include/ale, src/align: Revise scale_cluster structure for Libale types, adding a...
[libale.git] / src / align.c
blob503d9e80d5181f2a3045a44698173fe4402b615e
1 /*
2 * Copyright 2002, 2004, 2005, 2006, 2007, 2008, 2009 David Hilvert <dhilvert@gmail.com>
4 * This file is part of libale.
6 * libale is free software: you can redistribute it and/or modify it under the
7 * terms of the GNU Affero General Public License as published by the Free
8 * Software Foundation, either version 3 of the License, or (at your option)
9 * any later version.
11 * libale is distributed in the hope that it will be useful, but WITHOUT ANY
12 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13 * FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for
14 * more details.
16 * You should have received a copy of the GNU Affero General Public License
17 * along with libale. If not, see <http://www.gnu.org/licenses/>.
20 #include "libale.h"
23 * API Implementation.
27 * Types for scale clusters.
30 #if 0
33 * Experimental non-linear scaling approach.
36 struct nl_scale_cluster {
37 const image *accum_max;
38 const image *accum_min;
39 const image *certainty_max;
40 const image *certainty_min;
41 const image *aweight_max;
42 const image *aweight_min;
43 exclusion *ax_parameters;
45 ale_pos input_scale;
46 const image *input_certainty_max;
47 const image *input_certainty_min;
48 const image *input_max;
49 const image *input_min;
51 #endif
53 struct scale_cluster {
54 ale_image accum;
55 ale_image certainty;
56 ale_image aweight;
57 ale_exclusion_list ax_parameters;
59 ale_pos input_scale;
60 ale_image input_certainty;
61 ale_image input;
63 #if 0
64 nl_scale_cluster *nl_scale_clusters;
65 #endif
69 static struct scale_cluster *init_clusters(int frame, ale_pos scale_factor,
70 const image *input_frame, unsigned int steps,
71 int *local_ax_count) {
74 * Allocate memory for the array.
77 struct scale_cluster *scale_clusters =
78 (struct scale_cluster *) malloc(steps * sizeof(struct scale_cluster));
80 assert (scale_clusters);
82 if (!scale_clusters)
83 ui::get()->memory_error("alignment");
86 * Prepare images and exclusion regions for the highest level
87 * of detail.
90 scale_clusters[0].accum = reference_image;
92 ui::get()->constructing_lod_clusters(0.0);
93 scale_clusters[0].input_scale = scale_factor;
94 if (scale_factor < 1.0 && interpolant == NULL)
95 scale_clusters[0].input = input_frame->scale(scale_factor, "alignment");
96 else
97 scale_clusters[0].input = input_frame;
99 scale_clusters[0].certainty = reference_defined;
100 scale_clusters[0].aweight = alignment_weights;
101 scale_clusters[0].ax_parameters = filter_ax_parameters(frame, local_ax_count);
104 * Allocate and determine input frame certainty.
107 if (scale_clusters[0].input->get_bayer() != IMAGE_BAYER_NONE) {
108 scale_clusters[0].input_certainty = new_image_bayer_ale_real(
109 scale_clusters[0].input->height(),
110 scale_clusters[0].input->width(),
111 scale_clusters[0].input->depth(),
112 scale_clusters[0].input->get_bayer());
113 } else {
114 scale_clusters[0].input_certainty = scale_clusters[0].input->clone("certainty");
117 for (unsigned int i = 0; i < scale_clusters[0].input_certainty->height(); i++)
118 for (unsigned int j = 0; j < scale_clusters[0].input_certainty->width(); j++)
119 for (unsigned int k = 0; k < 3; k++)
120 if (scale_clusters[0].input->get_channels(i, j) & (1 << k))
121 ((image *) scale_clusters[0].input_certainty)->set_chan(i, j, k,
122 scale_clusters[0].input->
123 exp().confidence(scale_clusters[0].input->get_pixel(i, j))[k]);
125 scale_ax_parameters(*local_ax_count, scale_clusters[0].ax_parameters, scale_factor,
126 (scale_factor < 1.0 && interpolant == NULL) ? scale_factor : (ale_pos) 1);
128 init_nl_cluster(&(scale_clusters[0]));
131 * Prepare reduced-detail images and exclusion
132 * regions.
135 for (unsigned int step = 1; step < steps; step++) {
136 ui::get()->constructing_lod_clusters(step);
137 scale_clusters[step].accum = prepare_lod(scale_clusters[step - 1].accum);
138 scale_clusters[step].certainty = prepare_lod_def(scale_clusters[step - 1].certainty);
139 scale_clusters[step].aweight = prepare_lod_def(scale_clusters[step - 1].aweight);
140 scale_clusters[step].ax_parameters
141 = copy_ax_parameters(*local_ax_count, scale_clusters[step - 1].ax_parameters);
143 double sf = scale_clusters[step - 1].input_scale / 2;
144 scale_clusters[step].input_scale = sf;
146 if (sf >= 1.0 || interpolant != NULL) {
147 scale_clusters[step].input = scale_clusters[step - 1].input;
148 scale_clusters[step].input_certainty = scale_clusters[step - 1].input_certainty;
149 scale_ax_parameters(*local_ax_count, scale_clusters[step].ax_parameters, 0.5, 1);
150 } else if (sf > 0.5) {
151 scale_clusters[step].input = scale_clusters[step - 1].input->scale(sf, "alignment");
152 scale_clusters[step].input_certainty = scale_clusters[step - 1].input->scale(sf, "alignment", 1);
153 scale_ax_parameters(*local_ax_count, scale_clusters[step].ax_parameters, 0.5, sf);
154 } else {
155 scale_clusters[step].input = scale_clusters[step - 1].input->scale(0.5, "alignment");
156 scale_clusters[step].input_certainty = scale_clusters[step - 1].input_certainty->scale(0.5, "alignment", 1);
157 scale_ax_parameters(*local_ax_count, scale_clusters[step].ax_parameters, 0.5, 0.5);
160 init_nl_cluster(&(scale_clusters[step]));
163 return scale_clusters;
166 static diff_stat_t _align_element(ale_pos perturb, ale_pos local_lower,
167 scale_cluster *scale_clusters, diff_stat_t here,
168 ale_pos adj_p, ale_pos adj_o, ale_pos adj_b,
169 ale_pos *current_bd, ale_pos *modified_bd,
170 astate_t *astate, int lod, scale_cluster si) {
173 * Run initial tests to get perturbation multipliers and error
174 * centroids.
177 std::vector<d2::trans_single> t_set;
179 here.get_perturb_set(&t_set, adj_p, adj_o, adj_b, current_bd, modified_bd);
181 int stable_count = 0;
183 while (perturb >= local_lower) {
185 ui::get()->alignment_dims(scale_clusters[lod].accum->height(), scale_clusters[lod].accum->width(),
186 scale_clusters[lod].input->height(), scale_clusters[lod].input->width());
189 * Orientational adjustment value in degrees.
191 * Since rotational perturbation is now specified as an
192 * arclength, we have to convert.
195 ale_pos adj_o = 2 * (double) perturb
196 / sqrt(pow(scale_clusters[0].input->height(), 2)
197 + pow(scale_clusters[0].input->width(), 2))
198 * 180
199 / M_PI;
202 * Barrel distortion adjustment value
205 ale_pos adj_b = perturb * bda_mult;
207 trans_single old_offset = here.get_offset();
209 here.perturb_test(perturb, adj_p, adj_o, adj_b, current_bd, modified_bd,
210 stable_count);
212 if (here.get_offset() == old_offset)
213 stable_count++;
214 else
215 stable_count = 0;
217 if (stable_count == 3) {
219 stable_count = 0;
221 perturb *= 0.5;
223 if (lod > 0
224 && lod > lrint(log(perturb) / log(2)) - lod_preferred) {
227 * Work with images twice as large
230 lod--;
231 si = scale_clusters[lod];
234 * Rescale the transforms.
237 ale_pos rescale_factor = (double) scale_factor
238 / (double) pow(2, lod)
239 / (double) here.get_offset().scale();
241 here.rescale(rescale_factor, si);
243 } else {
244 adj_p = perturb / pow(2, lod);
248 * Announce changes
251 ui::get()->alignment_perturbation_level(perturb, lod);
254 ui::get()->set_match(here.get_error());
255 ui::get()->set_offset(here.get_offset());
258 if (lod > 0) {
259 ale_pos rescale_factor = (double) scale_factor
260 / (double) here.get_offset().scale();
262 here.rescale(rescale_factor, scale_clusters[0]);
265 return here;
269 * Align frame m against the reference.
271 * XXX: the transformation class currently combines ordinary
272 * transformations with scaling. This is somewhat convenient for
273 * some things, but can also be confusing. This method, _align(), is
274 * one case where special care must be taken to ensure that the scale
275 * is always set correctly (by using the 'rescale' method).
277 static diff_stat_multi _align(int m, int local_gs, astate_t *astate) {
279 const image *input_frame = astate->get_input_frame();
282 * Local upper/lower data, possibly dependent on image
283 * dimensions.
286 ale_pos local_lower, local_upper;
287 ale_accum local_gs_mo;
290 * Select the minimum dimension as the reference.
293 ale_pos reference_size = input_frame->height();
294 if (input_frame->width() < reference_size)
295 reference_size = input_frame->width();
296 ale_accum reference_area = input_frame->height()
297 * input_frame->width();
299 if (perturb_lower_percent)
300 local_lower = (double) perturb_lower
301 * (double) reference_size
302 * (double) 0.01
303 * (double) scale_factor;
304 else
305 local_lower = perturb_lower;
307 if (perturb_upper_percent)
308 local_upper = (double) perturb_upper
309 * (double) reference_size
310 * (double) 0.01
311 * (double) scale_factor;
312 else
313 local_upper = perturb_upper;
315 local_upper = pow(2, floor(log(local_upper) / log(2)));
317 if (gs_mo_percent)
318 local_gs_mo = (double) _gs_mo
319 * (double) reference_area
320 * (double) 0.01
321 * (double) scale_factor;
322 else
323 local_gs_mo = _gs_mo;
326 * Logarithms aren't exact, so we divide repeatedly to discover
327 * how many steps will occur, and pass this information to the
328 * user interface.
331 int step_count = 0;
332 double step_variable = local_upper;
333 while (step_variable >= local_lower) {
334 step_variable /= 2;
335 step_count++;
338 ale_pos perturb = local_upper;
340 if (_keep) {
341 kept_t[latest] = latest_t;
342 kept_ok[latest] = latest_ok;
346 * Determine how many levels of detail should be prepared, by
347 * calculating the initial (largest) value for the
348 * level-of-detail variable.
351 int lod = lrint(log(perturb) / log(2)) - lod_preferred;
353 if (lod < 0)
354 lod = 0;
356 while (lod > 0 && (reference_image->width() < pow(2, lod) * min_dimension
357 || reference_image->height() < pow(2, lod) * min_dimension))
358 lod--;
360 unsigned int steps = (unsigned int) lod + 1;
363 * Prepare multiple levels of detail.
366 int local_ax_count;
367 struct scale_cluster *scale_clusters = init_clusters(m,
368 scale_factor, input_frame, steps,
369 &local_ax_count);
372 * Initialize the default initial transform
375 astate->init_default();
378 * Set the default transformation.
381 transformation offset = astate->get_default();
384 * Establish boundaries
387 offset.set_current_bounds(reference_image);
389 ui::get()->alignment_degree_max(offset.get_coordinate(offset.stack_depth() - 1).degree);
391 if (offset.stack_depth() == 1) {
392 ui::get()->set_steps(step_count, 0);
393 } else {
394 ui::get()->set_steps(offset.get_coordinate(offset.stack_depth() - 1).degree + 1, 1);
398 * Load any file-specified transformations
401 for (unsigned int index = 0; index < offset.stack_depth(); index++) {
402 int is_default = 1;
403 unsigned int index_2;
404 offset.set_current_index(index);
406 offset = tload_next(tload, alignment_class == 2,
407 offset,
408 &is_default, offset.get_current_index() == 0);
410 index_2 = offset.get_current_index();
412 if (index_2 > index) {
413 for (unsigned int index_3 = index; index_3 < index_2; index_3++)
414 astate->set_is_default(index_3, 1);
416 index = index_2;
419 astate->set_is_default(index, is_default);
422 offset.set_current_index(0);
424 astate->init_frame_alignment_primary(&offset, lod, perturb);
427 * Control point alignment
430 if (local_gs == 5) {
432 transformation o = offset;
435 * Determine centroid data
438 point current, previous;
439 centroids(m, &current, &previous);
441 if (current.defined() && previous.defined()) {
442 o = orig_t;
443 o.set_dimensions(input_frame);
444 o.translate((previous - current) * o.scale());
445 current = previous;
449 * Determine rotation for alignment classes other than translation.
452 ale_pos lowest_error = cp_rms_error(m, o);
454 ale_pos rot_lower = 2 * (double) local_lower
455 / sqrt(pow(scale_clusters[0].input->height(), 2)
456 + pow(scale_clusters[0].input->width(), 2))
457 * 180
458 / M_PI;
460 if (alignment_class > 0)
461 for (double rot = 30; rot > rot_lower; rot /= 2)
462 for (double srot = -rot; srot < rot * 1.5; srot += rot * 2) {
463 int is_improved = 1;
464 while (is_improved) {
465 is_improved = 0;
466 transformation test_t = o;
468 * XXX: is this right?
470 test_t.rotate(current * o.scale(), srot);
471 ale_pos test_v = cp_rms_error(m, test_t);
473 if (test_v < lowest_error) {
474 lowest_error = test_v;
475 o = test_t;
476 srot += 3 * rot;
477 is_improved = 1;
483 * Determine projective parameters through a local
484 * minimum search.
487 if (alignment_class == 2) {
488 ale_pos adj_p = lowest_error;
490 if (adj_p < local_lower)
491 adj_p = local_lower;
493 while (adj_p >= local_lower) {
494 transformation test_t = o;
495 int is_improved = 1;
496 ale_pos test_v;
497 ale_pos adj_s;
499 while (is_improved) {
500 is_improved = 0;
502 for (int i = 0; i < 4; i++)
503 for (int j = 0; j < 2; j++)
504 for (adj_s = -adj_p; adj_s <= adj_p; adj_s += 2 * adj_p) {
506 test_t = o;
508 if (perturb_type == 0)
509 test_t.gpt_modify(j, i, adj_s);
510 else if (perturb_type == 1)
511 test_t.gr_modify(j, i, adj_s);
512 else
513 assert(0);
515 test_v = cp_rms_error(m, test_t);
517 if (test_v < lowest_error) {
518 lowest_error = test_v;
519 o = test_t;
520 adj_s += 3 * adj_p;
521 is_improved = 1;
525 adj_p /= 2;
531 * Pre-alignment exposure adjustment
534 if (_exp_register) {
535 ui::get()->exposure_1();
536 set_exposure_ratio(m, scale_clusters[0], offset, local_ax_count, 0);
540 * Scale transform for lod
543 for (int lod_ = 0; lod_ < lod; lod_++) {
544 transformation s = offset;
545 transformation t = offset;
547 t.rescale(1 / (double) 2);
549 if (!(t.scaled_height() > 0 && t.scaled_height() < s.scaled_height())
550 || !(t.scaled_width() > 0 && t.scaled_width() < s.scaled_width())) {
551 perturb /= pow(2, lod - lod_);
552 lod = lod_;
553 break;
554 } else {
555 offset = t;
559 ui::get()->set_offset(offset);
561 struct scale_cluster si = scale_clusters[lod];
564 * Projective adjustment value
567 ale_pos adj_p = perturb / pow(2, lod);
570 * Orientational adjustment value in degrees.
572 * Since rotational perturbation is now specified as an
573 * arclength, we have to convert.
576 ale_pos adj_o = (double) 2 * (double) perturb
577 / sqrt(pow((double) scale_clusters[0].input->height(), (double) 2)
578 + pow((double) scale_clusters[0].input->width(), (double) 2))
579 * (double) 180
580 / M_PI;
583 * Barrel distortion adjustment value
586 ale_pos adj_b = perturb * bda_mult;
589 * Global search overlap requirements.
592 local_gs_mo = (double) local_gs_mo / pow(pow(2, lod), 2);
595 * Alignment statistics.
598 diff_stat_t here(offset.elem_bounds());
601 * Current difference (error) value
604 ui::get()->prematching();
605 here.diff(si, offset.get_current_element(), local_ax_count, m);
606 ui::get()->set_match(here.get_error());
609 * Current and modified barrel distortion parameters
612 ale_pos current_bd[BARREL_DEGREE];
613 ale_pos modified_bd[BARREL_DEGREE];
614 offset.bd_get(current_bd);
615 offset.bd_get(modified_bd);
618 * Translational global search step
621 if (perturb >= local_lower && local_gs != 0 && local_gs != 5
622 && (local_gs != 6 || astate->get_is_default(0))) {
624 ui::get()->global_alignment(perturb, lod);
625 ui::get()->gs_mo(local_gs_mo);
627 test_globals(&here, si, offset, local_gs, adj_p,
628 local_ax_count, m, local_gs_mo, perturb);
630 ui::get()->set_match(here.get_error());
631 ui::get()->set_offset(here.get_offset());
635 * Perturbation adjustment loop.
638 offset.set_current_element(here.get_offset());
640 for (unsigned int i = 0; i < offset.stack_depth(); i++) {
642 ui::get()->aligning_element(i, offset.stack_depth());
644 offset.set_current_index(i);
646 ui::get()->start_multi_alignment_element(offset);
648 ui::get()->set_offset(offset);
650 if (i > 0) {
651 astate->init_frame_alignment_nonprimary(&offset, lod, perturb, i);
653 if (_exp_register == 1) {
654 ui::get()->exposure_1();
655 pixel_accum asum(0, 0, 0), bsum(0, 0, 0);
656 exposure_ratio_iterate eri(&asum, &bsum, scale_clusters[0], offset, local_ax_count, 0,
657 offset.elem_bounds().scale_to_bounds(scale_clusters[0].accum->height(),
658 scale_clusters[0].accum->width()));
660 eri.run();
661 pixel_accum tr = asum / bsum;
662 ui::get()->exp_multiplier(tr[0], tr[1], tr[2]);
663 offset.set_tonal_multiplier(tr);
667 int e_lod = lod;
668 int e_div = offset.get_current_coordinate().degree;
669 ale_pos e_perturb = perturb;
670 ale_pos e_adj_p = adj_p;
671 ale_pos e_adj_b = adj_b;
673 for (int d = 0; d < e_div; d++) {
674 e_adj_b = 0;
675 e_perturb *= 0.5;
676 if (e_lod > 0) {
677 e_lod--;
678 } else {
679 e_adj_p *= 0.5;
683 if (i > 0) {
685 d2::trans_multi::elem_bounds_t b = offset.elem_bounds();
687 for (int dim_satisfied = 0; e_lod > 0 && !dim_satisfied; ) {
688 int height = scale_clusters[e_lod].accum->height();
689 int width = scale_clusters[e_lod].accum->width();
691 d2::trans_multi::elem_bounds_int_t bi = b.scale_to_bounds(height, width);
693 dim_satisfied = bi.satisfies_min_dim(min_dimension);
695 if (!dim_satisfied) {
696 e_lod--;
697 e_adj_p *= 2;
702 * Scale transform for lod
705 for (int lod_ = 0; lod_ < e_lod; lod_++) {
706 trans_single s = offset.get_element(i);
707 trans_single t = offset.get_element(i);
709 t.rescale(1 / (double) 2);
711 if (!(t.scaled_height() > 0 && t.scaled_height() < s.scaled_height())
712 || !(t.scaled_width() > 0 && t.scaled_width() < s.scaled_width())) {
713 e_perturb /= pow(2, e_lod - lod_);
714 e_lod = lod_;
715 break;
716 } else {
717 offset.set_element(i, t);
721 ui::get()->set_offset(offset);
725 * Announce perturbation size
728 ui::get()->aligning(e_perturb, e_lod);
730 si = scale_clusters[e_lod];
732 here.set_elem_bounds(offset.elem_bounds());
734 here.diff(si, offset.get_current_element(), local_ax_count, m);
736 here.confirm();
738 here = check_ancestor_path(offset, si, here, local_ax_count, m);
740 here = _align_element(e_perturb, local_lower, scale_clusters,
741 here, e_adj_p, adj_o, e_adj_b, current_bd, modified_bd,
742 astate, e_lod, si);
744 offset.rescale(here.get_offset().scale() / offset.scale());
746 offset.set_current_element(here.get_offset());
748 if (i > 0 && _exp_register == 1) {
749 if (ma_cert_satisfied(scale_clusters[0], offset, i)) {
750 ui::get()->exposure_2();
751 pixel_accum asum(0, 0, 0), bsum(0, 0, 0);
752 exposure_ratio_iterate eri(&asum, &bsum, scale_clusters[0], offset, local_ax_count, 1,
753 offset.elem_bounds().scale_to_bounds(scale_clusters[0].accum->height(),
754 scale_clusters[0].accum->width()));
756 eri.run();
757 pixel_accum tr = asum / bsum;
758 ui::get()->exp_multiplier(tr[0], tr[1], tr[2]);
759 offset.set_tonal_multiplier(tr);
760 } else {
761 offset.set_tonal_multiplier(offset.get_element(offset.parent_index(i)).get_tonal_multiplier(point(0, 0)));
763 } else if (_exp_register == 1) {
764 ui::get()->exposure_2();
765 set_exposure_ratio(m, scale_clusters[0], offset, local_ax_count, 1);
768 ui::get()->set_offset(offset);
770 if (i + 1 == offset.stack_depth())
771 ui::get()->alignment_degree_complete(offset.get_coordinate(i).degree);
772 else if (offset.get_coordinate(i).degree != offset.get_coordinate(i + 1).degree)
773 ui::get()->alignment_degree_complete(offset.get_coordinate(i + 1).degree);
776 offset.set_current_index(0);
778 ui::get()->multi();
779 offset.set_multi(reference_image, input_frame);
782 * Recalculate error on whole frame.
785 ui::get()->postmatching();
786 diff_stat_generic<transformation> multi_here(offset.elem_bounds());
787 multi_here.diff(scale_clusters[0], offset, local_ax_count, m);
788 ui::get()->set_match(multi_here.get_error());
791 * Free the level-of-detail structures
794 final_clusters(scale_clusters, scale_factor, steps);
797 * Ensure that the match meets the threshold.
800 if (threshold_ok(multi_here.get_error())) {
802 * Update alignment variables
804 latest_ok = 1;
805 astate->set_default(offset);
806 astate->set_final(offset);
807 ui::get()->alignment_match_ok();
808 } else if (local_gs == 4) {
811 * Align with outer starting points.
815 * XXX: This probably isn't exactly the right thing to do,
816 * since variables like old_initial_value have been overwritten.
819 diff_stat_multi nested_result = _align(m, -1, astate);
821 if (threshold_ok(nested_result.get_error())) {
822 return nested_result;
823 } else if (nested_result.get_error() < multi_here.get_error()) {
824 multi_here = nested_result;
827 if (is_fail_default)
828 offset = astate->get_default();
830 ui::get()->set_match(multi_here.get_error());
831 ui::get()->alignment_no_match();
833 } else if (local_gs == -1) {
835 latest_ok = 0;
836 latest_t = offset;
837 return multi_here;
839 } else {
840 if (is_fail_default)
841 offset = astate->get_default();
842 latest_ok = 0;
843 ui::get()->alignment_no_match();
847 * Write the tonal registration multiplier as a comment.
850 pixel trm = image_rw::exp(m).get_multiplier();
851 tsave_trm(tsave, trm[0], trm[1], trm[2]);
854 * Save the transformation information
857 for (unsigned int index = 0; index < offset.stack_depth(); index++) {
858 offset.set_current_index(index);
860 tsave_next(tsave, offset, alignment_class == 2,
861 offset.get_current_index() == 0);
864 offset.set_current_index(0);
867 * Update match statistics.
870 match_sum += (1 - multi_here.get_error()) * (ale_accum) 100;
871 match_count++;
872 latest = m;
873 latest_t = offset;
875 return multi_here;
878 int ale_align(ale_image a, ale_image b, ale_trans start,
879 ale_align_properties align_properties, ale_trans result) {
880 #warning function unfinished.