid in both frames. The necessity for the
678 more precise formulation becomes evident if you think about examples in which the
679 motion changes its speed or direction. For instance, if you're in a car that's
680 accelerating from rest, you feel yourself being pressed back into your seat.
681 That's very different from the experience of being in a car cruising at constant
682 speed, which produces no physical sensation at all. A more extreme example of this
683 is shown in figure \figref{rocket-sled} on page  \pageref{fig:rocket-sled}.
685 A frame of reference moving at constant speed in a straight line is known as an
686 inertial frame of reference. A frame that changes its speed or direction of motion
687 is called noninertial. The principle of inertia applies only to inertial frames.
688 The frame of reference defined by an accelerating car is noninertial, but the one
689 defined by a car cruising at constant speed in a straight line is inertial.\index{frame of reference}\index{frame of reference!inertial}\index{frame of reference!noninertial}
692   fig(
693     'rocket-sled',
694     %q{%
695       This Air Force doctor volunteered to ride a rocket sled as 
696       a medical experiment. The obvious effects on
697       his head and face are not because of the sled's speed but because of its rapid changes in speed: increasing
698       in 2 and 3, and decreasing in 5 and 6.
699       In 4 his speed is greatest, but because his speed is not
700       increasing or decreasing very much at this moment, there is little effect on him.
701     },
702     {
703       'width'=>'wide'
704     }
705   )
708 <% marg(0) %>
710   fig(
711     'foucault',
712     %q{%
713       Foucault demonstrates his pendulum to an audience at
714                       a lecture in 1851.
715     }
716   )
718 <% end_marg %>
722 \begin{eg}{Foucault's pendulum}
723         Earlier, I spoke as if a frame of reference attached to the surface of the rotating earth was
724         just as good as any other frame of reference. Now, with the more exact formulation of the
725         principle of inertia, we can see that that isn't quite true. A point on the earth's surface
726         moves in a circle, whereas the principle of inertia refers only to motion in a straight line.
727         However, the curve of the motion is so gentle that under
728         ordinary conditions we don't notice that the local dirt's frame of reference isn't
729         quite inertial. The first demonstration of the noninertial nature of the earth-fixed
730         frame of reference was by L\'{e}on Foucault\index{Foucault, L\'{e}on}
731          using a very massive pendulum (figure \figref{foucault}) whose oscillations
732         would persist for many hours without becoming imperceptible. Although Foucault did
733         his demonstration in Paris, it's easier to imagine what would happen at the north pole:
734         the pendulum would keep swinging in the same plane, but the earth would spin underneath
735         it once every 24 hours. To someone standing in the snow, it would appear that the
736         pendulum's plane of motion was twisting. The effect at latitudes less than 90
737         degrees turns out to be slower, but otherwise similar. The Foucault pendulum was
738         the first definitive experimental proof that the earth really did spin on its axis,
739         although scientists had been convinced of its rotation for a century based on more
740         indirect evidence about the structure of the solar system.
741 \end{eg}
743 People have a strong intuitive belief that there is a state of absolute rest,\index{Copernicus}
744 and that the earth's surface defines it. But Copernicus proposed as a mathematical
745 assumption, and Galileo argued as a matter of physical reality, that the earth spins
746 on its axis, and also circles the sun. Galileo's opponents objected that this was
747 impossible, because we would observe the effects of the motion. They said, for example,
748 that if the earth was moving, then you would never be able to jump up in the air and
749 land in the same place again --- the earth would have moved out from under you.
750 Galileo realized that this wasn't really an argument about the earth's motion but
751 about physics. In one of his books, which were written in the form of dialogues, he has
752 the three characters debate what would happen if a ship was cruising smoothly across
753 a calm harbor and a sailor climbed up to the top of its mast and dropped a rock.
754 Would it hit the deck at the base of the mast, or behind it because the ship had moved out from
755 under it? This is the kind of experiment referred to in the principle of
756 inertia, and Galileo knew that it would come out the same regardless of the ship's
757 motion. His opponents' reasoning, as represented by the dialog's stupid character
758 Simplicio, was based on the assumption that once the rock lost contact with the sailor's
759 hand, it would naturally start to lose its forward motion. In other words, they didn't
760 even believe in the idea that motion naturally continues unless a force acts to stop it.
762 But the principle of inertia says more than that. It says that motion isn't even real:
763 to a sailor standing on the deck of the ship, the deck and the masts and the rigging are not even
764 moving. People on the shore can tell him that the ship and his own body are moving in a straight
765 line at constant speed. He can reply, ``No, that's an illusion. I'm at rest. The only reason you think I'm moving is
766 because you and the sand and the water are moving in the opposite direction.''
767 The principle of inertia says that straight-line, constant-speed motion is a matter of opinion.
768 Thus things can't ``naturally'' slow down and stop moving, because we can't even agree on which things
769 are moving and which are at rest.
771 If observers in different frames of reference disagree on velocities, it's natural to
772 want to be able to convert back and forth. For motion in one dimension, this can be
773 done by simple addition.\index{velocity!addition of}
775 \begin{eg}{A sailor running on the deck}\label{eg:runtobow}
776 \egquestion
777 A sailor is running toward the front of a ship, and the other sailors say that in
778 their frame of reference, fixed to the deck, his velocity is $7.0$ m/s. The ship
779 is moving at $1.3$ m/s relative to the shore. How fast does an observer on the beach
780 say the sailor is moving?
782 \eganswer
783 They see the ship moving at $7.0$ m/s, and the sailor moving even faster than that because
784 he's running from the stern to the bow. In one second, the ship moves $1.3$ meters,
785 but he moves $1.3+7.0$ m, so his velocity relative to the beach is $8.3$ m/s. 
786 \end{eg}
788 The only way to make this rule give consistent results is if we define velocities in
789 one direction as positive, and velocities in the opposite direction as negative.
791 \begin{eg}{Running back toward the stern}
792 \egquestion
793 The sailor of example \ref{eg:runtobow} turns around and runs back toward the stern
794 at the same speed relative to the deck. How do the other sailors describe this
795 velocity mathematically, and what do observers on the beach say?
797 \eganswer
798 Since the other sailors described his original velocity as positive, they have to call
799 this negative. They say his velocity is now $-7.0$ m/s. A person on the shore says
800 his velocity is $1.3+(-7.0)=-5.7$ m/s.
801 \end{eg}
805 <% end_sec() %>
806 <% begin_sec("Kinetic and gravitational energy") %>\index{energy!kinetic}\index{energy!gravitational}\index{kinetic energy}\index{gravitational energy}
808 Now suppose we drop a rock. The rock is initially at rest, but then begins moving.
809 This seems to be a violation of conservation of energy, because a moving rock
810 would have more energy. But actually this is a little like the example of the
811 burning log that seems to violate conservation of mass. Lavoisier realized that
812 there was a second form of mass, the mass of the smoke, that wasn't being accounted
813 for, and proved by experiments that mass \emph{was}, after all, conserved once the
814 second form had been taken into account. In the case of the falling rock, we have two
815 forms of energy. The first is the energy it has because it's moving, known as
816 \emph{kinetic energy}. The second form is a kind of energy that it has because it's
817 interacting with the planet earth via gravity. This is known as \emph{gravitational
818 energy}.\footnote{You may also see this referred to in some books as gravitational potential energy.}
819 The earth and the rock attract each other gravitationally, and the greater the distance
820 between them, the greater the gravitational energy --- it's a little like stretching a spring.
822 <% marg(70) %>
824   fig(
825     'pool-skater',
826     %q{%
827       The skater has converted all his kinetic
828       energy into gravitational energy on the
829       way up the side of the pool.
830       Photo by J.D. Rogge,\linebreak[4]www.sonic.net/$\sim$shawn.
831     }
832   )
834 \spacebetweenfigs
836   fig(
837     'pool-skater-line-art',
838     %q{%
839       As the skater free-falls, his gravitational energy is
840       converted into kinetic energy.
841     }
842   )
844 \spacebetweenfigs
846   fig(
847     'seesaw',
848     %q{Example \ref{eg:lever}.}
849   )
851 <% end_marg %>
853 The SI unit of energy is the joule (J),\index{joule (unit)} and in those units, we find that lifting a 1-kg
854 mass through a height of 1 m requires 9.8 J of energy. This number, 9.8 joules per meter
855 per kilogram, is a measure of the strength of the earth's gravity near its surface.
856 We notate this number, known as the gravitational field, as $g$, and often round it off to 10 for convenience in rough calculations.
857 If you lift a 1-kg rock to a height of 1 m above the ground, you're giving up 9.8 J of the energy you got from eating
858 food, and changing it into gravitational energy stored in the rock. If you then release
859 the rock, it starts transforming the energy into kinetic energy, until finally when the
860 rock is just about to hit the ground, all of that energy is in the form of kinetic energy. That
861 kinetic energy is then transformed into heat and sound when the rock hits the ground.\label{gravitational-field}\label{gravitational field}\index{field!gravitational}
863 Stated in the language of algebra, the formula for gravitational energy is
864 \begin{equation*}
865   GE = mgh \qquad ,
866 \end{equation*}
867 where $m$ is the mass of an object, $g$ is the gravitational field, and $h$ is the
868 object's height.
870 \begin{eg}{A lever}\label{eg:lever}\index{lever}
871 Figure \figref{seesaw} shows two sisters on a seesaw. The one on the left has twice as
872 much mass, but she's at half the distance from the center. No energy input is needed in
873 order to tip the seesaw. If the girl on the left goes up a certain distance, her gravitational
874 energy will increase. At the same time, her sister on the right will drop twice the distance,
875 which results in an equal decrease in energy, since her mass is half as much. In symbols, we have
876 \begin{equation*}
877   (2m)gh
878 \end{equation*}
879 for the gravitational energy gained by the girl on the left, and
880 \begin{equation*}
881   mg(2h)
882 \end{equation*}
883 for the energy lost by the one on the right. Both of these equal $2mgh$, so the amounts gained and
884 lost are the same, and energy is conserved.
886 Looking at it another way, this can be thought of as an example of the kind of experiment that
887 you'd have to do in order to arrive at the equation $GE=mgh$ in the first place. If we didn't
888 already know the equation, this experiment would make us suspect that it involved the product
889 $mh$, since that's what's the same for both girls.
890 \end{eg}
892 Once we have an equation for one form of energy, we can establish equations for other forms of
893 energy. For example, if we drop a rock and measure its final velocity, $v$, when it hits the ground,
894 we know how much GE it lost, so we know that's how much KE it must have had when it was at that
895 final speed. Here are some imaginary results from such an experiment.
897 \begin{tabular}{|c|c|c|} \hline
898 \textbf{m} (kg) & \textbf{v} (m/s) & \textbf{energy} (J) \\ \hline
899 1.00 & 1.00 & 0.50 \\ \hline
900 1.00 & 2.00 & 2.00 \\ \hline
901 2.00 & 1.00 & 1.00 \\ \hline
902 \end{tabular}
904 Comparing the first line with the second, we see that
905 doubling the object's velocity doesn't just double its
906 energy, it quadruples it. If we compare the first and third
907 lines, however, we find that doubling the mass only doubles
908 the energy. This suggests that kinetic energy is proportional
909 to mass times the square of velocity, $mv^2$, and further
910 experiments of this type would indeed establish such a
911 general rule. The proportionality factor equals 0.5 because
912 of the design of the metric system, so the kinetic energy of
913 a moving object is given by
914 \begin{equation*}
915                 KE    =    \frac{1}{2}mv^2   \qquad   .
916 \end{equation*}
919   fig(
920     'can-imploding',
921     %q{%
922       A vivid demonstration that heat is a form of
923       motion. A small amount of boiling water is poured
924       into the empty can, which rapidly fills up with
925       hot steam. The can is then sealed tightly, and
926       soon crumples. This can be explained as
927       follows. The high temperature of the steam is
928       interpreted as a high average speed of random
929       motions of its molecules. Before the lid was put
930       on the can, the rapidly moving steam molecules
931       pushed their way out of the can, forcing the
932       slower air molecules out of the way. As the steam
933       inside the can thinned out, a stable situation was
934       soon achieved, in which the force from the less
935       dense steam molecules moving at high speed
936       balanced against the force from the more dense
937       but slower air molecules outside. The cap was
938       put on, and after a while the steam inside the
939       can reached the same temperature as the air outside.
940       The force from the cool,
941       thin steam no longer matched the force from the
942       cool, dense air outside, and the imbalance of
943       forces crushed the can.
944     },
945     {
946       'width'=>'wide',
947     }
948   )
951 <% end_sec() %>
952 <% begin_sec("Energy in general") %>
954 <% marg(0) %>
955   % not sure why the special label is necessary in the following, but it is; if I just do "coin," I get a different ref
957   fig(
958     'coin',
959     %q{%
960       The spinning coin slows down. It looks like conservation of energy is violated, but it isn't.\label{fig:coin-duh}
961     }
962   )
964 <% end_marg %>
966 By this point, I've casually mentioned several forms of energy: kinetic, gravitational, heat, and
967 sound. This might be disconcerting, since we can get throughly messed up if don't realize that
968 a certain form of energy is important in a particular situation. For instance, the spinning coin in figure
969 \figref{coin-duh} gradually loses its kinetic energy, and we might think that conservation of energy was
970 therefore being violated. However, whenever two surfaces rub together, friction acts to create heat.
971 The correct analysis is that the coin's kinetic energy is gradually converted into heat.\index{energy!heat}\index{energy!sound}\index{heat}\index{sound!energy}
974 One way of
975 making the proliferation of forms of energy seem less scary is to realize that many forms of energy
976 that seem different on the surface are in fact the same. One important example is that heat is actually
977 the kinetic energy of molecules in random motion, so where we thought we had two forms of energy, in fact
978 there is only one.
979 Sound is also a form of kinetic energy: it's the vibration of air molecules.
981  This kind of unification of different types of energy has been a process that has
982 been going on in physics for a long time, and at this point we've gotten it down the point where there
983 really only appear to be four forms of energy:
984 \begin{enumerate}
985 \item kinetic energy
986 \item gravitational energy
987 \item electrical energy
988 \item nuclear energy
989 \end{enumerate}
990 We don't even encounter  nuclear energy in everyday life (except in the sense that sunlight
991 originates as nuclear energy), so really for most purposes the list only has three items on it. Of these
992 three, electrical energy is the only form that we haven't talked about yet. The interactions
993 between atoms are all electrical, so this form of energy is what's responsible for all of chemistry. The
994 energy in the food you eat, or in a tank of gasoline, are forms of electrical energy.\index{energy!electrical}\index{energy!nuclear}\index{electrical energy}\index{nuclear energy}
996 \begin{eg}{You take the high road and I'll take the low road.}\label{eg:high-road-low-road}
997 \egquestion Figure \figref{high-road-low-road} shows two ramps which two balls will
998 roll down. Compare their final speeds, when they reach point
999 B. Assume friction is negligible.
1001 \eganswer Each ball loses some gravitational energy because of its
1002 decreasing height above the earth, and conservation of
1003 energy says that it must gain an equal amount of kinetic energy
1004 (minus a little heat created by friction). The balls
1005 lose the same amount of height, so their final speeds must be equal.
1006 \end{eg}
1008 \vspace{8mm}
1010 <% marg(20) %>
1012   fig(
1013     'high-road-low-road',
1014     %q{Example \ref{eg:high-road-low-road}.}
1015   )
1017 \spacebetweenfigs
1019   fig(
1020     'orionnebula',
1021     %q{Example \ref{eg:birthofstars}.}
1022   )
1024 <% end_marg %>
1027 \begin{eg}{The birth of stars}\label{eg:birthofstars}\index{Orion Nebula}
1028 Orion is the easiest constellation to find. You can see it in the winter, even if you live
1029 under the light-polluted skies of a big city. Figure \figref{orionnebula} shows an interesting
1030 feature of this part of the sky that you can easily pick out with an ordinary camera (that's how
1031 I took the picture) or a pair of binoculars. The three stars at the top are Orion's belt, and the
1032 stuff near the lower left corner of the picture is known as his sword --- to the naked eye, it
1033 just looks like three more stars that aren't as bright as the stars in the belt. The middle ``star''
1034 of the sword, however, isn't a star at all. It's a cloud of gas, known as the Orion Nebula,
1035 that's in the process of collapsing
1036 due to gravity. Like the pool skater on his way down, the gas is losing gravitational energy.
1037 The results are very different, however. The skateboard is designed to be a low-friction device,
1038 so nearly all  of the lost gravitational energy is converted to kinetic energy, and very little
1039 to heat. The gases in the nebula flow and rub against each other, however, so most of the gravitational
1040 energy is converted to heat. This is the process by which stars are born: eventually the core of
1041 the gas cloud gets hot enough to ignite nuclear reactions.
1042 \end{eg}
1044 \vspace{8mm}
1046 \begin{eg}{Lifting a weight}
1047 \egquestion At the gym, you lift a mass of 40 kg through a height of 0.5 m. How much gravitational
1048 energy is required? Where does this energy come from?
1050 \eganswer 
1051 The strength of the gravitational field is 10 joules per kilogram per meter, so after you lift the weight,
1052 its gravitational energy will be greater by $10\times40\times0.5=200$ joules.
1054 Energy is conserved, so
1055 if the weight gains gravitational energy, something else somewhere in the universe must have lost some.
1056 The energy that was used up was the energy in your body, which came from the food you'd eaten. This is what we refer to
1057 as ``burning calories,'' since calories are the units normally used to describe the energy in food,
1058 rather than metric units of joules.
1060 In fact, your body uses up even more than 200 J of food energy, because it's not very efficient. The rest
1061 of the energy goes into heat, which is why you'll need a shower after you work out. We can summarize this
1063 \begin{equation*}
1064 \text{food energy} \rightarrow \text{gravitational energy} + \text{heat} \qquad .
1065 \end{equation*}
1066 \end{eg}
1068 \begin{eg}{Lowering a weight}
1069 \egquestion After lifting the weight, you need to lower it again. What's happening in terms of energy?
1071 \eganswer 
1072 Your body isn't capable of accepting the energy and putting it back into storage. The gravitational
1073 energy all goes into heat. (There's nothing
1074 fundamental in the laws of physics that forbids this.
1075 Electric cars can do it --- when you stop at a stop sign, the car's kinetic energy is absorbed
1076 back into the battery, through a generator.) 
1077 \end{eg}
1079 <% marg(0) %>
1081   fig(
1082     'welding',
1083     %q{%
1084       Example \ref{eg:absorb-and-emit-light}.
1085     }
1086   )
1088 \spacebetweenfigs
1090   fig(
1091     'irbike',
1092     %q{%
1093       Example \ref{eg:absorb-and-emit-light}.
1094     }
1095   )
1097 <% end_marg %>
1099 \begin{eg}{Absorption and emission of light}\label{eg:absorb-and-emit-light}
1100   Light has energy. Light can be absorbed by matter and transformed into heat, but the
1101   reverse is also possible: an object can glow, transforming some of its heat energy into
1102   light. Very hot objects, like a candle flame or a welding torch, will glow in the visible
1103   part of the spectrum, as in figure \figref{welding}.
1105   Objects at lower temperatures
1106   will also emit light, but in the infrared part of the spectrum, i.e., the part of the
1107   rainbow lying beyond the red end, which humans can't see.
1108   The photos in figure \figref{irbike} were taken using a camera that is sensitive to infrared light.
1109   The cyclist locked his rear brakes suddenly, and skidded to a stop. The kinetic energy of the bike
1110   and his body are rapidly transformed into heat by the friction between the tire and the floor.
1111   In the first panel, you can see the glow of the heated strip on the floor, and in the second panel,
1112   the heated part of the tire.
1113 \end{eg}
1115 \begin{eg}{Heavy objects don't fall faster}\index{free fall}
1116 Stand up now, take off your shoe, and drop it alongside a much less massive object
1117 such as a coin or the cap from your pen.
1119 Did that surprise you? You found that they both hit the ground at the same time.
1120 Aristotle wrote that heavier objects fall faster than
1121 lighter\index{Aristotle}\index{Catholic Church}\index{Church!Catholic}
1122 ones. He was wrong, but Europeans believed him for thousands of years, partly because
1123 experiments weren't an accepted way of learning the truth, and partly because the
1124 Catholic Church gave him its posthumous seal of approval as its official
1125 philosopher.
1127 Heavy objects and light objects have to fall the same way, because conservation
1128 laws are additive --- we find the total energy of an object by adding up the energies
1129 of all its atoms. If a single atom falls through a height of one meter, it loses a certain
1130 amount of gravitational energy and gains a corresponding amount of kinetic energy.
1131 Kinetic energy relates to speed, so that determines how fast it's moving at the end
1132 of its one-meter drop. (The same reasoning could be applied to any point along the
1133 way between zero meters and one.)
1135 Now what if we stick two atoms together? The pair has double the mass, so the amount
1136 of gravitational energy transformed into kinetic energy is twice as much. But twice
1137 as much kinetic energy is exactly what we need if the pair of atoms is to have the same
1138 speed as the single atom did. Continuing this train of thought, it doesn't matter how many
1139 atoms an object contains; it will have the same speed as any other object after dropping
1140 through the same height.
1141 \end{eg}
1143 <% end_sec() %>
1144 <% end_sec() %>
1145 <% begin_sec("Newton's Law of Gravity",0) %>\index{gravity!Newton's law of}
1146 Why does the gravitational field on our planet have the particular value it does? 
1147 For insight, let's compare with the strength of gravity elsewhere in the
1148 universe:\index{Newton, Isaac!law of gravity}\index{gravitational field!Newton's law of gravity}
1149 \index{field!gravitational!Newton's law of gravity}
1151 \begin{tabular}{|p{50mm}|p{45mm}|}
1152 \hline
1153 location      & $g$ (joules per kg per m) \\
1154 \hline
1155 asteroid Vesta (surface) & 0.3 \\
1156 earth's moon (surface)   & 1.6 \\
1157 Mars (surface)           & 3.7 \\
1158 earth (surface)          & 9.8 \\
1159 Jupiter (cloud-tops)     & 26 \\
1160 sun (visible surface)    & 270 \\
1161 typical neutron star (surface) & $10^{12}$ \\
1162 black hole (center)      & infinite according to some theories, on the
1163    order of $10^{52}$ according to others \\
1164 \hline
1165 \end{tabular}
1167 A good comparison is Vesta versus a neutron star. They're roughly the same size, but they have
1168 vastly different masses --- a teaspoonful of neutron star matter would weigh a million tons!
1169 The different mass must be the reason for the vastly different gravitational fields. (The notation
1170 $10^{12}$ means 1 followed by 12 zeroes.)
1171 This makes sense, because gravity is an attraction between things that have mass.
1173 The mass of an object, however, isn't the only thing that determines the strength of its
1174 gravitational field, as demonstrated by the difference between the fields of the
1175 sun and a neutron star, despite their similar masses.  The other variable that matters is
1176 distance. Because a neutron star's mass is compressed into such a small space (comparable
1177 to the size of a city), a point on its surface is within a fairly short distance from every
1178 part of the star. If you visited the surface of the sun, however, you'd be millions of miles
1179 away from most of its atoms.
1181 As a less exotic example, if you travel from the seaport of
1182 Gua\-ya\-quil, Ecuador, to the top of nearby Mt. Cotopaxi, you'll experience
1183 a slight reduction in gravity, from 9.7806 to 9.7624 J/kg/m. This is because
1184 you've gotten a little farther from the planet's mass. Such differences in the
1185 strength of gravity between one location and another on the earth's surface were
1186 first discovered because pendulum clocks that were correctly calibrated in one country
1187 were found to run too fast or too slow when they were shipped to another location.
1189 The general equation for an object's gravitational field was discovered by
1190 Isaac Newton, by working backwards
1191 from the observed motion of the planets:\footnote{Example \ref{eg:moonorbit} on page \pageref{eg:moonorbit} shows
1192 the type of reasoning that Newton had to go through.}
1193 \begin{equation*}
1194         g = \frac{GM}{d^2} \qquad ,
1195 \end{equation*}
1196 where $M$ is the mass of the object, $d$ is the distance from the object, and $G$ is
1197 a constant that is the same everywhere in the universe. This is known as Newton's
1198 law of gravity.\footnote{This is not the form
1199 in which Newton originally wrote the equation.}
1200 This type of relationship, in which an effect is inversely proportional to the
1201 square of the distance from the object creating the effect, is known as an
1202 inverse square law.\index{inverse-square law} For example, the intensity of the
1203 light from a candle obeys an inverse square law, as discussed in subsection
1204 \ref{subsec:inverse-square} on page \pageref{subsec:inverse-square}.
1206 <% marg(0) %>
1208   fig(
1209     'newton',
1210     'Isaac Newton (1642-1727)'
1211   )
1213 <% end_marg %>
1215 <% self_check('mars-and-venus',<<-'SELF_CHECK'
1216 Mars is about twice as far from the sun as Venus. Compare the strength of the sun's
1217 gravitational field as experienced by Mars with the strength of the field
1218 felt by Venus.
1219   SELF_CHECK
1220   ) %>
1222 Newton's law of gravity really gives the field of an individual atom, and
1223 the field of a many-atom object is the sum of the fields of the atoms.
1224 Newton was able to prove mathematically that this scary sum has an unexpectedly
1225 simple result in the case of a spherical object such as a planet: the result is
1226 the same as if all the object's mass had been concentrated at its center.\index{gravitational constant, $G$}
1228 Newton showed that his theory of gravity could explain the orbits of the planets, and
1229 also finished the project begun by Galileo of driving a stake through the heart of
1230 Aristotelian physics. His book on the motion of material objects, the \emph{Mathematical
1231 Principles of Natural Philosophy},\index{Mathematical Principles of Natural Philosophy}\index{Principia Mathematica}
1232 was uncontradicted by experiment for 200 years,
1233 but his other main work, \emph{Optics},\index{Optics}
1234  was on the wrong track due to his conviction
1235 that light was composed of particles rather than waves. He was an avid alchemist,
1236 an embarrassing fact that modern scientists would like to forget. Newton was
1237 on the winning side of the revolution that replaced King James II with William and Mary
1238 of Orange, which led to a lucrative post running the English royal mint; he worked hard at
1239 what could have been a sinecure, and took great
1240 satisfaction from catching and executing counterfeiters. Newton's personal life was less
1241 happy, as we'll see in chapter \ref{ch:electricity}.
1243 \begin{eg}{Newton's apple}\label{eg:newtonsapple}\index{moon!gravitational field experienced by}\index{Newton, Isaac!apple myth}
1244 A charming legend attested to by Newton's niece is that he first conceived of
1245 gravity as a universal attraction after seeing an apple fall from a tree. He
1246 wondered whether the force that made the apple fall was the same one that made the
1247 moon circle the earth rather than flying off straight. Newton had astronomical data
1248 that allowed him to calculate
1249 that the gravitational field the moon experienced
1250 from the earth was 1/3600 as strong as the field on the surface of the earth.\footnote{See example
1251 \ref{eg:moonorbit} on page \pageref{eg:moonorbit}.}
1252 (The moon has its own gravitational field, but that's not what we're talking about.)
1253 The moon's distance from the earth is 60 times greater than the earth's radius,
1254 so this fit perfectly with an inverse-square law: $60\times60=3600$.
1255 \end{eg}
1257 <% marg(40) %>
1259   fig(
1260     'earth-moon-apple',
1261     'Example \ref{eg:newtonsapple}.'
1262   )
1264 <% end_marg %>
1266 <% end_sec() %>
1267 <% begin_sec("Noether's Theorem for Energy",0,'noether-energy') %>
1268 \index{Noether's theorem!for energy}\index{energy!Noether's theorem}
1269 Now we're ready for our first full-fledged example of Noether's theorem.
1270 Conservation of energy is a law of physics, and Noether's theorem
1271 says that the laws of physics come from symmetry. Specifically, Noether's
1272 theorem says that every symmetry implies a conservation law. Conservation
1273 of energy comes from a symmetry that we haven't even discussed yet, but one that
1274 is simple and intuitively appealing: as time goes by, the universe doesn't
1275 change the way it works. We'll call this time symmetry.\index{symmetry!time}\index{time symmetry}
1277 We have strong evidence for time symmetry, because when
1278 we see a distant galaxy through a telescope, we're seeing light that has taken
1279 billions of years to get here. A telescope, then, is like a time machine. For all
1280 we know, alien astronomers with advanced technology may be observing our planet
1281 right now,\footnote{Our present technology isn't good enough to let us pick
1282 the planets of other solar systems out from the glare of their suns, except in a few
1283 exceptional cases.}
1284 but if so, they're seeing it not as it is now but as it
1285 was in the distant past, perhaps in the age of the dinosaurs, or before life
1286 even evolved here. As we observe a particularly distant, and therefore ancient,
1287 supernova, we see that its explosion plays out in exactly the same way as
1288 those that are closer, and therefore more recent.
1290 Now suppose physics really does change from year to year, like politics, pop music,
1291 and hemlines. Imagine, for example, that the ``constant'' $G$ in Newton's
1292 law of gravity isn't quite so constant. One day you might wake up and find that you've
1293 lost a lot of weight without dieting or exercise, simply because gravity has gotten
1294 weaker since the day before. 
1296 If you know about such changes in $G$ over time, it's the ultimate insider
1297 information. You can use it to get as rich as Croesus, or even Bill Gates.\index{Gates, Bill}
1298 On a day when $G$ is low, you pay for the energy needed to lift
1299 a large mass up high. Then, on a day when gravity is stronger,
1300 you lower the mass back down, extracting its gravitational energy.
1301 The key is that the energy you get back out is greater than what you
1302 originally had to put in. You can run the cycle over and over again, always
1303 raising the weight when gravity is weak, and lowering it when gravity is strong.
1304 Each time, you make a profit in energy. Everyone else thinks energy is conserved,
1305 but your secret technique allows you to keep on increasing and increasing the amount
1306 of energy in the universe (and the amount of money in your bank account).
1308 The scheme can be made to work if anything about physics changes over time, not
1309 just gravity. For instance, suppose that the mass of an electron had one value
1310 today, and a slightly different value tomorrow. Electrons are one of the basic
1311 particles from which atoms are built, so on a day when the mass of electrons is low, every
1312 physical object has a slightly lower mass. In problem \ref{hw:changing-electron-mass}
1313 on page \pageref{hw:changing-electron-mass}, you'll work out a way that this could
1314 be used to manufacture energy out of nowhere.\label{text:changing-electron-mass}
1316 Sorry, but it won't work. Experiments show that $G$ doesn't change measurably over
1317 time, nor does there seem to be any time variation in any of the other rules by which the universe
1318 works.\footnote{In 2002, there have been some reports that the properties of atoms
1319 as observed in distant galaxies are slightly different than those of atoms here and
1320 now. If so, then time symmetry is weakly violated, and so is conservation
1321 of energy. However, this is a revolutionary claim, and it needs to be examined carefully.
1322 The change being claimed is large enough that, if it's real, it should be detectable
1323 from one year to the next in ultra-high-precision laboratory experiments here on earth.}
1324 If archaeologists find a
1325 copy of this book thousands of years from now, they'll be able to reproduce all the
1326 experiments you're doing in this course.
1328 I've probably convinced you that if time symmetry was violated, then
1329 conservation of energy wouldn't hold. But does it work the other way around? If time
1330 symmetry is valid, must there be a law of conservation of energy? 
1331 Logically, that's a different question. We may be able to
1332 prove that if A is false, then B must be false, but that doesn't mean that if A is
1333 true, B must be true as well.
1334 For instance, if you're not a criminal, then you're presumably not in jail, but just
1335 because someone is a criminal, that doesn't mean he is in jail
1336 --- some criminals never get caught.
1338 Noether's theorem does work the other way around as well: if physics has a certain
1339 symmetry, then there must be a certain corresponding conservation law. This is
1340 a stronger statement. The full-strength version of Noether's theorem can't
1341 be proved without a  model of light and matter more detailed than the one
1342 currently at our disposal.
1344 <% end_sec() %>
1345 <% begin_sec("Equivalence of Mass and Energy",0,'massenergy') %>
1347 <% begin_sec("Mass-energy") %>\index{mass-energy}\index{mass!equivalence to energy}\index{energy!equivalence to mass}
1348 You've encountered two conservation laws so far: conservation of mass and conservation
1349 of energy. If conservation of energy is a consequence of symmetry, is there a
1350 deeper reason for conservation of mass?
1352 Actually they're not even separate conservation laws. Albert Einstein found,\index{Einstein, Albert}
1353 as a consequence of his theory of relativity, that mass and energy are equivalent, and
1354 are not separately conserved --- one can be converted into the other. Imagine that
1355 a magician waves his wand, and changes a bowl of dirt into a bowl of lettuce. You'd be
1356 impressed, because you were expecting that both dirt and lettuce would be conserved
1357 quantities. Neither one can be made to vanish, or to appear out of thin air. However,
1358 there are processes that can change one into the other. A farmer changes dirt into
1359 lettuce, and a compost heap changes lettuce into dirt. At the most fundamental
1360 level, lettuce and dirt aren't really different things at all; they're just collections
1361 of the same kinds of atoms --- carbon, hydrogen, and so on.
1363 We won't examine relativity in detail in this book, but mass-energy
1364 equivalence is an inevitable implication of the theory, and it's the only part of the
1365 theory that most people have heard of, via the famous equation $E=mc^2$. This equation
1366 tells us how much energy is equivalent to how much mass: the conversion factor is the square
1367 of the speed of light, $c$. Since $c$ a big number, you get a really really big number
1368 when you multiply it by itself to get $c^2$. This means that even a small amount of mass
1369 is equivalent to a very large amount of energy. 
1372   fig(
1373     'eclipse',
1374     'Example \ref{eg:eclipse}.',
1375     {
1376       'width'=>'wide'
1377     }
1378   )
1380 \label{fig:eclipse}
1382 \pagebreak
1384 \begin{eg}{Gravity bending light}\label{eg:eclipse}
1385 Gravity is a universal attraction between things that have mass, and since the energy
1386 in a beam of light is equivalent to some very small amount of mass, we expect that
1387 light will be affected by gravity, although the effect should be very small.
1388 The first experimental confirmation of relativity
1389 came in 1919 when stars next to the sun during a solar eclipse were
1390 observed to have shifted a little from their ordinary
1391 position. (If there was no eclipse, the glare of the sun
1392 would prevent the stars from being observed.) Starlight had
1393 been deflected by the sun's gravity. Figure \figref{eclipse} is a
1394 photographic negative, so the circle that appears bright is actually the
1395 dark face of the moon, and the dark area is really the bright corona of
1396 the sun. The stars, marked by lines above and below them, appeared at
1397 positions slightly different than their normal ones.
1398 \end{eg}
1400 <% marg(0) %>
1402   fig(
1403     'newspaper-eclipse',
1404     'A New York Times headline from November 10, 1919, describing the observations discussed in example \ref{eg:eclipse}.'
1405   )
1407 \label{fig:newspaper-eclipse}
1408 <% end_marg %>
1410 \begin{eg}{Black holes}\index{black hole}
1411 A star with sufficiently strong gravity can prevent light
1412 from leaving. Quite a few black holes have been detected via
1413 their gravitational forces on neighboring stars or clouds of gas and dust.
1414 \end{eg}
1417 Because mass and energy are like two different sides of the same coin, we may speak of
1418 mass-energy, a single conserved quantity, found by adding up all the mass and energy,
1419 with the appropriate conversion factor: $E+mc^2$.
1421 \pagebreak
1423 \begin{eg}{A rusting nail}\label{eg:rustingnail}
1424 \egquestion
1425 An iron nail is left in a cup of water
1426 until it turns entirely to rust. The energy released is
1427 about 500,000 joules. In theory, would a sufficiently
1428 precise scale register a change in mass? If so, how much?
1430 \eganswer
1431  The energy will appear as heat, which will be lost
1432 to the environment. The total mass-energy of the cup,
1433 water, and iron will indeed be lessened by 500,000 joules. (If it
1434 had been perfectly insulated, there would have been no
1435 change, since the heat energy would have been trapped in the
1436 cup.) The speed of light in metric units is
1437 $c=3\times10^8$ meters per second (scientific notation for
1438 3 followed by 8 zeroes), so converting to mass units, we have
1439 \begin{align*}
1440                 m         &=    \frac{E}{c^2}  \\
1441                         &= \frac{500,000}{\left(3\times10^8\right)^2} \\
1442                          &=    0.000000000006\  \text{kilograms}   \qquad   .
1443 \end{align*}
1444 (The design of the metric system is based on the meter, the kilogram, and the
1445 second. The joule is designed to fit into this system, so the result comes
1446 out in units of kilograms.)
1447 The change in mass is too small to measure with any
1448 practical technique. This is because the square of the speed
1449 of light is such a large number in metric units.
1450 \end{eg}
1452 <% end_sec() %>
1453 <% begin_sec("The correspondence principle",nil,'correspondence-principle') %>\index{correspondence principle!defined}
1454 The realization that mass and energy are not separately conserved is our first example
1455 of a general idea called the correspondence principle. When Einstein came up with
1456 relativity, conservation of energy had been accepted by physicists for decades, and
1457 conservation of mass for
1458 over a hundred years.\index{correspondence principle!for mass-energy equivalence}
1460 Does an example like this mean that physicists don't know what they're talking about?
1461 There is a recent tendency among social scientists to 
1462 deny that the scientific method even exists, claiming that
1463 science is no more than a social system that
1464 determines what ideas to accept based on an in-group's
1465 criteria. If science is an
1466 arbitrary social ritual, it would seem difficult to explain
1467 its effectiveness in building such useful items as
1468 airplanes, CD players and sewers. If voodoo
1469 and astrology were no less scientific in
1470 their methods than chemistry and physics, what was it that
1471 kept them from producing anything useful?
1472 This silly attitude was effectively skewered in a famous hoax
1473 carried out in 1996 by New York University physicist Alan Sokal.\index{Sokal, Alan} Sokal wrote
1474 an article titled ``Transgressing the Boundaries: Toward a Transformative 
1475 Hermeneutics of Quantum Gravity,'' and got it accepted by a cultural studies
1476 journal called \emph{Social Text}.\footnote{The paper
1477 appeared in \emph{Social Text} \#46/47 (1996) pp. 217-252. The full text
1478 is available on Professor Sokal's web page at www.physics.nyu.edu/faculty/sokal/.}
1479 The scientific content of the paper is a carefully constructed soup of
1480 mumbo jumbo, using technical terms to create maximum confusion; I can't make
1481 heads or tails of it, and I assume the editors and peer reviewers at
1482 \emph{Social Text} understood even less. The physics, however, is mixed
1483 in with cultural relativist statements designed to appeal to them ---
1484 ``\ldots the truth claims of science are inherently theory-laden and self-referential'' ---
1485 and footnoted references to academic articles such as 
1486 ``Irigaray's and Hayles' exegeses of gender encoding in fluid mechanics \ldots
1487 and \ldots Harding's comprehensive critique of the gender ideology underlying
1488 the natural sciences in general and physics in particular\ldots''
1489 On the day the article came out, Sokal published a letter explaining that
1490 the whole thing had been a parody --- one that apparently went over the heads
1491 of the editors of \emph{Social Text}.
1493 What keeps physics from being merely a matter of fashion is that it has to agree
1494 with experiments and observations. If a theory such as conservation of mass or
1495 conservation of energy became accepted in physics, it was because it was supported
1496 by a vast number of experiments. It's just that experiments never have perfect
1497 accuracy, so a discrepancy such as the tiny change in the mass of the rusting nail
1498 in example \ref{eg:rustingnail} was undetectable. The old experiments weren't all
1499 wrong. They were right, within their limitations. If someone comes along with a
1500 new theory he claims is better, it must still be consistent with all the same
1501 experiments. In computer jargon, it must be backward-compatible. This is called
1502 the correspondence principle: new theories must be compatible with old ones in
1503 situations where they are both applicable. The correspondence principle tells us
1504 that we can still use an old theory within the realm where it works, so for instance
1505 I'll typically refer to conservation of mass and conservation of energy in this
1506 book rather than conservation of mass-energy, except in cases where the new theory
1507 is actually necessary.
1509 Ironically, the extreme cultural relativists want to attack what they see
1510 as physical scientists' arrogant claims to absolute truth, but what they
1511 fail to understand is that science only claims to be able to find partial, provisional truth.
1512 The correspondence principle tells us that each of today's scientific truths can be superseded
1513 tomorrow by another truth that is more accurate and more broadly applicable. It also
1514 tells us that today's truth will not lose any value when that happens.
1515 <% end_sec() %>
1516 <% end_sec() %>
1517  %===============================================================================
1518  %===============================================================================
1520 <% begin_hw_sec %>
1522 <% begin_hw('mg-to-kg') %>__incl(hw/mg-to-kg)<% end_hw() %>
1524 <% begin_hw('units') %>__incl(hw/units)<% end_hw() %>
1526 <% begin_hw('backyard') %>__incl(hw/backyard)<% end_hw() %>
1528 <% begin_hw('furlongs') %> The speed of light is $3.0\times10^8$  m/s. Convert
1529 this to furlongs per fortnight.  A furlong is 220 yards, and
1530 a fortnight is 14 days.  An inch is 2.54 cm.\answercheck
1531 <% end_hw() %>
1533 <% begin_hw('micrograms') %> Express each of the following quantities in micrograms:\\
1534 (a) 10 mg, (b) $10^4$ g, (c) 10 kg, (d) $100\times10^3$ g, (e) 1000 ng. \answercheck
1535 <% end_hw() %>
1537 <% begin_hw('estrogen') %>__incl(hw/estrogen)<% end_hw() %>
1539 <% begin_hw('jumpkeandpe') %>__incl(hw/jumpkeandpe)<% end_hw() %>
1541 <% begin_hw('throw-down-and-up') %>__incl(hw/throw-down-and-up)<% end_hw() %>
1543 <% begin_hw('pulley') %>
1544 (a) If weight B moves down by a certain amount, how much does weight A
1545 move up or down?\hwendpart
1546 (b) What should the ratio of the two weights be if they are to balance?
1547 Explain in terms of conservation of energy.
1548 <% end_hw() %>
1549 <% marg(50) %>
1550 <% fig('hw-pulley','Problem \ref{hw:pulley}.') %>
1551 <% end_marg %>
1554 <% begin_hw('slidingmagnets') %>
1555         (a) You release a magnet on a tabletop near a big piece
1556         of iron, and the magnet leaps across the table to the iron.
1557         Does the magnetic energy increase, or decrease?
1558         Explain.\hwendpart
1559         (b) Suppose instead that you have two repelling
1560         magnets. You give them an initial push towards each other,
1561         so they decelerate while approaching each other. Does the
1562         magnetic energy increase, or decrease? Explain.
1563 <% end_hw() %>
1565 <% begin_hw('spacesuit') %>__incl(hw/spacesuit)<% end_hw() %>
1569   fig('hw-colliding-balls','Problem \ref{hw:colliding-balls}.',
1570     {
1571       'width'=>'wide',
1572     }
1573   )
1575 <% begin_hw('colliding-balls') %>
1576         The multiflash photograph below shows a collision
1577         between two pool balls. The ball that was initially at rest
1578         shows up as a dark image in its initial position, because
1579         its image was exposed several times before it was struck and
1580         began moving. By making measurements on the figure,
1581         determine whether or not energy appears to have been
1582         conserved in the collision. What systematic effects would
1583         limit the accuracy of your test? (From an example in PSSC
1584         Physics.)
1585 <% end_hw() %>
1587 <% begin_hw('rocketweight') %>
1588 How high above the surface of the earth should a rocket be in order to
1589 have 1/100 of its normal weight? Express your answer in units of earth radii.\answercheck
1590 <% end_hw() %>
1592 <% begin_hw('changing-electron-mass') %>__incl(hw/changing-electron-mass)<% end_hw() %>
1594 <% begin_hw('rustingnailsmallc') %>__incl(hw/rustingnailsmallc)<% end_hw() %>
1596 <% begin_hw('freeneutron') %>__incl(hw/freeneutron)<% end_hw() %>
1598 <% begin_hw('drop-rock') %>__incl(hw/drop-rock)<% end_hw() %>
1600 <% end_hw_sec %>
1601 <% end_chapter() %>