iv.nanovega: removed unnecessary bounds checking
[iv.d.git] / jpege.d
blob449e6478bbbdc0c7b025a3625c8d4afe036e4fea
1 // jpge.cpp - C++ class for JPEG compression.
2 // Public domain, Rich Geldreich <richgel99@gmail.com>
3 // Alex Evans: Added RGBA support, linear memory allocator.
4 // v1.01, Dec. 18, 2010 - Initial release
5 // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.)
6 // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc.
7 // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03).
8 // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to null in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug.
9 // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless).
10 // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02.
11 // D translation by Ketmar // Invisible Vector
13 // This is free and unencumbered software released into the public domain.
15 // Anyone is free to copy, modify, publish, use, compile, sell, or
16 // distribute this software, either in source code form or as a compiled
17 // binary, for any purpose, commercial or non-commercial, and by any
18 // means.
20 // In jurisdictions that recognize copyright laws, the author or authors
21 // of this software dedicate any and all copyright interest in the
22 // software to the public domain. We make this dedication for the benefit
23 // of the public at large and to the detriment of our heirs and
24 // successors. We intend this dedication to be an overt act of
25 // relinquishment in perpetuity of all present and future rights to this
26 // software under copyright law.
28 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
31 // IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
32 // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
33 // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
34 // OTHER DEALINGS IN THE SOFTWARE.
36 // For more information, please refer to <http://unlicense.org/>
37 /**
38 * Writes a JPEG image to a file or stream.
39 * num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
40 * note that alpha will not be stored in jpeg file.
42 module iv.jpege /*is aliced*/;
44 import iv.alice;
46 public:
47 // ////////////////////////////////////////////////////////////////////////// //
48 // JPEG chroma subsampling factors. Y_ONLY (grayscale images) and H2V2 (color images) are the most common.
49 enum JpegSubsampling { Y_ONLY = 0, H1V1 = 1, H2V1 = 2, H2V2 = 3 }
51 // JPEG compression parameters structure.
52 public struct JpegParams {
53 // Quality: 1-100, higher is better. Typical values are around 50-95.
54 int quality = 85;
56 // subsampling:
57 // 0 = Y (grayscale) only
58 // 1 = YCbCr, no subsampling (H1V1, YCbCr 1x1x1, 3 blocks per MCU)
59 // 2 = YCbCr, H2V1 subsampling (YCbCr 2x1x1, 4 blocks per MCU)
60 // 3 = YCbCr, H2V2 subsampling (YCbCr 4x1x1, 6 blocks per MCU-- very common)
61 JpegSubsampling subsampling = JpegSubsampling.H2V2;
63 // Disables CbCr discrimination - only intended for testing.
64 // If true, the Y quantization table is also used for the CbCr channels.
65 bool noChromaDiscrimFlag = false;
67 bool twoPass = true;
69 bool check () const pure nothrow @safe @nogc {
70 if (quality < 1 || quality > 100) return false;
71 if (cast(uint)subsampling > cast(uint)JpegSubsampling.H2V2) return false;
72 return true;
77 // ////////////////////////////////////////////////////////////////////////// //
78 /// Writes JPEG image to file.
79 /// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
80 /// note that alpha will not be stored in jpeg file.
81 bool compress_image_to_jpeg_stream() (scope jpeg_encoder.WriteFunc wfn, int width, int height, int num_channels, const(ubyte)[] pImage_data) { return compress_image_to_jpeg_stream(wfn, width, height, num_channels, pImage_data, JpegParams()); }
83 /// Writes JPEG image to file.
84 /// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
85 /// note that alpha will not be stored in jpeg file.
86 bool compress_image_to_jpeg_stream() (scope jpeg_encoder.WriteFunc wfn, int width, int height, int num_channels, const(ubyte)[] pImage_data, in auto ref JpegParams comp_params) {
87 jpeg_encoder dst_image;
88 if (!dst_image.setup(wfn, width, height, num_channels, comp_params)) return false;
89 for (uint pass_index = 0; pass_index < dst_image.total_passes(); pass_index++) {
90 for (int i = 0; i < height; i++) {
91 const(ubyte)* pBuf = pImage_data.ptr+i*width*num_channels;
92 if (!dst_image.process_scanline(pBuf)) return false;
94 if (!dst_image.process_scanline(null)) return false;
96 dst_image.deinit();
97 //return dst_stream.close();
98 return true;
102 /// Writes JPEG image to file.
103 /// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
104 /// note that alpha will not be stored in jpeg file.
105 bool compress_image_to_jpeg_file (const(char)[] fname, int width, int height, int num_channels, const(ubyte)[] pImage_data) { return compress_image_to_jpeg_file(fname, width, height, num_channels, pImage_data, JpegParams()); }
107 /// Writes JPEG image to file.
108 /// num_channels must be 1 (Y), 3 (RGB), 4 (RGBA), image pitch must be width*num_channels.
109 /// note that alpha will not be stored in jpeg file.
110 bool compress_image_to_jpeg_file() (const(char)[] fname, int width, int height, int num_channels, const(ubyte)[] pImage_data, in auto ref JpegParams comp_params) {
111 import std.internal.cstring;
112 import core.stdc.stdio : FILE, fopen, fclose, fwrite;
113 FILE* fl = fopen(fname.tempCString, "wb");
114 if (fl is null) return false;
115 scope(exit) if (fl !is null) fclose(fl);
116 auto res = compress_image_to_jpeg_stream(
117 delegate bool (const(void)[] buf) {
118 if (fwrite(buf.ptr, 1, buf.length, fl) != buf.length) return false;
119 return true;
120 }, width, height, num_channels, pImage_data, comp_params);
121 if (res) {
122 if (fclose(fl) != 0) res = false;
123 fl = null;
125 return res;
129 // ////////////////////////////////////////////////////////////////////////// //
130 private:
131 nothrow @trusted @nogc {
132 auto JPGE_MIN(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a < b ? a : b); }
133 auto JPGE_MAX(T) (T a, T b) pure nothrow @safe @nogc { pragma(inline, true); return (a > b ? a : b); }
135 void *jpge_malloc (usize nSize) { import core.stdc.stdlib : malloc; return malloc(nSize); }
136 void jpge_free (void *p) { import core.stdc.stdlib : free; if (p !is null) free(p); }
139 // Various JPEG enums and tables.
140 enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 }
141 enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }
143 static immutable ubyte[64] s_zag = [ 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 ];
144 static immutable short[64] s_std_lum_quant = [ 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 ];
145 static immutable short[64] s_std_croma_quant = [ 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 ];
146 static immutable ubyte[17] s_dc_lum_bits = [ 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 ];
147 static immutable ubyte[DC_LUM_CODES] s_dc_lum_val = [ 0,1,2,3,4,5,6,7,8,9,10,11 ];
148 static immutable ubyte[17] s_ac_lum_bits = [ 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d ];
149 static immutable ubyte[AC_LUM_CODES] s_ac_lum_val = [
150 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,
151 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,
152 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
153 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,
154 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
155 0xf9,0xfa
157 static immutable ubyte[17] s_dc_chroma_bits = [ 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 ];
158 static immutable ubyte[DC_CHROMA_CODES] s_dc_chroma_val = [ 0,1,2,3,4,5,6,7,8,9,10,11 ];
159 static immutable ubyte[17] s_ac_chroma_bits = [ 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 ];
160 static immutable ubyte[AC_CHROMA_CODES] s_ac_chroma_val = [
161 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,
162 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,
163 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
164 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,
165 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,
166 0xf9,0xfa
169 // Low-level helper functions.
170 //template <class T> inline void clear_obj(T &obj) { memset(&obj, 0, sizeof(obj)); }
172 enum YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; // int
173 //ubyte clamp (int i) { if (cast(uint)(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return cast(ubyte)(i); }
174 ubyte clamp() (int i) { pragma(inline, true); return cast(ubyte)(cast(uint)i > 255 ? (((~i)>>31)&0xFF) : i); }
176 void RGB_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
177 for (; num_pixels; pDst += 3, pSrc += 3, --num_pixels) {
178 immutable int r = pSrc[0], g = pSrc[1], b = pSrc[2];
179 pDst[0] = cast(ubyte)((r*YR+g*YG+b*YB+32768)>>16);
180 pDst[1] = clamp(128+((r*CB_R+g*CB_G+b*CB_B+32768)>>16));
181 pDst[2] = clamp(128+((r*CR_R+g*CR_G+b*CR_B+32768)>>16));
185 void RGB_to_Y (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
186 for (; num_pixels; ++pDst, pSrc += 3, --num_pixels) {
187 pDst[0] = cast(ubyte)((pSrc[0]*YR+pSrc[1]*YG+pSrc[2]*YB+32768)>>16);
191 void RGBA_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
192 for (; num_pixels; pDst += 3, pSrc += 4, --num_pixels) {
193 immutable int r = pSrc[0], g = pSrc[1], b = pSrc[2];
194 pDst[0] = cast(ubyte)((r*YR+g*YG+b*YB+32768)>>16);
195 pDst[1] = clamp(128+((r*CB_R+g*CB_G+b*CB_B+32768)>>16));
196 pDst[2] = clamp(128+((r*CR_R+g*CR_G+b*CR_B+32768)>>16));
200 void RGBA_to_Y (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
201 for (; num_pixels; ++pDst, pSrc += 4, --num_pixels) {
202 pDst[0] = cast(ubyte)((pSrc[0]*YR+pSrc[1]*YG+pSrc[2]*YB+32768)>>16);
206 void Y_to_YCC (ubyte* pDst, const(ubyte)* pSrc, int num_pixels) {
207 for (; num_pixels; pDst += 3, ++pSrc, --num_pixels) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; }
210 // Forward DCT - DCT derived from jfdctint.
211 enum { CONST_BITS = 13, ROW_BITS = 2 }
212 //#define DCT_DESCALE(x, n) (((x)+(((int)1)<<((n)-1)))>>(n))
213 int DCT_DESCALE() (int x, int n) { pragma(inline, true); return (((x)+((cast(int)1)<<((n)-1)))>>(n)); }
214 //#define DCT_MUL(var, c) (cast(short)(var)*cast(int)(c))
216 //#define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7)
217 enum DCT1D = q{{
218 int t0 = s0+s7, t7 = s0-s7, t1 = s1+s6, t6 = s1-s6, t2 = s2+s5, t5 = s2-s5, t3 = s3+s4, t4 = s3-s4;
219 int t10 = t0+t3, t13 = t0-t3, t11 = t1+t2, t12 = t1-t2;
220 int u1 = (cast(short)(t12+t13)*cast(int)(4433));
221 s2 = u1+(cast(short)(t13)*cast(int)(6270));
222 s6 = u1+(cast(short)(t12)*cast(int)(-15137));
223 u1 = t4+t7;
224 int u2 = t5+t6, u3 = t4+t6, u4 = t5+t7;
225 int z5 = (cast(short)(u3+u4)*cast(int)(9633));
226 t4 = (cast(short)(t4)*cast(int)(2446)); t5 = (cast(short)(t5)*cast(int)(16819));
227 t6 = (cast(short)(t6)*cast(int)(25172)); t7 = (cast(short)(t7)*cast(int)(12299));
228 u1 = (cast(short)(u1)*cast(int)(-7373)); u2 = (cast(short)(u2)*cast(int)(-20995));
229 u3 = (cast(short)(u3)*cast(int)(-16069)); u4 = (cast(short)(u4)*cast(int)(-3196));
230 u3 += z5; u4 += z5;
231 s0 = t10+t11; s1 = t7+u1+u4; s3 = t6+u2+u3; s4 = t10-t11; s5 = t5+u2+u4; s7 = t4+u1+u3;
234 void DCT2D (int* p) {
235 int c;
236 int* q = p;
237 for (c = 7; c >= 0; --c, q += 8) {
238 int s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7];
239 //DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
240 mixin(DCT1D);
241 q[0] = s0<<ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS);
242 q[4] = s4<<ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS);
244 for (q = p, c = 7; c >= 0; --c, ++q) {
245 int s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8];
246 //DCT1D(s0, s1, s2, s3, s4, s5, s6, s7);
247 mixin(DCT1D);
248 q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3);
249 q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3);
253 struct sym_freq { uint m_key, m_sym_index; }
255 // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values.
256 sym_freq* radix_sort_syms (uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) {
257 const uint cMaxPasses = 4;
258 uint[256*cMaxPasses] hist;
259 //clear_obj(hist);
260 for (uint i = 0; i < num_syms; i++) {
261 uint freq = pSyms0[i].m_key;
262 ++hist[freq&0xFF];
263 ++hist[256+((freq>>8)&0xFF)];
264 ++hist[256*2+((freq>>16)&0xFF)];
265 ++hist[256*3+((freq>>24)&0xFF)];
267 sym_freq* pCur_syms = pSyms0;
268 sym_freq* pNew_syms = pSyms1;
269 uint total_passes = cMaxPasses; while (total_passes > 1 && num_syms == hist[(total_passes-1)*256]) --total_passes;
270 uint[256] offsets;
271 for (uint pass_shift = 0, pass = 0; pass < total_passes; ++pass, pass_shift += 8) {
272 const(uint)* pHist = &hist[pass<<8];
273 uint cur_ofs = 0;
274 for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; }
275 for (uint i = 0; i < num_syms; i++) pNew_syms[offsets[(pCur_syms[i].m_key>>pass_shift)&0xFF]++] = pCur_syms[i];
276 sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t;
278 return pCur_syms;
281 // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
282 void calculate_minimum_redundancy (sym_freq* A, int n) {
283 int root, leaf, next, avbl, used, dpth;
284 if (n == 0) return;
285 if (n == 1) { A[0].m_key = 1; return; }
286 A[0].m_key += A[1].m_key; root = 0; leaf = 2;
287 for (next=1; next < n-1; next++)
289 if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key;
290 if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key;
292 A[n-2].m_key = 0;
293 for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1;
294 avbl = 1; used = dpth = 0; root = n-2; next = n-1;
295 while (avbl>0)
297 while (root >= 0 && cast(int)A[root].m_key == dpth) { used++; root--; }
298 while (avbl>used) { A[next--].m_key = dpth; avbl--; }
299 avbl = 2*used; dpth++; used = 0;
303 // Limits canonical Huffman code table's max code size to max_code_size.
304 void huffman_enforce_max_code_size (int* pNum_codes, int code_list_len, int max_code_size) {
305 if (code_list_len <= 1) return;
306 for (int i = max_code_size+1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i];
307 uint total = 0;
308 for (int i = max_code_size; i > 0; i--) total += ((cast(uint)pNum_codes[i])<<(max_code_size-i));
309 while (total != (1UL<<max_code_size)) {
310 pNum_codes[max_code_size]--;
311 for (int i = max_code_size-1; i > 0; i--) {
312 if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i+1] += 2; break; }
314 total--;
320 // ////////////////////////////////////////////////////////////////////////// //
321 // Lower level jpeg_encoder class - useful if more control is needed than the above helper functions.
322 struct jpeg_encoder {
323 public:
324 alias WriteFunc = bool delegate (const(void)[] buf);
326 nothrow /*@trusted @nogc*/:
327 private:
328 alias sample_array_t = int;
330 WriteFunc m_pStream;
331 JpegParams m_params;
332 ubyte m_num_components;
333 ubyte[3] m_comp_h_samp;
334 ubyte[3] m_comp_v_samp;
335 int m_image_x, m_image_y, m_image_bpp, m_image_bpl;
336 int m_image_x_mcu, m_image_y_mcu;
337 int m_image_bpl_xlt, m_image_bpl_mcu;
338 int m_mcus_per_row;
339 int m_mcu_x, m_mcu_y;
340 ubyte*[16] m_mcu_lines;
341 ubyte m_mcu_y_ofs;
342 sample_array_t[64] m_sample_array;
343 short[64] m_coefficient_array;
344 int[64][2] m_quantization_tables;
345 uint[256][4] m_huff_codes;
346 ubyte[256][4] m_huff_code_sizes;
347 ubyte[17][4] m_huff_bits;
348 ubyte[256][4] m_huff_val;
349 uint[256][4] m_huff_count;
350 int[3] m_last_dc_val;
351 enum JPGE_OUT_BUF_SIZE = 2048;
352 ubyte[JPGE_OUT_BUF_SIZE] m_out_buf;
353 ubyte* m_pOut_buf;
354 uint m_out_buf_left;
355 uint m_bit_buffer;
356 uint m_bits_in;
357 ubyte m_pass_num;
358 bool m_all_stream_writes_succeeded = true;
360 private:
361 // Generates an optimized offman table.
362 void optimize_huffman_table (int table_num, int table_len) {
363 sym_freq[MAX_HUFF_SYMBOLS] syms0;
364 sym_freq[MAX_HUFF_SYMBOLS] syms1;
365 syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's
366 int num_used_syms = 1;
367 const uint *pSym_count = &m_huff_count[table_num][0];
368 for (int i = 0; i < table_len; i++) {
369 if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i+1; }
371 sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0.ptr, syms1.ptr);
372 calculate_minimum_redundancy(pSyms, num_used_syms);
374 // Count the # of symbols of each code size.
375 int[1+MAX_HUFF_CODESIZE] num_codes;
376 //clear_obj(num_codes);
377 for (int i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
379 enum JPGE_CODE_SIZE_LIMIT = 16u; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol)
380 huffman_enforce_max_code_size(num_codes.ptr, num_used_syms, JPGE_CODE_SIZE_LIMIT);
382 // Compute m_huff_bits array, which contains the # of symbols per code size.
383 //clear_obj(m_huff_bits[table_num]);
384 m_huff_bits[table_num][] = 0;
385 for (int i = 1; i <= cast(int)JPGE_CODE_SIZE_LIMIT; i++) m_huff_bits[table_num][i] = cast(ubyte)(num_codes[i]);
387 // Remove the dummy symbol added above, which must be in largest bucket.
388 for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) {
389 if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; }
392 // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest).
393 for (int i = num_used_syms-1; i >= 1; i--) m_huff_val[table_num][num_used_syms-1-i] = cast(ubyte)(pSyms[i].m_sym_index-1);
396 bool put_obj(T) (T v) {
397 try {
398 return (m_pStream !is null && m_pStream((&v)[0..1]));
399 } catch (Exception) {}
400 return false;
403 bool put_buf() (const(void)* v, uint len) {
404 try {
405 return (m_pStream !is null && m_pStream(v[0..len]));
406 } catch (Exception) {}
407 return false;
410 // JPEG marker generation.
411 void emit_byte (ubyte i) {
412 m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && put_obj(i);
415 void emit_word(uint i) {
416 emit_byte(cast(ubyte)(i>>8));
417 emit_byte(cast(ubyte)(i&0xFF));
420 void emit_marker (int marker) {
421 emit_byte(cast(ubyte)(0xFF));
422 emit_byte(cast(ubyte)(marker));
425 // Emit JFIF marker
426 void emit_jfif_app0 () {
427 emit_marker(M_APP0);
428 emit_word(2+4+1+2+1+2+2+1+1);
429 emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */
430 emit_byte(0);
431 emit_byte(1); /* Major version */
432 emit_byte(1); /* Minor version */
433 emit_byte(0); /* Density unit */
434 emit_word(1);
435 emit_word(1);
436 emit_byte(0); /* No thumbnail image */
437 emit_byte(0);
440 // Emit quantization tables
441 void emit_dqt () {
442 for (int i = 0; i < (m_num_components == 3 ? 2 : 1); i++) {
443 emit_marker(M_DQT);
444 emit_word(64+1+2);
445 emit_byte(cast(ubyte)(i));
446 for (int j = 0; j < 64; j++) emit_byte(cast(ubyte)(m_quantization_tables[i][j]));
450 // Emit start of frame marker
451 void emit_sof () {
452 emit_marker(M_SOF0); /* baseline */
453 emit_word(3*m_num_components+2+5+1);
454 emit_byte(8); /* precision */
455 emit_word(m_image_y);
456 emit_word(m_image_x);
457 emit_byte(m_num_components);
458 for (int i = 0; i < m_num_components; i++) {
459 emit_byte(cast(ubyte)(i+1)); /* component ID */
460 emit_byte(cast(ubyte)((m_comp_h_samp[i]<<4)+m_comp_v_samp[i])); /* h and v sampling */
461 emit_byte(i > 0); /* quant. table num */
465 // Emit Huffman table.
466 void emit_dht (ubyte* bits, ubyte* val, int index, bool ac_flag) {
467 emit_marker(M_DHT);
468 int length = 0;
469 for (int i = 1; i <= 16; i++) length += bits[i];
470 emit_word(length+2+1+16);
471 emit_byte(cast(ubyte)(index+(ac_flag<<4)));
472 for (int i = 1; i <= 16; i++) emit_byte(bits[i]);
473 for (int i = 0; i < length; i++) emit_byte(val[i]);
476 // Emit all Huffman tables.
477 void emit_dhts () {
478 emit_dht(m_huff_bits[0+0].ptr, m_huff_val[0+0].ptr, 0, false);
479 emit_dht(m_huff_bits[2+0].ptr, m_huff_val[2+0].ptr, 0, true);
480 if (m_num_components == 3) {
481 emit_dht(m_huff_bits[0+1].ptr, m_huff_val[0+1].ptr, 1, false);
482 emit_dht(m_huff_bits[2+1].ptr, m_huff_val[2+1].ptr, 1, true);
486 // emit start of scan
487 void emit_sos () {
488 emit_marker(M_SOS);
489 emit_word(2*m_num_components+2+1+3);
490 emit_byte(m_num_components);
491 for (int i = 0; i < m_num_components; i++) {
492 emit_byte(cast(ubyte)(i+1));
493 if (i == 0)
494 emit_byte((0<<4)+0);
495 else
496 emit_byte((1<<4)+1);
498 emit_byte(0); /* spectral selection */
499 emit_byte(63);
500 emit_byte(0);
503 // Emit all markers at beginning of image file.
504 void emit_markers () {
505 emit_marker(M_SOI);
506 emit_jfif_app0();
507 emit_dqt();
508 emit_sof();
509 emit_dhts();
510 emit_sos();
513 // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays.
514 void compute_huffman_table (uint* codes, ubyte* code_sizes, ubyte* bits, ubyte* val) {
515 import core.stdc.string : memset;
517 int i, l, last_p, si;
518 ubyte[257] huff_size;
519 uint[257] huff_code;
520 uint code;
522 int p = 0;
523 for (l = 1; l <= 16; l++)
524 for (i = 1; i <= bits[l]; i++)
525 huff_size[p++] = cast(ubyte)l;
527 huff_size[p] = 0; last_p = p; // write sentinel
529 code = 0; si = huff_size[0]; p = 0;
531 while (huff_size[p])
533 while (huff_size[p] == si)
534 huff_code[p++] = code++;
535 code <<= 1;
536 si++;
539 memset(codes, 0, codes[0].sizeof*256);
540 memset(code_sizes, 0, code_sizes[0].sizeof*256);
541 for (p = 0; p < last_p; p++)
543 codes[val[p]] = huff_code[p];
544 code_sizes[val[p]] = huff_size[p];
548 // Quantization table generation.
549 void compute_quant_table (int* pDst, const(short)* pSrc) {
550 int q;
551 if (m_params.quality < 50)
552 q = 5000/m_params.quality;
553 else
554 q = 200-m_params.quality*2;
555 for (int i = 0; i < 64; i++) {
556 int j = *pSrc++; j = (j*q+50L)/100L;
557 *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255);
561 // Higher-level methods.
562 void first_pass_init () {
563 import core.stdc.string : memset;
564 m_bit_buffer = 0; m_bits_in = 0;
565 memset(m_last_dc_val.ptr, 0, 3*m_last_dc_val[0].sizeof);
566 m_mcu_y_ofs = 0;
567 m_pass_num = 1;
570 bool second_pass_init () {
571 compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0].ptr, m_huff_val[0+0].ptr);
572 compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0].ptr, m_huff_val[2+0].ptr);
573 if (m_num_components > 1)
575 compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1].ptr, m_huff_val[0+1].ptr);
576 compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1].ptr, m_huff_val[2+1].ptr);
578 first_pass_init();
579 emit_markers();
580 m_pass_num = 2;
581 return true;
584 bool jpg_open (int p_x_res, int p_y_res, int src_channels) {
585 m_num_components = 3;
586 switch (m_params.subsampling) {
587 case JpegSubsampling.Y_ONLY:
588 m_num_components = 1;
589 m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
590 m_mcu_x = 8; m_mcu_y = 8;
591 break;
592 case JpegSubsampling.H1V1:
593 m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1;
594 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
595 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
596 m_mcu_x = 8; m_mcu_y = 8;
597 break;
598 case JpegSubsampling.H2V1:
599 m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1;
600 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
601 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
602 m_mcu_x = 16; m_mcu_y = 8;
603 break;
604 case JpegSubsampling.H2V2:
605 m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2;
606 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1;
607 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1;
608 m_mcu_x = 16; m_mcu_y = 16;
609 break;
610 default: assert(0);
613 m_image_x = p_x_res; m_image_y = p_y_res;
614 m_image_bpp = src_channels;
615 m_image_bpl = m_image_x*src_channels;
616 m_image_x_mcu = (m_image_x+m_mcu_x-1)&(~(m_mcu_x-1));
617 m_image_y_mcu = (m_image_y+m_mcu_y-1)&(~(m_mcu_y-1));
618 m_image_bpl_xlt = m_image_x*m_num_components;
619 m_image_bpl_mcu = m_image_x_mcu*m_num_components;
620 m_mcus_per_row = m_image_x_mcu/m_mcu_x;
622 if ((m_mcu_lines[0] = cast(ubyte*)(jpge_malloc(m_image_bpl_mcu*m_mcu_y))) is null) return false;
623 for (int i = 1; i < m_mcu_y; i++)
624 m_mcu_lines[i] = m_mcu_lines[i-1]+m_image_bpl_mcu;
626 compute_quant_table(m_quantization_tables[0].ptr, s_std_lum_quant.ptr);
627 compute_quant_table(m_quantization_tables[1].ptr, (m_params.noChromaDiscrimFlag ? s_std_lum_quant.ptr : s_std_croma_quant.ptr));
629 m_out_buf_left = JPGE_OUT_BUF_SIZE;
630 m_pOut_buf = m_out_buf.ptr;
632 if (m_params.twoPass)
634 //clear_obj(m_huff_count);
635 import core.stdc.string : memset;
636 memset(m_huff_count.ptr, 0, m_huff_count.sizeof);
637 first_pass_init();
639 else
641 import core.stdc.string : memcpy;
642 memcpy(m_huff_bits[0+0].ptr, s_dc_lum_bits.ptr, 17); memcpy(m_huff_val[0+0].ptr, s_dc_lum_val.ptr, DC_LUM_CODES);
643 memcpy(m_huff_bits[2+0].ptr, s_ac_lum_bits.ptr, 17); memcpy(m_huff_val[2+0].ptr, s_ac_lum_val.ptr, AC_LUM_CODES);
644 memcpy(m_huff_bits[0+1].ptr, s_dc_chroma_bits.ptr, 17); memcpy(m_huff_val[0+1].ptr, s_dc_chroma_val.ptr, DC_CHROMA_CODES);
645 memcpy(m_huff_bits[2+1].ptr, s_ac_chroma_bits.ptr, 17); memcpy(m_huff_val[2+1].ptr, s_ac_chroma_val.ptr, AC_CHROMA_CODES);
646 if (!second_pass_init()) return false; // in effect, skip over the first pass
648 return m_all_stream_writes_succeeded;
651 void load_block_8_8_grey (int x) {
652 ubyte *pSrc;
653 sample_array_t *pDst = m_sample_array.ptr;
654 x <<= 3;
655 for (int i = 0; i < 8; i++, pDst += 8)
657 pSrc = m_mcu_lines[i]+x;
658 pDst[0] = pSrc[0]-128; pDst[1] = pSrc[1]-128; pDst[2] = pSrc[2]-128; pDst[3] = pSrc[3]-128;
659 pDst[4] = pSrc[4]-128; pDst[5] = pSrc[5]-128; pDst[6] = pSrc[6]-128; pDst[7] = pSrc[7]-128;
663 void load_block_8_8 (int x, int y, int c) {
664 ubyte *pSrc;
665 sample_array_t *pDst = m_sample_array.ptr;
666 x = (x*(8*3))+c;
667 y <<= 3;
668 for (int i = 0; i < 8; i++, pDst += 8)
670 pSrc = m_mcu_lines[y+i]+x;
671 pDst[0] = pSrc[0*3]-128; pDst[1] = pSrc[1*3]-128; pDst[2] = pSrc[2*3]-128; pDst[3] = pSrc[3*3]-128;
672 pDst[4] = pSrc[4*3]-128; pDst[5] = pSrc[5*3]-128; pDst[6] = pSrc[6*3]-128; pDst[7] = pSrc[7*3]-128;
676 void load_block_16_8 (int x, int c) {
677 ubyte* pSrc1;
678 ubyte* pSrc2;
679 sample_array_t *pDst = m_sample_array.ptr;
680 x = (x*(16*3))+c;
681 int a = 0, b = 2;
682 for (int i = 0; i < 16; i += 2, pDst += 8)
684 pSrc1 = m_mcu_lines[i+0]+x;
685 pSrc2 = m_mcu_lines[i+1]+x;
686 pDst[0] = ((pSrc1[ 0*3]+pSrc1[ 1*3]+pSrc2[ 0*3]+pSrc2[ 1*3]+a)>>2)-128; pDst[1] = ((pSrc1[ 2*3]+pSrc1[ 3*3]+pSrc2[ 2*3]+pSrc2[ 3*3]+b)>>2)-128;
687 pDst[2] = ((pSrc1[ 4*3]+pSrc1[ 5*3]+pSrc2[ 4*3]+pSrc2[ 5*3]+a)>>2)-128; pDst[3] = ((pSrc1[ 6*3]+pSrc1[ 7*3]+pSrc2[ 6*3]+pSrc2[ 7*3]+b)>>2)-128;
688 pDst[4] = ((pSrc1[ 8*3]+pSrc1[ 9*3]+pSrc2[ 8*3]+pSrc2[ 9*3]+a)>>2)-128; pDst[5] = ((pSrc1[10*3]+pSrc1[11*3]+pSrc2[10*3]+pSrc2[11*3]+b)>>2)-128;
689 pDst[6] = ((pSrc1[12*3]+pSrc1[13*3]+pSrc2[12*3]+pSrc2[13*3]+a)>>2)-128; pDst[7] = ((pSrc1[14*3]+pSrc1[15*3]+pSrc2[14*3]+pSrc2[15*3]+b)>>2)-128;
690 int temp = a; a = b; b = temp;
694 void load_block_16_8_8 (int x, int c) {
695 ubyte *pSrc1;
696 sample_array_t *pDst = m_sample_array.ptr;
697 x = (x*(16*3))+c;
698 for (int i = 0; i < 8; i++, pDst += 8) {
699 pSrc1 = m_mcu_lines[i+0]+x;
700 pDst[0] = ((pSrc1[ 0*3]+pSrc1[ 1*3])>>1)-128; pDst[1] = ((pSrc1[ 2*3]+pSrc1[ 3*3])>>1)-128;
701 pDst[2] = ((pSrc1[ 4*3]+pSrc1[ 5*3])>>1)-128; pDst[3] = ((pSrc1[ 6*3]+pSrc1[ 7*3])>>1)-128;
702 pDst[4] = ((pSrc1[ 8*3]+pSrc1[ 9*3])>>1)-128; pDst[5] = ((pSrc1[10*3]+pSrc1[11*3])>>1)-128;
703 pDst[6] = ((pSrc1[12*3]+pSrc1[13*3])>>1)-128; pDst[7] = ((pSrc1[14*3]+pSrc1[15*3])>>1)-128;
707 void load_quantized_coefficients (int component_num) {
708 int *q = m_quantization_tables[component_num > 0].ptr;
709 short *pDst = m_coefficient_array.ptr;
710 for (int i = 0; i < 64; i++)
712 sample_array_t j = m_sample_array[s_zag[i]];
713 if (j < 0)
715 if ((j = -j+(*q>>1)) < *q)
716 *pDst++ = 0;
717 else
718 *pDst++ = cast(short)(-(j/ *q));
720 else
722 if ((j = j+(*q>>1)) < *q)
723 *pDst++ = 0;
724 else
725 *pDst++ = cast(short)((j/ *q));
727 q++;
731 void flush_output_buffer () {
732 if (m_out_buf_left != JPGE_OUT_BUF_SIZE) m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && put_buf(m_out_buf.ptr, JPGE_OUT_BUF_SIZE-m_out_buf_left);
733 m_pOut_buf = m_out_buf.ptr;
734 m_out_buf_left = JPGE_OUT_BUF_SIZE;
737 void put_bits (uint bits, uint len) {
738 m_bit_buffer |= (cast(uint)bits<<(24-(m_bits_in += len)));
739 while (m_bits_in >= 8) {
740 ubyte c;
741 //#define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); }
742 //JPGE_PUT_BYTE(c = (ubyte)((m_bit_buffer>>16)&0xFF));
743 //if (c == 0xFF) JPGE_PUT_BYTE(0);
744 c = cast(ubyte)((m_bit_buffer>>16)&0xFF);
745 *m_pOut_buf++ = c;
746 if (--m_out_buf_left == 0) flush_output_buffer();
747 if (c == 0xFF) {
748 *m_pOut_buf++ = 0;
749 if (--m_out_buf_left == 0) flush_output_buffer();
751 m_bit_buffer <<= 8;
752 m_bits_in -= 8;
756 void code_coefficients_pass_one (int component_num) {
757 if (component_num >= 3) return; // just to shut up static analysis
758 int i, run_len, nbits, temp1;
759 short *src = m_coefficient_array.ptr;
760 uint *dc_count = (component_num ? m_huff_count[0+1].ptr : m_huff_count[0+0].ptr);
761 uint *ac_count = (component_num ? m_huff_count[2+1].ptr : m_huff_count[2+0].ptr);
763 temp1 = src[0]-m_last_dc_val[component_num];
764 m_last_dc_val[component_num] = src[0];
765 if (temp1 < 0) temp1 = -temp1;
767 nbits = 0;
768 while (temp1)
770 nbits++; temp1 >>= 1;
773 dc_count[nbits]++;
774 for (run_len = 0, i = 1; i < 64; i++)
776 if ((temp1 = m_coefficient_array[i]) == 0)
777 run_len++;
778 else
780 while (run_len >= 16)
782 ac_count[0xF0]++;
783 run_len -= 16;
785 if (temp1 < 0) temp1 = -temp1;
786 nbits = 1;
787 while (temp1 >>= 1) nbits++;
788 ac_count[(run_len<<4)+nbits]++;
789 run_len = 0;
792 if (run_len) ac_count[0]++;
795 void code_coefficients_pass_two (int component_num) {
796 int i, j, run_len, nbits, temp1, temp2;
797 short *pSrc = m_coefficient_array.ptr;
798 uint*[2] codes;
799 ubyte*[2] code_sizes;
801 if (component_num == 0)
803 codes[0] = m_huff_codes[0+0].ptr; codes[1] = m_huff_codes[2+0].ptr;
804 code_sizes[0] = m_huff_code_sizes[0+0].ptr; code_sizes[1] = m_huff_code_sizes[2+0].ptr;
806 else
808 codes[0] = m_huff_codes[0+1].ptr; codes[1] = m_huff_codes[2+1].ptr;
809 code_sizes[0] = m_huff_code_sizes[0+1].ptr; code_sizes[1] = m_huff_code_sizes[2+1].ptr;
812 temp1 = temp2 = pSrc[0]-m_last_dc_val[component_num];
813 m_last_dc_val[component_num] = pSrc[0];
815 if (temp1 < 0)
817 temp1 = -temp1; temp2--;
820 nbits = 0;
821 while (temp1)
823 nbits++; temp1 >>= 1;
826 put_bits(codes[0][nbits], code_sizes[0][nbits]);
827 if (nbits) put_bits(temp2&((1<<nbits)-1), nbits);
829 for (run_len = 0, i = 1; i < 64; i++)
831 if ((temp1 = m_coefficient_array[i]) == 0)
832 run_len++;
833 else
835 while (run_len >= 16)
837 put_bits(codes[1][0xF0], code_sizes[1][0xF0]);
838 run_len -= 16;
840 if ((temp2 = temp1) < 0)
842 temp1 = -temp1;
843 temp2--;
845 nbits = 1;
846 while (temp1 >>= 1)
847 nbits++;
848 j = (run_len<<4)+nbits;
849 put_bits(codes[1][j], code_sizes[1][j]);
850 put_bits(temp2&((1<<nbits)-1), nbits);
851 run_len = 0;
854 if (run_len)
855 put_bits(codes[1][0], code_sizes[1][0]);
858 void code_block (int component_num) {
859 DCT2D(m_sample_array.ptr);
860 load_quantized_coefficients(component_num);
861 if (m_pass_num == 1)
862 code_coefficients_pass_one(component_num);
863 else
864 code_coefficients_pass_two(component_num);
867 void process_mcu_row () {
868 if (m_num_components == 1)
870 for (int i = 0; i < m_mcus_per_row; i++)
872 load_block_8_8_grey(i); code_block(0);
875 else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1))
877 for (int i = 0; i < m_mcus_per_row; i++)
879 load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2);
882 else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1))
884 for (int i = 0; i < m_mcus_per_row; i++)
886 load_block_8_8(i*2+0, 0, 0); code_block(0); load_block_8_8(i*2+1, 0, 0); code_block(0);
887 load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2);
890 else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2))
892 for (int i = 0; i < m_mcus_per_row; i++)
894 load_block_8_8(i*2+0, 0, 0); code_block(0); load_block_8_8(i*2+1, 0, 0); code_block(0);
895 load_block_8_8(i*2+0, 1, 0); code_block(0); load_block_8_8(i*2+1, 1, 0); code_block(0);
896 load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2);
901 bool terminate_pass_one () {
902 optimize_huffman_table(0+0, DC_LUM_CODES); optimize_huffman_table(2+0, AC_LUM_CODES);
903 if (m_num_components > 1)
905 optimize_huffman_table(0+1, DC_CHROMA_CODES); optimize_huffman_table(2+1, AC_CHROMA_CODES);
907 return second_pass_init();
910 bool terminate_pass_two () {
911 put_bits(0x7F, 7);
912 flush_output_buffer();
913 emit_marker(M_EOI);
914 m_pass_num++; // purposely bump up m_pass_num, for debugging
915 return true;
918 bool process_end_of_image () {
919 if (m_mcu_y_ofs)
921 if (m_mcu_y_ofs < 16) // check here just to shut up static analysis
923 for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) {
924 import core.stdc.string : memcpy;
925 memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs-1], m_image_bpl_mcu);
928 process_mcu_row();
931 if (m_pass_num == 1)
932 return terminate_pass_one();
933 else
934 return terminate_pass_two();
937 void load_mcu (const(void)* pSrc) {
938 import core.stdc.string : memcpy;
939 const(ubyte)* Psrc = cast(const(ubyte)*)(pSrc);
941 ubyte* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst
943 if (m_num_components == 1)
945 if (m_image_bpp == 4)
946 RGBA_to_Y(pDst, Psrc, m_image_x);
947 else if (m_image_bpp == 3)
948 RGB_to_Y(pDst, Psrc, m_image_x);
949 else
950 memcpy(pDst, Psrc, m_image_x);
952 else
954 if (m_image_bpp == 4)
955 RGBA_to_YCC(pDst, Psrc, m_image_x);
956 else if (m_image_bpp == 3)
957 RGB_to_YCC(pDst, Psrc, m_image_x);
958 else
959 Y_to_YCC(pDst, Psrc, m_image_x);
962 // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16
963 if (m_num_components == 1) {
964 import core.stdc.string : memset;
965 memset(m_mcu_lines[m_mcu_y_ofs]+m_image_bpl_xlt, pDst[m_image_bpl_xlt-1], m_image_x_mcu-m_image_x);
966 } else
968 const ubyte y = pDst[m_image_bpl_xlt-3+0], cb = pDst[m_image_bpl_xlt-3+1], cr = pDst[m_image_bpl_xlt-3+2];
969 ubyte *q = m_mcu_lines[m_mcu_y_ofs]+m_image_bpl_xlt;
970 for (int i = m_image_x; i < m_image_x_mcu; i++)
972 *q++ = y; *q++ = cb; *q++ = cr;
976 if (++m_mcu_y_ofs == m_mcu_y)
978 process_mcu_row();
979 m_mcu_y_ofs = 0;
983 void clear() {
984 m_mcu_lines[0] = null;
985 m_pass_num = 0;
986 m_all_stream_writes_succeeded = true;
990 public:
991 //this () { clear(); }
992 ~this () { deinit(); }
994 @disable this (this); // no copies
996 // Initializes the compressor.
997 // pStream: The stream object to use for writing compressed data.
998 // comp_params - Compression parameters structure, defined above.
999 // width, height - Image dimensions.
1000 // channels - May be 1, or 3. 1 indicates grayscale, 3 indicates RGB source data.
1001 // Returns false on out of memory or if a stream write fails.
1002 bool setup() (WriteFunc pStream, int width, int height, int src_channels, in auto ref JpegParams comp_params) {
1003 deinit();
1004 if ((pStream is null || width < 1 || height < 1) || (src_channels != 1 && src_channels != 3 && src_channels != 4) || !comp_params.check()) return false;
1005 m_pStream = pStream;
1006 m_params = comp_params;
1007 return jpg_open(width, height, src_channels);
1010 bool setup() (WriteFunc pStream, int width, int height, int src_channels) { return setup(pStream, width, height, src_channels, JpegParams()); }
1012 @property ref const(JpegParams) params () const pure nothrow @safe @nogc { pragma(inline, true); return m_params; }
1014 // Deinitializes the compressor, freeing any allocated memory. May be called at any time.
1015 void deinit () {
1016 jpge_free(m_mcu_lines[0]);
1017 clear();
1020 @property uint total_passes () const pure nothrow @safe @nogc { pragma(inline, true); return (m_params.twoPass ? 2 : 1); }
1021 @property uint cur_pass () const pure nothrow @safe @nogc { pragma(inline, true); return m_pass_num; }
1023 // Call this method with each source scanline.
1024 // width*src_channels bytes per scanline is expected (RGB or Y format).
1025 // You must call with null after all scanlines are processed to finish compression.
1026 // Returns false on out of memory or if a stream write fails.
1027 bool process_scanline (const(void)* pScanline) {
1028 if (m_pass_num < 1 || m_pass_num > 2) return false;
1029 if (m_all_stream_writes_succeeded) {
1030 if (pScanline is null) {
1031 if (!process_end_of_image()) return false;
1032 } else {
1033 load_mcu(pScanline);
1036 return m_all_stream_writes_succeeded;