Lock/Unlock shared memory segments (to test...).
[jack2.git] / windows / regex.c
blobdb611160a3593b4710dcedf98c2eb091196e4209
1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25 #endif
27 #define _GNU_SOURCE
29 /* We need this for `regex.h', and perhaps for the Emacs include files. */
30 #include <sys/types.h>
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 /* The `emacs' switch turns on certain matching commands
37 that make sense only in Emacs. */
38 #ifdef emacs
40 #include "lisp.h"
41 #include "buffer.h"
42 #include "syntax.h"
44 /* Emacs uses `NULL' as a predicate. */
45 #undef NULL
47 #else /* not emacs */
49 /* We used to test for `BSTRING' here, but only GCC and Emacs define
50 `BSTRING', as far as I know, and neither of them use this code. */
51 #if HAVE_STRING_H || STDC_HEADERS
52 #include <string.h>
53 #ifndef bcmp
54 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
55 #endif
56 #ifndef bcopy
57 #define bcopy(s, d, n) memcpy ((d), (s), (n))
58 #endif
59 #ifndef bzero
60 #define bzero(s, n) memset ((s), 0, (n))
61 #endif
62 #else
63 #include <strings.h>
64 #endif
66 #ifdef STDC_HEADERS
67 #include <stdlib.h>
68 #else
69 char *malloc ();
70 char *realloc ();
71 #endif
74 /* Define the syntax stuff for \<, \>, etc. */
76 /* This must be nonzero for the wordchar and notwordchar pattern
77 commands in re_match_2. */
78 #ifndef Sword
79 #define Sword 1
80 #endif
82 #ifdef SYNTAX_TABLE
84 extern char *re_syntax_table;
86 #else /* not SYNTAX_TABLE */
88 /* How many characters in the character set. */
89 #define CHAR_SET_SIZE 256
91 static char re_syntax_table[CHAR_SET_SIZE];
93 static void
94 init_syntax_once ()
96 register int c;
97 static int done = 0;
99 if (done)
100 return;
102 bzero (re_syntax_table, sizeof re_syntax_table);
104 for (c = 'a'; c <= 'z'; c++)
105 re_syntax_table[c] = Sword;
107 for (c = 'A'; c <= 'Z'; c++)
108 re_syntax_table[c] = Sword;
110 for (c = '0'; c <= '9'; c++)
111 re_syntax_table[c] = Sword;
113 re_syntax_table['_'] = Sword;
115 done = 1;
118 #endif /* not SYNTAX_TABLE */
120 #define SYNTAX(c) re_syntax_table[c]
122 #endif /* not emacs */
124 /* Get the interface, including the syntax bits. */
125 #include "regex.h"
127 /* isalpha etc. are used for the character classes. */
128 #include <ctype.h>
130 #ifndef isascii
131 #define isascii(c) 1
132 #endif
134 #ifdef isblank
135 #define ISBLANK(c) (isascii (c) && isblank (c))
136 #else
137 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
138 #endif
139 #ifdef isgraph
140 #define ISGRAPH(c) (isascii (c) && isgraph (c))
141 #else
142 #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
143 #endif
145 #define ISPRINT(c) (isascii (c) && isprint (c))
146 #define ISDIGIT(c) (isascii (c) && isdigit (c))
147 #define ISALNUM(c) (isascii (c) && isalnum (c))
148 #define ISALPHA(c) (isascii (c) && isalpha (c))
149 #define ISCNTRL(c) (isascii (c) && iscntrl (c))
150 #define ISLOWER(c) (isascii (c) && islower (c))
151 #define ISPUNCT(c) (isascii (c) && ispunct (c))
152 #define ISSPACE(c) (isascii (c) && isspace (c))
153 #define ISUPPER(c) (isascii (c) && isupper (c))
154 #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
156 #ifndef NULL
157 #define NULL 0
158 #endif
160 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
161 since ours (we hope) works properly with all combinations of
162 machines, compilers, `char' and `unsigned char' argument types.
163 (Per Bothner suggested the basic approach.) */
164 #undef SIGN_EXTEND_CHAR
165 #if __STDC__
166 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
167 #else /* not __STDC__ */
168 /* As in Harbison and Steele. */
169 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
170 #endif
172 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
173 use `alloca' instead of `malloc'. This is because using malloc in
174 re_search* or re_match* could cause memory leaks when C-g is used in
175 Emacs; also, malloc is slower and causes storage fragmentation. On
176 the other hand, malloc is more portable, and easier to debug.
178 Because we sometimes use alloca, some routines have to be macros,
179 not functions -- `alloca'-allocated space disappears at the end of the
180 function it is called in. */
182 #ifdef REGEX_MALLOC
184 #define REGEX_ALLOCATE malloc
185 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
187 #else /* not REGEX_MALLOC */
189 /* Emacs already defines alloca, sometimes. */
190 #ifndef alloca
192 /* Make alloca work the best possible way. */
193 #ifdef __GNUC__
194 #define alloca __builtin_alloca
195 #else /* not __GNUC__ */
196 #if HAVE_ALLOCA_H
197 #include <alloca.h>
198 #else /* not __GNUC__ or HAVE_ALLOCA_H */
199 #ifndef _AIX /* Already did AIX, up at the top. */
200 char *alloca ();
201 #endif /* not _AIX */
202 #endif /* not HAVE_ALLOCA_H */
203 #endif /* not __GNUC__ */
205 #endif /* not alloca */
207 #define REGEX_ALLOCATE alloca
209 /* Assumes a `char *destination' variable. */
210 #define REGEX_REALLOCATE(source, osize, nsize) \
211 (destination = (char *) alloca (nsize), \
212 bcopy (source, destination, osize), \
213 destination)
215 #endif /* not REGEX_MALLOC */
218 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
219 `string1' or just past its end. This works if PTR is NULL, which is
220 a good thing. */
221 #define FIRST_STRING_P(ptr) \
222 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
224 /* (Re)Allocate N items of type T using malloc, or fail. */
225 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
226 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
227 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
229 #define BYTEWIDTH 8 /* In bits. */
231 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
233 #define MAX(a, b) ((a) > (b) ? (a) : (b))
234 #define MIN(a, b) ((a) < (b) ? (a) : (b))
236 typedef char boolean;
237 #define false 0
238 #define true 1
240 /* These are the command codes that appear in compiled regular
241 expressions. Some opcodes are followed by argument bytes. A
242 command code can specify any interpretation whatsoever for its
243 arguments. Zero bytes may appear in the compiled regular expression.
245 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
246 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
247 `exactn' we use here must also be 1. */
249 typedef enum
251 no_op = 0,
253 /* Followed by one byte giving n, then by n literal bytes. */
254 exactn = 1,
256 /* Matches any (more or less) character. */
257 anychar,
259 /* Matches any one char belonging to specified set. First
260 following byte is number of bitmap bytes. Then come bytes
261 for a bitmap saying which chars are in. Bits in each byte
262 are ordered low-bit-first. A character is in the set if its
263 bit is 1. A character too large to have a bit in the map is
264 automatically not in the set. */
265 charset,
267 /* Same parameters as charset, but match any character that is
268 not one of those specified. */
269 charset_not,
271 /* Start remembering the text that is matched, for storing in a
272 register. Followed by one byte with the register number, in
273 the range 0 to one less than the pattern buffer's re_nsub
274 field. Then followed by one byte with the number of groups
275 inner to this one. (This last has to be part of the
276 start_memory only because we need it in the on_failure_jump
277 of re_match_2.) */
278 start_memory,
280 /* Stop remembering the text that is matched and store it in a
281 memory register. Followed by one byte with the register
282 number, in the range 0 to one less than `re_nsub' in the
283 pattern buffer, and one byte with the number of inner groups,
284 just like `start_memory'. (We need the number of inner
285 groups here because we don't have any easy way of finding the
286 corresponding start_memory when we're at a stop_memory.) */
287 stop_memory,
289 /* Match a duplicate of something remembered. Followed by one
290 byte containing the register number. */
291 duplicate,
293 /* Fail unless at beginning of line. */
294 begline,
296 /* Fail unless at end of line. */
297 endline,
299 /* Succeeds if at beginning of buffer (if emacs) or at beginning
300 of string to be matched (if not). */
301 begbuf,
303 /* Analogously, for end of buffer/string. */
304 endbuf,
306 /* Followed by two byte relative address to which to jump. */
307 jump,
309 /* Same as jump, but marks the end of an alternative. */
310 jump_past_alt,
312 /* Followed by two-byte relative address of place to resume at
313 in case of failure. */
314 on_failure_jump,
316 /* Like on_failure_jump, but pushes a placeholder instead of the
317 current string position when executed. */
318 on_failure_keep_string_jump,
320 /* Throw away latest failure point and then jump to following
321 two-byte relative address. */
322 pop_failure_jump,
324 /* Change to pop_failure_jump if know won't have to backtrack to
325 match; otherwise change to jump. This is used to jump
326 back to the beginning of a repeat. If what follows this jump
327 clearly won't match what the repeat does, such that we can be
328 sure that there is no use backtracking out of repetitions
329 already matched, then we change it to a pop_failure_jump.
330 Followed by two-byte address. */
331 maybe_pop_jump,
333 /* Jump to following two-byte address, and push a dummy failure
334 point. This failure point will be thrown away if an attempt
335 is made to use it for a failure. A `+' construct makes this
336 before the first repeat. Also used as an intermediary kind
337 of jump when compiling an alternative. */
338 dummy_failure_jump,
340 /* Push a dummy failure point and continue. Used at the end of
341 alternatives. */
342 push_dummy_failure,
344 /* Followed by two-byte relative address and two-byte number n.
345 After matching N times, jump to the address upon failure. */
346 succeed_n,
348 /* Followed by two-byte relative address, and two-byte number n.
349 Jump to the address N times, then fail. */
350 jump_n,
352 /* Set the following two-byte relative address to the
353 subsequent two-byte number. The address *includes* the two
354 bytes of number. */
355 set_number_at,
357 wordchar, /* Matches any word-constituent character. */
358 notwordchar, /* Matches any char that is not a word-constituent. */
360 wordbeg, /* Succeeds if at word beginning. */
361 wordend, /* Succeeds if at word end. */
363 wordbound, /* Succeeds if at a word boundary. */
364 notwordbound /* Succeeds if not at a word boundary. */
366 #ifdef emacs
367 ,before_dot, /* Succeeds if before point. */
368 at_dot, /* Succeeds if at point. */
369 after_dot, /* Succeeds if after point. */
371 /* Matches any character whose syntax is specified. Followed by
372 a byte which contains a syntax code, e.g., Sword. */
373 syntaxspec,
375 /* Matches any character whose syntax is not that specified. */
376 notsyntaxspec
377 #endif /* emacs */
378 } re_opcode_t;
380 /* Common operations on the compiled pattern. */
382 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
384 #define STORE_NUMBER(destination, number) \
385 do { \
386 (destination)[0] = (number) & 0377; \
387 (destination)[1] = (number) >> 8; \
388 } while (0)
390 /* Same as STORE_NUMBER, except increment DESTINATION to
391 the byte after where the number is stored. Therefore, DESTINATION
392 must be an lvalue. */
394 #define STORE_NUMBER_AND_INCR(destination, number) \
395 do { \
396 STORE_NUMBER (destination, number); \
397 (destination) += 2; \
398 } while (0)
400 /* Put into DESTINATION a number stored in two contiguous bytes starting
401 at SOURCE. */
403 #define EXTRACT_NUMBER(destination, source) \
404 do { \
405 (destination) = *(source) & 0377; \
406 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
407 } while (0)
409 #ifdef DEBUG
410 static void
411 extract_number (dest, source)
412 int *dest;
413 unsigned char *source;
415 int temp = SIGN_EXTEND_CHAR (*(source + 1));
416 *dest = *source & 0377;
417 *dest += temp << 8;
420 #ifndef EXTRACT_MACROS /* To debug the macros. */
421 #undef EXTRACT_NUMBER
422 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
423 #endif /* not EXTRACT_MACROS */
425 #endif /* DEBUG */
427 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
428 SOURCE must be an lvalue. */
430 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
431 do { \
432 EXTRACT_NUMBER (destination, source); \
433 (source) += 2; \
434 } while (0)
436 #ifdef DEBUG
437 static void
438 extract_number_and_incr (destination, source)
439 int *destination;
440 unsigned char **source;
442 extract_number (destination, *source);
443 *source += 2;
446 #ifndef EXTRACT_MACROS
447 #undef EXTRACT_NUMBER_AND_INCR
448 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
449 extract_number_and_incr (&dest, &src)
450 #endif /* not EXTRACT_MACROS */
452 #endif /* DEBUG */
454 /* If DEBUG is defined, Regex prints many voluminous messages about what
455 it is doing (if the variable `debug' is nonzero). If linked with the
456 main program in `iregex.c', you can enter patterns and strings
457 interactively. And if linked with the main program in `main.c' and
458 the other test files, you can run the already-written tests. */
460 #ifdef DEBUG
462 /* We use standard I/O for debugging. */
463 #include <stdio.h>
465 /* It is useful to test things that ``must'' be true when debugging. */
466 #include <assert.h>
468 static int debug = 0;
470 #define DEBUG_STATEMENT(e) e
471 #define DEBUG_PRINT1(x) if (debug) printf (x)
472 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
473 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
474 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
475 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
476 if (debug) print_partial_compiled_pattern (s, e)
477 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
478 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481 //extern void printchar ();
482 void printchar( int i ) {}
484 /* Print the fastmap in human-readable form. */
486 void
487 print_fastmap (fastmap)
488 char *fastmap;
490 unsigned was_a_range = 0;
491 unsigned i = 0;
493 while (i < (1 << BYTEWIDTH))
495 if (fastmap[i++])
497 was_a_range = 0;
498 printchar (i - 1);
499 while (i < (1 << BYTEWIDTH) && fastmap[i])
501 was_a_range = 1;
502 i++;
504 if (was_a_range)
506 printf ("-");
507 printchar (i - 1);
511 putchar ('\n');
515 /* Print a compiled pattern string in human-readable form, starting at
516 the START pointer into it and ending just before the pointer END. */
518 void
519 print_partial_compiled_pattern (start, end)
520 unsigned char *start;
521 unsigned char *end;
523 int mcnt, mcnt2;
524 unsigned char *p = start;
525 unsigned char *pend = end;
527 if (start == NULL)
529 printf ("(null)\n");
530 return;
533 /* Loop over pattern commands. */
534 while (p < pend)
536 switch ((re_opcode_t) *p++)
538 case no_op:
539 printf ("/no_op");
540 break;
542 case exactn:
543 mcnt = *p++;
544 printf ("/exactn/%d", mcnt);
547 putchar ('/');
548 printchar (*p++);
550 while (--mcnt);
551 break;
553 case start_memory:
554 mcnt = *p++;
555 printf ("/start_memory/%d/%d", mcnt, *p++);
556 break;
558 case stop_memory:
559 mcnt = *p++;
560 printf ("/stop_memory/%d/%d", mcnt, *p++);
561 break;
563 case duplicate:
564 printf ("/duplicate/%d", *p++);
565 break;
567 case anychar:
568 printf ("/anychar");
569 break;
571 case charset:
572 case charset_not:
574 register int c;
576 printf ("/charset%s",
577 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
579 assert (p + *p < pend);
581 for (c = 0; c < *p; c++)
583 unsigned bit;
584 unsigned char map_byte = p[1 + c];
586 putchar ('/');
588 for (bit = 0; bit < BYTEWIDTH; bit++)
589 if (map_byte & (1 << bit))
590 printchar (c * BYTEWIDTH + bit);
592 p += 1 + *p;
593 break;
596 case begline:
597 printf ("/begline");
598 break;
600 case endline:
601 printf ("/endline");
602 break;
604 case on_failure_jump:
605 extract_number_and_incr (&mcnt, &p);
606 printf ("/on_failure_jump/0/%d", mcnt);
607 break;
609 case on_failure_keep_string_jump:
610 extract_number_and_incr (&mcnt, &p);
611 printf ("/on_failure_keep_string_jump/0/%d", mcnt);
612 break;
614 case dummy_failure_jump:
615 extract_number_and_incr (&mcnt, &p);
616 printf ("/dummy_failure_jump/0/%d", mcnt);
617 break;
619 case push_dummy_failure:
620 printf ("/push_dummy_failure");
621 break;
623 case maybe_pop_jump:
624 extract_number_and_incr (&mcnt, &p);
625 printf ("/maybe_pop_jump/0/%d", mcnt);
626 break;
628 case pop_failure_jump:
629 extract_number_and_incr (&mcnt, &p);
630 printf ("/pop_failure_jump/0/%d", mcnt);
631 break;
633 case jump_past_alt:
634 extract_number_and_incr (&mcnt, &p);
635 printf ("/jump_past_alt/0/%d", mcnt);
636 break;
638 case jump:
639 extract_number_and_incr (&mcnt, &p);
640 printf ("/jump/0/%d", mcnt);
641 break;
643 case succeed_n:
644 extract_number_and_incr (&mcnt, &p);
645 extract_number_and_incr (&mcnt2, &p);
646 printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
647 break;
649 case jump_n:
650 extract_number_and_incr (&mcnt, &p);
651 extract_number_and_incr (&mcnt2, &p);
652 printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
653 break;
655 case set_number_at:
656 extract_number_and_incr (&mcnt, &p);
657 extract_number_and_incr (&mcnt2, &p);
658 printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
659 break;
661 case wordbound:
662 printf ("/wordbound");
663 break;
665 case notwordbound:
666 printf ("/notwordbound");
667 break;
669 case wordbeg:
670 printf ("/wordbeg");
671 break;
673 case wordend:
674 printf ("/wordend");
676 #ifdef emacs
677 case before_dot:
678 printf ("/before_dot");
679 break;
681 case at_dot:
682 printf ("/at_dot");
683 break;
685 case after_dot:
686 printf ("/after_dot");
687 break;
689 case syntaxspec:
690 printf ("/syntaxspec");
691 mcnt = *p++;
692 printf ("/%d", mcnt);
693 break;
695 case notsyntaxspec:
696 printf ("/notsyntaxspec");
697 mcnt = *p++;
698 printf ("/%d", mcnt);
699 break;
700 #endif /* emacs */
702 case wordchar:
703 printf ("/wordchar");
704 break;
706 case notwordchar:
707 printf ("/notwordchar");
708 break;
710 case begbuf:
711 printf ("/begbuf");
712 break;
714 case endbuf:
715 printf ("/endbuf");
716 break;
718 default:
719 printf ("?%d", *(p-1));
722 printf ("/\n");
726 void
727 print_compiled_pattern (bufp)
728 struct re_pattern_buffer *bufp;
730 unsigned char *buffer = bufp->buffer;
732 print_partial_compiled_pattern (buffer, buffer + bufp->used);
733 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
735 if (bufp->fastmap_accurate && bufp->fastmap)
737 printf ("fastmap: ");
738 print_fastmap (bufp->fastmap);
741 printf ("re_nsub: %d\t", bufp->re_nsub);
742 printf ("regs_alloc: %d\t", bufp->regs_allocated);
743 printf ("can_be_null: %d\t", bufp->can_be_null);
744 printf ("newline_anchor: %d\n", bufp->newline_anchor);
745 printf ("no_sub: %d\t", bufp->no_sub);
746 printf ("not_bol: %d\t", bufp->not_bol);
747 printf ("not_eol: %d\t", bufp->not_eol);
748 printf ("syntax: %d\n", bufp->syntax);
749 /* Perhaps we should print the translate table? */
753 void
754 print_double_string (where, string1, size1, string2, size2)
755 const char *where;
756 const char *string1;
757 const char *string2;
758 int size1;
759 int size2;
761 unsigned this_char;
763 if (where == NULL)
764 printf ("(null)");
765 else
767 if (FIRST_STRING_P (where))
769 for (this_char = where - string1; this_char < size1; this_char++)
770 printchar (string1[this_char]);
772 where = string2;
775 for (this_char = where - string2; this_char < size2; this_char++)
776 printchar (string2[this_char]);
780 #else /* not DEBUG */
782 #undef assert
783 #define assert(e)
785 #define DEBUG_STATEMENT(e)
786 #define DEBUG_PRINT1(x)
787 #define DEBUG_PRINT2(x1, x2)
788 #define DEBUG_PRINT3(x1, x2, x3)
789 #define DEBUG_PRINT4(x1, x2, x3, x4)
790 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
791 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
793 #endif /* not DEBUG */
795 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
796 also be assigned to arbitrarily: each pattern buffer stores its own
797 syntax, so it can be changed between regex compilations. */
798 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
801 /* Specify the precise syntax of regexps for compilation. This provides
802 for compatibility for various utilities which historically have
803 different, incompatible syntaxes.
805 The argument SYNTAX is a bit mask comprised of the various bits
806 defined in regex.h. We return the old syntax. */
808 reg_syntax_t
809 re_set_syntax (syntax)
810 reg_syntax_t syntax;
812 reg_syntax_t ret = re_syntax_options;
814 re_syntax_options = syntax;
815 return ret;
818 /* This table gives an error message for each of the error codes listed
819 in regex.h. Obviously the order here has to be same as there. */
821 static const char *re_error_msg[] =
822 { NULL, /* REG_NOERROR */
823 "No match", /* REG_NOMATCH */
824 "Invalid regular expression", /* REG_BADPAT */
825 "Invalid collation character", /* REG_ECOLLATE */
826 "Invalid character class name", /* REG_ECTYPE */
827 "Trailing backslash", /* REG_EESCAPE */
828 "Invalid back reference", /* REG_ESUBREG */
829 "Unmatched [ or [^", /* REG_EBRACK */
830 "Unmatched ( or \\(", /* REG_EPAREN */
831 "Unmatched \\{", /* REG_EBRACE */
832 "Invalid content of \\{\\}", /* REG_BADBR */
833 "Invalid range end", /* REG_ERANGE */
834 "Memory exhausted", /* REG_ESPACE */
835 "Invalid preceding regular expression", /* REG_BADRPT */
836 "Premature end of regular expression", /* REG_EEND */
837 "Regular expression too big", /* REG_ESIZE */
838 "Unmatched ) or \\)", /* REG_ERPAREN */
841 /* Subroutine declarations and macros for regex_compile. */
843 static void store_op1 (), store_op2 ();
844 static void insert_op1 (), insert_op2 ();
845 static boolean at_begline_loc_p (), at_endline_loc_p ();
846 static boolean group_in_compile_stack ();
847 static reg_errcode_t compile_range ();
849 /* Fetch the next character in the uncompiled pattern---translating it
850 if necessary. Also cast from a signed character in the constant
851 string passed to us by the user to an unsigned char that we can use
852 as an array index (in, e.g., `translate'). */
853 #define PATFETCH(c) \
854 do {if (p == pend) return REG_EEND; \
855 c = (unsigned char) *p++; \
856 if (translate) c = translate[c]; \
857 } while (0)
859 /* Fetch the next character in the uncompiled pattern, with no
860 translation. */
861 #define PATFETCH_RAW(c) \
862 do {if (p == pend) return REG_EEND; \
863 c = (unsigned char) *p++; \
864 } while (0)
866 /* Go backwards one character in the pattern. */
867 #define PATUNFETCH p--
870 /* If `translate' is non-null, return translate[D], else just D. We
871 cast the subscript to translate because some data is declared as
872 `char *', to avoid warnings when a string constant is passed. But
873 when we use a character as a subscript we must make it unsigned. */
874 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
877 /* Macros for outputting the compiled pattern into `buffer'. */
879 /* If the buffer isn't allocated when it comes in, use this. */
880 #define INIT_BUF_SIZE 32
882 /* Make sure we have at least N more bytes of space in buffer. */
883 #define GET_BUFFER_SPACE(n) \
884 while (b - bufp->buffer + (n) > bufp->allocated) \
885 EXTEND_BUFFER ()
887 /* Make sure we have one more byte of buffer space and then add C to it. */
888 #define BUF_PUSH(c) \
889 do { \
890 GET_BUFFER_SPACE (1); \
891 *b++ = (unsigned char) (c); \
892 } while (0)
895 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
896 #define BUF_PUSH_2(c1, c2) \
897 do { \
898 GET_BUFFER_SPACE (2); \
899 *b++ = (unsigned char) (c1); \
900 *b++ = (unsigned char) (c2); \
901 } while (0)
904 /* As with BUF_PUSH_2, except for three bytes. */
905 #define BUF_PUSH_3(c1, c2, c3) \
906 do { \
907 GET_BUFFER_SPACE (3); \
908 *b++ = (unsigned char) (c1); \
909 *b++ = (unsigned char) (c2); \
910 *b++ = (unsigned char) (c3); \
911 } while (0)
914 /* Store a jump with opcode OP at LOC to location TO. We store a
915 relative address offset by the three bytes the jump itself occupies. */
916 #define STORE_JUMP(op, loc, to) \
917 store_op1 (op, loc, (to) - (loc) - 3)
919 /* Likewise, for a two-argument jump. */
920 #define STORE_JUMP2(op, loc, to, arg) \
921 store_op2 (op, loc, (to) - (loc) - 3, arg)
923 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
924 #define INSERT_JUMP(op, loc, to) \
925 insert_op1 (op, loc, (to) - (loc) - 3, b)
927 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
928 #define INSERT_JUMP2(op, loc, to, arg) \
929 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
932 /* This is not an arbitrary limit: the arguments which represent offsets
933 into the pattern are two bytes long. So if 2^16 bytes turns out to
934 be too small, many things would have to change. */
935 #define MAX_BUF_SIZE (1L << 16)
938 /* Extend the buffer by twice its current size via realloc and
939 reset the pointers that pointed into the old block to point to the
940 correct places in the new one. If extending the buffer results in it
941 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
942 #define EXTEND_BUFFER() \
943 do { \
944 unsigned char *old_buffer = bufp->buffer; \
945 if (bufp->allocated == MAX_BUF_SIZE) \
946 return REG_ESIZE; \
947 bufp->allocated <<= 1; \
948 if (bufp->allocated > MAX_BUF_SIZE) \
949 bufp->allocated = MAX_BUF_SIZE; \
950 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
951 if (bufp->buffer == NULL) \
952 return REG_ESPACE; \
953 /* If the buffer moved, move all the pointers into it. */ \
954 if (old_buffer != bufp->buffer) \
956 b = (b - old_buffer) + bufp->buffer; \
957 begalt = (begalt - old_buffer) + bufp->buffer; \
958 if (fixup_alt_jump) \
959 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
960 if (laststart) \
961 laststart = (laststart - old_buffer) + bufp->buffer; \
962 if (pending_exact) \
963 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
965 } while (0)
968 /* Since we have one byte reserved for the register number argument to
969 {start,stop}_memory, the maximum number of groups we can report
970 things about is what fits in that byte. */
971 #define MAX_REGNUM 255
973 /* But patterns can have more than `MAX_REGNUM' registers. We just
974 ignore the excess. */
975 typedef unsigned regnum_t;
978 /* Macros for the compile stack. */
980 /* Since offsets can go either forwards or backwards, this type needs to
981 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
982 typedef int pattern_offset_t;
984 typedef struct
986 pattern_offset_t begalt_offset;
987 pattern_offset_t fixup_alt_jump;
988 pattern_offset_t inner_group_offset;
989 pattern_offset_t laststart_offset;
990 regnum_t regnum;
991 } compile_stack_elt_t;
994 typedef struct
996 compile_stack_elt_t *stack;
997 unsigned size;
998 unsigned avail; /* Offset of next open position. */
999 } compile_stack_type;
1002 #define INIT_COMPILE_STACK_SIZE 32
1004 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1005 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1007 /* The next available element. */
1008 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1011 /* Set the bit for character C in a list. */
1012 #define SET_LIST_BIT(c) \
1013 (b[((unsigned char) (c)) / BYTEWIDTH] \
1014 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1017 /* Get the next unsigned number in the uncompiled pattern. */
1018 #define GET_UNSIGNED_NUMBER(num) \
1019 { if (p != pend) \
1021 PATFETCH (c); \
1022 while (ISDIGIT (c)) \
1024 if (num < 0) \
1025 num = 0; \
1026 num = num * 10 + c - '0'; \
1027 if (p == pend) \
1028 break; \
1029 PATFETCH (c); \
1034 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1036 #define IS_CHAR_CLASS(string) \
1037 (STREQ (string, "alpha") || STREQ (string, "upper") \
1038 || STREQ (string, "lower") || STREQ (string, "digit") \
1039 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1040 || STREQ (string, "space") || STREQ (string, "print") \
1041 || STREQ (string, "punct") || STREQ (string, "graph") \
1042 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1044 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1045 Returns one of error codes defined in `regex.h', or zero for success.
1047 Assumes the `allocated' (and perhaps `buffer') and `translate'
1048 fields are set in BUFP on entry.
1050 If it succeeds, results are put in BUFP (if it returns an error, the
1051 contents of BUFP are undefined):
1052 `buffer' is the compiled pattern;
1053 `syntax' is set to SYNTAX;
1054 `used' is set to the length of the compiled pattern;
1055 `fastmap_accurate' is zero;
1056 `re_nsub' is the number of subexpressions in PATTERN;
1057 `not_bol' and `not_eol' are zero;
1059 The `fastmap' and `newline_anchor' fields are neither
1060 examined nor set. */
1062 static reg_errcode_t
1063 regex_compile (pattern, size, syntax, bufp)
1064 const char *pattern;
1065 int size;
1066 reg_syntax_t syntax;
1067 struct re_pattern_buffer *bufp;
1069 /* We fetch characters from PATTERN here. Even though PATTERN is
1070 `char *' (i.e., signed), we declare these variables as unsigned, so
1071 they can be reliably used as array indices. */
1072 register unsigned char c, c1;
1074 /* A random tempory spot in PATTERN. */
1075 const char *p1;
1077 /* Points to the end of the buffer, where we should append. */
1078 register unsigned char *b;
1080 /* Keeps track of unclosed groups. */
1081 compile_stack_type compile_stack;
1083 /* Points to the current (ending) position in the pattern. */
1084 const char *p = pattern;
1085 const char *pend = pattern + size;
1087 /* How to translate the characters in the pattern. */
1088 char *translate = bufp->translate;
1090 /* Address of the count-byte of the most recently inserted `exactn'
1091 command. This makes it possible to tell if a new exact-match
1092 character can be added to that command or if the character requires
1093 a new `exactn' command. */
1094 unsigned char *pending_exact = 0;
1096 /* Address of start of the most recently finished expression.
1097 This tells, e.g., postfix * where to find the start of its
1098 operand. Reset at the beginning of groups and alternatives. */
1099 unsigned char *laststart = 0;
1101 /* Address of beginning of regexp, or inside of last group. */
1102 unsigned char *begalt;
1104 /* Place in the uncompiled pattern (i.e., the {) to
1105 which to go back if the interval is invalid. */
1106 const char *beg_interval;
1108 /* Address of the place where a forward jump should go to the end of
1109 the containing expression. Each alternative of an `or' -- except the
1110 last -- ends with a forward jump of this sort. */
1111 unsigned char *fixup_alt_jump = 0;
1113 /* Counts open-groups as they are encountered. Remembered for the
1114 matching close-group on the compile stack, so the same register
1115 number is put in the stop_memory as the start_memory. */
1116 regnum_t regnum = 0;
1118 #ifdef DEBUG
1119 DEBUG_PRINT1 ("\nCompiling pattern: ");
1120 if (debug)
1122 unsigned debug_count;
1124 for (debug_count = 0; debug_count < size; debug_count++)
1125 printchar (pattern[debug_count]);
1126 putchar ('\n');
1128 #endif /* DEBUG */
1130 /* Initialize the compile stack. */
1131 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1132 if (compile_stack.stack == NULL)
1133 return REG_ESPACE;
1135 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1136 compile_stack.avail = 0;
1138 /* Initialize the pattern buffer. */
1139 bufp->syntax = syntax;
1140 bufp->fastmap_accurate = 0;
1141 bufp->not_bol = bufp->not_eol = 0;
1143 /* Set `used' to zero, so that if we return an error, the pattern
1144 printer (for debugging) will think there's no pattern. We reset it
1145 at the end. */
1146 bufp->used = 0;
1148 /* Always count groups, whether or not bufp->no_sub is set. */
1149 bufp->re_nsub = 0;
1151 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1152 /* Initialize the syntax table. */
1153 init_syntax_once ();
1154 #endif
1156 if (bufp->allocated == 0)
1158 if (bufp->buffer)
1159 { /* If zero allocated, but buffer is non-null, try to realloc
1160 enough space. This loses if buffer's address is bogus, but
1161 that is the user's responsibility. */
1162 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1164 else
1165 { /* Caller did not allocate a buffer. Do it for them. */
1166 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1168 if (!bufp->buffer) return REG_ESPACE;
1170 bufp->allocated = INIT_BUF_SIZE;
1173 begalt = b = bufp->buffer;
1175 /* Loop through the uncompiled pattern until we're at the end. */
1176 while (p != pend)
1178 PATFETCH (c);
1180 switch (c)
1182 case '^':
1184 if ( /* If at start of pattern, it's an operator. */
1185 p == pattern + 1
1186 /* If context independent, it's an operator. */
1187 || syntax & RE_CONTEXT_INDEP_ANCHORS
1188 /* Otherwise, depends on what's come before. */
1189 || at_begline_loc_p (pattern, p, syntax))
1190 BUF_PUSH (begline);
1191 else
1192 goto normal_char;
1194 break;
1197 case '$':
1199 if ( /* If at end of pattern, it's an operator. */
1200 p == pend
1201 /* If context independent, it's an operator. */
1202 || syntax & RE_CONTEXT_INDEP_ANCHORS
1203 /* Otherwise, depends on what's next. */
1204 || at_endline_loc_p (p, pend, syntax))
1205 BUF_PUSH (endline);
1206 else
1207 goto normal_char;
1209 break;
1212 case '+':
1213 case '?':
1214 if ((syntax & RE_BK_PLUS_QM)
1215 || (syntax & RE_LIMITED_OPS))
1216 goto normal_char;
1217 handle_plus:
1218 case '*':
1219 /* If there is no previous pattern... */
1220 if (!laststart)
1222 if (syntax & RE_CONTEXT_INVALID_OPS)
1223 return REG_BADRPT;
1224 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1225 goto normal_char;
1229 /* Are we optimizing this jump? */
1230 boolean keep_string_p = false;
1232 /* 1 means zero (many) matches is allowed. */
1233 char zero_times_ok = 0, many_times_ok = 0;
1235 /* If there is a sequence of repetition chars, collapse it
1236 down to just one (the right one). We can't combine
1237 interval operators with these because of, e.g., `a{2}*',
1238 which should only match an even number of `a's. */
1240 for (;;)
1242 zero_times_ok |= c != '+';
1243 many_times_ok |= c != '?';
1245 if (p == pend)
1246 break;
1248 PATFETCH (c);
1250 if (c == '*'
1251 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1254 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1256 if (p == pend) return REG_EESCAPE;
1258 PATFETCH (c1);
1259 if (!(c1 == '+' || c1 == '?'))
1261 PATUNFETCH;
1262 PATUNFETCH;
1263 break;
1266 c = c1;
1268 else
1270 PATUNFETCH;
1271 break;
1274 /* If we get here, we found another repeat character. */
1277 /* Star, etc. applied to an empty pattern is equivalent
1278 to an empty pattern. */
1279 if (!laststart)
1280 break;
1282 /* Now we know whether or not zero matches is allowed
1283 and also whether or not two or more matches is allowed. */
1284 if (many_times_ok)
1285 { /* More than one repetition is allowed, so put in at the
1286 end a backward relative jump from `b' to before the next
1287 jump we're going to put in below (which jumps from
1288 laststart to after this jump).
1290 But if we are at the `*' in the exact sequence `.*\n',
1291 insert an unconditional jump backwards to the .,
1292 instead of the beginning of the loop. This way we only
1293 push a failure point once, instead of every time
1294 through the loop. */
1295 assert (p - 1 > pattern);
1297 /* Allocate the space for the jump. */
1298 GET_BUFFER_SPACE (3);
1300 /* We know we are not at the first character of the pattern,
1301 because laststart was nonzero. And we've already
1302 incremented `p', by the way, to be the character after
1303 the `*'. Do we have to do something analogous here
1304 for null bytes, because of RE_DOT_NOT_NULL? */
1305 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
1306 && zero_times_ok
1307 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1308 && !(syntax & RE_DOT_NEWLINE))
1309 { /* We have .*\n. */
1310 STORE_JUMP (jump, b, laststart);
1311 keep_string_p = true;
1313 else
1314 /* Anything else. */
1315 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1317 /* We've added more stuff to the buffer. */
1318 b += 3;
1321 /* On failure, jump from laststart to b + 3, which will be the
1322 end of the buffer after this jump is inserted. */
1323 GET_BUFFER_SPACE (3);
1324 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1325 : on_failure_jump,
1326 laststart, b + 3);
1327 pending_exact = 0;
1328 b += 3;
1330 if (!zero_times_ok)
1332 /* At least one repetition is required, so insert a
1333 `dummy_failure_jump' before the initial
1334 `on_failure_jump' instruction of the loop. This
1335 effects a skip over that instruction the first time
1336 we hit that loop. */
1337 GET_BUFFER_SPACE (3);
1338 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1339 b += 3;
1342 break;
1345 case '.':
1346 laststart = b;
1347 BUF_PUSH (anychar);
1348 break;
1351 case '[':
1353 boolean had_char_class = false;
1355 if (p == pend) return REG_EBRACK;
1357 /* Ensure that we have enough space to push a charset: the
1358 opcode, the length count, and the bitset; 34 bytes in all. */
1359 GET_BUFFER_SPACE (34);
1361 laststart = b;
1363 /* We test `*p == '^' twice, instead of using an if
1364 statement, so we only need one BUF_PUSH. */
1365 BUF_PUSH (*p == '^' ? charset_not : charset);
1366 if (*p == '^')
1367 p++;
1369 /* Remember the first position in the bracket expression. */
1370 p1 = p;
1372 /* Push the number of bytes in the bitmap. */
1373 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1375 /* Clear the whole map. */
1376 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1378 /* charset_not matches newline according to a syntax bit. */
1379 if ((re_opcode_t) b[-2] == charset_not
1380 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1381 SET_LIST_BIT ('\n');
1383 /* Read in characters and ranges, setting map bits. */
1384 for (;;)
1386 if (p == pend) return REG_EBRACK;
1388 PATFETCH (c);
1390 /* \ might escape characters inside [...] and [^...]. */
1391 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1393 if (p == pend) return REG_EESCAPE;
1395 PATFETCH (c1);
1396 SET_LIST_BIT (c1);
1397 continue;
1400 /* Could be the end of the bracket expression. If it's
1401 not (i.e., when the bracket expression is `[]' so
1402 far), the ']' character bit gets set way below. */
1403 if (c == ']' && p != p1 + 1)
1404 break;
1406 /* Look ahead to see if it's a range when the last thing
1407 was a character class. */
1408 if (had_char_class && c == '-' && *p != ']')
1409 return REG_ERANGE;
1411 /* Look ahead to see if it's a range when the last thing
1412 was a character: if this is a hyphen not at the
1413 beginning or the end of a list, then it's the range
1414 operator. */
1415 if (c == '-'
1416 && !(p - 2 >= pattern && p[-2] == '[')
1417 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1418 && *p != ']')
1420 reg_errcode_t ret
1421 = compile_range (&p, pend, translate, syntax, b);
1422 if (ret != REG_NOERROR) return ret;
1425 else if (p[0] == '-' && p[1] != ']')
1426 { /* This handles ranges made up of characters only. */
1427 reg_errcode_t ret;
1429 /* Move past the `-'. */
1430 PATFETCH (c1);
1432 ret = compile_range (&p, pend, translate, syntax, b);
1433 if (ret != REG_NOERROR) return ret;
1436 /* See if we're at the beginning of a possible character
1437 class. */
1439 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1440 { /* Leave room for the null. */
1441 char str[CHAR_CLASS_MAX_LENGTH + 1];
1443 PATFETCH (c);
1444 c1 = 0;
1446 /* If pattern is `[[:'. */
1447 if (p == pend) return REG_EBRACK;
1449 for (;;)
1451 PATFETCH (c);
1452 if (c == ':' || c == ']' || p == pend
1453 || c1 == CHAR_CLASS_MAX_LENGTH)
1454 break;
1455 str[c1++] = c;
1457 str[c1] = '\0';
1459 /* If isn't a word bracketed by `[:' and:`]':
1460 undo the ending character, the letters, and leave
1461 the leading `:' and `[' (but set bits for them). */
1462 if (c == ':' && *p == ']')
1464 int ch;
1465 boolean is_alnum = STREQ (str, "alnum");
1466 boolean is_alpha = STREQ (str, "alpha");
1467 boolean is_blank = STREQ (str, "blank");
1468 boolean is_cntrl = STREQ (str, "cntrl");
1469 boolean is_digit = STREQ (str, "digit");
1470 boolean is_graph = STREQ (str, "graph");
1471 boolean is_lower = STREQ (str, "lower");
1472 boolean is_print = STREQ (str, "print");
1473 boolean is_punct = STREQ (str, "punct");
1474 boolean is_space = STREQ (str, "space");
1475 boolean is_upper = STREQ (str, "upper");
1476 boolean is_xdigit = STREQ (str, "xdigit");
1478 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1480 /* Throw away the ] at the end of the character
1481 class. */
1482 PATFETCH (c);
1484 if (p == pend) return REG_EBRACK;
1486 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1488 if ( (is_alnum && ISALNUM (ch))
1489 || (is_alpha && ISALPHA (ch))
1490 || (is_blank && ISBLANK (ch))
1491 || (is_cntrl && ISCNTRL (ch))
1492 || (is_digit && ISDIGIT (ch))
1493 || (is_graph && ISGRAPH (ch))
1494 || (is_lower && ISLOWER (ch))
1495 || (is_print && ISPRINT (ch))
1496 || (is_punct && ISPUNCT (ch))
1497 || (is_space && ISSPACE (ch))
1498 || (is_upper && ISUPPER (ch))
1499 || (is_xdigit && ISXDIGIT (ch)))
1500 SET_LIST_BIT (ch);
1502 had_char_class = true;
1504 else
1506 c1++;
1507 while (c1--)
1508 PATUNFETCH;
1509 SET_LIST_BIT ('[');
1510 SET_LIST_BIT (':');
1511 had_char_class = false;
1514 else
1516 had_char_class = false;
1517 SET_LIST_BIT (c);
1521 /* Discard any (non)matching list bytes that are all 0 at the
1522 end of the map. Decrease the map-length byte too. */
1523 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1524 b[-1]--;
1525 b += b[-1];
1527 break;
1530 case '(':
1531 if (syntax & RE_NO_BK_PARENS)
1532 goto handle_open;
1533 else
1534 goto normal_char;
1537 case ')':
1538 if (syntax & RE_NO_BK_PARENS)
1539 goto handle_close;
1540 else
1541 goto normal_char;
1544 case '\n':
1545 if (syntax & RE_NEWLINE_ALT)
1546 goto handle_alt;
1547 else
1548 goto normal_char;
1551 case '|':
1552 if (syntax & RE_NO_BK_VBAR)
1553 goto handle_alt;
1554 else
1555 goto normal_char;
1558 case '{':
1559 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1560 goto handle_interval;
1561 else
1562 goto normal_char;
1565 case '\\':
1566 if (p == pend) return REG_EESCAPE;
1568 /* Do not translate the character after the \, so that we can
1569 distinguish, e.g., \B from \b, even if we normally would
1570 translate, e.g., B to b. */
1571 PATFETCH_RAW (c);
1573 switch (c)
1575 case '(':
1576 if (syntax & RE_NO_BK_PARENS)
1577 goto normal_backslash;
1579 handle_open:
1580 bufp->re_nsub++;
1581 regnum++;
1583 if (COMPILE_STACK_FULL)
1585 RETALLOC (compile_stack.stack, compile_stack.size << 1,
1586 compile_stack_elt_t);
1587 if (compile_stack.stack == NULL) return REG_ESPACE;
1589 compile_stack.size <<= 1;
1592 /* These are the values to restore when we hit end of this
1593 group. They are all relative offsets, so that if the
1594 whole pattern moves because of realloc, they will still
1595 be valid. */
1596 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1597 COMPILE_STACK_TOP.fixup_alt_jump
1598 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1599 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1600 COMPILE_STACK_TOP.regnum = regnum;
1602 /* We will eventually replace the 0 with the number of
1603 groups inner to this one. But do not push a
1604 start_memory for groups beyond the last one we can
1605 represent in the compiled pattern. */
1606 if (regnum <= MAX_REGNUM)
1608 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1609 BUF_PUSH_3 (start_memory, regnum, 0);
1612 compile_stack.avail++;
1614 fixup_alt_jump = 0;
1615 laststart = 0;
1616 begalt = b;
1617 /* If we've reached MAX_REGNUM groups, then this open
1618 won't actually generate any code, so we'll have to
1619 clear pending_exact explicitly. */
1620 pending_exact = 0;
1621 break;
1624 case ')':
1625 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
1627 if (COMPILE_STACK_EMPTY)
1628 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1629 goto normal_backslash;
1630 else
1631 return REG_ERPAREN;
1633 handle_close:
1634 if (fixup_alt_jump)
1635 { /* Push a dummy failure point at the end of the
1636 alternative for a possible future
1637 `pop_failure_jump' to pop. See comments at
1638 `push_dummy_failure' in `re_match_2'. */
1639 BUF_PUSH (push_dummy_failure);
1641 /* We allocated space for this jump when we assigned
1642 to `fixup_alt_jump', in the `handle_alt' case below. */
1643 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
1646 /* See similar code for backslashed left paren above. */
1647 if (COMPILE_STACK_EMPTY)
1648 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1649 goto normal_char;
1650 else
1651 return REG_ERPAREN;
1653 /* Since we just checked for an empty stack above, this
1654 ``can't happen''. */
1655 assert (compile_stack.avail != 0);
1657 /* We don't just want to restore into `regnum', because
1658 later groups should continue to be numbered higher,
1659 as in `(ab)c(de)' -- the second group is #2. */
1660 regnum_t this_group_regnum;
1662 compile_stack.avail--;
1663 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1664 fixup_alt_jump
1665 = COMPILE_STACK_TOP.fixup_alt_jump
1666 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1667 : 0;
1668 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1669 this_group_regnum = COMPILE_STACK_TOP.regnum;
1670 /* If we've reached MAX_REGNUM groups, then this open
1671 won't actually generate any code, so we'll have to
1672 clear pending_exact explicitly. */
1673 pending_exact = 0;
1675 /* We're at the end of the group, so now we know how many
1676 groups were inside this one. */
1677 if (this_group_regnum <= MAX_REGNUM)
1679 unsigned char *inner_group_loc
1680 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1682 *inner_group_loc = regnum - this_group_regnum;
1683 BUF_PUSH_3 (stop_memory, this_group_regnum,
1684 regnum - this_group_regnum);
1687 break;
1690 case '|': /* `\|'. */
1691 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1692 goto normal_backslash;
1693 handle_alt:
1694 if (syntax & RE_LIMITED_OPS)
1695 goto normal_char;
1697 /* Insert before the previous alternative a jump which
1698 jumps to this alternative if the former fails. */
1699 GET_BUFFER_SPACE (3);
1700 INSERT_JUMP (on_failure_jump, begalt, b + 6);
1701 pending_exact = 0;
1702 b += 3;
1704 /* The alternative before this one has a jump after it
1705 which gets executed if it gets matched. Adjust that
1706 jump so it will jump to this alternative's analogous
1707 jump (put in below, which in turn will jump to the next
1708 (if any) alternative's such jump, etc.). The last such
1709 jump jumps to the correct final destination. A picture:
1710 _____ _____
1711 | | | |
1712 | v | v
1713 a | b | c
1715 If we are at `b', then fixup_alt_jump right now points to a
1716 three-byte space after `a'. We'll put in the jump, set
1717 fixup_alt_jump to right after `b', and leave behind three
1718 bytes which we'll fill in when we get to after `c'. */
1720 if (fixup_alt_jump)
1721 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
1723 /* Mark and leave space for a jump after this alternative,
1724 to be filled in later either by next alternative or
1725 when know we're at the end of a series of alternatives. */
1726 fixup_alt_jump = b;
1727 GET_BUFFER_SPACE (3);
1728 b += 3;
1730 laststart = 0;
1731 begalt = b;
1732 break;
1735 case '{':
1736 /* If \{ is a literal. */
1737 if (!(syntax & RE_INTERVALS)
1738 /* If we're at `\{' and it's not the open-interval
1739 operator. */
1740 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1741 || (p - 2 == pattern && p == pend))
1742 goto normal_backslash;
1744 handle_interval:
1746 /* If got here, then the syntax allows intervals. */
1748 /* At least (most) this many matches must be made. */
1749 int lower_bound = -1, upper_bound = -1;
1751 beg_interval = p - 1;
1753 if (p == pend)
1755 if (syntax & RE_NO_BK_BRACES)
1756 goto unfetch_interval;
1757 else
1758 return REG_EBRACE;
1761 GET_UNSIGNED_NUMBER (lower_bound);
1763 if (c == ',')
1765 GET_UNSIGNED_NUMBER (upper_bound);
1766 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
1768 else
1769 /* Interval such as `{1}' => match exactly once. */
1770 upper_bound = lower_bound;
1772 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1773 || lower_bound > upper_bound)
1775 if (syntax & RE_NO_BK_BRACES)
1776 goto unfetch_interval;
1777 else
1778 return REG_BADBR;
1781 if (!(syntax & RE_NO_BK_BRACES))
1783 if (c != '\\') return REG_EBRACE;
1785 PATFETCH (c);
1788 if (c != '}')
1790 if (syntax & RE_NO_BK_BRACES)
1791 goto unfetch_interval;
1792 else
1793 return REG_BADBR;
1796 /* We just parsed a valid interval. */
1798 /* If it's invalid to have no preceding re. */
1799 if (!laststart)
1801 if (syntax & RE_CONTEXT_INVALID_OPS)
1802 return REG_BADRPT;
1803 else if (syntax & RE_CONTEXT_INDEP_OPS)
1804 laststart = b;
1805 else
1806 goto unfetch_interval;
1809 /* If the upper bound is zero, don't want to succeed at
1810 all; jump from `laststart' to `b + 3', which will be
1811 the end of the buffer after we insert the jump. */
1812 if (upper_bound == 0)
1814 GET_BUFFER_SPACE (3);
1815 INSERT_JUMP (jump, laststart, b + 3);
1816 b += 3;
1819 /* Otherwise, we have a nontrivial interval. When
1820 we're all done, the pattern will look like:
1821 set_number_at <jump count> <upper bound>
1822 set_number_at <succeed_n count> <lower bound>
1823 succeed_n <after jump addr> <succed_n count>
1824 <body of loop>
1825 jump_n <succeed_n addr> <jump count>
1826 (The upper bound and `jump_n' are omitted if
1827 `upper_bound' is 1, though.) */
1828 else
1829 { /* If the upper bound is > 1, we need to insert
1830 more at the end of the loop. */
1831 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1833 GET_BUFFER_SPACE (nbytes);
1835 /* Initialize lower bound of the `succeed_n', even
1836 though it will be set during matching by its
1837 attendant `set_number_at' (inserted next),
1838 because `re_compile_fastmap' needs to know.
1839 Jump to the `jump_n' we might insert below. */
1840 INSERT_JUMP2 (succeed_n, laststart,
1841 b + 5 + (upper_bound > 1) * 5,
1842 lower_bound);
1843 b += 5;
1845 /* Code to initialize the lower bound. Insert
1846 before the `succeed_n'. The `5' is the last two
1847 bytes of this `set_number_at', plus 3 bytes of
1848 the following `succeed_n'. */
1849 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
1850 b += 5;
1852 if (upper_bound > 1)
1853 { /* More than one repetition is allowed, so
1854 append a backward jump to the `succeed_n'
1855 that starts this interval.
1857 When we've reached this during matching,
1858 we'll have matched the interval once, so
1859 jump back only `upper_bound - 1' times. */
1860 STORE_JUMP2 (jump_n, b, laststart + 5,
1861 upper_bound - 1);
1862 b += 5;
1864 /* The location we want to set is the second
1865 parameter of the `jump_n'; that is `b-2' as
1866 an absolute address. `laststart' will be
1867 the `set_number_at' we're about to insert;
1868 `laststart+3' the number to set, the source
1869 for the relative address. But we are
1870 inserting into the middle of the pattern --
1871 so everything is getting moved up by 5.
1872 Conclusion: (b - 2) - (laststart + 3) + 5,
1873 i.e., b - laststart.
1875 We insert this at the beginning of the loop
1876 so that if we fail during matching, we'll
1877 reinitialize the bounds. */
1878 insert_op2 (set_number_at, laststart, b - laststart,
1879 upper_bound - 1, b);
1880 b += 5;
1883 pending_exact = 0;
1884 beg_interval = NULL;
1886 break;
1888 unfetch_interval:
1889 /* If an invalid interval, match the characters as literals. */
1890 assert (beg_interval);
1891 p = beg_interval;
1892 beg_interval = NULL;
1894 /* normal_char and normal_backslash need `c'. */
1895 PATFETCH (c);
1897 if (!(syntax & RE_NO_BK_BRACES))
1899 if (p > pattern && p[-1] == '\\')
1900 goto normal_backslash;
1902 goto normal_char;
1904 #ifdef emacs
1905 /* There is no way to specify the before_dot and after_dot
1906 operators. rms says this is ok. --karl */
1907 case '=':
1908 BUF_PUSH (at_dot);
1909 break;
1911 case 's':
1912 laststart = b;
1913 PATFETCH (c);
1914 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
1915 break;
1917 case 'S':
1918 laststart = b;
1919 PATFETCH (c);
1920 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
1921 break;
1922 #endif /* emacs */
1925 case 'w':
1926 laststart = b;
1927 BUF_PUSH (wordchar);
1928 break;
1931 case 'W':
1932 laststart = b;
1933 BUF_PUSH (notwordchar);
1934 break;
1937 case '<':
1938 BUF_PUSH (wordbeg);
1939 break;
1941 case '>':
1942 BUF_PUSH (wordend);
1943 break;
1945 case 'b':
1946 BUF_PUSH (wordbound);
1947 break;
1949 case 'B':
1950 BUF_PUSH (notwordbound);
1951 break;
1953 case '`':
1954 BUF_PUSH (begbuf);
1955 break;
1957 case '\'':
1958 BUF_PUSH (endbuf);
1959 break;
1961 case '1': case '2': case '3': case '4': case '5':
1962 case '6': case '7': case '8': case '9':
1963 if (syntax & RE_NO_BK_REFS)
1964 goto normal_char;
1966 c1 = c - '0';
1968 if (c1 > regnum)
1969 return REG_ESUBREG;
1971 /* Can't back reference to a subexpression if inside of it. */
1972 if (group_in_compile_stack (compile_stack, c1))
1973 goto normal_char;
1975 laststart = b;
1976 BUF_PUSH_2 (duplicate, c1);
1977 break;
1980 case '+':
1981 case '?':
1982 if (syntax & RE_BK_PLUS_QM)
1983 goto handle_plus;
1984 else
1985 goto normal_backslash;
1987 default:
1988 normal_backslash:
1989 /* You might think it would be useful for \ to mean
1990 not to translate; but if we don't translate it
1991 it will never match anything. */
1992 c = TRANSLATE (c);
1993 goto normal_char;
1995 break;
1998 default:
1999 /* Expects the character in `c'. */
2000 normal_char:
2001 /* If no exactn currently being built. */
2002 if (!pending_exact
2004 /* If last exactn not at current position. */
2005 || pending_exact + *pending_exact + 1 != b
2007 /* We have only one byte following the exactn for the count. */
2008 || *pending_exact == (1 << BYTEWIDTH) - 1
2010 /* If followed by a repetition operator. */
2011 || *p == '*' || *p == '^'
2012 || ((syntax & RE_BK_PLUS_QM)
2013 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2014 : (*p == '+' || *p == '?'))
2015 || ((syntax & RE_INTERVALS)
2016 && ((syntax & RE_NO_BK_BRACES)
2017 ? *p == '{'
2018 : (p[0] == '\\' && p[1] == '{'))))
2020 /* Start building a new exactn. */
2022 laststart = b;
2024 BUF_PUSH_2 (exactn, 0);
2025 pending_exact = b - 1;
2028 BUF_PUSH (c);
2029 (*pending_exact)++;
2030 break;
2031 } /* switch (c) */
2032 } /* while p != pend */
2035 /* Through the pattern now. */
2037 if (fixup_alt_jump)
2038 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2040 if (!COMPILE_STACK_EMPTY)
2041 return REG_EPAREN;
2043 free (compile_stack.stack);
2045 /* We have succeeded; set the length of the buffer. */
2046 bufp->used = b - bufp->buffer;
2048 #ifdef DEBUG
2049 if (debug)
2051 DEBUG_PRINT1 ("\nCompiled pattern: ");
2052 print_compiled_pattern (bufp);
2054 #endif /* DEBUG */
2056 return REG_NOERROR;
2057 } /* regex_compile */
2059 /* Subroutines for `regex_compile'. */
2061 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2063 static void
2064 store_op1 (op, loc, arg)
2065 re_opcode_t op;
2066 unsigned char *loc;
2067 int arg;
2069 *loc = (unsigned char) op;
2070 STORE_NUMBER (loc + 1, arg);
2074 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2076 static void
2077 store_op2 (op, loc, arg1, arg2)
2078 re_opcode_t op;
2079 unsigned char *loc;
2080 int arg1, arg2;
2082 *loc = (unsigned char) op;
2083 STORE_NUMBER (loc + 1, arg1);
2084 STORE_NUMBER (loc + 3, arg2);
2088 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2089 for OP followed by two-byte integer parameter ARG. */
2091 static void
2092 insert_op1 (op, loc, arg, end)
2093 re_opcode_t op;
2094 unsigned char *loc;
2095 int arg;
2096 unsigned char *end;
2098 register unsigned char *pfrom = end;
2099 register unsigned char *pto = end + 3;
2101 while (pfrom != loc)
2102 *--pto = *--pfrom;
2104 store_op1 (op, loc, arg);
2108 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2110 static void
2111 insert_op2 (op, loc, arg1, arg2, end)
2112 re_opcode_t op;
2113 unsigned char *loc;
2114 int arg1, arg2;
2115 unsigned char *end;
2117 register unsigned char *pfrom = end;
2118 register unsigned char *pto = end + 5;
2120 while (pfrom != loc)
2121 *--pto = *--pfrom;
2123 store_op2 (op, loc, arg1, arg2);
2127 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2128 after an alternative or a begin-subexpression. We assume there is at
2129 least one character before the ^. */
2131 static boolean
2132 at_begline_loc_p (pattern, p, syntax)
2133 const char *pattern, *p;
2134 reg_syntax_t syntax;
2136 const char *prev = p - 2;
2137 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2139 return
2140 /* After a subexpression? */
2141 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2142 /* After an alternative? */
2143 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2147 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2148 at least one character after the $, i.e., `P < PEND'. */
2150 static boolean
2151 at_endline_loc_p (p, pend, syntax)
2152 const char *p, *pend;
2153 int syntax;
2155 const char *next = p;
2156 boolean next_backslash = *next == '\\';
2157 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2159 return
2160 /* Before a subexpression? */
2161 (syntax & RE_NO_BK_PARENS ? *next == ')'
2162 : next_backslash && next_next && *next_next == ')')
2163 /* Before an alternative? */
2164 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2165 : next_backslash && next_next && *next_next == '|');
2169 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2170 false if it's not. */
2172 static boolean
2173 group_in_compile_stack (compile_stack, regnum)
2174 compile_stack_type compile_stack;
2175 regnum_t regnum;
2177 int this_element;
2179 for (this_element = compile_stack.avail - 1;
2180 this_element >= 0;
2181 this_element--)
2182 if (compile_stack.stack[this_element].regnum == regnum)
2183 return true;
2185 return false;
2189 /* Read the ending character of a range (in a bracket expression) from the
2190 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2191 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2192 Then we set the translation of all bits between the starting and
2193 ending characters (inclusive) in the compiled pattern B.
2195 Return an error code.
2197 We use these short variable names so we can use the same macros as
2198 `regex_compile' itself. */
2200 static reg_errcode_t
2201 compile_range (p_ptr, pend, translate, syntax, b)
2202 const char **p_ptr, *pend;
2203 char *translate;
2204 reg_syntax_t syntax;
2205 unsigned char *b;
2207 unsigned this_char;
2209 const char *p = *p_ptr;
2210 int range_start, range_end;
2212 if (p == pend)
2213 return REG_ERANGE;
2215 /* Even though the pattern is a signed `char *', we need to fetch
2216 with unsigned char *'s; if the high bit of the pattern character
2217 is set, the range endpoints will be negative if we fetch using a
2218 signed char *.
2220 We also want to fetch the endpoints without translating them; the
2221 appropriate translation is done in the bit-setting loop below. */
2222 range_start = ((unsigned char *) p)[-2];
2223 range_end = ((unsigned char *) p)[0];
2225 /* Have to increment the pointer into the pattern string, so the
2226 caller isn't still at the ending character. */
2227 (*p_ptr)++;
2229 /* If the start is after the end, the range is empty. */
2230 if (range_start > range_end)
2231 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2233 /* Here we see why `this_char' has to be larger than an `unsigned
2234 char' -- the range is inclusive, so if `range_end' == 0xff
2235 (assuming 8-bit characters), we would otherwise go into an infinite
2236 loop, since all characters <= 0xff. */
2237 for (this_char = range_start; this_char <= range_end; this_char++)
2239 SET_LIST_BIT (TRANSLATE (this_char));
2242 return REG_NOERROR;
2245 /* Failure stack declarations and macros; both re_compile_fastmap and
2246 re_match_2 use a failure stack. These have to be macros because of
2247 REGEX_ALLOCATE. */
2250 /* Number of failure points for which to initially allocate space
2251 when matching. If this number is exceeded, we allocate more
2252 space, so it is not a hard limit. */
2253 #ifndef INIT_FAILURE_ALLOC
2254 #define INIT_FAILURE_ALLOC 5
2255 #endif
2257 /* Roughly the maximum number of failure points on the stack. Would be
2258 exactly that if always used MAX_FAILURE_SPACE each time we failed.
2259 This is a variable only so users of regex can assign to it; we never
2260 change it ourselves. */
2261 int re_max_failures = 2000;
2263 typedef const unsigned char *fail_stack_elt_t;
2265 typedef struct
2267 fail_stack_elt_t *stack;
2268 unsigned size;
2269 unsigned avail; /* Offset of next open position. */
2270 } fail_stack_type;
2272 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2273 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2274 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2275 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2278 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2280 #define INIT_FAIL_STACK() \
2281 do { \
2282 fail_stack.stack = (fail_stack_elt_t *) \
2283 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2285 if (fail_stack.stack == NULL) \
2286 return -2; \
2288 fail_stack.size = INIT_FAILURE_ALLOC; \
2289 fail_stack.avail = 0; \
2290 } while (0)
2293 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
2295 Return 1 if succeeds, and 0 if either ran out of memory
2296 allocating space for it or it was already too large.
2298 REGEX_REALLOCATE requires `destination' be declared. */
2300 #define DOUBLE_FAIL_STACK(fail_stack) \
2301 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2302 ? 0 \
2303 : ((fail_stack).stack = (fail_stack_elt_t *) \
2304 REGEX_REALLOCATE ((fail_stack).stack, \
2305 (fail_stack).size * sizeof (fail_stack_elt_t), \
2306 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2308 (fail_stack).stack == NULL \
2309 ? 0 \
2310 : ((fail_stack).size <<= 1, \
2311 1)))
2314 /* Push PATTERN_OP on FAIL_STACK.
2316 Return 1 if was able to do so and 0 if ran out of memory allocating
2317 space to do so. */
2318 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2319 ((FAIL_STACK_FULL () \
2320 && !DOUBLE_FAIL_STACK (fail_stack)) \
2321 ? 0 \
2322 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2325 /* This pushes an item onto the failure stack. Must be a four-byte
2326 value. Assumes the variable `fail_stack'. Probably should only
2327 be called from within `PUSH_FAILURE_POINT'. */
2328 #define PUSH_FAILURE_ITEM(item) \
2329 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2331 /* The complement operation. Assumes `fail_stack' is nonempty. */
2332 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2334 /* Used to omit pushing failure point id's when we're not debugging. */
2335 #ifdef DEBUG
2336 #define DEBUG_PUSH PUSH_FAILURE_ITEM
2337 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2338 #else
2339 #define DEBUG_PUSH(item)
2340 #define DEBUG_POP(item_addr)
2341 #endif
2344 /* Push the information about the state we will need
2345 if we ever fail back to it.
2347 Requires variables fail_stack, regstart, regend, reg_info, and
2348 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2349 declared.
2351 Does `return FAILURE_CODE' if runs out of memory. */
2353 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2354 do { \
2355 char *destination; \
2356 /* Must be int, so when we don't save any registers, the arithmetic \
2357 of 0 + -1 isn't done as unsigned. */ \
2358 int this_reg; \
2360 DEBUG_STATEMENT (failure_id++); \
2361 DEBUG_STATEMENT (nfailure_points_pushed++); \
2362 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2363 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2364 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2366 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2367 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2369 /* Ensure we have enough space allocated for what we will push. */ \
2370 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2372 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2373 return failure_code; \
2375 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2376 (fail_stack).size); \
2377 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2380 /* Push the info, starting with the registers. */ \
2381 DEBUG_PRINT1 ("\n"); \
2383 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2384 this_reg++) \
2386 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2387 DEBUG_STATEMENT (num_regs_pushed++); \
2389 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2390 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2392 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2393 PUSH_FAILURE_ITEM (regend[this_reg]); \
2395 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2396 DEBUG_PRINT2 (" match_null=%d", \
2397 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2398 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2399 DEBUG_PRINT2 (" matched_something=%d", \
2400 MATCHED_SOMETHING (reg_info[this_reg])); \
2401 DEBUG_PRINT2 (" ever_matched=%d", \
2402 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2403 DEBUG_PRINT1 ("\n"); \
2404 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2407 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2408 PUSH_FAILURE_ITEM (lowest_active_reg); \
2410 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2411 PUSH_FAILURE_ITEM (highest_active_reg); \
2413 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2414 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2415 PUSH_FAILURE_ITEM (pattern_place); \
2417 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2418 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2419 size2); \
2420 DEBUG_PRINT1 ("'\n"); \
2421 PUSH_FAILURE_ITEM (string_place); \
2423 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2424 DEBUG_PUSH (failure_id); \
2425 } while (0)
2427 /* This is the number of items that are pushed and popped on the stack
2428 for each register. */
2429 #define NUM_REG_ITEMS 3
2431 /* Individual items aside from the registers. */
2432 #ifdef DEBUG
2433 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
2434 #else
2435 #define NUM_NONREG_ITEMS 4
2436 #endif
2438 /* We push at most this many items on the stack. */
2439 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2441 /* We actually push this many items. */
2442 #define NUM_FAILURE_ITEMS \
2443 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2444 + NUM_NONREG_ITEMS)
2446 /* How many items can still be added to the stack without overflowing it. */
2447 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2450 /* Pops what PUSH_FAIL_STACK pushes.
2452 We restore into the parameters, all of which should be lvalues:
2453 STR -- the saved data position.
2454 PAT -- the saved pattern position.
2455 LOW_REG, HIGH_REG -- the highest and lowest active registers.
2456 REGSTART, REGEND -- arrays of string positions.
2457 REG_INFO -- array of information about each subexpression.
2459 Also assumes the variables `fail_stack' and (if debugging), `bufp',
2460 `pend', `string1', `size1', `string2', and `size2'. */
2462 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2464 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2465 int this_reg; \
2466 const unsigned char *string_temp; \
2468 assert (!FAIL_STACK_EMPTY ()); \
2470 /* Remove failure points and point to how many regs pushed. */ \
2471 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2472 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2473 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2475 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2477 DEBUG_POP (&failure_id); \
2478 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2480 /* If the saved string location is NULL, it came from an \
2481 on_failure_keep_string_jump opcode, and we want to throw away the \
2482 saved NULL, thus retaining our current position in the string. */ \
2483 string_temp = POP_FAILURE_ITEM (); \
2484 if (string_temp != NULL) \
2485 str = (const char *) string_temp; \
2487 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2488 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2489 DEBUG_PRINT1 ("'\n"); \
2491 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2492 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2493 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2495 /* Restore register info. */ \
2496 high_reg = (unsigned) POP_FAILURE_ITEM (); \
2497 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2499 low_reg = (unsigned) POP_FAILURE_ITEM (); \
2500 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2502 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2504 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2506 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2507 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2509 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2510 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2512 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2513 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2516 DEBUG_STATEMENT (nfailure_points_popped++); \
2517 } /* POP_FAILURE_POINT */
2519 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2520 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2521 characters can start a string that matches the pattern. This fastmap
2522 is used by re_search to skip quickly over impossible starting points.
2524 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2525 area as BUFP->fastmap.
2527 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2528 the pattern buffer.
2530 Returns 0 if we succeed, -2 if an internal error. */
2533 re_compile_fastmap (bufp)
2534 struct re_pattern_buffer *bufp;
2536 int j, k;
2537 fail_stack_type fail_stack;
2538 #ifndef REGEX_MALLOC
2539 char *destination;
2540 #endif
2541 /* We don't push any register information onto the failure stack. */
2542 unsigned num_regs = 0;
2544 register char *fastmap = bufp->fastmap;
2545 unsigned char *pattern = bufp->buffer;
2546 unsigned long size = bufp->used;
2547 const unsigned char *p = pattern;
2548 register unsigned char *pend = pattern + size;
2550 /* Assume that each path through the pattern can be null until
2551 proven otherwise. We set this false at the bottom of switch
2552 statement, to which we get only if a particular path doesn't
2553 match the empty string. */
2554 boolean path_can_be_null = true;
2556 /* We aren't doing a `succeed_n' to begin with. */
2557 boolean succeed_n_p = false;
2559 assert (fastmap != NULL && p != NULL);
2561 INIT_FAIL_STACK ();
2562 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2563 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2564 bufp->can_be_null = 0;
2566 while (p != pend || !FAIL_STACK_EMPTY ())
2568 if (p == pend)
2570 bufp->can_be_null |= path_can_be_null;
2572 /* Reset for next path. */
2573 path_can_be_null = true;
2575 p = fail_stack.stack[--fail_stack.avail];
2578 /* We should never be about to go beyond the end of the pattern. */
2579 assert (p < pend);
2581 #ifdef SWITCH_ENUM_BUG
2582 switch ((int) ((re_opcode_t) *p++))
2583 #else
2584 switch ((re_opcode_t) *p++)
2585 #endif
2588 /* I guess the idea here is to simply not bother with a fastmap
2589 if a backreference is used, since it's too hard to figure out
2590 the fastmap for the corresponding group. Setting
2591 `can_be_null' stops `re_search_2' from using the fastmap, so
2592 that is all we do. */
2593 case duplicate:
2594 bufp->can_be_null = 1;
2595 return 0;
2598 /* Following are the cases which match a character. These end
2599 with `break'. */
2601 case exactn:
2602 fastmap[p[1]] = 1;
2603 break;
2606 case charset:
2607 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2608 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2609 fastmap[j] = 1;
2610 break;
2613 case charset_not:
2614 /* Chars beyond end of map must be allowed. */
2615 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2616 fastmap[j] = 1;
2618 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2619 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2620 fastmap[j] = 1;
2621 break;
2624 case wordchar:
2625 for (j = 0; j < (1 << BYTEWIDTH); j++)
2626 if (SYNTAX (j) == Sword)
2627 fastmap[j] = 1;
2628 break;
2631 case notwordchar:
2632 for (j = 0; j < (1 << BYTEWIDTH); j++)
2633 if (SYNTAX (j) != Sword)
2634 fastmap[j] = 1;
2635 break;
2638 case anychar:
2639 /* `.' matches anything ... */
2640 for (j = 0; j < (1 << BYTEWIDTH); j++)
2641 fastmap[j] = 1;
2643 /* ... except perhaps newline. */
2644 if (!(bufp->syntax & RE_DOT_NEWLINE))
2645 fastmap['\n'] = 0;
2647 /* Return if we have already set `can_be_null'; if we have,
2648 then the fastmap is irrelevant. Something's wrong here. */
2649 else if (bufp->can_be_null)
2650 return 0;
2652 /* Otherwise, have to check alternative paths. */
2653 break;
2656 #ifdef emacs
2657 case syntaxspec:
2658 k = *p++;
2659 for (j = 0; j < (1 << BYTEWIDTH); j++)
2660 if (SYNTAX (j) == (enum syntaxcode) k)
2661 fastmap[j] = 1;
2662 break;
2665 case notsyntaxspec:
2666 k = *p++;
2667 for (j = 0; j < (1 << BYTEWIDTH); j++)
2668 if (SYNTAX (j) != (enum syntaxcode) k)
2669 fastmap[j] = 1;
2670 break;
2673 /* All cases after this match the empty string. These end with
2674 `continue'. */
2677 case before_dot:
2678 case at_dot:
2679 case after_dot:
2680 continue;
2681 #endif /* not emacs */
2684 case no_op:
2685 case begline:
2686 case endline:
2687 case begbuf:
2688 case endbuf:
2689 case wordbound:
2690 case notwordbound:
2691 case wordbeg:
2692 case wordend:
2693 case push_dummy_failure:
2694 continue;
2697 case jump_n:
2698 case pop_failure_jump:
2699 case maybe_pop_jump:
2700 case jump:
2701 case jump_past_alt:
2702 case dummy_failure_jump:
2703 EXTRACT_NUMBER_AND_INCR (j, p);
2704 p += j;
2705 if (j > 0)
2706 continue;
2708 /* Jump backward implies we just went through the body of a
2709 loop and matched nothing. Opcode jumped to should be
2710 `on_failure_jump' or `succeed_n'. Just treat it like an
2711 ordinary jump. For a * loop, it has pushed its failure
2712 point already; if so, discard that as redundant. */
2713 if ((re_opcode_t) *p != on_failure_jump
2714 && (re_opcode_t) *p != succeed_n)
2715 continue;
2717 p++;
2718 EXTRACT_NUMBER_AND_INCR (j, p);
2719 p += j;
2721 /* If what's on the stack is where we are now, pop it. */
2722 if (!FAIL_STACK_EMPTY ()
2723 && fail_stack.stack[fail_stack.avail - 1] == p)
2724 fail_stack.avail--;
2726 continue;
2729 case on_failure_jump:
2730 case on_failure_keep_string_jump:
2731 handle_on_failure_jump:
2732 EXTRACT_NUMBER_AND_INCR (j, p);
2734 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2735 end of the pattern. We don't want to push such a point,
2736 since when we restore it above, entering the switch will
2737 increment `p' past the end of the pattern. We don't need
2738 to push such a point since we obviously won't find any more
2739 fastmap entries beyond `pend'. Such a pattern can match
2740 the null string, though. */
2741 if (p + j < pend)
2743 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2744 return -2;
2746 else
2747 bufp->can_be_null = 1;
2749 if (succeed_n_p)
2751 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2752 succeed_n_p = false;
2755 continue;
2758 case succeed_n:
2759 /* Get to the number of times to succeed. */
2760 p += 2;
2762 /* Increment p past the n for when k != 0. */
2763 EXTRACT_NUMBER_AND_INCR (k, p);
2764 if (k == 0)
2766 p -= 4;
2767 succeed_n_p = true; /* Spaghetti code alert. */
2768 goto handle_on_failure_jump;
2770 continue;
2773 case set_number_at:
2774 p += 4;
2775 continue;
2778 case start_memory:
2779 case stop_memory:
2780 p += 2;
2781 continue;
2784 default:
2785 abort (); /* We have listed all the cases. */
2786 } /* switch *p++ */
2788 /* Getting here means we have found the possible starting
2789 characters for one path of the pattern -- and that the empty
2790 string does not match. We need not follow this path further.
2791 Instead, look at the next alternative (remembered on the
2792 stack), or quit if no more. The test at the top of the loop
2793 does these things. */
2794 path_can_be_null = false;
2795 p = pend;
2796 } /* while p */
2798 /* Set `can_be_null' for the last path (also the first path, if the
2799 pattern is empty). */
2800 bufp->can_be_null |= path_can_be_null;
2801 return 0;
2802 } /* re_compile_fastmap */
2804 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2805 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2806 this memory for recording register information. STARTS and ENDS
2807 must be allocated using the malloc library routine, and must each
2808 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2810 If NUM_REGS == 0, then subsequent matches should allocate their own
2811 register data.
2813 Unless this function is called, the first search or match using
2814 PATTERN_BUFFER will allocate its own register data, without
2815 freeing the old data. */
2817 void
2818 re_set_registers (bufp, regs, num_regs, starts, ends)
2819 struct re_pattern_buffer *bufp;
2820 struct re_registers *regs;
2821 unsigned num_regs;
2822 regoff_t *starts, *ends;
2824 if (num_regs)
2826 bufp->regs_allocated = REGS_REALLOCATE;
2827 regs->num_regs = num_regs;
2828 regs->start = starts;
2829 regs->end = ends;
2831 else
2833 bufp->regs_allocated = REGS_UNALLOCATED;
2834 regs->num_regs = 0;
2835 regs->start = regs->end = (regoff_t) 0;
2839 /* Searching routines. */
2841 /* Like re_search_2, below, but only one string is specified, and
2842 doesn't let you say where to stop matching. */
2845 re_search (bufp, string, size, startpos, range, regs)
2846 struct re_pattern_buffer *bufp;
2847 const char *string;
2848 int size, startpos, range;
2849 struct re_registers *regs;
2851 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
2852 regs, size);
2856 /* Using the compiled pattern in BUFP->buffer, first tries to match the
2857 virtual concatenation of STRING1 and STRING2, starting first at index
2858 STARTPOS, then at STARTPOS + 1, and so on.
2860 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
2862 RANGE is how far to scan while trying to match. RANGE = 0 means try
2863 only at STARTPOS; in general, the last start tried is STARTPOS +
2864 RANGE.
2866 In REGS, return the indices of the virtual concatenation of STRING1
2867 and STRING2 that matched the entire BUFP->buffer and its contained
2868 subexpressions.
2870 Do not consider matching one past the index STOP in the virtual
2871 concatenation of STRING1 and STRING2.
2873 We return either the position in the strings at which the match was
2874 found, -1 if no match, or -2 if error (such as failure
2875 stack overflow). */
2878 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
2879 struct re_pattern_buffer *bufp;
2880 const char *string1, *string2;
2881 int size1, size2;
2882 int startpos;
2883 int range;
2884 struct re_registers *regs;
2885 int stop;
2887 int val;
2888 register char *fastmap = bufp->fastmap;
2889 register char *translate = bufp->translate;
2890 int total_size = size1 + size2;
2891 int endpos = startpos + range;
2893 /* Check for out-of-range STARTPOS. */
2894 if (startpos < 0 || startpos > total_size)
2895 return -1;
2897 /* Fix up RANGE if it might eventually take us outside
2898 the virtual concatenation of STRING1 and STRING2. */
2899 if (endpos < -1)
2900 range = -1 - startpos;
2901 else if (endpos > total_size)
2902 range = total_size - startpos;
2904 /* If the search isn't to be a backwards one, don't waste time in a
2905 search for a pattern that must be anchored. */
2906 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
2908 if (startpos > 0)
2909 return -1;
2910 else
2911 range = 1;
2914 /* Update the fastmap now if not correct already. */
2915 if (fastmap && !bufp->fastmap_accurate)
2916 if (re_compile_fastmap (bufp) == -2)
2917 return -2;
2919 /* Loop through the string, looking for a place to start matching. */
2920 for (;;)
2922 /* If a fastmap is supplied, skip quickly over characters that
2923 cannot be the start of a match. If the pattern can match the
2924 null string, however, we don't need to skip characters; we want
2925 the first null string. */
2926 if (fastmap && startpos < total_size && !bufp->can_be_null)
2928 if (range > 0) /* Searching forwards. */
2930 register const char *d;
2931 register int lim = 0;
2932 int irange = range;
2934 if (startpos < size1 && startpos + range >= size1)
2935 lim = range - (size1 - startpos);
2937 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2939 /* Written out as an if-else to avoid testing `translate'
2940 inside the loop. */
2941 if (translate)
2942 while (range > lim
2943 && !fastmap[(unsigned char)
2944 translate[(unsigned char) *d++]])
2945 range--;
2946 else
2947 while (range > lim && !fastmap[(unsigned char) *d++])
2948 range--;
2950 startpos += irange - range;
2952 else /* Searching backwards. */
2954 register char c = (size1 == 0 || startpos >= size1
2955 ? string2[startpos - size1]
2956 : string1[startpos]);
2958 if (!fastmap[(unsigned char) TRANSLATE (c)])
2959 goto advance;
2963 /* If can't match the null string, and that's all we have left, fail. */
2964 if (range >= 0 && startpos == total_size && fastmap
2965 && !bufp->can_be_null)
2966 return -1;
2968 val = re_match_2 (bufp, string1, size1, string2, size2,
2969 startpos, regs, stop);
2970 if (val >= 0)
2971 return startpos;
2973 if (val == -2)
2974 return -2;
2976 advance:
2977 if (!range)
2978 break;
2979 else if (range > 0)
2981 range--;
2982 startpos++;
2984 else
2986 range++;
2987 startpos--;
2990 return -1;
2991 } /* re_search_2 */
2993 /* Declarations and macros for re_match_2. */
2995 static int bcmp_translate ();
2996 static boolean alt_match_null_string_p (),
2997 common_op_match_null_string_p (),
2998 group_match_null_string_p ();
3000 /* Structure for per-register (a.k.a. per-group) information.
3001 This must not be longer than one word, because we push this value
3002 onto the failure stack. Other register information, such as the
3003 starting and ending positions (which are addresses), and the list of
3004 inner groups (which is a bits list) are maintained in separate
3005 variables.
3007 We are making a (strictly speaking) nonportable assumption here: that
3008 the compiler will pack our bit fields into something that fits into
3009 the type of `word', i.e., is something that fits into one item on the
3010 failure stack. */
3011 typedef union
3013 fail_stack_elt_t word;
3014 struct
3016 /* This field is one if this group can match the empty string,
3017 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
3018 #define MATCH_NULL_UNSET_VALUE 3
3019 unsigned match_null_string_p : 2;
3020 unsigned is_active : 1;
3021 unsigned matched_something : 1;
3022 unsigned ever_matched_something : 1;
3023 } bits;
3024 } register_info_type;
3026 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
3027 #define IS_ACTIVE(R) ((R).bits.is_active)
3028 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
3029 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
3032 /* Call this when have matched a real character; it sets `matched' flags
3033 for the subexpressions which we are currently inside. Also records
3034 that those subexprs have matched. */
3035 #define SET_REGS_MATCHED() \
3036 do \
3038 unsigned r; \
3039 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
3041 MATCHED_SOMETHING (reg_info[r]) \
3042 = EVER_MATCHED_SOMETHING (reg_info[r]) \
3043 = 1; \
3046 while (0)
3049 /* This converts PTR, a pointer into one of the search strings `string1'
3050 and `string2' into an offset from the beginning of that string. */
3051 #define POINTER_TO_OFFSET(ptr) \
3052 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
3054 /* Registers are set to a sentinel when they haven't yet matched. */
3055 #define REG_UNSET_VALUE ((char *) -1)
3056 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
3059 /* Macros for dealing with the split strings in re_match_2. */
3061 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3063 /* Call before fetching a character with *d. This switches over to
3064 string2 if necessary. */
3065 #define PREFETCH() \
3066 while (d == dend) \
3068 /* End of string2 => fail. */ \
3069 if (dend == end_match_2) \
3070 goto fail; \
3071 /* End of string1 => advance to string2. */ \
3072 d = string2; \
3073 dend = end_match_2; \
3077 /* Test if at very beginning or at very end of the virtual concatenation
3078 of `string1' and `string2'. If only one string, it's `string2'. */
3079 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3080 #define AT_STRINGS_END(d) ((d) == end2)
3083 /* Test if D points to a character which is word-constituent. We have
3084 two special cases to check for: if past the end of string1, look at
3085 the first character in string2; and if before the beginning of
3086 string2, look at the last character in string1. */
3087 #define WORDCHAR_P(d) \
3088 (SYNTAX ((d) == end1 ? *string2 \
3089 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3090 == Sword)
3092 /* Test if the character before D and the one at D differ with respect
3093 to being word-constituent. */
3094 #define AT_WORD_BOUNDARY(d) \
3095 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3096 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3099 /* Free everything we malloc. */
3100 #ifdef REGEX_MALLOC
3101 #define FREE_VAR(var) if (var) free (var); var = NULL
3102 #define FREE_VARIABLES() \
3103 do { \
3104 FREE_VAR (fail_stack.stack); \
3105 FREE_VAR (regstart); \
3106 FREE_VAR (regend); \
3107 FREE_VAR (old_regstart); \
3108 FREE_VAR (old_regend); \
3109 FREE_VAR (best_regstart); \
3110 FREE_VAR (best_regend); \
3111 FREE_VAR (reg_info); \
3112 FREE_VAR (reg_dummy); \
3113 FREE_VAR (reg_info_dummy); \
3114 } while (0)
3115 #else /* not REGEX_MALLOC */
3116 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3117 #define FREE_VARIABLES() alloca (0)
3118 #endif /* not REGEX_MALLOC */
3121 /* These values must meet several constraints. They must not be valid
3122 register values; since we have a limit of 255 registers (because
3123 we use only one byte in the pattern for the register number), we can
3124 use numbers larger than 255. They must differ by 1, because of
3125 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3126 be larger than the value for the highest register, so we do not try
3127 to actually save any registers when none are active. */
3128 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3129 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3131 /* Matching routines. */
3133 #ifndef emacs /* Emacs never uses this. */
3134 /* re_match is like re_match_2 except it takes only a single string. */
3137 re_match (bufp, string, size, pos, regs)
3138 struct re_pattern_buffer *bufp;
3139 const char *string;
3140 int size, pos;
3141 struct re_registers *regs;
3143 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
3145 #endif /* not emacs */
3148 /* re_match_2 matches the compiled pattern in BUFP against the
3149 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3150 and SIZE2, respectively). We start matching at POS, and stop
3151 matching at STOP.
3153 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3154 store offsets for the substring each group matched in REGS. See the
3155 documentation for exactly how many groups we fill.
3157 We return -1 if no match, -2 if an internal error (such as the
3158 failure stack overflowing). Otherwise, we return the length of the
3159 matched substring. */
3162 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3163 struct re_pattern_buffer *bufp;
3164 const char *string1, *string2;
3165 int size1, size2;
3166 int pos;
3167 struct re_registers *regs;
3168 int stop;
3170 /* General temporaries. */
3171 int mcnt;
3172 unsigned char *p1;
3174 /* Just past the end of the corresponding string. */
3175 const char *end1, *end2;
3177 /* Pointers into string1 and string2, just past the last characters in
3178 each to consider matching. */
3179 const char *end_match_1, *end_match_2;
3181 /* Where we are in the data, and the end of the current string. */
3182 const char *d, *dend;
3184 /* Where we are in the pattern, and the end of the pattern. */
3185 unsigned char *p = bufp->buffer;
3186 register unsigned char *pend = p + bufp->used;
3188 /* We use this to map every character in the string. */
3189 char *translate = bufp->translate;
3191 /* Failure point stack. Each place that can handle a failure further
3192 down the line pushes a failure point on this stack. It consists of
3193 restart, regend, and reg_info for all registers corresponding to
3194 the subexpressions we're currently inside, plus the number of such
3195 registers, and, finally, two char *'s. The first char * is where
3196 to resume scanning the pattern; the second one is where to resume
3197 scanning the strings. If the latter is zero, the failure point is
3198 a ``dummy''; if a failure happens and the failure point is a dummy,
3199 it gets discarded and the next next one is tried. */
3200 fail_stack_type fail_stack;
3201 #ifdef DEBUG
3202 static unsigned failure_id = 0;
3203 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3204 #endif
3206 /* We fill all the registers internally, independent of what we
3207 return, for use in backreferences. The number here includes
3208 an element for register zero. */
3209 unsigned num_regs = bufp->re_nsub + 1;
3211 /* The currently active registers. */
3212 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3213 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3215 /* Information on the contents of registers. These are pointers into
3216 the input strings; they record just what was matched (on this
3217 attempt) by a subexpression part of the pattern, that is, the
3218 regnum-th regstart pointer points to where in the pattern we began
3219 matching and the regnum-th regend points to right after where we
3220 stopped matching the regnum-th subexpression. (The zeroth register
3221 keeps track of what the whole pattern matches.) */
3222 const char **regstart, **regend;
3224 /* If a group that's operated upon by a repetition operator fails to
3225 match anything, then the register for its start will need to be
3226 restored because it will have been set to wherever in the string we
3227 are when we last see its open-group operator. Similarly for a
3228 register's end. */
3229 const char **old_regstart, **old_regend;
3231 /* The is_active field of reg_info helps us keep track of which (possibly
3232 nested) subexpressions we are currently in. The matched_something
3233 field of reg_info[reg_num] helps us tell whether or not we have
3234 matched any of the pattern so far this time through the reg_num-th
3235 subexpression. These two fields get reset each time through any
3236 loop their register is in. */
3237 register_info_type *reg_info;
3239 /* The following record the register info as found in the above
3240 variables when we find a match better than any we've seen before.
3241 This happens as we backtrack through the failure points, which in
3242 turn happens only if we have not yet matched the entire string. */
3243 unsigned best_regs_set = false;
3244 const char **best_regstart, **best_regend;
3246 /* Logically, this is `best_regend[0]'. But we don't want to have to
3247 allocate space for that if we're not allocating space for anything
3248 else (see below). Also, we never need info about register 0 for
3249 any of the other register vectors, and it seems rather a kludge to
3250 treat `best_regend' differently than the rest. So we keep track of
3251 the end of the best match so far in a separate variable. We
3252 initialize this to NULL so that when we backtrack the first time
3253 and need to test it, it's not garbage. */
3254 const char *match_end = NULL;
3256 /* Used when we pop values we don't care about. */
3257 const char **reg_dummy;
3258 register_info_type *reg_info_dummy;
3260 #ifdef DEBUG
3261 /* Counts the total number of registers pushed. */
3262 unsigned num_regs_pushed = 0;
3263 #endif
3265 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3267 INIT_FAIL_STACK ();
3269 /* Do not bother to initialize all the register variables if there are
3270 no groups in the pattern, as it takes a fair amount of time. If
3271 there are groups, we include space for register 0 (the whole
3272 pattern), even though we never use it, since it simplifies the
3273 array indexing. We should fix this. */
3274 if (bufp->re_nsub)
3276 regstart = REGEX_TALLOC (num_regs, const char *);
3277 regend = REGEX_TALLOC (num_regs, const char *);
3278 old_regstart = REGEX_TALLOC (num_regs, const char *);
3279 old_regend = REGEX_TALLOC (num_regs, const char *);
3280 best_regstart = REGEX_TALLOC (num_regs, const char *);
3281 best_regend = REGEX_TALLOC (num_regs, const char *);
3282 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3283 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3284 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3286 if (!(regstart && regend && old_regstart && old_regend && reg_info
3287 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3289 FREE_VARIABLES ();
3290 return -2;
3293 #ifdef REGEX_MALLOC
3294 else
3296 /* We must initialize all our variables to NULL, so that
3297 `FREE_VARIABLES' doesn't try to free them. */
3298 regstart = regend = old_regstart = old_regend = best_regstart
3299 = best_regend = reg_dummy = NULL;
3300 reg_info = reg_info_dummy = (register_info_type *) NULL;
3302 #endif /* REGEX_MALLOC */
3304 /* The starting position is bogus. */
3305 if (pos < 0 || pos > size1 + size2)
3307 FREE_VARIABLES ();
3308 return -1;
3311 /* Initialize subexpression text positions to -1 to mark ones that no
3312 start_memory/stop_memory has been seen for. Also initialize the
3313 register information struct. */
3314 for (mcnt = 1; mcnt < num_regs; mcnt++)
3316 regstart[mcnt] = regend[mcnt]
3317 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3319 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3320 IS_ACTIVE (reg_info[mcnt]) = 0;
3321 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3322 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3325 /* We move `string1' into `string2' if the latter's empty -- but not if
3326 `string1' is null. */
3327 if (size2 == 0 && string1 != NULL)
3329 string2 = string1;
3330 size2 = size1;
3331 string1 = 0;
3332 size1 = 0;
3334 end1 = string1 + size1;
3335 end2 = string2 + size2;
3337 /* Compute where to stop matching, within the two strings. */
3338 if (stop <= size1)
3340 end_match_1 = string1 + stop;
3341 end_match_2 = string2;
3343 else
3345 end_match_1 = end1;
3346 end_match_2 = string2 + stop - size1;
3349 /* `p' scans through the pattern as `d' scans through the data.
3350 `dend' is the end of the input string that `d' points within. `d'
3351 is advanced into the following input string whenever necessary, but
3352 this happens before fetching; therefore, at the beginning of the
3353 loop, `d' can be pointing at the end of a string, but it cannot
3354 equal `string2'. */
3355 if (size1 > 0 && pos <= size1)
3357 d = string1 + pos;
3358 dend = end_match_1;
3360 else
3362 d = string2 + pos - size1;
3363 dend = end_match_2;
3366 DEBUG_PRINT1 ("The compiled pattern is: ");
3367 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3368 DEBUG_PRINT1 ("The string to match is: `");
3369 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3370 DEBUG_PRINT1 ("'\n");
3372 /* This loops over pattern commands. It exits by returning from the
3373 function if the match is complete, or it drops through if the match
3374 fails at this starting point in the input data. */
3375 for (;;)
3377 DEBUG_PRINT2 ("\n0x%x: ", p);
3379 if (p == pend)
3380 { /* End of pattern means we might have succeeded. */
3381 DEBUG_PRINT1 ("end of pattern ... ");
3383 /* If we haven't matched the entire string, and we want the
3384 longest match, try backtracking. */
3385 if (d != end_match_2)
3387 DEBUG_PRINT1 ("backtracking.\n");
3389 if (!FAIL_STACK_EMPTY ())
3390 { /* More failure points to try. */
3391 boolean same_str_p = (FIRST_STRING_P (match_end)
3392 == MATCHING_IN_FIRST_STRING);
3394 /* If exceeds best match so far, save it. */
3395 if (!best_regs_set
3396 || (same_str_p && d > match_end)
3397 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3399 best_regs_set = true;
3400 match_end = d;
3402 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3404 for (mcnt = 1; mcnt < num_regs; mcnt++)
3406 best_regstart[mcnt] = regstart[mcnt];
3407 best_regend[mcnt] = regend[mcnt];
3410 goto fail;
3413 /* If no failure points, don't restore garbage. */
3414 else if (best_regs_set)
3416 restore_best_regs:
3417 /* Restore best match. It may happen that `dend ==
3418 end_match_1' while the restored d is in string2.
3419 For example, the pattern `x.*y.*z' against the
3420 strings `x-' and `y-z-', if the two strings are
3421 not consecutive in memory. */
3422 DEBUG_PRINT1 ("Restoring best registers.\n");
3424 d = match_end;
3425 dend = ((d >= string1 && d <= end1)
3426 ? end_match_1 : end_match_2);
3428 for (mcnt = 1; mcnt < num_regs; mcnt++)
3430 regstart[mcnt] = best_regstart[mcnt];
3431 regend[mcnt] = best_regend[mcnt];
3434 } /* d != end_match_2 */
3436 DEBUG_PRINT1 ("Accepting match.\n");
3438 /* If caller wants register contents data back, do it. */
3439 if (regs && !bufp->no_sub)
3441 /* Have the register data arrays been allocated? */
3442 if (bufp->regs_allocated == REGS_UNALLOCATED)
3443 { /* No. So allocate them with malloc. We need one
3444 extra element beyond `num_regs' for the `-1' marker
3445 GNU code uses. */
3446 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3447 regs->start = TALLOC (regs->num_regs, regoff_t);
3448 regs->end = TALLOC (regs->num_regs, regoff_t);
3449 if (regs->start == NULL || regs->end == NULL)
3450 return -2;
3451 bufp->regs_allocated = REGS_REALLOCATE;
3453 else if (bufp->regs_allocated == REGS_REALLOCATE)
3454 { /* Yes. If we need more elements than were already
3455 allocated, reallocate them. If we need fewer, just
3456 leave it alone. */
3457 if (regs->num_regs < num_regs + 1)
3459 regs->num_regs = num_regs + 1;
3460 RETALLOC (regs->start, regs->num_regs, regoff_t);
3461 RETALLOC (regs->end, regs->num_regs, regoff_t);
3462 if (regs->start == NULL || regs->end == NULL)
3463 return -2;
3466 else
3467 assert (bufp->regs_allocated == REGS_FIXED);
3469 /* Convert the pointer data in `regstart' and `regend' to
3470 indices. Register zero has to be set differently,
3471 since we haven't kept track of any info for it. */
3472 if (regs->num_regs > 0)
3474 regs->start[0] = pos;
3475 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3476 : d - string2 + size1);
3479 /* Go through the first `min (num_regs, regs->num_regs)'
3480 registers, since that is all we initialized. */
3481 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3483 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3484 regs->start[mcnt] = regs->end[mcnt] = -1;
3485 else
3487 regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
3488 regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
3492 /* If the regs structure we return has more elements than
3493 were in the pattern, set the extra elements to -1. If
3494 we (re)allocated the registers, this is the case,
3495 because we always allocate enough to have at least one
3496 -1 at the end. */
3497 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3498 regs->start[mcnt] = regs->end[mcnt] = -1;
3499 } /* regs && !bufp->no_sub */
3501 FREE_VARIABLES ();
3502 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3503 nfailure_points_pushed, nfailure_points_popped,
3504 nfailure_points_pushed - nfailure_points_popped);
3505 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
3507 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3508 ? string1
3509 : string2 - size1);
3511 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3513 return mcnt;
3516 /* Otherwise match next pattern command. */
3517 #ifdef SWITCH_ENUM_BUG
3518 switch ((int) ((re_opcode_t) *p++))
3519 #else
3520 switch ((re_opcode_t) *p++)
3521 #endif
3523 /* Ignore these. Used to ignore the n of succeed_n's which
3524 currently have n == 0. */
3525 case no_op:
3526 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3527 break;
3530 /* Match the next n pattern characters exactly. The following
3531 byte in the pattern defines n, and the n bytes after that
3532 are the characters to match. */
3533 case exactn:
3534 mcnt = *p++;
3535 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3537 /* This is written out as an if-else so we don't waste time
3538 testing `translate' inside the loop. */
3539 if (translate)
3543 PREFETCH ();
3544 if (translate[(unsigned char) *d++] != (char) *p++)
3545 goto fail;
3547 while (--mcnt);
3549 else
3553 PREFETCH ();
3554 if (*d++ != (char) *p++) goto fail;
3556 while (--mcnt);
3558 SET_REGS_MATCHED ();
3559 break;
3562 /* Match any character except possibly a newline or a null. */
3563 case anychar:
3564 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3566 PREFETCH ();
3568 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3569 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3570 goto fail;
3572 SET_REGS_MATCHED ();
3573 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3574 d++;
3575 break;
3578 case charset:
3579 case charset_not:
3581 register unsigned char c;
3582 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3584 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3586 PREFETCH ();
3587 c = TRANSLATE (*d); /* The character to match. */
3589 /* Cast to `unsigned' instead of `unsigned char' in case the
3590 bit list is a full 32 bytes long. */
3591 if (c < (unsigned) (*p * BYTEWIDTH)
3592 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3593 not = !not;
3595 p += 1 + *p;
3597 if (!not) goto fail;
3599 SET_REGS_MATCHED ();
3600 d++;
3601 break;
3605 /* The beginning of a group is represented by start_memory.
3606 The arguments are the register number in the next byte, and the
3607 number of groups inner to this one in the next. The text
3608 matched within the group is recorded (in the internal
3609 registers data structure) under the register number. */
3610 case start_memory:
3611 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3613 /* Find out if this group can match the empty string. */
3614 p1 = p; /* To send to group_match_null_string_p. */
3616 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3617 REG_MATCH_NULL_STRING_P (reg_info[*p])
3618 = group_match_null_string_p (&p1, pend, reg_info);
3620 /* Save the position in the string where we were the last time
3621 we were at this open-group operator in case the group is
3622 operated upon by a repetition operator, e.g., with `(a*)*b'
3623 against `ab'; then we want to ignore where we are now in
3624 the string in case this attempt to match fails. */
3625 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3626 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3627 : regstart[*p];
3628 DEBUG_PRINT2 (" old_regstart: %d\n",
3629 POINTER_TO_OFFSET (old_regstart[*p]));
3631 regstart[*p] = d;
3632 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3634 IS_ACTIVE (reg_info[*p]) = 1;
3635 MATCHED_SOMETHING (reg_info[*p]) = 0;
3637 /* This is the new highest active register. */
3638 highest_active_reg = *p;
3640 /* If nothing was active before, this is the new lowest active
3641 register. */
3642 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3643 lowest_active_reg = *p;
3645 /* Move past the register number and inner group count. */
3646 p += 2;
3647 break;
3650 /* The stop_memory opcode represents the end of a group. Its
3651 arguments are the same as start_memory's: the register
3652 number, and the number of inner groups. */
3653 case stop_memory:
3654 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3656 /* We need to save the string position the last time we were at
3657 this close-group operator in case the group is operated
3658 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3659 against `aba'; then we want to ignore where we are now in
3660 the string in case this attempt to match fails. */
3661 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3662 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3663 : regend[*p];
3664 DEBUG_PRINT2 (" old_regend: %d\n",
3665 POINTER_TO_OFFSET (old_regend[*p]));
3667 regend[*p] = d;
3668 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3670 /* This register isn't active anymore. */
3671 IS_ACTIVE (reg_info[*p]) = 0;
3673 /* If this was the only register active, nothing is active
3674 anymore. */
3675 if (lowest_active_reg == highest_active_reg)
3677 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3678 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3680 else
3681 { /* We must scan for the new highest active register, since
3682 it isn't necessarily one less than now: consider
3683 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3684 new highest active register is 1. */
3685 unsigned char r = *p - 1;
3686 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3687 r--;
3689 /* If we end up at register zero, that means that we saved
3690 the registers as the result of an `on_failure_jump', not
3691 a `start_memory', and we jumped to past the innermost
3692 `stop_memory'. For example, in ((.)*) we save
3693 registers 1 and 2 as a result of the *, but when we pop
3694 back to the second ), we are at the stop_memory 1.
3695 Thus, nothing is active. */
3696 if (r == 0)
3698 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3699 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3701 else
3702 highest_active_reg = r;
3705 /* If just failed to match something this time around with a
3706 group that's operated on by a repetition operator, try to
3707 force exit from the ``loop'', and restore the register
3708 information for this group that we had before trying this
3709 last match. */
3710 if ((!MATCHED_SOMETHING (reg_info[*p])
3711 || (re_opcode_t) p[-3] == start_memory)
3712 && (p + 2) < pend)
3714 boolean is_a_jump_n = false;
3716 p1 = p + 2;
3717 mcnt = 0;
3718 switch ((re_opcode_t) *p1++)
3720 case jump_n:
3721 is_a_jump_n = true;
3722 case pop_failure_jump:
3723 case maybe_pop_jump:
3724 case jump:
3725 case dummy_failure_jump:
3726 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3727 if (is_a_jump_n)
3728 p1 += 2;
3729 break;
3731 default:
3732 /* do nothing */ ;
3734 p1 += mcnt;
3736 /* If the next operation is a jump backwards in the pattern
3737 to an on_failure_jump right before the start_memory
3738 corresponding to this stop_memory, exit from the loop
3739 by forcing a failure after pushing on the stack the
3740 on_failure_jump's jump in the pattern, and d. */
3741 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3742 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3744 /* If this group ever matched anything, then restore
3745 what its registers were before trying this last
3746 failed match, e.g., with `(a*)*b' against `ab' for
3747 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3748 against `aba' for regend[3].
3750 Also restore the registers for inner groups for,
3751 e.g., `((a*)(b*))*' against `aba' (register 3 would
3752 otherwise get trashed). */
3754 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3756 unsigned r;
3758 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3760 /* Restore this and inner groups' (if any) registers. */
3761 for (r = *p; r < *p + *(p + 1); r++)
3763 regstart[r] = old_regstart[r];
3765 /* xx why this test? */
3766 if ((int) old_regend[r] >= (int) regstart[r])
3767 regend[r] = old_regend[r];
3770 p1++;
3771 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3772 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3774 goto fail;
3778 /* Move past the register number and the inner group count. */
3779 p += 2;
3780 break;
3783 /* \<digit> has been turned into a `duplicate' command which is
3784 followed by the numeric value of <digit> as the register number. */
3785 case duplicate:
3787 register const char *d2, *dend2;
3788 int regno = *p++; /* Get which register to match against. */
3789 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3791 /* Can't back reference a group which we've never matched. */
3792 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3793 goto fail;
3795 /* Where in input to try to start matching. */
3796 d2 = regstart[regno];
3798 /* Where to stop matching; if both the place to start and
3799 the place to stop matching are in the same string, then
3800 set to the place to stop, otherwise, for now have to use
3801 the end of the first string. */
3803 dend2 = ((FIRST_STRING_P (regstart[regno])
3804 == FIRST_STRING_P (regend[regno]))
3805 ? regend[regno] : end_match_1);
3806 for (;;)
3808 /* If necessary, advance to next segment in register
3809 contents. */
3810 while (d2 == dend2)
3812 if (dend2 == end_match_2) break;
3813 if (dend2 == regend[regno]) break;
3815 /* End of string1 => advance to string2. */
3816 d2 = string2;
3817 dend2 = regend[regno];
3819 /* At end of register contents => success */
3820 if (d2 == dend2) break;
3822 /* If necessary, advance to next segment in data. */
3823 PREFETCH ();
3825 /* How many characters left in this segment to match. */
3826 mcnt = dend - d;
3828 /* Want how many consecutive characters we can match in
3829 one shot, so, if necessary, adjust the count. */
3830 if (mcnt > dend2 - d2)
3831 mcnt = dend2 - d2;
3833 /* Compare that many; failure if mismatch, else move
3834 past them. */
3835 if (translate
3836 ? bcmp_translate (d, d2, mcnt, translate)
3837 : bcmp (d, d2, mcnt))
3838 goto fail;
3839 d += mcnt, d2 += mcnt;
3842 break;
3845 /* begline matches the empty string at the beginning of the string
3846 (unless `not_bol' is set in `bufp'), and, if
3847 `newline_anchor' is set, after newlines. */
3848 case begline:
3849 DEBUG_PRINT1 ("EXECUTING begline.\n");
3851 if (AT_STRINGS_BEG (d))
3853 if (!bufp->not_bol) break;
3855 else if (d[-1] == '\n' && bufp->newline_anchor)
3857 break;
3859 /* In all other cases, we fail. */
3860 goto fail;
3863 /* endline is the dual of begline. */
3864 case endline:
3865 DEBUG_PRINT1 ("EXECUTING endline.\n");
3867 if (AT_STRINGS_END (d))
3869 if (!bufp->not_eol) break;
3872 /* We have to ``prefetch'' the next character. */
3873 else if ((d == end1 ? *string2 : *d) == '\n'
3874 && bufp->newline_anchor)
3876 break;
3878 goto fail;
3881 /* Match at the very beginning of the data. */
3882 case begbuf:
3883 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
3884 if (AT_STRINGS_BEG (d))
3885 break;
3886 goto fail;
3889 /* Match at the very end of the data. */
3890 case endbuf:
3891 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
3892 if (AT_STRINGS_END (d))
3893 break;
3894 goto fail;
3897 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3898 pushes NULL as the value for the string on the stack. Then
3899 `pop_failure_point' will keep the current value for the
3900 string, instead of restoring it. To see why, consider
3901 matching `foo\nbar' against `.*\n'. The .* matches the foo;
3902 then the . fails against the \n. But the next thing we want
3903 to do is match the \n against the \n; if we restored the
3904 string value, we would be back at the foo.
3906 Because this is used only in specific cases, we don't need to
3907 check all the things that `on_failure_jump' does, to make
3908 sure the right things get saved on the stack. Hence we don't
3909 share its code. The only reason to push anything on the
3910 stack at all is that otherwise we would have to change
3911 `anychar's code to do something besides goto fail in this
3912 case; that seems worse than this. */
3913 case on_failure_keep_string_jump:
3914 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
3916 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3917 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
3919 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
3920 break;
3923 /* Uses of on_failure_jump:
3925 Each alternative starts with an on_failure_jump that points
3926 to the beginning of the next alternative. Each alternative
3927 except the last ends with a jump that in effect jumps past
3928 the rest of the alternatives. (They really jump to the
3929 ending jump of the following alternative, because tensioning
3930 these jumps is a hassle.)
3932 Repeats start with an on_failure_jump that points past both
3933 the repetition text and either the following jump or
3934 pop_failure_jump back to this on_failure_jump. */
3935 case on_failure_jump:
3936 on_failure:
3937 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
3939 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3940 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
3942 /* If this on_failure_jump comes right before a group (i.e.,
3943 the original * applied to a group), save the information
3944 for that group and all inner ones, so that if we fail back
3945 to this point, the group's information will be correct.
3946 For example, in \(a*\)*\1, we need the preceding group,
3947 and in \(\(a*\)b*\)\2, we need the inner group. */
3949 /* We can't use `p' to check ahead because we push
3950 a failure point to `p + mcnt' after we do this. */
3951 p1 = p;
3953 /* We need to skip no_op's before we look for the
3954 start_memory in case this on_failure_jump is happening as
3955 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3956 against aba. */
3957 while (p1 < pend && (re_opcode_t) *p1 == no_op)
3958 p1++;
3960 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
3962 /* We have a new highest active register now. This will
3963 get reset at the start_memory we are about to get to,
3964 but we will have saved all the registers relevant to
3965 this repetition op, as described above. */
3966 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3967 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3968 lowest_active_reg = *(p1 + 1);
3971 DEBUG_PRINT1 (":\n");
3972 PUSH_FAILURE_POINT (p + mcnt, d, -2);
3973 break;
3976 /* A smart repeat ends with `maybe_pop_jump'.
3977 We change it to either `pop_failure_jump' or `jump'. */
3978 case maybe_pop_jump:
3979 EXTRACT_NUMBER_AND_INCR (mcnt, p);
3980 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
3982 register unsigned char *p2 = p;
3984 /* Compare the beginning of the repeat with what in the
3985 pattern follows its end. If we can establish that there
3986 is nothing that they would both match, i.e., that we
3987 would have to backtrack because of (as in, e.g., `a*a')
3988 then we can change to pop_failure_jump, because we'll
3989 never have to backtrack.
3991 This is not true in the case of alternatives: in
3992 `(a|ab)*' we do need to backtrack to the `ab' alternative
3993 (e.g., if the string was `ab'). But instead of trying to
3994 detect that here, the alternative has put on a dummy
3995 failure point which is what we will end up popping. */
3997 /* Skip over open/close-group commands. */
3998 while (p2 + 2 < pend
3999 && ((re_opcode_t) *p2 == stop_memory
4000 || (re_opcode_t) *p2 == start_memory))
4001 p2 += 3; /* Skip over args, too. */
4003 /* If we're at the end of the pattern, we can change. */
4004 if (p2 == pend)
4006 /* Consider what happens when matching ":\(.*\)"
4007 against ":/". I don't really understand this code
4008 yet. */
4009 p[-3] = (unsigned char) pop_failure_jump;
4010 DEBUG_PRINT1
4011 (" End of pattern: change to `pop_failure_jump'.\n");
4014 else if ((re_opcode_t) *p2 == exactn
4015 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4017 register unsigned char c
4018 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4019 p1 = p + mcnt;
4021 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4022 to the `maybe_finalize_jump' of this case. Examine what
4023 follows. */
4024 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4026 p[-3] = (unsigned char) pop_failure_jump;
4027 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4028 c, p1[5]);
4031 else if ((re_opcode_t) p1[3] == charset
4032 || (re_opcode_t) p1[3] == charset_not)
4034 int not = (re_opcode_t) p1[3] == charset_not;
4036 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4037 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4038 not = !not;
4040 /* `not' is equal to 1 if c would match, which means
4041 that we can't change to pop_failure_jump. */
4042 if (!not)
4044 p[-3] = (unsigned char) pop_failure_jump;
4045 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4050 p -= 2; /* Point at relative address again. */
4051 if ((re_opcode_t) p[-1] != pop_failure_jump)
4053 p[-1] = (unsigned char) jump;
4054 DEBUG_PRINT1 (" Match => jump.\n");
4055 goto unconditional_jump;
4057 /* Note fall through. */
4060 /* The end of a simple repeat has a pop_failure_jump back to
4061 its matching on_failure_jump, where the latter will push a
4062 failure point. The pop_failure_jump takes off failure
4063 points put on by this pop_failure_jump's matching
4064 on_failure_jump; we got through the pattern to here from the
4065 matching on_failure_jump, so didn't fail. */
4066 case pop_failure_jump:
4068 /* We need to pass separate storage for the lowest and
4069 highest registers, even though we don't care about the
4070 actual values. Otherwise, we will restore only one
4071 register from the stack, since lowest will == highest in
4072 `pop_failure_point'. */
4073 unsigned dummy_low_reg, dummy_high_reg;
4074 unsigned char *pdummy;
4075 const char *sdummy;
4077 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4078 POP_FAILURE_POINT (sdummy, pdummy,
4079 dummy_low_reg, dummy_high_reg,
4080 reg_dummy, reg_dummy, reg_info_dummy);
4082 /* Note fall through. */
4085 /* Unconditionally jump (without popping any failure points). */
4086 case jump:
4087 unconditional_jump:
4088 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4089 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4090 p += mcnt; /* Do the jump. */
4091 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4092 break;
4095 /* We need this opcode so we can detect where alternatives end
4096 in `group_match_null_string_p' et al. */
4097 case jump_past_alt:
4098 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4099 goto unconditional_jump;
4102 /* Normally, the on_failure_jump pushes a failure point, which
4103 then gets popped at pop_failure_jump. We will end up at
4104 pop_failure_jump, also, and with a pattern of, say, `a+', we
4105 are skipping over the on_failure_jump, so we have to push
4106 something meaningless for pop_failure_jump to pop. */
4107 case dummy_failure_jump:
4108 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4109 /* It doesn't matter what we push for the string here. What
4110 the code at `fail' tests is the value for the pattern. */
4111 PUSH_FAILURE_POINT (0, 0, -2);
4112 goto unconditional_jump;
4115 /* At the end of an alternative, we need to push a dummy failure
4116 point in case we are followed by a `pop_failure_jump', because
4117 we don't want the failure point for the alternative to be
4118 popped. For example, matching `(a|ab)*' against `aab'
4119 requires that we match the `ab' alternative. */
4120 case push_dummy_failure:
4121 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4122 /* See comments just above at `dummy_failure_jump' about the
4123 two zeroes. */
4124 PUSH_FAILURE_POINT (0, 0, -2);
4125 break;
4127 /* Have to succeed matching what follows at least n times.
4128 After that, handle like `on_failure_jump'. */
4129 case succeed_n:
4130 EXTRACT_NUMBER (mcnt, p + 2);
4131 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4133 assert (mcnt >= 0);
4134 /* Originally, this is how many times we HAVE to succeed. */
4135 if (mcnt > 0)
4137 mcnt--;
4138 p += 2;
4139 STORE_NUMBER_AND_INCR (p, mcnt);
4140 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4142 else if (mcnt == 0)
4144 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4145 p[2] = (unsigned char) no_op;
4146 p[3] = (unsigned char) no_op;
4147 goto on_failure;
4149 break;
4151 case jump_n:
4152 EXTRACT_NUMBER (mcnt, p + 2);
4153 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4155 /* Originally, this is how many times we CAN jump. */
4156 if (mcnt)
4158 mcnt--;
4159 STORE_NUMBER (p + 2, mcnt);
4160 goto unconditional_jump;
4162 /* If don't have to jump any more, skip over the rest of command. */
4163 else
4164 p += 4;
4165 break;
4167 case set_number_at:
4169 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4171 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4172 p1 = p + mcnt;
4173 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4174 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4175 STORE_NUMBER (p1, mcnt);
4176 break;
4179 case wordbound:
4180 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4181 if (AT_WORD_BOUNDARY (d))
4182 break;
4183 goto fail;
4185 case notwordbound:
4186 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4187 if (AT_WORD_BOUNDARY (d))
4188 goto fail;
4189 break;
4191 case wordbeg:
4192 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4193 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4194 break;
4195 goto fail;
4197 case wordend:
4198 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4199 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4200 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4201 break;
4202 goto fail;
4204 #ifdef emacs
4205 #ifdef emacs19
4206 case before_dot:
4207 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4208 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4209 goto fail;
4210 break;
4212 case at_dot:
4213 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4214 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4215 goto fail;
4216 break;
4218 case after_dot:
4219 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4220 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4221 goto fail;
4222 break;
4223 #else /* not emacs19 */
4224 case at_dot:
4225 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4226 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4227 goto fail;
4228 break;
4229 #endif /* not emacs19 */
4231 case syntaxspec:
4232 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4233 mcnt = *p++;
4234 goto matchsyntax;
4236 case wordchar:
4237 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4238 mcnt = (int) Sword;
4239 matchsyntax:
4240 PREFETCH ();
4241 if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
4242 goto fail;
4243 SET_REGS_MATCHED ();
4244 break;
4246 case notsyntaxspec:
4247 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4248 mcnt = *p++;
4249 goto matchnotsyntax;
4251 case notwordchar:
4252 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4253 mcnt = (int) Sword;
4254 matchnotsyntax:
4255 PREFETCH ();
4256 if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
4257 goto fail;
4258 SET_REGS_MATCHED ();
4259 break;
4261 #else /* not emacs */
4262 case wordchar:
4263 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4264 PREFETCH ();
4265 if (!WORDCHAR_P (d))
4266 goto fail;
4267 SET_REGS_MATCHED ();
4268 d++;
4269 break;
4271 case notwordchar:
4272 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4273 PREFETCH ();
4274 if (WORDCHAR_P (d))
4275 goto fail;
4276 SET_REGS_MATCHED ();
4277 d++;
4278 break;
4279 #endif /* not emacs */
4281 default:
4282 abort ();
4284 continue; /* Successfully executed one pattern command; keep going. */
4287 /* We goto here if a matching operation fails. */
4288 fail:
4289 if (!FAIL_STACK_EMPTY ())
4290 { /* A restart point is known. Restore to that state. */
4291 DEBUG_PRINT1 ("\nFAIL:\n");
4292 POP_FAILURE_POINT (d, p,
4293 lowest_active_reg, highest_active_reg,
4294 regstart, regend, reg_info);
4296 /* If this failure point is a dummy, try the next one. */
4297 if (!p)
4298 goto fail;
4300 /* If we failed to the end of the pattern, don't examine *p. */
4301 assert (p <= pend);
4302 if (p < pend)
4304 boolean is_a_jump_n = false;
4306 /* If failed to a backwards jump that's part of a repetition
4307 loop, need to pop this failure point and use the next one. */
4308 switch ((re_opcode_t) *p)
4310 case jump_n:
4311 is_a_jump_n = true;
4312 case maybe_pop_jump:
4313 case pop_failure_jump:
4314 case jump:
4315 p1 = p + 1;
4316 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4317 p1 += mcnt;
4319 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4320 || (!is_a_jump_n
4321 && (re_opcode_t) *p1 == on_failure_jump))
4322 goto fail;
4323 break;
4324 default:
4325 /* do nothing */ ;
4329 if (d >= string1 && d <= end1)
4330 dend = end_match_1;
4332 else
4333 break; /* Matching at this starting point really fails. */
4334 } /* for (;;) */
4336 if (best_regs_set)
4337 goto restore_best_regs;
4339 FREE_VARIABLES ();
4341 return -1; /* Failure to match. */
4342 } /* re_match_2 */
4344 /* Subroutine definitions for re_match_2. */
4347 /* We are passed P pointing to a register number after a start_memory.
4349 Return true if the pattern up to the corresponding stop_memory can
4350 match the empty string, and false otherwise.
4352 If we find the matching stop_memory, sets P to point to one past its number.
4353 Otherwise, sets P to an undefined byte less than or equal to END.
4355 We don't handle duplicates properly (yet). */
4357 static boolean
4358 group_match_null_string_p (p, end, reg_info)
4359 unsigned char **p, *end;
4360 register_info_type *reg_info;
4362 int mcnt;
4363 /* Point to after the args to the start_memory. */
4364 unsigned char *p1 = *p + 2;
4366 while (p1 < end)
4368 /* Skip over opcodes that can match nothing, and return true or
4369 false, as appropriate, when we get to one that can't, or to the
4370 matching stop_memory. */
4372 switch ((re_opcode_t) *p1)
4374 /* Could be either a loop or a series of alternatives. */
4375 case on_failure_jump:
4376 p1++;
4377 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4379 /* If the next operation is not a jump backwards in the
4380 pattern. */
4382 if (mcnt >= 0)
4384 /* Go through the on_failure_jumps of the alternatives,
4385 seeing if any of the alternatives cannot match nothing.
4386 The last alternative starts with only a jump,
4387 whereas the rest start with on_failure_jump and end
4388 with a jump, e.g., here is the pattern for `a|b|c':
4390 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4391 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4392 /exactn/1/c
4394 So, we have to first go through the first (n-1)
4395 alternatives and then deal with the last one separately. */
4398 /* Deal with the first (n-1) alternatives, which start
4399 with an on_failure_jump (see above) that jumps to right
4400 past a jump_past_alt. */
4402 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4404 /* `mcnt' holds how many bytes long the alternative
4405 is, including the ending `jump_past_alt' and
4406 its number. */
4408 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4409 reg_info))
4410 return false;
4412 /* Move to right after this alternative, including the
4413 jump_past_alt. */
4414 p1 += mcnt;
4416 /* Break if it's the beginning of an n-th alternative
4417 that doesn't begin with an on_failure_jump. */
4418 if ((re_opcode_t) *p1 != on_failure_jump)
4419 break;
4421 /* Still have to check that it's not an n-th
4422 alternative that starts with an on_failure_jump. */
4423 p1++;
4424 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4425 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4427 /* Get to the beginning of the n-th alternative. */
4428 p1 -= 3;
4429 break;
4433 /* Deal with the last alternative: go back and get number
4434 of the `jump_past_alt' just before it. `mcnt' contains
4435 the length of the alternative. */
4436 EXTRACT_NUMBER (mcnt, p1 - 2);
4438 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4439 return false;
4441 p1 += mcnt; /* Get past the n-th alternative. */
4442 } /* if mcnt > 0 */
4443 break;
4446 case stop_memory:
4447 assert (p1[1] == **p);
4448 *p = p1 + 2;
4449 return true;
4452 default:
4453 if (!common_op_match_null_string_p (&p1, end, reg_info))
4454 return false;
4456 } /* while p1 < end */
4458 return false;
4459 } /* group_match_null_string_p */
4462 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4463 It expects P to be the first byte of a single alternative and END one
4464 byte past the last. The alternative can contain groups. */
4466 static boolean
4467 alt_match_null_string_p (p, end, reg_info)
4468 unsigned char *p, *end;
4469 register_info_type *reg_info;
4471 int mcnt;
4472 unsigned char *p1 = p;
4474 while (p1 < end)
4476 /* Skip over opcodes that can match nothing, and break when we get
4477 to one that can't. */
4479 switch ((re_opcode_t) *p1)
4481 /* It's a loop. */
4482 case on_failure_jump:
4483 p1++;
4484 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4485 p1 += mcnt;
4486 break;
4488 default:
4489 if (!common_op_match_null_string_p (&p1, end, reg_info))
4490 return false;
4492 } /* while p1 < end */
4494 return true;
4495 } /* alt_match_null_string_p */
4498 /* Deals with the ops common to group_match_null_string_p and
4499 alt_match_null_string_p.
4501 Sets P to one after the op and its arguments, if any. */
4503 static boolean
4504 common_op_match_null_string_p (p, end, reg_info)
4505 unsigned char **p, *end;
4506 register_info_type *reg_info;
4508 int mcnt;
4509 boolean ret;
4510 int reg_no;
4511 unsigned char *p1 = *p;
4513 switch ((re_opcode_t) *p1++)
4515 case no_op:
4516 case begline:
4517 case endline:
4518 case begbuf:
4519 case endbuf:
4520 case wordbeg:
4521 case wordend:
4522 case wordbound:
4523 case notwordbound:
4524 #ifdef emacs
4525 case before_dot:
4526 case at_dot:
4527 case after_dot:
4528 #endif
4529 break;
4531 case start_memory:
4532 reg_no = *p1;
4533 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4534 ret = group_match_null_string_p (&p1, end, reg_info);
4536 /* Have to set this here in case we're checking a group which
4537 contains a group and a back reference to it. */
4539 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4540 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4542 if (!ret)
4543 return false;
4544 break;
4546 /* If this is an optimized succeed_n for zero times, make the jump. */
4547 case jump:
4548 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4549 if (mcnt >= 0)
4550 p1 += mcnt;
4551 else
4552 return false;
4553 break;
4555 case succeed_n:
4556 /* Get to the number of times to succeed. */
4557 p1 += 2;
4558 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4560 if (mcnt == 0)
4562 p1 -= 4;
4563 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4564 p1 += mcnt;
4566 else
4567 return false;
4568 break;
4570 case duplicate:
4571 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4572 return false;
4573 break;
4575 case set_number_at:
4576 p1 += 4;
4578 default:
4579 /* All other opcodes mean we cannot match the empty string. */
4580 return false;
4583 *p = p1;
4584 return true;
4585 } /* common_op_match_null_string_p */
4588 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4589 bytes; nonzero otherwise. */
4591 static int
4592 bcmp_translate (s1, s2, len, translate)
4593 unsigned char *s1, *s2;
4594 register int len;
4595 char *translate;
4597 register unsigned char *p1 = s1, *p2 = s2;
4598 while (len)
4600 if (translate[*p1++] != translate[*p2++]) return 1;
4601 len--;
4603 return 0;
4606 /* Entry points for GNU code. */
4608 /* re_compile_pattern is the GNU regular expression compiler: it
4609 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4610 Returns 0 if the pattern was valid, otherwise an error string.
4612 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4613 are set in BUFP on entry.
4615 We call regex_compile to do the actual compilation. */
4617 const char *
4618 re_compile_pattern (pattern, length, bufp)
4619 const char *pattern;
4620 int length;
4621 struct re_pattern_buffer *bufp;
4623 reg_errcode_t ret;
4625 /* GNU code is written to assume at least RE_NREGS registers will be set
4626 (and at least one extra will be -1). */
4627 bufp->regs_allocated = REGS_UNALLOCATED;
4629 /* And GNU code determines whether or not to get register information
4630 by passing null for the REGS argument to re_match, etc., not by
4631 setting no_sub. */
4632 bufp->no_sub = 0;
4634 /* Match anchors at newline. */
4635 bufp->newline_anchor = 1;
4637 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4639 return re_error_msg[(int) ret];
4642 /* Entry points compatible with 4.2 BSD regex library. We don't define
4643 them if this is an Emacs or POSIX compilation. */
4645 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4647 /* BSD has one and only one pattern buffer. */
4648 static struct re_pattern_buffer re_comp_buf;
4650 char *
4651 re_comp (s)
4652 const char *s;
4654 reg_errcode_t ret;
4656 if (!s)
4658 if (!re_comp_buf.buffer)
4659 return "No previous regular expression";
4660 return 0;
4663 if (!re_comp_buf.buffer)
4665 re_comp_buf.buffer = (unsigned char *) malloc (200);
4666 if (re_comp_buf.buffer == NULL)
4667 return "Memory exhausted";
4668 re_comp_buf.allocated = 200;
4670 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4671 if (re_comp_buf.fastmap == NULL)
4672 return "Memory exhausted";
4675 /* Since `re_exec' always passes NULL for the `regs' argument, we
4676 don't need to initialize the pattern buffer fields which affect it. */
4678 /* Match anchors at newlines. */
4679 re_comp_buf.newline_anchor = 1;
4681 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4683 /* Yes, we're discarding `const' here. */
4684 return (char *) re_error_msg[(int) ret];
4689 re_exec (s)
4690 const char *s;
4692 const int len = strlen (s);
4693 return
4694 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4696 #endif /* not emacs and not _POSIX_SOURCE */
4698 /* POSIX.2 functions. Don't define these for Emacs. */
4700 #ifndef emacs
4702 /* regcomp takes a regular expression as a string and compiles it.
4704 PREG is a regex_t *. We do not expect any fields to be initialized,
4705 since POSIX says we shouldn't. Thus, we set
4707 `buffer' to the compiled pattern;
4708 `used' to the length of the compiled pattern;
4709 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4710 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4711 RE_SYNTAX_POSIX_BASIC;
4712 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4713 `fastmap' and `fastmap_accurate' to zero;
4714 `re_nsub' to the number of subexpressions in PATTERN.
4716 PATTERN is the address of the pattern string.
4718 CFLAGS is a series of bits which affect compilation.
4720 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4721 use POSIX basic syntax.
4723 If REG_NEWLINE is set, then . and [^...] don't match newline.
4724 Also, regexec will try a match beginning after every newline.
4726 If REG_ICASE is set, then we considers upper- and lowercase
4727 versions of letters to be equivalent when matching.
4729 If REG_NOSUB is set, then when PREG is passed to regexec, that
4730 routine will report only success or failure, and nothing about the
4731 registers.
4733 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4734 the return codes and their meanings.) */
4737 regcomp (preg, pattern, cflags)
4738 regex_t *preg;
4739 const char *pattern;
4740 int cflags;
4742 reg_errcode_t ret;
4743 unsigned syntax
4744 = (cflags & REG_EXTENDED) ?
4745 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
4747 /* regex_compile will allocate the space for the compiled pattern. */
4748 preg->buffer = 0;
4749 preg->allocated = 0;
4751 /* Don't bother to use a fastmap when searching. This simplifies the
4752 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4753 characters after newlines into the fastmap. This way, we just try
4754 every character. */
4755 preg->fastmap = 0;
4757 if (cflags & REG_ICASE)
4759 unsigned i;
4761 preg->translate = (char *) malloc (CHAR_SET_SIZE);
4762 if (preg->translate == NULL)
4763 return (int) REG_ESPACE;
4765 /* Map uppercase characters to corresponding lowercase ones. */
4766 for (i = 0; i < CHAR_SET_SIZE; i++)
4767 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
4769 else
4770 preg->translate = NULL;
4772 /* If REG_NEWLINE is set, newlines are treated differently. */
4773 if (cflags & REG_NEWLINE)
4774 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4775 syntax &= ~RE_DOT_NEWLINE;
4776 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4777 /* It also changes the matching behavior. */
4778 preg->newline_anchor = 1;
4780 else
4781 preg->newline_anchor = 0;
4783 preg->no_sub = !!(cflags & REG_NOSUB);
4785 /* POSIX says a null character in the pattern terminates it, so we
4786 can use strlen here in compiling the pattern. */
4787 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
4789 /* POSIX doesn't distinguish between an unmatched open-group and an
4790 unmatched close-group: both are REG_EPAREN. */
4791 if (ret == REG_ERPAREN) ret = REG_EPAREN;
4793 return (int) ret;
4797 /* regexec searches for a given pattern, specified by PREG, in the
4798 string STRING.
4800 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4801 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4802 least NMATCH elements, and we set them to the offsets of the
4803 corresponding matched substrings.
4805 EFLAGS specifies `execution flags' which affect matching: if
4806 REG_NOTBOL is set, then ^ does not match at the beginning of the
4807 string; if REG_NOTEOL is set, then $ does not match at the end.
4809 We return 0 if we find a match and REG_NOMATCH if not. */
4812 regexec (preg, string, nmatch, pmatch, eflags)
4813 const regex_t *preg;
4814 const char *string;
4815 size_t nmatch;
4816 regmatch_t pmatch[];
4817 int eflags;
4819 int ret;
4820 struct re_registers regs;
4821 regex_t private_preg;
4822 int len = strlen (string);
4823 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4825 private_preg = *preg;
4827 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4828 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4830 /* The user has told us exactly how many registers to return
4831 information about, via `nmatch'. We have to pass that on to the
4832 matching routines. */
4833 private_preg.regs_allocated = REGS_FIXED;
4835 if (want_reg_info)
4837 regs.num_regs = nmatch;
4838 regs.start = TALLOC (nmatch, regoff_t);
4839 regs.end = TALLOC (nmatch, regoff_t);
4840 if (regs.start == NULL || regs.end == NULL)
4841 return (int) REG_NOMATCH;
4844 /* Perform the searching operation. */
4845 ret = re_search (&private_preg, string, len,
4846 /* start: */ 0, /* range: */ len,
4847 want_reg_info ? &regs : (struct re_registers *) 0);
4849 /* Copy the register information to the POSIX structure. */
4850 if (want_reg_info)
4852 if (ret >= 0)
4854 unsigned r;
4856 for (r = 0; r < nmatch; r++)
4858 pmatch[r].rm_so = regs.start[r];
4859 pmatch[r].rm_eo = regs.end[r];
4863 /* If we needed the temporary register info, free the space now. */
4864 free (regs.start);
4865 free (regs.end);
4868 /* We want zero return to mean success, unlike `re_search'. */
4869 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
4873 /* Returns a message corresponding to an error code, ERRCODE, returned
4874 from either regcomp or regexec. We don't use PREG here. */
4876 size_t
4877 regerror (errcode_vc, preg, errbuf, errbuf_size)
4878 int errcode_vc;
4879 const regex_t *preg;
4880 char *errbuf;
4881 size_t errbuf_size;
4883 const char *msg;
4884 size_t msg_size;
4886 if (errcode_vc < 0
4887 || errcode_vc >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
4888 /* Only error codes returned by the rest of the code should be passed
4889 to this routine. If we are given anything else, or if other regex
4890 code generates an invalid error code, then the program has a bug.
4891 Dump core so we can fix it. */
4892 abort ();
4894 msg = re_error_msg[errcode_vc];
4896 /* POSIX doesn't require that we do anything in this case, but why
4897 not be nice. */
4898 if (! msg)
4899 msg = "Success";
4901 msg_size = strlen (msg) + 1; /* Includes the null. */
4903 if (errbuf_size != 0)
4905 if (msg_size > errbuf_size)
4907 strncpy (errbuf, msg, errbuf_size - 1);
4908 errbuf[errbuf_size - 1] = 0;
4910 else
4911 strcpy (errbuf, msg);
4914 return msg_size;
4918 /* Free dynamically allocated space used by PREG. */
4920 void
4921 regfree (preg)
4922 regex_t *preg;
4924 if (preg->buffer != NULL)
4925 free (preg->buffer);
4926 preg->buffer = NULL;
4928 preg->allocated = 0;
4929 preg->used = 0;
4931 if (preg->fastmap != NULL)
4932 free (preg->fastmap);
4933 preg->fastmap = NULL;
4934 preg->fastmap_accurate = 0;
4936 if (preg->translate != NULL)
4937 free (preg->translate);
4938 preg->translate = NULL;
4941 #endif /* not emacs */
4944 Local variables:
4945 make-backup-files: t
4946 version-control: t
4947 trim-versions-without-asking: nil
4948 End: