2 * Pixel Region Operations
3 * coded by Ketmar // Invisible Vector <ketmar@ketmar.no-ip.org>
4 * Understanding is not required. Only obedience.
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, version 3 of the License ONLY.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 module iv
.region
/*is aliced*/;
22 // ////////////////////////////////////////////////////////////////////////// //
23 /// regions are copy-on-write shared, yay
25 alias SpanType
= ushort; /// you probably will never need this, but...
27 /// combine operation for region combiner %-)
31 Xor
, /// logic exclusive or
32 Cut
, /// cut solid parts
33 NCut
, /// cut empty parts
36 @property pure const nothrow @safe @nogc {
37 int width () { pragma(inline
, true); return (rdatap ? rdata
.rwdt
: 0); } ///
38 int height () { pragma(inline
, true); return (rdatap ? rdata
.rhgt
: 0); } ///
39 bool solid () { pragma(inline
, true); return (rdatap ? rdata
.simple
&& rdata
.rwdt
> 0 && rdata
.rhgt
> 0 && rdata
.simpleSolid
: false); } ///
40 bool empty () { pragma(inline
, true); return (rdatap ? rdata
.rwdt
< 1 || rdata
.rhgt
< 1 ||
(rdata
.simple
&& !rdata
.simpleSolid
) : true); } ///
43 /// can be used to save region data
44 @property uint[] getData () const nothrow @safe {
47 res
~= 1|
(rdata
.simpleSolid ?
2 : 0);
51 res
[0] |
= cast(int)(SpanType
.sizeof
<<4);
56 foreach (SpanType d
; rdata
.data
) res
~= d
;
61 /// can be used to restore region data
62 void setData (const(int)[] data
) nothrow @safe {
64 if (data
.length
< 3 ||
(data
[0]>>4) != SpanType
.sizeof
) assert(0, "invalid region data");
67 rdata
.simple
= ((data
[0]&0x01) != 0);
71 rdata
.simpleSolid
= ((data
[0]&0x02) != 0);
73 foreach (int d
; data
[3..3+rdata
.rhgt
]) rdata
.lineofs
~= d
;
74 foreach (int d
; data
[3+rdata
.rhgt
..$]) rdata
.data
~= cast(SpanType
)d
;
78 /// this creates solid region (by default)
79 this (int awidth
, int aheight
, bool solid
=true) nothrow @safe @nogc { setSize(awidth
, aheight
, solid
); }
80 ~this () nothrow @safe @nogc { decRC(); } /// release this region data
81 this (this) nothrow @safe @nogc { if (rdatap
) ++rdata
.rc
; } /// share this region data
84 void setSize (int awidth
, int aheight
, bool solid
=true) nothrow @safe @nogc {
85 if (awidth
<= 0 || aheight
<= 0) awidth
= aheight
= 0;
86 if (awidth
> SpanType
.max
-1 || aheight
> SpanType
.max
-1) assert(0, "Region internal error: region dimensions are too big");
90 rdata
.simpleSolid
= solid
;
95 /// is given point visible?
96 bool visible (int x
, int y
) const pure nothrow @safe @nogc {
98 if (!rdatap
) return false;
99 if (rdata
.rwdt
< 1 || rdata
.rhgt
< 1) return false;
100 if (x
< 0 || y
< 0 || x
>= rdata
.rwdt || y
>= rdata
.rhgt
) return false;
101 if (rdata
.simple
) return true; // ok, easy case here
103 immutable ldofs
= rdata
.lineofs
[y
];
104 immutable len
= rdata
.data
[ldofs
];
105 debug assert(len
> 1);
106 auto line
= rdata
.data
[ldofs
+1..ldofs
+len
];
107 int idx
= void; // will be initied in mixin
108 mixin(FindSpanMixinStr
!"idx");
109 debug assert(idx
< line
.length
); // too far (the thing that should not be)
110 return ((idx
+(line
[idx
] == x
))%2 == 0);
114 void punch (int x
, int y
, int w
=1, int h
=1) nothrow @trusted { pragma(inline
, true); doPunchPatch
!"punch"(x
, y
, w
, h
); }
117 void patch (int x
, int y
, int w
=1, int h
=1) nothrow @trusted { pragma(inline
, true); doPunchPatch
!"patch"(x
, y
, w
, h
); }
119 // ////////////////////////////////////////////////////////////////////////// //
120 enum State
{ Mixed
= -1, Empty
, Solid
} /// WARNING! don't change the order!
122 /// return span state %-)
123 State
spanState (int y
, int x0
, int x1
) const pure nothrow @safe @nogc {
124 if (rdata
is null) return State
.Empty
;
125 if (y
< 0 || y
>= rdata
.rhgt || x1
< 0 || x0
>= rdata
.rwdt || x1
< x0
) return State
.Empty
;
127 // if our span is not fully inside, it can be either Empty or Mixed
128 if (rdata
.simpleSolid
) {
129 return (x0
>= 0 && x1
< rdata
.rwdt ? State
.Solid
: State
.Mixed
);
134 immutable ldofs
= rdata
.lineofs
[y
];
135 immutable len
= rdata
.data
[ldofs
];
136 debug assert(len
> 1);
137 auto line
= rdata
.data
[ldofs
+1..ldofs
+len
];
138 int idx
= void; // will be initied in mixin
139 immutable x
= (x0
>= 0 ? x0
: 0);
140 mixin(FindSpanMixinStr
!"idx");
141 debug assert(idx
< line
.length
); // too far (the thing that should not be)
142 // move to "real" span
143 if (line
[idx
] == x
) ++idx
;
144 // now, sx is line[idx-1], ex is line[idx]
145 if (x1
>= (idx
< line
.length ? line
[idx
] : rdata
.rwdt
)) return State
.Mixed
;
146 idx
= (idx^
1)&1; // we are interested only in last bit, and we converted it to State here
147 // if our span is not fully inside, it can be either Empty or Mixed
148 if (idx
== State
.Solid
&& x0
< 0) return State
.Mixed
;
149 return cast(State
)idx
;
152 static private template IsGoodSDG(T
) {
153 private import std
.traits
;
154 static private template IsGoodRT(T
) { enum IsGoodRT
= is(T
== void) ||
is(T
== bool) ||
is(T
: int); }
155 static private template IsGoodAT(T
) { enum IsGoodAT
= is(T
== int) ||
is(T
== long) ||
is(T
== uint) ||
is(T
== ulong); }
156 enum IsGoodSDG
= isCallable
!T
&& IsGoodRT
!(ReturnType
!T
) && (variadicFunctionStyle
!T
== Variadic
.no
) &&
157 Parameters
!T
.length
== 2 && IsGoodAT
!(Parameters
!T
[0]) && IsGoodAT
!(Parameters
!T
[1]);
160 /// call delegate for each solid or empty span
161 /// for non-void returning delegates, return !0 to exit
162 auto spans(bool solids
=true, DG
) (int y
, int x0
, int x1
, scope DG dg
) const if (IsGoodSDG
!DG
) { return spansEnumerator
!(DG
, solids
)(y
, 0, x0
, x1
, dg
); }
164 /// call delegate for each solid or empty span
165 /// for non-void returning delegates, return !0 to exit
166 /// `ofsx` will be automatically subtracted from `x0` and `x1` args, and added to `x0` and `x1` delegate args
167 auto spans(bool solids
=true, DG
) (int y
, int ofsx
, int x0
, int x1
, scope DG dg
) const if (IsGoodSDG
!DG
) { return spansEnumerator
!(DG
, solids
)(y
, ofsx
, x0
, x1
, dg
); }
169 /// element of span range
170 static struct XPair
{ int x0
, x1
; }
172 /// get range of spans
173 auto spanRange(bool solids
=true) (int y
, int x0
, int x1
) nothrow @safe @nogc { return spanRange
!solids(y
, 0, x0
, x1
); }
176 auto spanRange(bool solids
=true) (int y
, int ofsx
, int x0
, int x1
) nothrow @safe @nogc {
177 static struct SpanRange(bool solids
) {
178 int ofsx
, x0
, x1
, rwdt
, idx
;
179 ubyte eosNM
; // empty(bit0), nomore(bit1) ;-)
180 XPair fpair
; // front
181 const(SpanType
)[] line
;
183 nothrow @trusted @nogc:
184 this (ref Region reg
, int y
, int aofsx
, int ax0
, int ax1
) {
188 if (x0
> x1
) { eosNM
= 0x01; return; }
189 if (reg
.rdata
is null) {
190 static if (!solids
) {
199 rwdt
= reg
.rdata
.rwdt
;
202 if (y
< 0 || y
>= reg
.rdata
.rhgt || x1
< 0 || x0
>= rwdt || x1
< x0
) {
203 static if (!solids
) {
212 if (reg
.rdata
.simple
) {
213 if (reg
.rdata
.simpleSolid
) {
216 if (x1
>= rwdt
) x1
= rwdt
-1;
228 eosNM
= (x1
< rwdt ?
0x02 : 0x04);
231 fpair
.x0
= rwdt
+ofsx
;
240 static if (!solids
) {
250 // edge cases are checked
251 immutable ldofs
= reg
.rdata
.lineofs
[y
];
252 immutable len
= reg
.rdata
.data
[ldofs
];
253 debug assert(len
> 1);
254 line
= reg
.rdata
.data
[ldofs
+1..ldofs
+len
];
255 // beyond left border? move to first solid span
258 int ex
= (line
[0] == 0 ? line
[1]-1 : -1);
259 // is first span empty too?
261 static if (!solids
) {
270 static if (!solids
) {
275 //import iv.writer; writeln("*");
280 static if (solids
) { if (x1
>= rwdt
) x1
= rwdt
-1; }
281 //int idx = void; // will be initied in mixin
282 alias x
= x0
; // for mixin
283 mixin(FindSpanMixinStr
!"idx");
284 debug assert(idx
< line
.length
); // too far (the thing that should not be)
285 // move to "real" span, so sx is line[idx-1], ex+1 is line[idx]
286 if (line
[idx
] == x
) ++idx
;
287 if (!hasOne
) popFront();
290 @property auto save () pure {
291 SpanRange
!solids res
;
303 @property bool empty () const pure { return ((eosNM
&0x01) != 0); }
304 @property XPair
front () const pure { return XPair(fpair
.x0
, fpair
.x1
); }
307 if (eosNM
&0x02) eosNM
= 0x01;
308 if (eosNM
&0x01) return;
312 static if (!solids
) {
313 fpair
.x0
= rwdt
+ofsx
;
327 int ex
= line
[idx
]-1;
328 int cex
= (ex
< x1 ? ex
: x1
); // clipped ex
329 // emit part from x0 to ex if necessary
331 // current span is solid?
338 // current span is empty?
341 fpair
.x1
= (ex
< rwdt
-1 ? cex
: x1
)+ofsx
;
343 if (ex
== rwdt
-1) { eosNM
= 0x02; return; }
345 if (ex
== rwdt
-1) { x0
= rwdt
; break; }
353 static if (!solids
) {
365 return SpanRange
!solids(this, y
, ofsx
, x0
, x1
);
369 // ////////////////////////////////////////////////////////////////////////// //
370 auto spansEnumerator(DG
, bool solids
) (int y
, int ofsx
, int x0
, int x1
, scope DG dg
) const {
371 import std
.traits
: ReturnType
;
372 static if (is(ReturnType
!DG
== void)) {
373 enum ReturnFail
= "return;";
374 enum DgCall(string args
) = "dg("~args
~");";
376 static if (is(ReturnType
!DG
== bool)) enum ReturnFail
= "return false;"; else enum ReturnFail
= "return 0;";
377 enum DgCall(string args
) = "if (auto xres = dg("~args
~")) return xres;";
379 if (x0
> x1 || dg
is null) mixin(ReturnFail
);
381 static if (!solids
) dg(x0
, x1
);
386 if (y
< 0 || y
>= rdata
.rhgt || x1
< 0 || x0
>= rdata
.rwdt || x1
< x0
) {
387 static if (!solids
) { mixin(DgCall
!"x0+ofsx, x1+ofsx"); }
391 if (rdata
.simpleSolid
) {
394 if (x1
>= rdata
.rwdt
) x1
= rdata
.rwdt
-1;
395 if (x0
<= x1
) { mixin(DgCall
!"x0+ofsx, x1+ofsx"); }
397 if (x0
< 0) { mixin(DgCall
!"x0+ofsx, -1+ofsx"); }
398 if (x1
>= rdata
.rwdt
) { mixin(DgCall
!"rdata.rwdt+ofsx, x1+ofsx"); }
401 static if (!solids
) { mixin(DgCall
!"x0+ofsx, x1+ofsx"); }
405 immutable ldofs
= rdata
.lineofs
[y
];
406 immutable len
= rdata
.data
[ldofs
];
407 debug assert(len
> 1);
408 auto line
= rdata
.data
[ldofs
+1..ldofs
+len
];
409 // beyond left border? move to first solid span
411 int ex
= (rdata
.data
[ldofs
+1] == 0 ? rdata
.data
[ldofs
+2]-1 : -1);
412 // is first span empty too?
413 if (ex
>= x1
) { static if (!solids
) { mixin(DgCall
!"x0+ofsx, x1+ofsx"); } mixin(ReturnFail
); }
414 static if (!solids
) { mixin(DgCall
!"x0+ofsx, ex+ofsx"); }
417 static if (solids
) { if (x1
>= rdata
.rwdt
) x1
= rdata
.rwdt
-1; }
418 int idx
= void; // will be initied in mixin
419 alias x
= x0
; // for mixin
420 mixin(FindSpanMixinStr
!"idx");
421 debug assert(idx
< line
.length
); // too far (the thing that should not be)
422 // move to "real" span, so sx is line[idx-1], ex+1 is line[idx]
423 if (line
[idx
] == x
) ++idx
;
426 int ex
= line
[idx
]-1;
427 int cex
= (ex
< x1 ? ex
: x1
); // clipped ex
428 // emit part from x0 to ex if necessary
430 // current span is solid?
431 if (idx
%2 == 0) { mixin(DgCall
!"x0+ofsx, cex+ofsx"); }
433 // current span is empty?
435 { mixin(DgCall
!"x0+ofsx, (ex < rdata.rwdt-1 ? cex : x1)+ofsx"); }
436 if (ex
== rdata
.rwdt
-1) mixin(ReturnFail
);
438 if (ex
== rdata
.rwdt
-1) { x0
= rdata
.rwdt
; break; }
443 //static if (!solids) { if (x0 == rdata.rwdt) break; }
445 static if (!solids
) { if (x0
<= x1
) { mixin(DgCall
!"x0+ofsx, x1+ofsx"); } }
449 // ////////////////////////////////////////////////////////////////////////// //
450 // find element index
451 // always returns index of key which is >= `x`
452 private enum FindSpanMixinStr(string minAndRes
) = "{
454 int max = cast(int)line.length;
455 while (("~minAndRes
~") < max) {
456 int mid = (("~minAndRes
~")+max)/2; // ignore possible overflow, it can't happen here
457 debug assert(mid < max);
458 if (line[mid] < x) ("~minAndRes
~") = mid+1; else max = mid;
460 //return ("~minAndRes
~"); // actually, key is found if (max == min/*always*/ && min < line.length && line[min] == x)
463 // ////////////////////////////////////////////////////////////////////////// //
464 // punch a hole, patch a hole
465 // mode: "punch", "patch"
467 void doPunchPatch(string mode
) (int x
, int y
, int w
=1, int h
=1) nothrow @trusted {
468 static assert(mode
== "punch" || mode
== "patch", "Region: invalid mode: "~mode
);
469 if (rdata
is null) return;
470 static if (mode
== "punch") {
475 if (w
< 1 || h
< 1) return;
476 if (x
>= rdata
.rwdt || y
>= rdata
.rhgt
) return;
477 //TODO: overflow check
479 if (x
+w
<= 0) return;
484 if (y
+h
<= 0) return;
489 if (x1
>= rdata
.rwdt
) x1
= rdata
.rwdt
-1;
490 debug assert(x
<= x1
);
492 if (y1
>= rdata
.rhgt
) y1
= rdata
.rhgt
-1;
493 debug assert(y
<= y1
);
494 foreach (int cy
; y
..y1
+1) doPunchPatchLine
!mode(cy
, x
, x1
);
498 // ////////////////////////////////////////////////////////////////////////// //
499 void makeRoom (usize ofs
, ssize count
) nothrow @trusted {
500 import core
.stdc
.string
: memmove
;
501 debug assert(ofs
<= rdata
.data
.length
);
504 // `assumeSafeAppend` was already called in caller
505 //rdata.data.assumeSafeAppend.length += count;
506 rdata
.data
.length
+= count
;
507 if (ofs
+count
< rdata
.data
.length
) memmove(rdata
.data
.ptr
+ofs
+count
, rdata
.data
.ptr
+ofs
, SpanType
.sizeof
*(rdata
.data
.length
-ofs
-count
));
508 } else if (count
< 0) {
511 debug assert(ofs
+count
<= rdata
.data
.length
);
512 if (ofs
+count
== rdata
.data
.length
) {
513 rdata
.data
.length
= ofs
;
515 immutable auto left
= rdata
.data
.length
-ofs
-count
;
516 memmove(rdata
.data
.ptr
+ofs
, rdata
.data
.ptr
+ofs
+count
, SpanType
.sizeof
*(rdata
.data
.length
-ofs
-count
));
517 rdata
.data
.length
-= count
;
519 //rdata.data.assumeSafeAppend; // in case we will want to grow later
523 // replace span data at plofs with another data from spofs, return # of bytes added (or removed, if negative)
524 ssize
replaceSpanData (usize plofs
, usize spofs
) nothrow @trusted {
525 //import core.stdc.string : memcpy;
526 debug assert(spofs
< rdata
.data
.length
&& spofs
+rdata
.data
[spofs
] == rdata
.data
.length
);
527 debug assert(plofs
<= spofs
&& plofs
+rdata
.data
[plofs
] <= spofs
);
528 if (plofs
== spofs
) return 0; // nothing to do; just in case
529 auto oldlen
= rdata
.data
[plofs
];
530 auto newlen
= rdata
.data
[spofs
];
532 ssize
ins = cast(ssize
)newlen
-cast(ssize
)oldlen
;
534 makeRoom(plofs
, ins);
537 if (newlen
> 0) rdata
.data
[plofs
..plofs
+newlen
] = rdata
.data
[spofs
..spofs
+newlen
]; //memcpy(rdata.data.ptr+plofs, rdata.data.ptr+spofs, SpanType.sizeof*newlen);
541 // insert span data from spofs at plofs
542 void insertSpanData (usize plofs
, usize spofs
) nothrow @trusted {
543 //import core.stdc.string : memcpy;
544 debug assert(spofs
< rdata
.data
.length
&& spofs
+rdata
.data
[spofs
] == rdata
.data
.length
);
545 debug assert(plofs
<= spofs
);
546 if (plofs
== spofs
) return; // nothing to do; just in case
547 auto newlen
= rdata
.data
[spofs
];
548 makeRoom(plofs
, newlen
);
550 rdata
.data
[plofs
..plofs
+newlen
] = rdata
.data
[spofs
..spofs
+newlen
];
551 //memcpy(rdata.data.ptr+plofs, rdata.data.ptr+spofs, SpanType.sizeof*newlen);
554 bool isEqualLines (int y0
, int y1
) nothrow @trusted @nogc {
555 import core
.stdc
.string
: memcmp
;
556 if (y0
< 0 || y1
< 0 || y0
>= rdata
.rhgt || y1
>= rdata
.rhgt
) return false;
557 auto ofs0
= rdata
.lineofs
[y0
];
558 auto ofs1
= rdata
.lineofs
[y1
];
559 if (rdata
.data
[ofs0
] != rdata
.data
[ofs1
]) return false;
560 return (memcmp(rdata
.data
.ptr
+ofs0
, rdata
.data
.ptr
+ofs1
, SpanType
.sizeof
*rdata
.data
[ofs0
]) == 0);
563 // all args must be valid
565 void doPunchPatchLine(string mode
) (int y
, int x0
, int x1
) nothrow @trusted {
566 static if (mode
== "patch") {
567 if (rdata
.simple
&& rdata
.simpleSolid
) return; // no need to patch completely solid region
569 if (rdata
.simple
&& !rdata
.simpleSolid
) return; // no need to patch completely empty region
572 // check if we really have to do anything here
573 static if (mode
== "patch") {
574 if (spanState(y
, x0
, x1
) == State
.Solid
) return;
575 //enum psmode = true;
576 enum op
= CombineOp
.Or
;
578 if (spanState(y
, x0
, x1
) == State
.Empty
) return;
579 //enum psmode = false;
580 enum op
= CombineOp
.Cut
;
583 doCombine(y
, (uint lofs
, ref SpanType
[] dptr
) nothrow @trusted {
584 // note that after `assumeSafeAppend` we can increase length without further `assumeSafeAppend` calls
585 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf("op=%d; x0=%d; x1=%d; rwdt=%d\n", cast(int)op
, x0
, x1
, rdata
.rwdt
); }
586 SpanType dsp
= cast(SpanType
)(x1
-x0
+1);
587 debug(region_more_prints
) {
588 import core
.stdc
.stdio
: printf
;
589 auto cspd
= CSPD(op
, &dsp
, x1
-x0
+1, x0
);
590 while (!cspd
.empty
) {
591 printf(" (%d,%d,%d)", cspd
.sx
, cspd
.ex
, (cspd
.solid ?
1 : 0));
597 (int x
) nothrow @trusted { dptr
~= cast(SpanType
)x
; },
598 CSPD(CombineOp
.Or
, rdata
.data
.ptr
+lofs
+1, rdata
.rwdt
), // base span
599 CSPD(op
, &dsp
, x1
-x0
+1, x0
),
604 // `combine`: `lofs` is starting index in `rdata.data` for base line (i.e. length element)
605 // it should build a new valid line data, starting from `rdata.data.length`, not including line length tho
606 // all args must be valid
607 void doCombine() (int y
, scope void delegate (uint lofs
, ref SpanType
[] dptr
) nothrow @trusted combine
) nothrow @trusted {
608 // bad luck, build new line
611 // build complex region rdata.data
612 if (rdata
.lineofs
is null) {
613 rdata
.lineofs
.length
= rdata
.rhgt
; // allocate and clear
615 if (rdata
.lineofs
.length
< rdata
.rhgt
) rdata
.lineofs
.assumeSafeAppend
;
616 rdata
.lineofs
.length
= rdata
.rhgt
;
617 rdata
.lineofs
[] = 0; // clear
619 rdata
.data
.length
= 0;
620 if (rdata
.simpleSolid
) {
621 rdata
.data
.assumeSafeAppend
~= 2; // length
623 rdata
.data
.assumeSafeAppend
~= 3; // length
624 rdata
.data
~= 0; // dummy solid
626 rdata
.data
~= cast(SpanType
)rdata
.rwdt
; // the only span
627 rdata
.simple
= false;
630 auto lofs
= rdata
.lineofs
[y
]; // current line offset
631 int lsize
= rdata
.data
.ptr
[lofs
]; // current line size
632 auto tmppos
= cast(uint)rdata
.data
.length
; // starting position of the new line data
634 //patchSpan!psmode(lofs+1, x0, x1);
635 rdata
.data
.assumeSafeAppend
~= 0; // length
636 combine(lofs
, rdata
.data
);
637 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf("LEN=%d\n", cast(int)(rdata
.data
.length
-tmppos
)); }
638 if (rdata
.data
.length
-tmppos
> SpanType
.max
) assert(0, "region internal error: line data too big");
639 rdata
.data
.ptr
[tmppos
] = cast(SpanType
)(rdata
.data
.length
-tmppos
);
641 debug(region_more_prints
) {
642 import core
.stdc
.stdio
: printf
;
643 foreach (SpanType t
; rdata
.data
[tmppos
..$]) printf(" %u", cast(uint)t
);
647 int newsize
= rdata
.data
[tmppos
]; // size of the new line
649 // was this line first in slab?
650 auto prevofs
= (y
> 0 ? rdata
.lineofs
[y
-1] : -1);
651 auto nextofs
= (y
+1 < rdata
.rhgt ? rdata
.lineofs
[y
+1] : -2);
653 // place new line data, breaking span if necessary
654 if (prevofs
!= lofs
&& nextofs
!= lofs
) {
655 // we were a slab on our own?
657 auto delta
= replaceSpanData(lofs
, tmppos
);
659 if (delta
) foreach (ref ofs
; rdata
.lineofs
[y
+1..$]) ofs
+= delta
;
660 } else if (prevofs
!= lofs
&& nextofs
== lofs
) {
661 // we were a slab start
663 insertSpanData(lofs
, tmppos
);
665 foreach (ref ofs
; rdata
.lineofs
[y
+1..$]) ofs
+= newsize
;
666 } else if (prevofs
== lofs
&& nextofs
!= lofs
) {
667 // we were a slab end
670 insertSpanData(lofs
, tmppos
);
672 rdata
.lineofs
[y
] = lofs
;
673 foreach (ref ofs
; rdata
.lineofs
[y
+1..$]) ofs
+= newsize
;
675 //import core.stdc.string : memcpy;
676 // we were a slab brick
677 debug assert(prevofs
== lofs
&& nextofs
== lofs
);
678 // the most complex case
679 // insert us after lofs, insert slab start after us, fix slab and offsets
682 insertSpanData(lofs
, tmppos
);
684 rdata
.lineofs
[y
] = lofs
;
685 // insert old slab start
687 lsize
= rdata
.data
[prevofs
];
688 makeRoom(lofs
, lsize
);
689 //memcpy(rdata.data.ptr+lofs, rdata.data.ptr+prevofs, SpanType.sizeof*lsize);
690 rdata
.data
[lofs
..lofs
+lsize
] = rdata
.data
[prevofs
..prevofs
+lsize
];
693 while (ny
< rdata
.rhgt
&& rdata
.lineofs
[ny
] == prevofs
) rdata
.lineofs
[ny
++] = lofs
;
695 newsize
+= lsize
; // simple optimization
696 while (ny
< rdata
.rhgt
) rdata
.lineofs
[ny
++] += newsize
;
701 lofs
= rdata
.lineofs
[$-1];
702 rdata
.data
.length
= lofs
+rdata
.data
[lofs
];
704 // now check if we can join slabs
705 // of course, this is somewhat wasteful, but if we'll combine this
706 // check with previous code, the whole thing will explode to an
707 // unmaintainable mess; anyway, we aren't on ZX Spectrum
709 bool upequ
= isEqualLines(y
-1, y
);
710 bool dnequ
= isEqualLines(y
+1, y
);
711 if (upequ || dnequ
) {
712 rdata
.data
.assumeSafeAppend
; // we have to call it after shrinking
713 lofs
= rdata
.lineofs
[y
];
714 debug assert(rdata
.data
[lofs
] == newsize
);
715 makeRoom(lofs
, -newsize
); // drop us
716 if (upequ
&& dnequ
) {
717 // join prev and next slabs by removing two lines...
718 auto pofs
= rdata
.lineofs
[y
-1];
719 makeRoom(lofs
, -newsize
); // drop next line
721 // and fixing offsets
722 rdata
.lineofs
[y
++] = pofs
;
723 auto sofs
= rdata
.lineofs
[y
];
724 while (y
< rdata
.rhgt
&& rdata
.lineofs
[y
] == sofs
) rdata
.lineofs
[y
++] = pofs
;
727 rdata
.lineofs
[y
] = rdata
.lineofs
[y
-1];
731 auto sofs
= rdata
.lineofs
[++y
];
732 while (y
< rdata
.rhgt
&& rdata
.lineofs
[y
] == sofs
) rdata
.lineofs
[y
++] = lofs
;
735 foreach (ref ofs
; rdata
.lineofs
[y
..$]) ofs
-= newsize
;
739 // check if we can collapse this region
740 if (rdata
.data
.length
== 2) {
741 if (rdata
.data
.ptr
[0] != 2 || rdata
.data
.ptr
[1] != rdata
.rwdt
) return;
742 } else if (rdata
.data
.length
== 3) {
743 if (rdata
.data
.ptr
[0] != 3 || rdata
.data
.ptr
[1] != 0 || rdata
.data
.ptr
[2] != rdata
.rwdt
) return;
747 foreach (immutable ofs
; rdata
.lineofs
[1..$]) if (ofs
!= 0) return;
750 //static if (mode == "patch") rdata.simpleSolid = true; else rdata.simpleSolid = false;
751 rdata
.simpleSolid
= (rdata
.data
.length
== 2);
752 rdata
.lineofs
.length
= 0; // we may need it later, so keep it
756 nothrow @trusted @nogc:
757 const(SpanType
)* data
;
758 int width
; // to detect span end
760 CombineOp op
; // operation
761 bool dsolid
; // current span
764 this (CombineOp aop
, const(SpanType
)* adata
, int awdt
, int axofs
=0) {
765 // if first span is zero-sized, this region starts with empty span
778 this() (CombineOp aop
, auto ref Region rg
, int axofs
=0) {
779 this(aop
, rg
.ldata
.ptr
, rg
.width
, axofs
);
782 @disable this (this); // no copies
784 @property bool empty () const pure { pragma(inline
, true); return (data
is null); }
785 @property bool solid () const pure { pragma(inline
, true); return dsolid
; }
786 @property int sx () const pure { pragma(inline
, true); return xofs
+csx
; }
787 @property int ex () const pure { pragma(inline
, true); return xofs
+(*data
)-1; }
789 pragma(inline
, true);
791 if (csx
>= width
) data
= null;
796 // spans[0] should have `int .width`, `empty`, `popFront`, `sx`, `ex`, `solid`
797 // others sould have: `empty`, `popFront`, `sx`, `ex`, `solid`, `op`
798 // spans[0] should always start at 0 (i.e. it is alpha and omega)
799 static void combineSpans(SPR
...) (scope void delegate (int x
) nothrow @safe putX
, auto ref SPR spans
) if (SPR
.length
> 1) {
800 bool lastsolid
= true; // it's ok
801 int lastsx
= 0; // it's ok
803 void pushSpan() (int ex
, bool solid
) {
804 debug(region_more_prints
) {} else pragma(inline
, true);
805 //debug(region_more_prints) { import core.stdc.stdio : printf; printf(" ex=%d; solid=%d; lastsx=%d; lastsolid=%d\n", ex, (solid ? 1 : 0), lastsx, (lastsolid ? 1 : 0)); }
806 //debug if (ex <= lastsx) { import core.stdc.stdio : printf; printf("ex=%d; lastsx=%d\n", ex, lastsx); }
807 debug assert(ex
>= lastsx
);
808 if (solid
!= lastsolid
) {
810 putX(lastsx
); // new span starts here
811 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf(" EMIT: %d\n", lastsx
); }
816 debug assert(!spans
[0].empty
);
817 debug assert(spans
[0].sx
== 0);
818 immutable sp0w
= spans
[0].width
;
820 while (!spans
[0].empty
) {
821 // process other spans
822 bool seenAliveSpan
= false;
823 bool nsolid
= spans
[0].solid
;
824 int nex
= spans
[0].ex
;
825 foreach (ref sp
; spans
[1..$]) {
826 while (!sp
.empty
&& sp
.ex
< cursx
) sp
.popFront();
827 if (sp
.empty
) continue;
828 seenAliveSpan
= true;
829 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf(" cursx=%d; nex=%d; nsolid=%d; sp.sx=%d; sp.ex=%d; sp.solid=%d\n", cursx
, nex
, (nsolid ?
1 : 0), sp
.sx
, sp
.ex
, (sp
.solid ?
1 : 0)); }
830 //debug if (sp.sx > cursx) { import core.stdc.stdio : printf; printf("cursx=%d; sp.sx=%d; sp.ex=%d; sp.solid=%d\n", cursx, sp.sx, sp.ex, (sp.solid ? 1 : 0)); }
831 //debug assert(sp.sx <= cursx);
832 if (sp
.sx
> nex
) continue; // too far
833 if (sp
.sx
> cursx
) { nex
= sp
.sx
-1; continue; } // partial
835 final switch (sp
.op
) {
836 case CombineOp
.Or
: nsolid
= nsolid || sp
.solid
; break;
837 case CombineOp
.And
: nsolid
= nsolid
&& sp
.solid
; break;
838 case CombineOp
.Xor
: if (sp
.solid
) nsolid
= !nsolid
; break;
839 case CombineOp
.Cut
: if (sp
.solid
) nsolid
= false; break;
840 case CombineOp
.NCut
: if (!sp
.solid
) nsolid
= false; break;
842 if (sp
.ex
< nex
) nex
= sp
.ex
;
844 pushSpan(nex
, nsolid
);
845 if (!seenAliveSpan
) {
846 // no more alive spans, process span0 till the end
847 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf(" NM!\n"); }
848 if (nex
< spans
[0].ex
) pushSpan(spans
[0].ex
, spans
[0].solid
); // finish current span
851 if (spans
[0].empty
) break;
852 pushSpan(spans
[0].ex
, spans
[0].solid
);
855 debug assert(lastsx
<= sp0w
);
859 if (nex
< spans
[0].ex
) {
860 // something was done, and first slab of span0 is not completely eaten
863 // either no alive spans, or first slab of span0 is completely eaten
865 if (spans
[0].empty
) { putX(sp0w
); return; } // done
870 debug assert(lastsx
<= sp0w
);
875 usize rdatap
= 0; // hide from GC
877 @property inout(RData
)* rdata () inout pure const nothrow @trusted @nogc { static if (__VERSION__
> 2067) pragma(inline
, true); return cast(RData
*)rdatap
; }
879 void decRC () nothrow @trusted @nogc {
881 if (--rdata
.rc
== 0) {
882 import core
.memory
: GC
;
883 import core
.stdc
.stdlib
: free
;
884 GC
.removeRange(rdata
);
887 rdatap
= 0; // just in case
891 // copy-on-write mechanics
892 void cow(bool doCopyData
) () nothrow @trusted {
894 if (srcd
is null || srcd
.rc
!= 1) {
895 import core
.memory
: GC
;
896 import core
.stdc
.stdlib
: malloc
, free
;
897 import core
.stdc
.string
: memcpy
;
898 auto dstd
= cast(RData
*)malloc(RData
.sizeof
);
899 if (dstd
is null) assert(0, "Region: out of memory"); // this is unlikely, and hey, just crash
900 // init with default values
901 //*dstd = RData.init;
902 static immutable RData initr
= RData
.init
;
903 memcpy(dstd
, &initr
, RData
.sizeof
);
907 dstd
.rwdt
= srcd
.rwdt
;
908 dstd
.rhgt
= srcd
.rhgt
;
909 dstd
.simple
= srcd
.simple
;
910 dstd
.simpleSolid
= srcd
.simpleSolid
;
914 static if (doCopyData
) {
916 // copy complex region
917 if (srcd
.lineofs
.length
) dstd
.lineofs
= srcd
.lineofs
.dup
;
918 if (srcd
.data
.length
) dstd
.data
= srcd
.data
.dup
;
924 rdatap
= cast(usize
)dstd
;
925 GC
.addRange(rdata
, RData
.sizeof
, typeid(RData
));
930 // all data is here, so passing region struct around is painless
931 static struct RData
{
932 int rwdt
, rhgt
; // width and height
933 bool simple
= true; // is this region a simple one (i.e. rectangular, without holes)?
934 bool simpleSolid
= true; // if it is simple, is it solid or empty?
935 //WARNING! the following arrays should NEVER be shared!
936 uint[] lineofs
; // line data offset in data[]
938 // data format for each line:
940 // line items: list of increasing x coords; each coord marks start of next region
941 // all even regions are solid, i.e.
942 // 0..line[0]-1: solid region
943 // line[0]..line[1]-1: transparent (empty) region
945 // note that line[$-1] is always rwdt; it's used as sentinel too
946 // `line[0] == 0` means that first span is transparent (empty)
947 // (i.e. region starts from transparent span)
948 int rc
= 1; // refcount
953 // ////////////////////////////////////////////////////////////////////////// //
954 version(sdpy_region_test
) {
959 void dumpData (ref Region reg
) {
961 if (reg
.rdata
.simple
) { writeln("simple ", (reg
.rdata
.simpleSolid ?
"solid" : "empty"), " region"); return; }
962 foreach (immutable y
, uint ofs
; reg
.rdata
.lineofs
) {
963 if (y
> 0 && reg
.rdata
.lineofs
[y
-1] == ofs
) {
964 writefln
!"%5s:%3s: ditto"(ofs
, y
);
966 writef
!"%5s:%3s: len="(ofs
, y
);
967 write(reg
.rdata
.data
[ofs
]);
968 auto end
= ofs
+reg
.rdata
.data
[ofs
];
970 while (ofs
< end
) write("; ", reg
.rdata
.data
[ofs
++]);
977 void checkLineOffsets (ref Region reg
) {
978 if (reg
.rdata
.simple
) return;
979 foreach (immutable idx
; 1..reg
.rdata
.lineofs
.length
) {
980 if (reg
.rdata
.lineofs
[idx
-1] > reg
.rdata
.lineofs
[idx
]) assert(0, "invalid line offset data");
981 // check for two equal, but unmerged lines
982 if (reg
.rdata
.lineofs
[idx
-1] != reg
.rdata
.lineofs
[idx
]) {
983 import core
.stdc
.string
: memcmp
;
984 if (reg
.rdata
.data
[reg
.rdata
.lineofs
[idx
-1]] == reg
.rdata
.data
[reg
.rdata
.lineofs
[idx
]] &&
985 memcmp(reg
.rdata
.data
.ptr
+reg
.rdata
.lineofs
[idx
-1], reg
.rdata
.data
.ptr
+reg
.rdata
.lineofs
[idx
], reg
.SpanType
.sizeof
*reg
.rdata
.data
[reg
.rdata
.lineofs
[idx
]]) == 0)
988 assert(0, "found two identical, but not merged lines");
990 if (reg
.rdata
.data
[reg
.rdata
.lineofs
[idx
-1]] < 2) assert(0, "bad data (0)");
991 if (reg
.rdata
.data
[reg
.rdata
.lineofs
[idx
]] < 2) assert(0, "bad data (1)");
997 void buildBitmap (ref Region reg
, int[] bmp
) {
998 if (reg
.rdata
.simple
) {
999 bmp
[0..reg
.width
*reg
.height
] = (reg
.rdata
.simpleSolid ?
1 : 0);
1002 bmp
[0..reg
.width
*reg
.height
] = 42;
1003 foreach (immutable y
, uint ofs
; reg
.rdata
.lineofs
) {
1004 usize a
= y
*reg
.width
;
1005 usize len
= reg
.rdata
.data
[ofs
++];
1006 if (len
< 1) assert(0, "invalid span");
1009 if (reg
.rdata
.data
[ofs
] == 0) { solid
= false; ++ofs
; }
1010 while (sx
!= reg
.width
) {
1011 // we should not have two consecutive zero-width spans
1012 if (reg
.rdata
.data
[ofs
] == 0 || reg
.rdata
.data
[ofs
] <= sx
) {
1013 //foreach (immutable idx; 0..reg.rdata.data.length) if (reg.rdata.data[idx] >= 0) writeln(idx, ": ", reg.rdata.data[idx]); else break;
1014 //assert(reg.rdata.data[ofs+1] != 0);
1015 assert(0, "invalid span");
1017 int ex
= reg
.rdata
.data
[ofs
++];
1018 bmp
[a
+sx
..a
+ex
] = (solid ?
1 : 0);
1022 debug assert(sx
== reg
.width
);
1024 foreach (immutable v
; bmp
[0..reg
.width
*reg
.height
]) if (v
== 42) assert(0, "invalid region data");
1028 int[] buildCoords (int[] bmp
, int type
, int x0
, int x1
) {
1029 bool isSolid (int x
) { return (x
>= 0 && x
< bmp
.length
&& bmp
[x
] != 0); }
1032 while (x0
<= x1
&& type
!= isSolid(x0
)) ++x0
;
1035 while (x0
<= x1
&& type
== isSolid(x0
)) ++x0
;
1042 void fuzzyEnumerator () {
1044 auto reg
= Region(uniform
!"[]"(1, 128), 1);
1046 bmp
.length
= reg
.width
*reg
.height
;
1047 ebmp
.length
= reg
.width
*reg
.height
;
1048 if (uniform
!"[]"(0, 1)) {
1049 reg
.rdata
.simpleSolid
= false;
1050 ebmp
[] = 0; // default is empty
1052 ebmp
[] = 1; // default is solid
1054 foreach (immutable tx0
; 0..1000) {
1055 checkLineOffsets(reg
);
1056 buildBitmap(reg
, bmp
[]);
1057 version(sdpy_aggressive_gc
) { import core
.memory
: GC
; GC
.collect(); }
1058 debug(region_more_prints
) {
1059 if (1/*bmp[] != ebmp[]*/) {
1060 assert(bmp
.length
== ebmp
.length
);
1062 foreach (immutable idx
; 0..bmp
.length
) write(bmp
[idx
]); writeln
;
1063 foreach (immutable idx
; 0..ebmp
.length
) write(ebmp
[idx
]); writeln
;
1066 assert(bmp
[] == ebmp
[]);
1067 foreach (immutable trx
; 0..200) {
1069 int x0
= uniform
!"[)"(-10, reg
.width
+10);
1070 int x1
= uniform
!"[)"(-10, reg
.width
+10);
1071 if (x0
> x1
) { auto t
= x0
; x0
= x1
; x1
= t
; }
1073 int type
= uniform
!"[]"(0, 1);
1075 reg
.spans
!false(0, x0
, x1
, (int x0
, int x1
) { coords
~= x0
; coords
~= x1
; });
1077 reg
.spans
!true(0, x0
, x1
, (int x0
, int x1
) { coords
~= x0
; coords
~= x1
; return 0; });
1079 auto ecr
= buildCoords(bmp
[], type
, x0
, x1
);
1080 assert(ecr
[] == coords
[]);
1081 // now check enumerator range
1084 foreach (ref pair
; reg
.spanRange
!false(0, x0
, x1
)) { coords
~= pair
.x0
; coords
~= pair
.x1
; }
1086 foreach (ref pair
; reg
.spanRange
!true(0, x0
, x1
)) { coords
~= pair
.x0
; coords
~= pair
.x1
; }
1088 if (ecr
[] != coords
[]) {
1089 import std
.stdio
: writeln
;
1090 writeln("\ntype=", type
);
1091 writeln("ecr=", ecr
);
1092 writeln("crd=", coords
);
1094 assert(ecr
[] == coords
[]);
1095 version(sdpy_aggressive_gc
) { import core
.memory
: GC
; GC
.collect(); }
1097 // now do random punch/patch
1099 int x
= uniform
!"[)"(0, reg
.width
);
1100 int y
= uniform
!"[)"(0, reg
.height
);
1101 int w
= uniform
!"[]"(0, reg
.width
);
1102 int h
= uniform
!"[]"(0, reg
.height
);
1103 int patch
= uniform
!"[]"(0, 1);
1104 debug(region_more_prints
) { import core
.stdc
.stdio
: printf
; printf(":x0=%d; x1=%d; w=%d; solid=%d\n", x
, x
+w
-1, w
, patch
); }
1105 if (patch
) reg
.patch(x
, y
, w
, h
); else reg
.punch(x
, y
, w
, h
);
1106 version(sdpy_aggressive_gc
) { import core
.memory
: GC
; GC
.collect(); }
1108 foreach (int dy
; y
..y
+h
) {
1109 if (dy
< 0) continue;
1110 if (dy
>= reg
.height
) break;
1111 foreach (int dx
; x
..x
+w
) {
1112 if (dx
< 0) continue;
1113 if (dx
>= reg
.width
) break;
1114 ebmp
[dy
*reg
.width
+dx
] = patch
;
1122 //enum OneSeed = 1586553857;
1127 foreach (immutable trycount
; 0..1000) {
1129 auto seed
= unpredictableSeed
;
1130 static if (is(typeof(OneSeed
))) seed
= OneSeed
;
1132 write("try: ", trycount
, "; seed = ", seed
, " ... ");
1136 static if (is(typeof(OneSeed
))) break;