add copyright statements
[isl.git] / isl_convex_hull.c
blobb6343539548db08b1de032969adbbb7412636f7d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 tab = isl_tab_detect_implicit_equalities(tab);
107 if (isl_tab_detect_redundant(tab) < 0)
108 goto error;
109 bmap = isl_basic_map_update_from_tab(bmap, tab);
110 isl_tab_free(tab);
111 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
113 return bmap;
114 error:
115 isl_tab_free(tab);
116 isl_basic_map_free(bmap);
117 return NULL;
120 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
122 return (struct isl_basic_set *)
123 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
126 /* Check if the set set is bound in the direction of the affine
127 * constraint c and if so, set the constant term such that the
128 * resulting constraint is a bounding constraint for the set.
130 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
132 int first;
133 int j;
134 isl_int opt;
135 isl_int opt_denom;
137 isl_int_init(opt);
138 isl_int_init(opt_denom);
139 first = 1;
140 for (j = 0; j < set->n; ++j) {
141 enum isl_lp_result res;
143 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
144 continue;
146 res = isl_basic_set_solve_lp(set->p[j],
147 0, c, set->ctx->one, &opt, &opt_denom, NULL);
148 if (res == isl_lp_unbounded)
149 break;
150 if (res == isl_lp_error)
151 goto error;
152 if (res == isl_lp_empty) {
153 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
154 if (!set->p[j])
155 goto error;
156 continue;
158 if (!isl_int_is_one(opt_denom))
159 isl_seq_scale(c, c, opt_denom, len);
160 if (first || isl_int_is_neg(opt))
161 isl_int_sub(c[0], c[0], opt);
162 first = 0;
164 isl_int_clear(opt);
165 isl_int_clear(opt_denom);
166 return j >= set->n;
167 error:
168 isl_int_clear(opt);
169 isl_int_clear(opt_denom);
170 return -1;
173 /* Check if "c" is a direction that is independent of the previously found "n"
174 * bounds in "dirs".
175 * If so, add it to the list, with the negative of the lower bound
176 * in the constant position, i.e., such that c corresponds to a bounding
177 * hyperplane (but not necessarily a facet).
178 * Assumes set "set" is bounded.
180 static int is_independent_bound(struct isl_set *set, isl_int *c,
181 struct isl_mat *dirs, int n)
183 int is_bound;
184 int i = 0;
186 isl_seq_cpy(dirs->row[n]+1, c+1, dirs->n_col-1);
187 if (n != 0) {
188 int pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
189 if (pos < 0)
190 return 0;
191 for (i = 0; i < n; ++i) {
192 int pos_i;
193 pos_i = isl_seq_first_non_zero(dirs->row[i]+1, dirs->n_col-1);
194 if (pos_i < pos)
195 continue;
196 if (pos_i > pos)
197 break;
198 isl_seq_elim(dirs->row[n]+1, dirs->row[i]+1, pos,
199 dirs->n_col-1, NULL);
200 pos = isl_seq_first_non_zero(dirs->row[n]+1, dirs->n_col-1);
201 if (pos < 0)
202 return 0;
206 is_bound = uset_is_bound(set, dirs->row[n], dirs->n_col);
207 if (is_bound != 1)
208 return is_bound;
209 if (i < n) {
210 int k;
211 isl_int *t = dirs->row[n];
212 for (k = n; k > i; --k)
213 dirs->row[k] = dirs->row[k-1];
214 dirs->row[i] = t;
216 return 1;
219 /* Compute and return a maximal set of linearly independent bounds
220 * on the set "set", based on the constraints of the basic sets
221 * in "set".
223 static struct isl_mat *independent_bounds(struct isl_set *set)
225 int i, j, n;
226 struct isl_mat *dirs = NULL;
227 unsigned dim = isl_set_n_dim(set);
229 dirs = isl_mat_alloc(set->ctx, dim, 1+dim);
230 if (!dirs)
231 goto error;
233 n = 0;
234 for (i = 0; n < dim && i < set->n; ++i) {
235 int f;
236 struct isl_basic_set *bset = set->p[i];
238 for (j = 0; n < dim && j < bset->n_eq; ++j) {
239 f = is_independent_bound(set, bset->eq[j], dirs, n);
240 if (f < 0)
241 goto error;
242 if (f)
243 ++n;
245 for (j = 0; n < dim && j < bset->n_ineq; ++j) {
246 f = is_independent_bound(set, bset->ineq[j], dirs, n);
247 if (f < 0)
248 goto error;
249 if (f)
250 ++n;
253 dirs->n_row = n;
254 return dirs;
255 error:
256 isl_mat_free(dirs);
257 return NULL;
260 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
262 if (!bset)
263 return NULL;
265 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
266 return bset;
268 bset = isl_basic_set_cow(bset);
269 if (!bset)
270 return NULL;
272 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
274 return isl_basic_set_finalize(bset);
277 static struct isl_set *isl_set_set_rational(struct isl_set *set)
279 int i;
281 set = isl_set_cow(set);
282 if (!set)
283 return NULL;
284 for (i = 0; i < set->n; ++i) {
285 set->p[i] = isl_basic_set_set_rational(set->p[i]);
286 if (!set->p[i])
287 goto error;
289 return set;
290 error:
291 isl_set_free(set);
292 return NULL;
295 static struct isl_basic_set *isl_basic_set_add_equality(
296 struct isl_basic_set *bset, isl_int *c)
298 int i;
299 unsigned dim;
301 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
302 return bset;
304 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
305 isl_assert(bset->ctx, bset->n_div == 0, goto error);
306 dim = isl_basic_set_n_dim(bset);
307 bset = isl_basic_set_cow(bset);
308 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
309 i = isl_basic_set_alloc_equality(bset);
310 if (i < 0)
311 goto error;
312 isl_seq_cpy(bset->eq[i], c, 1 + dim);
313 return bset;
314 error:
315 isl_basic_set_free(bset);
316 return NULL;
319 static struct isl_set *isl_set_add_equality(struct isl_set *set, isl_int *c)
321 int i;
323 set = isl_set_cow(set);
324 if (!set)
325 return NULL;
326 for (i = 0; i < set->n; ++i) {
327 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
328 if (!set->p[i])
329 goto error;
331 return set;
332 error:
333 isl_set_free(set);
334 return NULL;
337 /* Given a union of basic sets, construct the constraints for wrapping
338 * a facet around one of its ridges.
339 * In particular, if each of n the d-dimensional basic sets i in "set"
340 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
341 * and is defined by the constraints
342 * [ 1 ]
343 * A_i [ x ] >= 0
345 * then the resulting set is of dimension n*(1+d) and has as constraints
347 * [ a_i ]
348 * A_i [ x_i ] >= 0
350 * a_i >= 0
352 * \sum_i x_{i,1} = 1
354 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
356 struct isl_basic_set *lp;
357 unsigned n_eq;
358 unsigned n_ineq;
359 int i, j, k;
360 unsigned dim, lp_dim;
362 if (!set)
363 return NULL;
365 dim = 1 + isl_set_n_dim(set);
366 n_eq = 1;
367 n_ineq = set->n;
368 for (i = 0; i < set->n; ++i) {
369 n_eq += set->p[i]->n_eq;
370 n_ineq += set->p[i]->n_ineq;
372 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
373 if (!lp)
374 return NULL;
375 lp_dim = isl_basic_set_n_dim(lp);
376 k = isl_basic_set_alloc_equality(lp);
377 isl_int_set_si(lp->eq[k][0], -1);
378 for (i = 0; i < set->n; ++i) {
379 isl_int_set_si(lp->eq[k][1+dim*i], 0);
380 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
381 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
383 for (i = 0; i < set->n; ++i) {
384 k = isl_basic_set_alloc_inequality(lp);
385 isl_seq_clr(lp->ineq[k], 1+lp_dim);
386 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
388 for (j = 0; j < set->p[i]->n_eq; ++j) {
389 k = isl_basic_set_alloc_equality(lp);
390 isl_seq_clr(lp->eq[k], 1+dim*i);
391 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
392 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
395 for (j = 0; j < set->p[i]->n_ineq; ++j) {
396 k = isl_basic_set_alloc_inequality(lp);
397 isl_seq_clr(lp->ineq[k], 1+dim*i);
398 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
399 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
402 return lp;
405 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
406 * of that facet, compute the other facet of the convex hull that contains
407 * the ridge.
409 * We first transform the set such that the facet constraint becomes
411 * x_1 >= 0
413 * I.e., the facet lies in
415 * x_1 = 0
417 * and on that facet, the constraint that defines the ridge is
419 * x_2 >= 0
421 * (This transformation is not strictly needed, all that is needed is
422 * that the ridge contains the origin.)
424 * Since the ridge contains the origin, the cone of the convex hull
425 * will be of the form
427 * x_1 >= 0
428 * x_2 >= a x_1
430 * with this second constraint defining the new facet.
431 * The constant a is obtained by settting x_1 in the cone of the
432 * convex hull to 1 and minimizing x_2.
433 * Now, each element in the cone of the convex hull is the sum
434 * of elements in the cones of the basic sets.
435 * If a_i is the dilation factor of basic set i, then the problem
436 * we need to solve is
438 * min \sum_i x_{i,2}
439 * st
440 * \sum_i x_{i,1} = 1
441 * a_i >= 0
442 * [ a_i ]
443 * A [ x_i ] >= 0
445 * with
446 * [ 1 ]
447 * A_i [ x_i ] >= 0
449 * the constraints of each (transformed) basic set.
450 * If a = n/d, then the constraint defining the new facet (in the transformed
451 * space) is
453 * -n x_1 + d x_2 >= 0
455 * In the original space, we need to take the same combination of the
456 * corresponding constraints "facet" and "ridge".
458 * Note that a is always finite, since we only apply the wrapping
459 * technique to a union of polytopes.
461 static isl_int *wrap_facet(struct isl_set *set, isl_int *facet, isl_int *ridge)
463 int i;
464 struct isl_mat *T = NULL;
465 struct isl_basic_set *lp = NULL;
466 struct isl_vec *obj;
467 enum isl_lp_result res;
468 isl_int num, den;
469 unsigned dim;
471 set = isl_set_copy(set);
473 dim = 1 + isl_set_n_dim(set);
474 T = isl_mat_alloc(set->ctx, 3, dim);
475 if (!T)
476 goto error;
477 isl_int_set_si(T->row[0][0], 1);
478 isl_seq_clr(T->row[0]+1, dim - 1);
479 isl_seq_cpy(T->row[1], facet, dim);
480 isl_seq_cpy(T->row[2], ridge, dim);
481 T = isl_mat_right_inverse(T);
482 set = isl_set_preimage(set, T);
483 T = NULL;
484 if (!set)
485 goto error;
486 lp = wrap_constraints(set);
487 obj = isl_vec_alloc(set->ctx, 1 + dim*set->n);
488 if (!obj)
489 goto error;
490 isl_int_set_si(obj->block.data[0], 0);
491 for (i = 0; i < set->n; ++i) {
492 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
493 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
494 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
496 isl_int_init(num);
497 isl_int_init(den);
498 res = isl_basic_set_solve_lp(lp, 0,
499 obj->block.data, set->ctx->one, &num, &den, NULL);
500 if (res == isl_lp_ok) {
501 isl_int_neg(num, num);
502 isl_seq_combine(facet, num, facet, den, ridge, dim);
504 isl_int_clear(num);
505 isl_int_clear(den);
506 isl_vec_free(obj);
507 isl_basic_set_free(lp);
508 isl_set_free(set);
509 isl_assert(set->ctx, res == isl_lp_ok, return NULL);
510 return facet;
511 error:
512 isl_basic_set_free(lp);
513 isl_mat_free(T);
514 isl_set_free(set);
515 return NULL;
518 /* Given a set of d linearly independent bounding constraints of the
519 * convex hull of "set", compute the constraint of a facet of "set".
521 * We first compute the intersection with the first bounding hyperplane
522 * and remove the component corresponding to this hyperplane from
523 * other bounds (in homogeneous space).
524 * We then wrap around one of the remaining bounding constraints
525 * and continue the process until all bounding constraints have been
526 * taken into account.
527 * The resulting linear combination of the bounding constraints will
528 * correspond to a facet of the convex hull.
530 static struct isl_mat *initial_facet_constraint(struct isl_set *set,
531 struct isl_mat *bounds)
533 struct isl_set *slice = NULL;
534 struct isl_basic_set *face = NULL;
535 struct isl_mat *m, *U, *Q;
536 int i;
537 unsigned dim = isl_set_n_dim(set);
539 isl_assert(set->ctx, set->n > 0, goto error);
540 isl_assert(set->ctx, bounds->n_row == dim, goto error);
542 while (bounds->n_row > 1) {
543 slice = isl_set_copy(set);
544 slice = isl_set_add_equality(slice, bounds->row[0]);
545 face = isl_set_affine_hull(slice);
546 if (!face)
547 goto error;
548 if (face->n_eq == 1) {
549 isl_basic_set_free(face);
550 break;
552 m = isl_mat_alloc(set->ctx, 1 + face->n_eq, 1 + dim);
553 if (!m)
554 goto error;
555 isl_int_set_si(m->row[0][0], 1);
556 isl_seq_clr(m->row[0]+1, dim);
557 for (i = 0; i < face->n_eq; ++i)
558 isl_seq_cpy(m->row[1 + i], face->eq[i], 1 + dim);
559 U = isl_mat_right_inverse(m);
560 Q = isl_mat_right_inverse(isl_mat_copy(U));
561 U = isl_mat_drop_cols(U, 1 + face->n_eq, dim - face->n_eq);
562 Q = isl_mat_drop_rows(Q, 1 + face->n_eq, dim - face->n_eq);
563 U = isl_mat_drop_cols(U, 0, 1);
564 Q = isl_mat_drop_rows(Q, 0, 1);
565 bounds = isl_mat_product(bounds, U);
566 bounds = isl_mat_product(bounds, Q);
567 while (isl_seq_first_non_zero(bounds->row[bounds->n_row-1],
568 bounds->n_col) == -1) {
569 bounds->n_row--;
570 isl_assert(set->ctx, bounds->n_row > 1, goto error);
572 if (!wrap_facet(set, bounds->row[0],
573 bounds->row[bounds->n_row-1]))
574 goto error;
575 isl_basic_set_free(face);
576 bounds->n_row--;
578 return bounds;
579 error:
580 isl_basic_set_free(face);
581 isl_mat_free(bounds);
582 return NULL;
585 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
586 * compute a hyperplane description of the facet, i.e., compute the facets
587 * of the facet.
589 * We compute an affine transformation that transforms the constraint
591 * [ 1 ]
592 * c [ x ] = 0
594 * to the constraint
596 * z_1 = 0
598 * by computing the right inverse U of a matrix that starts with the rows
600 * [ 1 0 ]
601 * [ c ]
603 * Then
604 * [ 1 ] [ 1 ]
605 * [ x ] = U [ z ]
606 * and
607 * [ 1 ] [ 1 ]
608 * [ z ] = Q [ x ]
610 * with Q = U^{-1}
611 * Since z_1 is zero, we can drop this variable as well as the corresponding
612 * column of U to obtain
614 * [ 1 ] [ 1 ]
615 * [ x ] = U' [ z' ]
616 * and
617 * [ 1 ] [ 1 ]
618 * [ z' ] = Q' [ x ]
620 * with Q' equal to Q, but without the corresponding row.
621 * After computing the facets of the facet in the z' space,
622 * we convert them back to the x space through Q.
624 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
626 struct isl_mat *m, *U, *Q;
627 struct isl_basic_set *facet = NULL;
628 struct isl_ctx *ctx;
629 unsigned dim;
631 ctx = set->ctx;
632 set = isl_set_copy(set);
633 dim = isl_set_n_dim(set);
634 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
635 if (!m)
636 goto error;
637 isl_int_set_si(m->row[0][0], 1);
638 isl_seq_clr(m->row[0]+1, dim);
639 isl_seq_cpy(m->row[1], c, 1+dim);
640 U = isl_mat_right_inverse(m);
641 Q = isl_mat_right_inverse(isl_mat_copy(U));
642 U = isl_mat_drop_cols(U, 1, 1);
643 Q = isl_mat_drop_rows(Q, 1, 1);
644 set = isl_set_preimage(set, U);
645 facet = uset_convex_hull_wrap_bounded(set);
646 facet = isl_basic_set_preimage(facet, Q);
647 isl_assert(ctx, facet->n_eq == 0, goto error);
648 return facet;
649 error:
650 isl_basic_set_free(facet);
651 isl_set_free(set);
652 return NULL;
655 /* Given an initial facet constraint, compute the remaining facets.
656 * We do this by running through all facets found so far and computing
657 * the adjacent facets through wrapping, adding those facets that we
658 * hadn't already found before.
660 * For each facet we have found so far, we first compute its facets
661 * in the resulting convex hull. That is, we compute the ridges
662 * of the resulting convex hull contained in the facet.
663 * We also compute the corresponding facet in the current approximation
664 * of the convex hull. There is no need to wrap around the ridges
665 * in this facet since that would result in a facet that is already
666 * present in the current approximation.
668 * This function can still be significantly optimized by checking which of
669 * the facets of the basic sets are also facets of the convex hull and
670 * using all the facets so far to help in constructing the facets of the
671 * facets
672 * and/or
673 * using the technique in section "3.1 Ridge Generation" of
674 * "Extended Convex Hull" by Fukuda et al.
676 static struct isl_basic_set *extend(struct isl_basic_set *hull,
677 struct isl_set *set)
679 int i, j, f;
680 int k;
681 struct isl_basic_set *facet = NULL;
682 struct isl_basic_set *hull_facet = NULL;
683 unsigned dim;
685 isl_assert(set->ctx, set->n > 0, goto error);
687 dim = isl_set_n_dim(set);
689 for (i = 0; i < hull->n_ineq; ++i) {
690 facet = compute_facet(set, hull->ineq[i]);
691 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
692 facet = isl_basic_set_gauss(facet, NULL);
693 facet = isl_basic_set_normalize_constraints(facet);
694 hull_facet = isl_basic_set_copy(hull);
695 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
696 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
697 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
698 if (!facet)
699 goto error;
700 hull = isl_basic_set_cow(hull);
701 hull = isl_basic_set_extend_dim(hull,
702 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
703 for (j = 0; j < facet->n_ineq; ++j) {
704 for (f = 0; f < hull_facet->n_ineq; ++f)
705 if (isl_seq_eq(facet->ineq[j],
706 hull_facet->ineq[f], 1 + dim))
707 break;
708 if (f < hull_facet->n_ineq)
709 continue;
710 k = isl_basic_set_alloc_inequality(hull);
711 if (k < 0)
712 goto error;
713 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
714 if (!wrap_facet(set, hull->ineq[k], facet->ineq[j]))
715 goto error;
717 isl_basic_set_free(hull_facet);
718 isl_basic_set_free(facet);
720 hull = isl_basic_set_simplify(hull);
721 hull = isl_basic_set_finalize(hull);
722 return hull;
723 error:
724 isl_basic_set_free(hull_facet);
725 isl_basic_set_free(facet);
726 isl_basic_set_free(hull);
727 return NULL;
730 /* Special case for computing the convex hull of a one dimensional set.
731 * We simply collect the lower and upper bounds of each basic set
732 * and the biggest of those.
734 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
736 struct isl_mat *c = NULL;
737 isl_int *lower = NULL;
738 isl_int *upper = NULL;
739 int i, j, k;
740 isl_int a, b;
741 struct isl_basic_set *hull;
743 for (i = 0; i < set->n; ++i) {
744 set->p[i] = isl_basic_set_simplify(set->p[i]);
745 if (!set->p[i])
746 goto error;
748 set = isl_set_remove_empty_parts(set);
749 if (!set)
750 goto error;
751 isl_assert(set->ctx, set->n > 0, goto error);
752 c = isl_mat_alloc(set->ctx, 2, 2);
753 if (!c)
754 goto error;
756 if (set->p[0]->n_eq > 0) {
757 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
758 lower = c->row[0];
759 upper = c->row[1];
760 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
761 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
762 isl_seq_neg(upper, set->p[0]->eq[0], 2);
763 } else {
764 isl_seq_neg(lower, set->p[0]->eq[0], 2);
765 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
767 } else {
768 for (j = 0; j < set->p[0]->n_ineq; ++j) {
769 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
770 lower = c->row[0];
771 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
772 } else {
773 upper = c->row[1];
774 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
779 isl_int_init(a);
780 isl_int_init(b);
781 for (i = 0; i < set->n; ++i) {
782 struct isl_basic_set *bset = set->p[i];
783 int has_lower = 0;
784 int has_upper = 0;
786 for (j = 0; j < bset->n_eq; ++j) {
787 has_lower = 1;
788 has_upper = 1;
789 if (lower) {
790 isl_int_mul(a, lower[0], bset->eq[j][1]);
791 isl_int_mul(b, lower[1], bset->eq[j][0]);
792 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
793 isl_seq_cpy(lower, bset->eq[j], 2);
794 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
795 isl_seq_neg(lower, bset->eq[j], 2);
797 if (upper) {
798 isl_int_mul(a, upper[0], bset->eq[j][1]);
799 isl_int_mul(b, upper[1], bset->eq[j][0]);
800 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
801 isl_seq_neg(upper, bset->eq[j], 2);
802 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
803 isl_seq_cpy(upper, bset->eq[j], 2);
806 for (j = 0; j < bset->n_ineq; ++j) {
807 if (isl_int_is_pos(bset->ineq[j][1]))
808 has_lower = 1;
809 if (isl_int_is_neg(bset->ineq[j][1]))
810 has_upper = 1;
811 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
812 isl_int_mul(a, lower[0], bset->ineq[j][1]);
813 isl_int_mul(b, lower[1], bset->ineq[j][0]);
814 if (isl_int_lt(a, b))
815 isl_seq_cpy(lower, bset->ineq[j], 2);
817 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
818 isl_int_mul(a, upper[0], bset->ineq[j][1]);
819 isl_int_mul(b, upper[1], bset->ineq[j][0]);
820 if (isl_int_gt(a, b))
821 isl_seq_cpy(upper, bset->ineq[j], 2);
824 if (!has_lower)
825 lower = NULL;
826 if (!has_upper)
827 upper = NULL;
829 isl_int_clear(a);
830 isl_int_clear(b);
832 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
833 hull = isl_basic_set_set_rational(hull);
834 if (!hull)
835 goto error;
836 if (lower) {
837 k = isl_basic_set_alloc_inequality(hull);
838 isl_seq_cpy(hull->ineq[k], lower, 2);
840 if (upper) {
841 k = isl_basic_set_alloc_inequality(hull);
842 isl_seq_cpy(hull->ineq[k], upper, 2);
844 hull = isl_basic_set_finalize(hull);
845 isl_set_free(set);
846 isl_mat_free(c);
847 return hull;
848 error:
849 isl_set_free(set);
850 isl_mat_free(c);
851 return NULL;
854 /* Project out final n dimensions using Fourier-Motzkin */
855 static struct isl_set *set_project_out(struct isl_ctx *ctx,
856 struct isl_set *set, unsigned n)
858 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
861 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
863 struct isl_basic_set *convex_hull;
865 if (!set)
866 return NULL;
868 if (isl_set_is_empty(set))
869 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
870 else
871 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
872 isl_set_free(set);
873 return convex_hull;
876 /* Compute the convex hull of a pair of basic sets without any parameters or
877 * integer divisions using Fourier-Motzkin elimination.
878 * The convex hull is the set of all points that can be written as
879 * the sum of points from both basic sets (in homogeneous coordinates).
880 * We set up the constraints in a space with dimensions for each of
881 * the three sets and then project out the dimensions corresponding
882 * to the two original basic sets, retaining only those corresponding
883 * to the convex hull.
885 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
886 struct isl_basic_set *bset2)
888 int i, j, k;
889 struct isl_basic_set *bset[2];
890 struct isl_basic_set *hull = NULL;
891 unsigned dim;
893 if (!bset1 || !bset2)
894 goto error;
896 dim = isl_basic_set_n_dim(bset1);
897 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
898 1 + dim + bset1->n_eq + bset2->n_eq,
899 2 + bset1->n_ineq + bset2->n_ineq);
900 bset[0] = bset1;
901 bset[1] = bset2;
902 for (i = 0; i < 2; ++i) {
903 for (j = 0; j < bset[i]->n_eq; ++j) {
904 k = isl_basic_set_alloc_equality(hull);
905 if (k < 0)
906 goto error;
907 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
908 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
909 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
910 1+dim);
912 for (j = 0; j < bset[i]->n_ineq; ++j) {
913 k = isl_basic_set_alloc_inequality(hull);
914 if (k < 0)
915 goto error;
916 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
917 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
918 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
919 bset[i]->ineq[j], 1+dim);
921 k = isl_basic_set_alloc_inequality(hull);
922 if (k < 0)
923 goto error;
924 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
925 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
927 for (j = 0; j < 1+dim; ++j) {
928 k = isl_basic_set_alloc_equality(hull);
929 if (k < 0)
930 goto error;
931 isl_seq_clr(hull->eq[k], 1+2+3*dim);
932 isl_int_set_si(hull->eq[k][j], -1);
933 isl_int_set_si(hull->eq[k][1+dim+j], 1);
934 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
936 hull = isl_basic_set_set_rational(hull);
937 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
938 hull = isl_basic_set_convex_hull(hull);
939 isl_basic_set_free(bset1);
940 isl_basic_set_free(bset2);
941 return hull;
942 error:
943 isl_basic_set_free(bset1);
944 isl_basic_set_free(bset2);
945 isl_basic_set_free(hull);
946 return NULL;
949 static int isl_basic_set_is_bounded(struct isl_basic_set *bset)
951 struct isl_tab *tab;
952 int bounded;
954 tab = isl_tab_from_recession_cone(bset);
955 bounded = isl_tab_cone_is_bounded(tab);
956 isl_tab_free(tab);
957 return bounded;
960 static int isl_set_is_bounded(struct isl_set *set)
962 int i;
964 for (i = 0; i < set->n; ++i) {
965 int bounded = isl_basic_set_is_bounded(set->p[i]);
966 if (!bounded || bounded < 0)
967 return bounded;
969 return 1;
972 /* Compute the lineality space of the convex hull of bset1 and bset2.
974 * We first compute the intersection of the recession cone of bset1
975 * with the negative of the recession cone of bset2 and then compute
976 * the linear hull of the resulting cone.
978 static struct isl_basic_set *induced_lineality_space(
979 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
981 int i, k;
982 struct isl_basic_set *lin = NULL;
983 unsigned dim;
985 if (!bset1 || !bset2)
986 goto error;
988 dim = isl_basic_set_total_dim(bset1);
989 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
990 bset1->n_eq + bset2->n_eq,
991 bset1->n_ineq + bset2->n_ineq);
992 lin = isl_basic_set_set_rational(lin);
993 if (!lin)
994 goto error;
995 for (i = 0; i < bset1->n_eq; ++i) {
996 k = isl_basic_set_alloc_equality(lin);
997 if (k < 0)
998 goto error;
999 isl_int_set_si(lin->eq[k][0], 0);
1000 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
1002 for (i = 0; i < bset1->n_ineq; ++i) {
1003 k = isl_basic_set_alloc_inequality(lin);
1004 if (k < 0)
1005 goto error;
1006 isl_int_set_si(lin->ineq[k][0], 0);
1007 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
1009 for (i = 0; i < bset2->n_eq; ++i) {
1010 k = isl_basic_set_alloc_equality(lin);
1011 if (k < 0)
1012 goto error;
1013 isl_int_set_si(lin->eq[k][0], 0);
1014 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
1016 for (i = 0; i < bset2->n_ineq; ++i) {
1017 k = isl_basic_set_alloc_inequality(lin);
1018 if (k < 0)
1019 goto error;
1020 isl_int_set_si(lin->ineq[k][0], 0);
1021 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
1024 isl_basic_set_free(bset1);
1025 isl_basic_set_free(bset2);
1026 return isl_basic_set_affine_hull(lin);
1027 error:
1028 isl_basic_set_free(lin);
1029 isl_basic_set_free(bset1);
1030 isl_basic_set_free(bset2);
1031 return NULL;
1034 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
1036 /* Given a set and a linear space "lin" of dimension n > 0,
1037 * project the linear space from the set, compute the convex hull
1038 * and then map the set back to the original space.
1040 * Let
1042 * M x = 0
1044 * describe the linear space. We first compute the Hermite normal
1045 * form H = M U of M = H Q, to obtain
1047 * H Q x = 0
1049 * The last n rows of H will be zero, so the last n variables of x' = Q x
1050 * are the one we want to project out. We do this by transforming each
1051 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
1052 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
1053 * we transform the hull back to the original space as A' Q_1 x >= b',
1054 * with Q_1 all but the last n rows of Q.
1056 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1057 struct isl_basic_set *lin)
1059 unsigned total = isl_basic_set_total_dim(lin);
1060 unsigned lin_dim;
1061 struct isl_basic_set *hull;
1062 struct isl_mat *M, *U, *Q;
1064 if (!set || !lin)
1065 goto error;
1066 lin_dim = total - lin->n_eq;
1067 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1068 M = isl_mat_left_hermite(M, 0, &U, &Q);
1069 if (!M)
1070 goto error;
1071 isl_mat_free(M);
1072 isl_basic_set_free(lin);
1074 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1076 U = isl_mat_lin_to_aff(U);
1077 Q = isl_mat_lin_to_aff(Q);
1079 set = isl_set_preimage(set, U);
1080 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1081 hull = uset_convex_hull(set);
1082 hull = isl_basic_set_preimage(hull, Q);
1084 return hull;
1085 error:
1086 isl_basic_set_free(lin);
1087 isl_set_free(set);
1088 return NULL;
1091 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1092 * set up an LP for solving
1094 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1096 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1097 * The next \alpha{ij} correspond to the equalities and come in pairs.
1098 * The final \alpha{ij} correspond to the inequalities.
1100 static struct isl_basic_set *valid_direction_lp(
1101 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1103 struct isl_dim *dim;
1104 struct isl_basic_set *lp;
1105 unsigned d;
1106 int n;
1107 int i, j, k;
1109 if (!bset1 || !bset2)
1110 goto error;
1111 d = 1 + isl_basic_set_total_dim(bset1);
1112 n = 2 +
1113 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1114 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1115 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1116 if (!lp)
1117 goto error;
1118 for (i = 0; i < n; ++i) {
1119 k = isl_basic_set_alloc_inequality(lp);
1120 if (k < 0)
1121 goto error;
1122 isl_seq_clr(lp->ineq[k] + 1, n);
1123 isl_int_set_si(lp->ineq[k][0], -1);
1124 isl_int_set_si(lp->ineq[k][1 + i], 1);
1126 for (i = 0; i < d; ++i) {
1127 k = isl_basic_set_alloc_equality(lp);
1128 if (k < 0)
1129 goto error;
1130 n = 0;
1131 isl_int_set_si(lp->eq[k][n++], 0);
1132 /* positivity constraint 1 >= 0 */
1133 isl_int_set_si(lp->eq[k][n++], i == 0);
1134 for (j = 0; j < bset1->n_eq; ++j) {
1135 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1136 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1138 for (j = 0; j < bset1->n_ineq; ++j)
1139 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1140 /* positivity constraint 1 >= 0 */
1141 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1142 for (j = 0; j < bset2->n_eq; ++j) {
1143 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1144 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1146 for (j = 0; j < bset2->n_ineq; ++j)
1147 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1149 lp = isl_basic_set_gauss(lp, NULL);
1150 isl_basic_set_free(bset1);
1151 isl_basic_set_free(bset2);
1152 return lp;
1153 error:
1154 isl_basic_set_free(bset1);
1155 isl_basic_set_free(bset2);
1156 return NULL;
1159 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1160 * for all rays in the homogeneous space of the two cones that correspond
1161 * to the input polyhedra bset1 and bset2.
1163 * We compute s as a vector that satisfies
1165 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1167 * with h_{ij} the normals of the facets of polyhedron i
1168 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1169 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1170 * We first set up an LP with as variables the \alpha{ij}.
1171 * In this formulateion, for each polyhedron i,
1172 * the first constraint is the positivity constraint, followed by pairs
1173 * of variables for the equalities, followed by variables for the inequalities.
1174 * We then simply pick a feasible solution and compute s using (*).
1176 * Note that we simply pick any valid direction and make no attempt
1177 * to pick a "good" or even the "best" valid direction.
1179 static struct isl_vec *valid_direction(
1180 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1182 struct isl_basic_set *lp;
1183 struct isl_tab *tab;
1184 struct isl_vec *sample = NULL;
1185 struct isl_vec *dir;
1186 unsigned d;
1187 int i;
1188 int n;
1190 if (!bset1 || !bset2)
1191 goto error;
1192 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1193 isl_basic_set_copy(bset2));
1194 tab = isl_tab_from_basic_set(lp);
1195 sample = isl_tab_get_sample_value(tab);
1196 isl_tab_free(tab);
1197 isl_basic_set_free(lp);
1198 if (!sample)
1199 goto error;
1200 d = isl_basic_set_total_dim(bset1);
1201 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1202 if (!dir)
1203 goto error;
1204 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1205 n = 1;
1206 /* positivity constraint 1 >= 0 */
1207 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1208 for (i = 0; i < bset1->n_eq; ++i) {
1209 isl_int_sub(sample->block.data[n],
1210 sample->block.data[n], sample->block.data[n+1]);
1211 isl_seq_combine(dir->block.data,
1212 bset1->ctx->one, dir->block.data,
1213 sample->block.data[n], bset1->eq[i], 1 + d);
1215 n += 2;
1217 for (i = 0; i < bset1->n_ineq; ++i)
1218 isl_seq_combine(dir->block.data,
1219 bset1->ctx->one, dir->block.data,
1220 sample->block.data[n++], bset1->ineq[i], 1 + d);
1221 isl_vec_free(sample);
1222 isl_seq_normalize(bset1->ctx, dir->block.data + 1, dir->size - 1);
1223 isl_basic_set_free(bset1);
1224 isl_basic_set_free(bset2);
1225 return dir;
1226 error:
1227 isl_vec_free(sample);
1228 isl_basic_set_free(bset1);
1229 isl_basic_set_free(bset2);
1230 return NULL;
1233 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1234 * compute b_i' + A_i' x' >= 0, with
1236 * [ b_i A_i ] [ y' ] [ y' ]
1237 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1239 * In particular, add the "positivity constraint" and then perform
1240 * the mapping.
1242 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1243 struct isl_mat *T)
1245 int k;
1247 if (!bset)
1248 goto error;
1249 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1250 k = isl_basic_set_alloc_inequality(bset);
1251 if (k < 0)
1252 goto error;
1253 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1254 isl_int_set_si(bset->ineq[k][0], 1);
1255 bset = isl_basic_set_preimage(bset, T);
1256 return bset;
1257 error:
1258 isl_mat_free(T);
1259 isl_basic_set_free(bset);
1260 return NULL;
1263 /* Compute the convex hull of a pair of basic sets without any parameters or
1264 * integer divisions, where the convex hull is known to be pointed,
1265 * but the basic sets may be unbounded.
1267 * We turn this problem into the computation of a convex hull of a pair
1268 * _bounded_ polyhedra by "changing the direction of the homogeneous
1269 * dimension". This idea is due to Matthias Koeppe.
1271 * Consider the cones in homogeneous space that correspond to the
1272 * input polyhedra. The rays of these cones are also rays of the
1273 * polyhedra if the coordinate that corresponds to the homogeneous
1274 * dimension is zero. That is, if the inner product of the rays
1275 * with the homogeneous direction is zero.
1276 * The cones in the homogeneous space can also be considered to
1277 * correspond to other pairs of polyhedra by chosing a different
1278 * homogeneous direction. To ensure that both of these polyhedra
1279 * are bounded, we need to make sure that all rays of the cones
1280 * correspond to vertices and not to rays.
1281 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1282 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1283 * The vector s is computed in valid_direction.
1285 * Note that we need to consider _all_ rays of the cones and not just
1286 * the rays that correspond to rays in the polyhedra. If we were to
1287 * only consider those rays and turn them into vertices, then we
1288 * may inadvertently turn some vertices into rays.
1290 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1291 * We therefore transform the two polyhedra such that the selected
1292 * direction is mapped onto this standard direction and then proceed
1293 * with the normal computation.
1294 * Let S be a non-singular square matrix with s as its first row,
1295 * then we want to map the polyhedra to the space
1297 * [ y' ] [ y ] [ y ] [ y' ]
1298 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1300 * We take S to be the unimodular completion of s to limit the growth
1301 * of the coefficients in the following computations.
1303 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1304 * We first move to the homogeneous dimension
1306 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1307 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1309 * Then we change directoin
1311 * [ b_i A_i ] [ y' ] [ y' ]
1312 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1314 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1315 * resulting in b' + A' x' >= 0, which we then convert back
1317 * [ y ] [ y ]
1318 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1320 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1322 static struct isl_basic_set *convex_hull_pair_pointed(
1323 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1325 struct isl_ctx *ctx = NULL;
1326 struct isl_vec *dir = NULL;
1327 struct isl_mat *T = NULL;
1328 struct isl_mat *T2 = NULL;
1329 struct isl_basic_set *hull;
1330 struct isl_set *set;
1332 if (!bset1 || !bset2)
1333 goto error;
1334 ctx = bset1->ctx;
1335 dir = valid_direction(isl_basic_set_copy(bset1),
1336 isl_basic_set_copy(bset2));
1337 if (!dir)
1338 goto error;
1339 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1340 if (!T)
1341 goto error;
1342 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1343 T = isl_mat_unimodular_complete(T, 1);
1344 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1346 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1347 bset2 = homogeneous_map(bset2, T2);
1348 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1349 set = isl_set_add(set, bset1);
1350 set = isl_set_add(set, bset2);
1351 hull = uset_convex_hull(set);
1352 hull = isl_basic_set_preimage(hull, T);
1354 isl_vec_free(dir);
1356 return hull;
1357 error:
1358 isl_vec_free(dir);
1359 isl_basic_set_free(bset1);
1360 isl_basic_set_free(bset2);
1361 return NULL;
1364 /* Compute the convex hull of a pair of basic sets without any parameters or
1365 * integer divisions.
1367 * If the convex hull of the two basic sets would have a non-trivial
1368 * lineality space, we first project out this lineality space.
1370 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1371 struct isl_basic_set *bset2)
1373 struct isl_basic_set *lin;
1375 if (isl_basic_set_is_bounded(bset1) || isl_basic_set_is_bounded(bset2))
1376 return convex_hull_pair_pointed(bset1, bset2);
1378 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1379 isl_basic_set_copy(bset2));
1380 if (!lin)
1381 goto error;
1382 if (isl_basic_set_is_universe(lin)) {
1383 isl_basic_set_free(bset1);
1384 isl_basic_set_free(bset2);
1385 return lin;
1387 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1388 struct isl_set *set;
1389 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1390 set = isl_set_add(set, bset1);
1391 set = isl_set_add(set, bset2);
1392 return modulo_lineality(set, lin);
1394 isl_basic_set_free(lin);
1396 return convex_hull_pair_pointed(bset1, bset2);
1397 error:
1398 isl_basic_set_free(bset1);
1399 isl_basic_set_free(bset2);
1400 return NULL;
1403 /* Compute the lineality space of a basic set.
1404 * We currently do not allow the basic set to have any divs.
1405 * We basically just drop the constants and turn every inequality
1406 * into an equality.
1408 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1410 int i, k;
1411 struct isl_basic_set *lin = NULL;
1412 unsigned dim;
1414 if (!bset)
1415 goto error;
1416 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1417 dim = isl_basic_set_total_dim(bset);
1419 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1420 if (!lin)
1421 goto error;
1422 for (i = 0; i < bset->n_eq; ++i) {
1423 k = isl_basic_set_alloc_equality(lin);
1424 if (k < 0)
1425 goto error;
1426 isl_int_set_si(lin->eq[k][0], 0);
1427 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1429 lin = isl_basic_set_gauss(lin, NULL);
1430 if (!lin)
1431 goto error;
1432 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1433 k = isl_basic_set_alloc_equality(lin);
1434 if (k < 0)
1435 goto error;
1436 isl_int_set_si(lin->eq[k][0], 0);
1437 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1438 lin = isl_basic_set_gauss(lin, NULL);
1439 if (!lin)
1440 goto error;
1442 isl_basic_set_free(bset);
1443 return lin;
1444 error:
1445 isl_basic_set_free(lin);
1446 isl_basic_set_free(bset);
1447 return NULL;
1450 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1451 * "underlying" set "set".
1453 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1455 int i;
1456 struct isl_set *lin = NULL;
1458 if (!set)
1459 return NULL;
1460 if (set->n == 0) {
1461 struct isl_dim *dim = isl_set_get_dim(set);
1462 isl_set_free(set);
1463 return isl_basic_set_empty(dim);
1466 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1467 for (i = 0; i < set->n; ++i)
1468 lin = isl_set_add(lin,
1469 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1470 isl_set_free(set);
1471 return isl_set_affine_hull(lin);
1474 /* Compute the convex hull of a set without any parameters or
1475 * integer divisions.
1476 * In each step, we combined two basic sets until only one
1477 * basic set is left.
1478 * The input basic sets are assumed not to have a non-trivial
1479 * lineality space. If any of the intermediate results has
1480 * a non-trivial lineality space, it is projected out.
1482 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1484 struct isl_basic_set *convex_hull = NULL;
1486 convex_hull = isl_set_copy_basic_set(set);
1487 set = isl_set_drop_basic_set(set, convex_hull);
1488 if (!set)
1489 goto error;
1490 while (set->n > 0) {
1491 struct isl_basic_set *t;
1492 t = isl_set_copy_basic_set(set);
1493 if (!t)
1494 goto error;
1495 set = isl_set_drop_basic_set(set, t);
1496 if (!set)
1497 goto error;
1498 convex_hull = convex_hull_pair(convex_hull, t);
1499 if (set->n == 0)
1500 break;
1501 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1502 if (!t)
1503 goto error;
1504 if (isl_basic_set_is_universe(t)) {
1505 isl_basic_set_free(convex_hull);
1506 convex_hull = t;
1507 break;
1509 if (t->n_eq < isl_basic_set_total_dim(t)) {
1510 set = isl_set_add(set, convex_hull);
1511 return modulo_lineality(set, t);
1513 isl_basic_set_free(t);
1515 isl_set_free(set);
1516 return convex_hull;
1517 error:
1518 isl_set_free(set);
1519 isl_basic_set_free(convex_hull);
1520 return NULL;
1523 /* Compute an initial hull for wrapping containing a single initial
1524 * facet by first computing bounds on the set and then using these
1525 * bounds to construct an initial facet.
1526 * This function is a remnant of an older implementation where the
1527 * bounds were also used to check whether the set was bounded.
1528 * Since this function will now only be called when we know the
1529 * set to be bounded, the initial facet should probably be constructed
1530 * by simply using the coordinate directions instead.
1532 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1533 struct isl_set *set)
1535 struct isl_mat *bounds = NULL;
1536 unsigned dim;
1537 int k;
1539 if (!hull)
1540 goto error;
1541 bounds = independent_bounds(set);
1542 if (!bounds)
1543 goto error;
1544 isl_assert(set->ctx, bounds->n_row == isl_set_n_dim(set), goto error);
1545 bounds = initial_facet_constraint(set, bounds);
1546 if (!bounds)
1547 goto error;
1548 k = isl_basic_set_alloc_inequality(hull);
1549 if (k < 0)
1550 goto error;
1551 dim = isl_set_n_dim(set);
1552 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1553 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1554 isl_mat_free(bounds);
1556 return hull;
1557 error:
1558 isl_basic_set_free(hull);
1559 isl_mat_free(bounds);
1560 return NULL;
1563 struct max_constraint {
1564 struct isl_mat *c;
1565 int count;
1566 int ineq;
1569 static int max_constraint_equal(const void *entry, const void *val)
1571 struct max_constraint *a = (struct max_constraint *)entry;
1572 isl_int *b = (isl_int *)val;
1574 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1577 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1578 isl_int *con, unsigned len, int n, int ineq)
1580 struct isl_hash_table_entry *entry;
1581 struct max_constraint *c;
1582 uint32_t c_hash;
1584 c_hash = isl_seq_get_hash(con + 1, len);
1585 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1586 con + 1, 0);
1587 if (!entry)
1588 return;
1589 c = entry->data;
1590 if (c->count < n) {
1591 isl_hash_table_remove(ctx, table, entry);
1592 return;
1594 c->count++;
1595 if (isl_int_gt(c->c->row[0][0], con[0]))
1596 return;
1597 if (isl_int_eq(c->c->row[0][0], con[0])) {
1598 if (ineq)
1599 c->ineq = ineq;
1600 return;
1602 c->c = isl_mat_cow(c->c);
1603 isl_int_set(c->c->row[0][0], con[0]);
1604 c->ineq = ineq;
1607 /* Check whether the constraint hash table "table" constains the constraint
1608 * "con".
1610 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1611 isl_int *con, unsigned len, int n)
1613 struct isl_hash_table_entry *entry;
1614 struct max_constraint *c;
1615 uint32_t c_hash;
1617 c_hash = isl_seq_get_hash(con + 1, len);
1618 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1619 con + 1, 0);
1620 if (!entry)
1621 return 0;
1622 c = entry->data;
1623 if (c->count < n)
1624 return 0;
1625 return isl_int_eq(c->c->row[0][0], con[0]);
1628 /* Check for inequality constraints of a basic set without equalities
1629 * such that the same or more stringent copies of the constraint appear
1630 * in all of the basic sets. Such constraints are necessarily facet
1631 * constraints of the convex hull.
1633 * If the resulting basic set is by chance identical to one of
1634 * the basic sets in "set", then we know that this basic set contains
1635 * all other basic sets and is therefore the convex hull of set.
1636 * In this case we set *is_hull to 1.
1638 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1639 struct isl_set *set, int *is_hull)
1641 int i, j, s, n;
1642 int min_constraints;
1643 int best;
1644 struct max_constraint *constraints = NULL;
1645 struct isl_hash_table *table = NULL;
1646 unsigned total;
1648 *is_hull = 0;
1650 for (i = 0; i < set->n; ++i)
1651 if (set->p[i]->n_eq == 0)
1652 break;
1653 if (i >= set->n)
1654 return hull;
1655 min_constraints = set->p[i]->n_ineq;
1656 best = i;
1657 for (i = best + 1; i < set->n; ++i) {
1658 if (set->p[i]->n_eq != 0)
1659 continue;
1660 if (set->p[i]->n_ineq >= min_constraints)
1661 continue;
1662 min_constraints = set->p[i]->n_ineq;
1663 best = i;
1665 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1666 min_constraints);
1667 if (!constraints)
1668 return hull;
1669 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1670 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1671 goto error;
1673 total = isl_dim_total(set->dim);
1674 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1675 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1676 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1677 if (!constraints[i].c)
1678 goto error;
1679 constraints[i].ineq = 1;
1681 for (i = 0; i < min_constraints; ++i) {
1682 struct isl_hash_table_entry *entry;
1683 uint32_t c_hash;
1684 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1685 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1686 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1687 if (!entry)
1688 goto error;
1689 isl_assert(hull->ctx, !entry->data, goto error);
1690 entry->data = &constraints[i];
1693 n = 0;
1694 for (s = 0; s < set->n; ++s) {
1695 if (s == best)
1696 continue;
1698 for (i = 0; i < set->p[s]->n_eq; ++i) {
1699 isl_int *eq = set->p[s]->eq[i];
1700 for (j = 0; j < 2; ++j) {
1701 isl_seq_neg(eq, eq, 1 + total);
1702 update_constraint(hull->ctx, table,
1703 eq, total, n, 0);
1706 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1707 isl_int *ineq = set->p[s]->ineq[i];
1708 update_constraint(hull->ctx, table, ineq, total, n,
1709 set->p[s]->n_eq == 0);
1711 ++n;
1714 for (i = 0; i < min_constraints; ++i) {
1715 if (constraints[i].count < n)
1716 continue;
1717 if (!constraints[i].ineq)
1718 continue;
1719 j = isl_basic_set_alloc_inequality(hull);
1720 if (j < 0)
1721 goto error;
1722 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1725 for (s = 0; s < set->n; ++s) {
1726 if (set->p[s]->n_eq)
1727 continue;
1728 if (set->p[s]->n_ineq != hull->n_ineq)
1729 continue;
1730 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1731 isl_int *ineq = set->p[s]->ineq[i];
1732 if (!has_constraint(hull->ctx, table, ineq, total, n))
1733 break;
1735 if (i == set->p[s]->n_ineq)
1736 *is_hull = 1;
1739 isl_hash_table_clear(table);
1740 for (i = 0; i < min_constraints; ++i)
1741 isl_mat_free(constraints[i].c);
1742 free(constraints);
1743 free(table);
1744 return hull;
1745 error:
1746 isl_hash_table_clear(table);
1747 free(table);
1748 if (constraints)
1749 for (i = 0; i < min_constraints; ++i)
1750 isl_mat_free(constraints[i].c);
1751 free(constraints);
1752 return hull;
1755 /* Create a template for the convex hull of "set" and fill it up
1756 * obvious facet constraints, if any. If the result happens to
1757 * be the convex hull of "set" then *is_hull is set to 1.
1759 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1761 struct isl_basic_set *hull;
1762 unsigned n_ineq;
1763 int i;
1765 n_ineq = 1;
1766 for (i = 0; i < set->n; ++i) {
1767 n_ineq += set->p[i]->n_eq;
1768 n_ineq += set->p[i]->n_ineq;
1770 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1771 hull = isl_basic_set_set_rational(hull);
1772 if (!hull)
1773 return NULL;
1774 return common_constraints(hull, set, is_hull);
1777 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1779 struct isl_basic_set *hull;
1780 int is_hull;
1782 hull = proto_hull(set, &is_hull);
1783 if (hull && !is_hull) {
1784 if (hull->n_ineq == 0)
1785 hull = initial_hull(hull, set);
1786 hull = extend(hull, set);
1788 isl_set_free(set);
1790 return hull;
1793 /* Compute the convex hull of a set without any parameters or
1794 * integer divisions. Depending on whether the set is bounded,
1795 * we pass control to the wrapping based convex hull or
1796 * the Fourier-Motzkin elimination based convex hull.
1797 * We also handle a few special cases before checking the boundedness.
1799 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1801 struct isl_basic_set *convex_hull = NULL;
1802 struct isl_basic_set *lin;
1804 if (isl_set_n_dim(set) == 0)
1805 return convex_hull_0d(set);
1807 set = isl_set_coalesce(set);
1808 set = isl_set_set_rational(set);
1810 if (!set)
1811 goto error;
1812 if (!set)
1813 return NULL;
1814 if (set->n == 1) {
1815 convex_hull = isl_basic_set_copy(set->p[0]);
1816 isl_set_free(set);
1817 return convex_hull;
1819 if (isl_set_n_dim(set) == 1)
1820 return convex_hull_1d(set);
1822 if (isl_set_is_bounded(set))
1823 return uset_convex_hull_wrap(set);
1825 lin = uset_combined_lineality_space(isl_set_copy(set));
1826 if (!lin)
1827 goto error;
1828 if (isl_basic_set_is_universe(lin)) {
1829 isl_set_free(set);
1830 return lin;
1832 if (lin->n_eq < isl_basic_set_total_dim(lin))
1833 return modulo_lineality(set, lin);
1834 isl_basic_set_free(lin);
1836 return uset_convex_hull_unbounded(set);
1837 error:
1838 isl_set_free(set);
1839 isl_basic_set_free(convex_hull);
1840 return NULL;
1843 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1844 * without parameters or divs and where the convex hull of set is
1845 * known to be full-dimensional.
1847 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1849 struct isl_basic_set *convex_hull = NULL;
1851 if (isl_set_n_dim(set) == 0) {
1852 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1853 isl_set_free(set);
1854 convex_hull = isl_basic_set_set_rational(convex_hull);
1855 return convex_hull;
1858 set = isl_set_set_rational(set);
1860 if (!set)
1861 goto error;
1862 set = isl_set_coalesce(set);
1863 if (!set)
1864 goto error;
1865 if (set->n == 1) {
1866 convex_hull = isl_basic_set_copy(set->p[0]);
1867 isl_set_free(set);
1868 return convex_hull;
1870 if (isl_set_n_dim(set) == 1)
1871 return convex_hull_1d(set);
1873 return uset_convex_hull_wrap(set);
1874 error:
1875 isl_set_free(set);
1876 return NULL;
1879 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1880 * We first remove the equalities (transforming the set), compute the
1881 * convex hull of the transformed set and then add the equalities back
1882 * (after performing the inverse transformation.
1884 static struct isl_basic_set *modulo_affine_hull(struct isl_ctx *ctx,
1885 struct isl_set *set, struct isl_basic_set *affine_hull)
1887 struct isl_mat *T;
1888 struct isl_mat *T2;
1889 struct isl_basic_set *dummy;
1890 struct isl_basic_set *convex_hull;
1892 dummy = isl_basic_set_remove_equalities(
1893 isl_basic_set_copy(affine_hull), &T, &T2);
1894 if (!dummy)
1895 goto error;
1896 isl_basic_set_free(dummy);
1897 set = isl_set_preimage(set, T);
1898 convex_hull = uset_convex_hull(set);
1899 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1900 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1901 return convex_hull;
1902 error:
1903 isl_basic_set_free(affine_hull);
1904 isl_set_free(set);
1905 return NULL;
1908 /* Compute the convex hull of a map.
1910 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1911 * specifically, the wrapping of facets to obtain new facets.
1913 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1915 struct isl_basic_set *bset;
1916 struct isl_basic_map *model = NULL;
1917 struct isl_basic_set *affine_hull = NULL;
1918 struct isl_basic_map *convex_hull = NULL;
1919 struct isl_set *set = NULL;
1920 struct isl_ctx *ctx;
1922 if (!map)
1923 goto error;
1925 ctx = map->ctx;
1926 if (map->n == 0) {
1927 convex_hull = isl_basic_map_empty_like_map(map);
1928 isl_map_free(map);
1929 return convex_hull;
1932 map = isl_map_detect_equalities(map);
1933 map = isl_map_align_divs(map);
1934 model = isl_basic_map_copy(map->p[0]);
1935 set = isl_map_underlying_set(map);
1936 if (!set)
1937 goto error;
1939 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1940 if (!affine_hull)
1941 goto error;
1942 if (affine_hull->n_eq != 0)
1943 bset = modulo_affine_hull(ctx, set, affine_hull);
1944 else {
1945 isl_basic_set_free(affine_hull);
1946 bset = uset_convex_hull(set);
1949 convex_hull = isl_basic_map_overlying_set(bset, model);
1951 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1952 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1953 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1954 return convex_hull;
1955 error:
1956 isl_set_free(set);
1957 isl_basic_map_free(model);
1958 return NULL;
1961 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1963 return (struct isl_basic_set *)
1964 isl_map_convex_hull((struct isl_map *)set);
1967 struct sh_data_entry {
1968 struct isl_hash_table *table;
1969 struct isl_tab *tab;
1972 /* Holds the data needed during the simple hull computation.
1973 * In particular,
1974 * n the number of basic sets in the original set
1975 * hull_table a hash table of already computed constraints
1976 * in the simple hull
1977 * p for each basic set,
1978 * table a hash table of the constraints
1979 * tab the tableau corresponding to the basic set
1981 struct sh_data {
1982 struct isl_ctx *ctx;
1983 unsigned n;
1984 struct isl_hash_table *hull_table;
1985 struct sh_data_entry p[1];
1988 static void sh_data_free(struct sh_data *data)
1990 int i;
1992 if (!data)
1993 return;
1994 isl_hash_table_free(data->ctx, data->hull_table);
1995 for (i = 0; i < data->n; ++i) {
1996 isl_hash_table_free(data->ctx, data->p[i].table);
1997 isl_tab_free(data->p[i].tab);
1999 free(data);
2002 struct ineq_cmp_data {
2003 unsigned len;
2004 isl_int *p;
2007 static int has_ineq(const void *entry, const void *val)
2009 isl_int *row = (isl_int *)entry;
2010 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2012 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2013 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2016 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2017 isl_int *ineq, unsigned len)
2019 uint32_t c_hash;
2020 struct ineq_cmp_data v;
2021 struct isl_hash_table_entry *entry;
2023 v.len = len;
2024 v.p = ineq;
2025 c_hash = isl_seq_get_hash(ineq + 1, len);
2026 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2027 if (!entry)
2028 return - 1;
2029 entry->data = ineq;
2030 return 0;
2033 /* Fill hash table "table" with the constraints of "bset".
2034 * Equalities are added as two inequalities.
2035 * The value in the hash table is a pointer to the (in)equality of "bset".
2037 static int hash_basic_set(struct isl_hash_table *table,
2038 struct isl_basic_set *bset)
2040 int i, j;
2041 unsigned dim = isl_basic_set_total_dim(bset);
2043 for (i = 0; i < bset->n_eq; ++i) {
2044 for (j = 0; j < 2; ++j) {
2045 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2046 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2047 return -1;
2050 for (i = 0; i < bset->n_ineq; ++i) {
2051 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2052 return -1;
2054 return 0;
2057 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2059 struct sh_data *data;
2060 int i;
2062 data = isl_calloc(set->ctx, struct sh_data,
2063 sizeof(struct sh_data) +
2064 (set->n - 1) * sizeof(struct sh_data_entry));
2065 if (!data)
2066 return NULL;
2067 data->ctx = set->ctx;
2068 data->n = set->n;
2069 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2070 if (!data->hull_table)
2071 goto error;
2072 for (i = 0; i < set->n; ++i) {
2073 data->p[i].table = isl_hash_table_alloc(set->ctx,
2074 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2075 if (!data->p[i].table)
2076 goto error;
2077 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2078 goto error;
2080 return data;
2081 error:
2082 sh_data_free(data);
2083 return NULL;
2086 /* Check if inequality "ineq" is a bound for basic set "j" or if
2087 * it can be relaxed (by increasing the constant term) to become
2088 * a bound for that basic set. In the latter case, the constant
2089 * term is updated.
2090 * Return 1 if "ineq" is a bound
2091 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2092 * -1 if some error occurred
2094 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2095 isl_int *ineq)
2097 enum isl_lp_result res;
2098 isl_int opt;
2100 if (!data->p[j].tab) {
2101 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2102 if (!data->p[j].tab)
2103 return -1;
2106 isl_int_init(opt);
2108 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2109 &opt, NULL, 0);
2110 if (res == isl_lp_ok && isl_int_is_neg(opt))
2111 isl_int_sub(ineq[0], ineq[0], opt);
2113 isl_int_clear(opt);
2115 return res == isl_lp_ok ? 1 :
2116 res == isl_lp_unbounded ? 0 : -1;
2119 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2120 * become a bound on the whole set. If so, add the (relaxed) inequality
2121 * to "hull".
2123 * We first check if "hull" already contains a translate of the inequality.
2124 * If so, we are done.
2125 * Then, we check if any of the previous basic sets contains a translate
2126 * of the inequality. If so, then we have already considered this
2127 * inequality and we are done.
2128 * Otherwise, for each basic set other than "i", we check if the inequality
2129 * is a bound on the basic set.
2130 * For previous basic sets, we know that they do not contain a translate
2131 * of the inequality, so we directly call is_bound.
2132 * For following basic sets, we first check if a translate of the
2133 * inequality appears in its description and if so directly update
2134 * the inequality accordingly.
2136 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2137 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2139 uint32_t c_hash;
2140 struct ineq_cmp_data v;
2141 struct isl_hash_table_entry *entry;
2142 int j, k;
2144 if (!hull)
2145 return NULL;
2147 v.len = isl_basic_set_total_dim(hull);
2148 v.p = ineq;
2149 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2151 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2152 has_ineq, &v, 0);
2153 if (entry)
2154 return hull;
2156 for (j = 0; j < i; ++j) {
2157 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2158 c_hash, has_ineq, &v, 0);
2159 if (entry)
2160 break;
2162 if (j < i)
2163 return hull;
2165 k = isl_basic_set_alloc_inequality(hull);
2166 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2167 if (k < 0)
2168 goto error;
2170 for (j = 0; j < i; ++j) {
2171 int bound;
2172 bound = is_bound(data, set, j, hull->ineq[k]);
2173 if (bound < 0)
2174 goto error;
2175 if (!bound)
2176 break;
2178 if (j < i) {
2179 isl_basic_set_free_inequality(hull, 1);
2180 return hull;
2183 for (j = i + 1; j < set->n; ++j) {
2184 int bound, neg;
2185 isl_int *ineq_j;
2186 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2187 c_hash, has_ineq, &v, 0);
2188 if (entry) {
2189 ineq_j = entry->data;
2190 neg = isl_seq_is_neg(ineq_j + 1,
2191 hull->ineq[k] + 1, v.len);
2192 if (neg)
2193 isl_int_neg(ineq_j[0], ineq_j[0]);
2194 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2195 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2196 if (neg)
2197 isl_int_neg(ineq_j[0], ineq_j[0]);
2198 continue;
2200 bound = is_bound(data, set, j, hull->ineq[k]);
2201 if (bound < 0)
2202 goto error;
2203 if (!bound)
2204 break;
2206 if (j < set->n) {
2207 isl_basic_set_free_inequality(hull, 1);
2208 return hull;
2211 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2212 has_ineq, &v, 1);
2213 if (!entry)
2214 goto error;
2215 entry->data = hull->ineq[k];
2217 return hull;
2218 error:
2219 isl_basic_set_free(hull);
2220 return NULL;
2223 /* Check if any inequality from basic set "i" can be relaxed to
2224 * become a bound on the whole set. If so, add the (relaxed) inequality
2225 * to "hull".
2227 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2228 struct sh_data *data, struct isl_set *set, int i)
2230 int j, k;
2231 unsigned dim = isl_basic_set_total_dim(bset);
2233 for (j = 0; j < set->p[i]->n_eq; ++j) {
2234 for (k = 0; k < 2; ++k) {
2235 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2236 add_bound(bset, data, set, i, set->p[i]->eq[j]);
2239 for (j = 0; j < set->p[i]->n_ineq; ++j)
2240 add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2241 return bset;
2244 /* Compute a superset of the convex hull of set that is described
2245 * by only translates of the constraints in the constituents of set.
2247 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2249 struct sh_data *data = NULL;
2250 struct isl_basic_set *hull = NULL;
2251 unsigned n_ineq;
2252 int i;
2254 if (!set)
2255 return NULL;
2257 n_ineq = 0;
2258 for (i = 0; i < set->n; ++i) {
2259 if (!set->p[i])
2260 goto error;
2261 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2264 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2265 if (!hull)
2266 goto error;
2268 data = sh_data_alloc(set, n_ineq);
2269 if (!data)
2270 goto error;
2272 for (i = 0; i < set->n; ++i)
2273 hull = add_bounds(hull, data, set, i);
2275 sh_data_free(data);
2276 isl_set_free(set);
2278 return hull;
2279 error:
2280 sh_data_free(data);
2281 isl_basic_set_free(hull);
2282 isl_set_free(set);
2283 return NULL;
2286 /* Compute a superset of the convex hull of map that is described
2287 * by only translates of the constraints in the constituents of map.
2289 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2291 struct isl_set *set = NULL;
2292 struct isl_basic_map *model = NULL;
2293 struct isl_basic_map *hull;
2294 struct isl_basic_map *affine_hull;
2295 struct isl_basic_set *bset = NULL;
2297 if (!map)
2298 return NULL;
2299 if (map->n == 0) {
2300 hull = isl_basic_map_empty_like_map(map);
2301 isl_map_free(map);
2302 return hull;
2304 if (map->n == 1) {
2305 hull = isl_basic_map_copy(map->p[0]);
2306 isl_map_free(map);
2307 return hull;
2310 map = isl_map_detect_equalities(map);
2311 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2312 map = isl_map_align_divs(map);
2313 model = isl_basic_map_copy(map->p[0]);
2315 set = isl_map_underlying_set(map);
2317 bset = uset_simple_hull(set);
2319 hull = isl_basic_map_overlying_set(bset, model);
2321 hull = isl_basic_map_intersect(hull, affine_hull);
2322 hull = isl_basic_map_convex_hull(hull);
2323 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2324 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2326 return hull;
2329 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2331 return (struct isl_basic_set *)
2332 isl_map_simple_hull((struct isl_map *)set);
2335 /* Given a set "set", return parametric bounds on the dimension "dim".
2337 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2339 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2340 set = isl_set_copy(set);
2341 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2342 set = isl_set_eliminate_dims(set, 0, dim);
2343 return isl_set_convex_hull(set);
2346 /* Computes a "simple hull" and then check if each dimension in the
2347 * resulting hull is bounded by a symbolic constant. If not, the
2348 * hull is intersected with the corresponding bounds on the whole set.
2350 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2352 int i, j;
2353 struct isl_basic_set *hull;
2354 unsigned nparam, left;
2355 int removed_divs = 0;
2357 hull = isl_set_simple_hull(isl_set_copy(set));
2358 if (!hull)
2359 goto error;
2361 nparam = isl_basic_set_dim(hull, isl_dim_param);
2362 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2363 int lower = 0, upper = 0;
2364 struct isl_basic_set *bounds;
2366 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2367 for (j = 0; j < hull->n_eq; ++j) {
2368 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2369 continue;
2370 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2371 left) == -1)
2372 break;
2374 if (j < hull->n_eq)
2375 continue;
2377 for (j = 0; j < hull->n_ineq; ++j) {
2378 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2379 continue;
2380 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2381 left) != -1 ||
2382 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2383 i) != -1)
2384 continue;
2385 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2386 lower = 1;
2387 else
2388 upper = 1;
2389 if (lower && upper)
2390 break;
2393 if (lower && upper)
2394 continue;
2396 if (!removed_divs) {
2397 set = isl_set_remove_divs(set);
2398 if (!set)
2399 goto error;
2400 removed_divs = 1;
2402 bounds = set_bounds(set, i);
2403 hull = isl_basic_set_intersect(hull, bounds);
2404 if (!hull)
2405 goto error;
2408 isl_set_free(set);
2409 return hull;
2410 error:
2411 isl_set_free(set);
2412 return NULL;