2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
31 #include <isl_union_set_private.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
41 #include <isl_val_private.h>
43 #include "isl_scheduler.h"
44 #include "isl_scheduler_clustering.h"
47 * The scheduling algorithm implemented in this file was inspired by
48 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
49 * Parallelization and Locality Optimization in the Polyhedral Model".
51 * For a detailed description of the variant implemented in isl,
52 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
56 static isl_bool
node_has_tuples(const void *entry
, const void *val
)
58 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
59 isl_space
*space
= (isl_space
*) val
;
61 return isl_space_has_equal_tuples(node
->space
, space
);
64 int isl_sched_node_scc_exactly(struct isl_sched_node
*node
, int scc
)
66 return node
->scc
== scc
;
69 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
71 return node
->scc
<= scc
;
74 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
76 return node
->scc
>= scc
;
79 /* Is "edge" marked as being of type "type"?
81 int isl_sched_edge_has_type(struct isl_sched_edge
*edge
,
82 enum isl_edge_type type
)
84 return ISL_FL_ISSET(edge
->types
, 1 << type
);
87 /* Mark "edge" as being of type "type".
89 static void set_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
91 ISL_FL_SET(edge
->types
, 1 << type
);
94 /* No longer mark "edge" as being of type "type"?
96 static void clear_type(struct isl_sched_edge
*edge
, enum isl_edge_type type
)
98 ISL_FL_CLR(edge
->types
, 1 << type
);
101 /* Is "edge" marked as a validity edge?
103 static int is_validity(struct isl_sched_edge
*edge
)
105 return isl_sched_edge_has_type(edge
, isl_edge_validity
);
108 /* Mark "edge" as a validity edge.
110 static void set_validity(struct isl_sched_edge
*edge
)
112 set_type(edge
, isl_edge_validity
);
115 /* Is "edge" marked as a proximity edge?
117 int isl_sched_edge_is_proximity(struct isl_sched_edge
*edge
)
119 return isl_sched_edge_has_type(edge
, isl_edge_proximity
);
122 /* Is "edge" marked as a local edge?
124 static int is_local(struct isl_sched_edge
*edge
)
126 return isl_sched_edge_has_type(edge
, isl_edge_local
);
129 /* Mark "edge" as a local edge.
131 static void set_local(struct isl_sched_edge
*edge
)
133 set_type(edge
, isl_edge_local
);
136 /* No longer mark "edge" as a local edge.
138 static void clear_local(struct isl_sched_edge
*edge
)
140 clear_type(edge
, isl_edge_local
);
143 /* Is "edge" marked as a coincidence edge?
145 static int is_coincidence(struct isl_sched_edge
*edge
)
147 return isl_sched_edge_has_type(edge
, isl_edge_coincidence
);
150 /* Is "edge" marked as a condition edge?
152 int isl_sched_edge_is_condition(struct isl_sched_edge
*edge
)
154 return isl_sched_edge_has_type(edge
, isl_edge_condition
);
157 /* Is "edge" marked as a conditional validity edge?
159 int isl_sched_edge_is_conditional_validity(struct isl_sched_edge
*edge
)
161 return isl_sched_edge_has_type(edge
, isl_edge_conditional_validity
);
164 /* Is "edge" of a type that can appear multiple times between
165 * the same pair of nodes?
167 * Condition edges and conditional validity edges may have tagged
168 * dependence relations, in which case an edge is added for each
171 static int is_multi_edge_type(struct isl_sched_edge
*edge
)
173 return isl_sched_edge_is_condition(edge
) ||
174 isl_sched_edge_is_conditional_validity(edge
);
177 /* Initialize node_table based on the list of nodes.
179 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
183 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
184 if (!graph
->node_table
)
187 for (i
= 0; i
< graph
->n
; ++i
) {
188 struct isl_hash_table_entry
*entry
;
191 hash
= isl_space_get_tuple_hash(graph
->node
[i
].space
);
192 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
194 graph
->node
[i
].space
, 1);
197 entry
->data
= &graph
->node
[i
];
203 /* Return a pointer to the node that lives within the given space,
204 * an invalid node if there is no such node, or NULL in case of error.
206 struct isl_sched_node
*isl_sched_graph_find_node(isl_ctx
*ctx
,
207 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
209 struct isl_hash_table_entry
*entry
;
215 hash
= isl_space_get_tuple_hash(space
);
216 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
217 &node_has_tuples
, space
, 0);
220 if (entry
== isl_hash_table_entry_none
)
221 return graph
->node
+ graph
->n
;
226 /* Is "node" a node in "graph"?
228 int isl_sched_graph_is_node(struct isl_sched_graph
*graph
,
229 struct isl_sched_node
*node
)
231 return node
&& node
>= &graph
->node
[0] && node
< &graph
->node
[graph
->n
];
234 static isl_bool
edge_has_src_and_dst(const void *entry
, const void *val
)
236 const struct isl_sched_edge
*edge
= entry
;
237 const struct isl_sched_edge
*temp
= val
;
239 return isl_bool_ok(edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
);
242 /* Add the given edge to graph->edge_table[type].
244 static isl_stat
graph_edge_table_add(isl_ctx
*ctx
,
245 struct isl_sched_graph
*graph
, enum isl_edge_type type
,
246 struct isl_sched_edge
*edge
)
248 struct isl_hash_table_entry
*entry
;
251 hash
= isl_hash_init();
252 hash
= isl_hash_builtin(hash
, edge
->src
);
253 hash
= isl_hash_builtin(hash
, edge
->dst
);
254 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
255 &edge_has_src_and_dst
, edge
, 1);
257 return isl_stat_error
;
263 /* Add "edge" to all relevant edge tables.
264 * That is, for every type of the edge, add it to the corresponding table.
266 static isl_stat
graph_edge_tables_add(isl_ctx
*ctx
,
267 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
)
269 enum isl_edge_type t
;
271 for (t
= isl_edge_first
; t
<= isl_edge_last
; ++t
) {
272 if (!isl_sched_edge_has_type(edge
, t
))
274 if (graph_edge_table_add(ctx
, graph
, t
, edge
) < 0)
275 return isl_stat_error
;
281 /* Allocate the edge_tables based on the maximal number of edges of
284 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
288 for (i
= 0; i
<= isl_edge_last
; ++i
) {
289 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
291 if (!graph
->edge_table
[i
])
298 /* If graph->edge_table[type] contains an edge from the given source
299 * to the given destination, then return the hash table entry of this edge.
300 * Otherwise, return NULL.
302 static struct isl_hash_table_entry
*graph_find_edge_entry(
303 struct isl_sched_graph
*graph
,
304 enum isl_edge_type type
,
305 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
307 isl_ctx
*ctx
= isl_space_get_ctx(src
->space
);
309 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
311 hash
= isl_hash_init();
312 hash
= isl_hash_builtin(hash
, temp
.src
);
313 hash
= isl_hash_builtin(hash
, temp
.dst
);
314 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
315 &edge_has_src_and_dst
, &temp
, 0);
319 /* If graph->edge_table[type] contains an edge from the given source
320 * to the given destination, then return this edge.
321 * Return "none" if no such edge can be found.
322 * Return NULL on error.
324 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
325 enum isl_edge_type type
,
326 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
327 struct isl_sched_edge
*none
)
329 struct isl_hash_table_entry
*entry
;
331 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
334 if (entry
== isl_hash_table_entry_none
)
340 /* Check whether the dependence graph has an edge of the given type
341 * between the given two nodes.
343 static isl_bool
graph_has_edge(struct isl_sched_graph
*graph
,
344 enum isl_edge_type type
,
345 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
347 struct isl_sched_edge dummy
;
348 struct isl_sched_edge
*edge
;
351 edge
= graph_find_edge(graph
, type
, src
, dst
, &dummy
);
353 return isl_bool_error
;
355 return isl_bool_false
;
357 empty
= isl_map_plain_is_empty(edge
->map
);
359 return isl_bool_not(empty
);
362 /* Look for any edge with the same src, dst and map fields as "model".
364 * Return the matching edge if one can be found.
365 * Return "model" if no matching edge is found.
366 * Return NULL on error.
368 static struct isl_sched_edge
*graph_find_matching_edge(
369 struct isl_sched_graph
*graph
, struct isl_sched_edge
*model
)
371 enum isl_edge_type i
;
372 struct isl_sched_edge
*edge
;
374 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
377 edge
= graph_find_edge(graph
, i
, model
->src
, model
->dst
, model
);
382 is_equal
= isl_map_plain_is_equal(model
->map
, edge
->map
);
392 /* Remove the given edge from all the edge_tables that refer to it.
394 static isl_stat
graph_remove_edge(struct isl_sched_graph
*graph
,
395 struct isl_sched_edge
*edge
)
397 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
398 enum isl_edge_type i
;
400 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
401 struct isl_hash_table_entry
*entry
;
403 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
405 return isl_stat_error
;
406 if (entry
== isl_hash_table_entry_none
)
408 if (entry
->data
!= edge
)
410 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
416 /* Check whether the dependence graph has any edge
417 * between the given two nodes.
419 static isl_bool
graph_has_any_edge(struct isl_sched_graph
*graph
,
420 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
422 enum isl_edge_type i
;
425 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
426 r
= graph_has_edge(graph
, i
, src
, dst
);
434 /* Check whether the dependence graph has a validity edge
435 * between the given two nodes.
437 * Conditional validity edges are essentially validity edges that
438 * can be ignored if the corresponding condition edges are iteration private.
439 * Here, we are only checking for the presence of validity
440 * edges, so we need to consider the conditional validity edges too.
441 * In particular, this function is used during the detection
442 * of strongly connected components and we cannot ignore
443 * conditional validity edges during this detection.
445 isl_bool
isl_sched_graph_has_validity_edge(struct isl_sched_graph
*graph
,
446 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
450 r
= graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
454 return graph_has_edge(graph
, isl_edge_conditional_validity
, src
, dst
);
457 /* Perform all the required memory allocations for a schedule graph "graph"
458 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
461 static isl_stat
graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
462 int n_node
, int n_edge
)
467 graph
->n_edge
= n_edge
;
468 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
469 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
470 graph
->region
= isl_alloc_array(ctx
,
471 struct isl_trivial_region
, graph
->n
);
472 graph
->edge
= isl_calloc_array(ctx
,
473 struct isl_sched_edge
, graph
->n_edge
);
475 graph
->intra_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
476 graph
->intra_hmap_param
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
477 graph
->inter_hmap
= isl_map_to_basic_set_alloc(ctx
, 2 * n_edge
);
479 if (!graph
->node
|| !graph
->region
|| (graph
->n_edge
&& !graph
->edge
) ||
481 return isl_stat_error
;
483 for(i
= 0; i
< graph
->n
; ++i
)
484 graph
->sorted
[i
] = i
;
489 /* Free the memory associated to node "node" in "graph".
490 * The "coincident" field is shared by nodes in a graph and its subgraph.
491 * It therefore only needs to be freed for the original dependence graph,
492 * i.e., one that is not the result of splitting.
494 static void clear_node(struct isl_sched_graph
*graph
,
495 struct isl_sched_node
*node
)
497 isl_space_free(node
->space
);
498 isl_set_free(node
->hull
);
499 isl_multi_aff_free(node
->compress
);
500 isl_pw_multi_aff_free(node
->decompress
);
501 isl_mat_free(node
->sched
);
502 isl_map_free(node
->sched_map
);
503 isl_mat_free(node
->indep
);
504 isl_mat_free(node
->vmap
);
505 if (graph
->root
== graph
)
506 free(node
->coincident
);
507 isl_multi_val_free(node
->sizes
);
508 isl_basic_set_free(node
->bounds
);
509 isl_vec_free(node
->max
);
512 void isl_sched_graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
516 isl_map_to_basic_set_free(graph
->intra_hmap
);
517 isl_map_to_basic_set_free(graph
->intra_hmap_param
);
518 isl_map_to_basic_set_free(graph
->inter_hmap
);
521 for (i
= 0; i
< graph
->n
; ++i
)
522 clear_node(graph
, &graph
->node
[i
]);
526 for (i
= 0; i
< graph
->n_edge
; ++i
) {
527 isl_map_free(graph
->edge
[i
].map
);
528 isl_union_map_free(graph
->edge
[i
].tagged_condition
);
529 isl_union_map_free(graph
->edge
[i
].tagged_validity
);
533 for (i
= 0; i
<= isl_edge_last
; ++i
)
534 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
535 isl_hash_table_free(ctx
, graph
->node_table
);
536 isl_basic_set_free(graph
->lp
);
539 /* For each "set" on which this function is called, increment
540 * graph->n by one and update graph->maxvar.
542 static isl_stat
init_n_maxvar(__isl_take isl_set
*set
, void *user
)
544 struct isl_sched_graph
*graph
= user
;
545 isl_size nvar
= isl_set_dim(set
, isl_dim_set
);
548 if (nvar
> graph
->maxvar
)
549 graph
->maxvar
= nvar
;
554 return isl_stat_error
;
558 /* Compute the number of rows that should be allocated for the schedule.
559 * In particular, we need one row for each variable or one row
560 * for each basic map in the dependences.
561 * Note that it is practically impossible to exhaust both
562 * the number of dependences and the number of variables.
564 static isl_stat
compute_max_row(struct isl_sched_graph
*graph
,
565 __isl_keep isl_schedule_constraints
*sc
)
569 isl_union_set
*domain
;
573 domain
= isl_schedule_constraints_get_domain(sc
);
574 r
= isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
);
575 isl_union_set_free(domain
);
577 return isl_stat_error
;
578 n_edge
= isl_schedule_constraints_n_basic_map(sc
);
580 return isl_stat_error
;
581 graph
->max_row
= n_edge
+ graph
->maxvar
;
586 /* Does "bset" have any defining equalities for its set variables?
588 static isl_bool
has_any_defining_equality(__isl_keep isl_basic_set
*bset
)
593 n
= isl_basic_set_dim(bset
, isl_dim_set
);
595 return isl_bool_error
;
597 for (i
= 0; i
< n
; ++i
) {
600 has
= isl_basic_set_has_defining_equality(bset
, isl_dim_set
, i
,
606 return isl_bool_false
;
609 /* Set the entries of node->max to the value of the schedule_max_coefficient
612 static isl_stat
set_max_coefficient(isl_ctx
*ctx
, struct isl_sched_node
*node
)
616 max
= isl_options_get_schedule_max_coefficient(ctx
);
620 node
->max
= isl_vec_alloc(ctx
, node
->nvar
);
621 node
->max
= isl_vec_set_si(node
->max
, max
);
623 return isl_stat_error
;
628 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
629 * option (if set) and half of the minimum of the sizes in the other
630 * dimensions. Round up when computing the half such that
631 * if the minimum of the sizes is one, half of the size is taken to be one
633 * If the global minimum is unbounded (i.e., if both
634 * the schedule_max_coefficient is not set and the sizes in the other
635 * dimensions are unbounded), then store a negative value.
636 * If the schedule coefficient is close to the size of the instance set
637 * in another dimension, then the schedule may represent a loop
638 * coalescing transformation (especially if the coefficient
639 * in that other dimension is one). Forcing the coefficient to be
640 * smaller than or equal to half the minimal size should avoid this
643 static isl_stat
compute_max_coefficient(isl_ctx
*ctx
,
644 struct isl_sched_node
*node
)
650 max
= isl_options_get_schedule_max_coefficient(ctx
);
651 v
= isl_vec_alloc(ctx
, node
->nvar
);
653 return isl_stat_error
;
655 for (i
= 0; i
< node
->nvar
; ++i
) {
656 isl_int_set_si(v
->el
[i
], max
);
657 isl_int_mul_si(v
->el
[i
], v
->el
[i
], 2);
660 for (i
= 0; i
< node
->nvar
; ++i
) {
663 size
= isl_multi_val_get_val(node
->sizes
, i
);
666 if (!isl_val_is_int(size
)) {
670 for (j
= 0; j
< node
->nvar
; ++j
) {
673 if (isl_int_is_neg(v
->el
[j
]) ||
674 isl_int_gt(v
->el
[j
], size
->n
))
675 isl_int_set(v
->el
[j
], size
->n
);
680 for (i
= 0; i
< node
->nvar
; ++i
)
681 isl_int_cdiv_q_ui(v
->el
[i
], v
->el
[i
], 2);
687 return isl_stat_error
;
690 /* Construct an identifier for node "node", which will represent "set".
691 * The name of the identifier is either "compressed" or
692 * "compressed_<name>", with <name> the name of the space of "set".
693 * The user pointer of the identifier points to "node".
695 static __isl_give isl_id
*construct_compressed_id(__isl_keep isl_set
*set
,
696 struct isl_sched_node
*node
)
705 has_name
= isl_set_has_tuple_name(set
);
709 ctx
= isl_set_get_ctx(set
);
711 return isl_id_alloc(ctx
, "compressed", node
);
713 p
= isl_printer_to_str(ctx
);
714 name
= isl_set_get_tuple_name(set
);
715 p
= isl_printer_print_str(p
, "compressed_");
716 p
= isl_printer_print_str(p
, name
);
717 id_name
= isl_printer_get_str(p
);
720 id
= isl_id_alloc(ctx
, id_name
, node
);
726 /* Construct a map that isolates the variable in position "pos" in "set".
730 * [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
732 static __isl_give isl_map
*isolate(__isl_take isl_set
*set
, int pos
)
736 map
= isl_set_project_onto_map(set
, isl_dim_set
, pos
, 1);
737 map
= isl_map_project_out(map
, isl_dim_in
, pos
, 1);
741 /* Compute and return the size of "set" in dimension "dim".
742 * The size is taken to be the difference in values for that variable
743 * for fixed values of the other variables.
744 * This assumes that "set" is convex.
745 * In particular, the variable is first isolated from the other variables
746 * in the range of a map
748 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
750 * and then duplicated
752 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
754 * The shared variables are then projected out and the maximal value
755 * of i_dim' - i_dim is computed.
757 static __isl_give isl_val
*compute_size(__isl_take isl_set
*set
, int dim
)
764 map
= isolate(set
, dim
);
765 map
= isl_map_range_product(map
, isl_map_copy(map
));
766 map
= isl_set_unwrap(isl_map_range(map
));
767 set
= isl_map_deltas(map
);
768 ls
= isl_local_space_from_space(isl_set_get_space(set
));
769 obj
= isl_aff_var_on_domain(ls
, isl_dim_set
, 0);
770 v
= isl_set_max_val(set
, obj
);
777 /* Perform a compression on "node" where "hull" represents the constraints
778 * that were used to derive the compression, while "compress" and
779 * "decompress" map the original space to the compressed space and
782 * If "node" was not compressed already, then simply store
783 * the compression information.
784 * Otherwise the "original" space is actually the result
785 * of a previous compression, which is then combined
786 * with the present compression.
788 * The dimensionality of the compressed domain is also adjusted.
789 * Other information, such as the sizes and the maximal coefficient values,
790 * has not been computed yet and therefore does not need to be adjusted.
792 static isl_stat
compress_node(struct isl_sched_node
*node
,
793 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
794 __isl_take isl_pw_multi_aff
*decompress
)
796 node
->nvar
= isl_multi_aff_dim(compress
, isl_dim_out
);
797 if (!node
->compressed
) {
798 node
->compressed
= 1;
800 node
->compress
= compress
;
801 node
->decompress
= decompress
;
803 hull
= isl_set_preimage_multi_aff(hull
,
804 isl_multi_aff_copy(node
->compress
));
805 node
->hull
= isl_set_intersect(node
->hull
, hull
);
806 node
->compress
= isl_multi_aff_pullback_multi_aff(
807 compress
, node
->compress
);
808 node
->decompress
= isl_pw_multi_aff_pullback_pw_multi_aff(
809 node
->decompress
, decompress
);
812 if (!node
->hull
|| !node
->compress
|| !node
->decompress
)
813 return isl_stat_error
;
818 /* Given that dimension "pos" in "set" has a fixed value
819 * in terms of the other dimensions, (further) compress "node"
820 * by projecting out this dimension.
821 * "set" may be the result of a previous compression.
822 * "uncompressed" is the original domain (without compression).
824 * The compression function simply projects out the dimension.
825 * The decompression function adds back the dimension
826 * in the right position as an expression of the other dimensions
827 * derived from "set".
828 * As in extract_node, the compressed space has an identifier
829 * that references "node" such that each compressed space is unique and
830 * such that the node can be recovered from the compressed space.
832 * The constraint removed through the compression is added to the "hull"
833 * such that only edges that relate to the original domains
834 * are taken into account.
835 * In particular, it is obtained by composing compression and decompression and
836 * taking the relation among the variables in the range.
838 static isl_stat
project_out_fixed(struct isl_sched_node
*node
,
839 __isl_keep isl_set
*uncompressed
, __isl_take isl_set
*set
, int pos
)
845 isl_multi_aff
*compress
;
846 isl_pw_multi_aff
*decompress
, *pma
;
847 isl_multi_pw_aff
*mpa
;
850 map
= isolate(isl_set_copy(set
), pos
);
851 pma
= isl_pw_multi_aff_from_map(map
);
852 domain
= isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma
));
853 pma
= isl_pw_multi_aff_gist(pma
, domain
);
854 space
= isl_pw_multi_aff_get_domain_space(pma
);
855 mpa
= isl_multi_pw_aff_identity(isl_space_map_from_set(space
));
856 mpa
= isl_multi_pw_aff_range_splice(mpa
, pos
,
857 isl_multi_pw_aff_from_pw_multi_aff(pma
));
858 decompress
= isl_pw_multi_aff_from_multi_pw_aff(mpa
);
859 space
= isl_set_get_space(set
);
860 compress
= isl_multi_aff_project_out_map(space
, isl_dim_set
, pos
, 1);
861 id
= construct_compressed_id(uncompressed
, node
);
862 compress
= isl_multi_aff_set_tuple_id(compress
, isl_dim_out
, id
);
863 space
= isl_space_reverse(isl_multi_aff_get_space(compress
));
864 decompress
= isl_pw_multi_aff_reset_space(decompress
, space
);
865 pma
= isl_pw_multi_aff_pullback_multi_aff(
866 isl_pw_multi_aff_copy(decompress
), isl_multi_aff_copy(compress
));
867 hull
= isl_map_range(isl_map_from_pw_multi_aff(pma
));
871 return compress_node(node
, hull
, compress
, decompress
);
874 /* Compute the size of the compressed domain in each dimension and
875 * store the results in node->sizes.
876 * "uncompressed" is the original domain (without compression).
878 * First compress the domain if needed and then compute the size
880 * If the domain is not convex, then the sizes are computed
881 * on a convex superset in order to avoid picking up sizes
882 * that are valid for the individual disjuncts, but not for
883 * the domain as a whole.
885 * If any of the sizes turns out to be zero, then this means
886 * that this dimension has a fixed value in terms of
887 * the other dimensions. Perform an (extra) compression
888 * to remove this dimension.
890 static isl_stat
compute_sizes(struct isl_sched_node
*node
,
891 __isl_keep isl_set
*uncompressed
)
896 isl_set
*set
= isl_set_copy(uncompressed
);
898 if (node
->compressed
)
899 set
= isl_set_preimage_pw_multi_aff(set
,
900 isl_pw_multi_aff_copy(node
->decompress
));
901 set
= isl_set_from_basic_set(isl_set_simple_hull(set
));
902 mv
= isl_multi_val_zero(isl_set_get_space(set
));
903 n
= isl_set_dim(set
, isl_dim_set
);
905 mv
= isl_multi_val_free(mv
);
906 for (j
= 0; j
< n
; ++j
) {
910 v
= compute_size(isl_set_copy(set
), j
);
911 is_zero
= isl_val_is_zero(v
);
912 mv
= isl_multi_val_set_val(mv
, j
, v
);
913 if (is_zero
>= 0 && is_zero
) {
914 isl_multi_val_free(mv
);
915 if (project_out_fixed(node
, uncompressed
, set
, j
) < 0)
916 return isl_stat_error
;
917 return compute_sizes(node
, uncompressed
);
923 return isl_stat_error
;
927 /* Compute the size of the instance set "set" of "node", after compression,
928 * as well as bounds on the corresponding coefficients, if needed.
930 * The sizes are needed when the schedule_treat_coalescing option is set.
931 * The bounds are needed when the schedule_treat_coalescing option or
932 * the schedule_max_coefficient option is set.
934 * If the schedule_treat_coalescing option is not set, then at most
935 * the bounds need to be set and this is done in set_max_coefficient.
936 * Otherwise, compute the size of the compressed domain
937 * in each direction and store the results in node->size.
938 * Finally, set the bounds on the coefficients based on the sizes
939 * and the schedule_max_coefficient option in compute_max_coefficient.
941 static isl_stat
compute_sizes_and_max(isl_ctx
*ctx
, struct isl_sched_node
*node
,
942 __isl_take isl_set
*set
)
946 if (!isl_options_get_schedule_treat_coalescing(ctx
)) {
948 return set_max_coefficient(ctx
, node
);
951 r
= compute_sizes(node
, set
);
954 return isl_stat_error
;
955 return compute_max_coefficient(ctx
, node
);
958 /* Add a new node to the graph representing the given instance set.
959 * "nvar" is the (possibly compressed) number of variables and
960 * may be smaller than then number of set variables in "set"
961 * if "compressed" is set.
962 * If "compressed" is set, then "hull" represents the constraints
963 * that were used to derive the compression, while "compress" and
964 * "decompress" map the original space to the compressed space and
966 * If "compressed" is not set, then "hull", "compress" and "decompress"
969 * Compute the size of the instance set and bounds on the coefficients,
972 static isl_stat
add_node(struct isl_sched_graph
*graph
,
973 __isl_take isl_set
*set
, int nvar
, int compressed
,
974 __isl_take isl_set
*hull
, __isl_take isl_multi_aff
*compress
,
975 __isl_take isl_pw_multi_aff
*decompress
)
982 struct isl_sched_node
*node
;
984 nparam
= isl_set_dim(set
, isl_dim_param
);
988 ctx
= isl_set_get_ctx(set
);
989 if (!ctx
->opt
->schedule_parametric
)
991 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
992 node
= &graph
->node
[graph
->n
];
994 space
= isl_set_get_space(set
);
997 node
->nparam
= nparam
;
999 node
->sched_map
= NULL
;
1000 coincident
= isl_calloc_array(ctx
, int, graph
->max_row
);
1001 node
->coincident
= coincident
;
1002 node
->compressed
= compressed
;
1004 node
->compress
= compress
;
1005 node
->decompress
= decompress
;
1006 if (compute_sizes_and_max(ctx
, node
, set
) < 0)
1007 return isl_stat_error
;
1009 if (!space
|| !sched
|| (graph
->max_row
&& !coincident
))
1010 return isl_stat_error
;
1011 if (compressed
&& (!hull
|| !compress
|| !decompress
))
1012 return isl_stat_error
;
1018 isl_multi_aff_free(compress
);
1019 isl_pw_multi_aff_free(decompress
);
1020 return isl_stat_error
;
1023 /* Add a new node to the graph representing the given set.
1025 * If any of the set variables is defined by an equality, then
1026 * we perform variable compression such that we can perform
1027 * the scheduling on the compressed domain.
1028 * In this case, an identifier is used that references the new node
1029 * such that each compressed space is unique and
1030 * such that the node can be recovered from the compressed space.
1032 static isl_stat
extract_node(__isl_take isl_set
*set
, void *user
)
1035 isl_bool has_equality
;
1037 isl_basic_set
*hull
;
1040 isl_multi_aff
*compress
, *decompress_ma
;
1041 isl_pw_multi_aff
*decompress
;
1042 struct isl_sched_graph
*graph
= user
;
1044 hull
= isl_set_affine_hull(isl_set_copy(set
));
1045 hull
= isl_basic_set_remove_divs(hull
);
1046 nvar
= isl_set_dim(set
, isl_dim_set
);
1047 has_equality
= has_any_defining_equality(hull
);
1049 if (nvar
< 0 || has_equality
< 0)
1051 if (!has_equality
) {
1052 isl_basic_set_free(hull
);
1053 return add_node(graph
, set
, nvar
, 0, NULL
, NULL
, NULL
);
1056 id
= construct_compressed_id(set
, &graph
->node
[graph
->n
]);
1057 morph
= isl_basic_set_variable_compression_with_id(hull
, id
);
1059 nvar
= isl_morph_ran_dim(morph
, isl_dim_set
);
1061 set
= isl_set_free(set
);
1062 compress
= isl_morph_get_var_multi_aff(morph
);
1063 morph
= isl_morph_inverse(morph
);
1064 decompress_ma
= isl_morph_get_var_multi_aff(morph
);
1065 decompress
= isl_pw_multi_aff_from_multi_aff(decompress_ma
);
1066 isl_morph_free(morph
);
1068 hull_set
= isl_set_from_basic_set(hull
);
1069 return add_node(graph
, set
, nvar
, 1, hull_set
, compress
, decompress
);
1071 isl_basic_set_free(hull
);
1073 return isl_stat_error
;
1076 struct isl_extract_edge_data
{
1077 isl_schedule_constraints
*sc
;
1078 enum isl_edge_type type
;
1079 struct isl_sched_graph
*graph
;
1082 /* Merge edge2 into edge1, freeing the contents of edge2.
1083 * Return 0 on success and -1 on failure.
1085 * edge1 and edge2 are assumed to have the same value for the map field.
1087 static int merge_edge(struct isl_sched_edge
*edge1
,
1088 struct isl_sched_edge
*edge2
)
1090 edge1
->types
|= edge2
->types
;
1091 isl_map_free(edge2
->map
);
1093 if (isl_sched_edge_is_condition(edge2
)) {
1094 if (!edge1
->tagged_condition
)
1095 edge1
->tagged_condition
= edge2
->tagged_condition
;
1097 edge1
->tagged_condition
=
1098 isl_union_map_union(edge1
->tagged_condition
,
1099 edge2
->tagged_condition
);
1102 if (isl_sched_edge_is_conditional_validity(edge2
)) {
1103 if (!edge1
->tagged_validity
)
1104 edge1
->tagged_validity
= edge2
->tagged_validity
;
1106 edge1
->tagged_validity
=
1107 isl_union_map_union(edge1
->tagged_validity
,
1108 edge2
->tagged_validity
);
1111 if (isl_sched_edge_is_condition(edge2
) && !edge1
->tagged_condition
)
1113 if (isl_sched_edge_is_conditional_validity(edge2
) &&
1114 !edge1
->tagged_validity
)
1120 /* Insert dummy tags in domain and range of "map".
1122 * In particular, if "map" is of the form
1128 * [A -> dummy_tag] -> [B -> dummy_tag]
1130 * where the dummy_tags are identical and equal to any dummy tags
1131 * introduced by any other call to this function.
1133 static __isl_give isl_map
*insert_dummy_tags(__isl_take isl_map
*map
)
1139 isl_set
*domain
, *range
;
1141 ctx
= isl_map_get_ctx(map
);
1143 id
= isl_id_alloc(ctx
, NULL
, &dummy
);
1144 space
= isl_space_params(isl_map_get_space(map
));
1145 space
= isl_space_set_from_params(space
);
1146 space
= isl_space_set_tuple_id(space
, isl_dim_set
, id
);
1147 space
= isl_space_map_from_set(space
);
1149 domain
= isl_map_wrap(map
);
1150 range
= isl_map_wrap(isl_map_universe(space
));
1151 map
= isl_map_from_domain_and_range(domain
, range
);
1152 map
= isl_map_zip(map
);
1157 /* Given that at least one of "src" or "dst" is compressed, return
1158 * a map between the spaces of these nodes restricted to the affine
1159 * hull that was used in the compression.
1161 static __isl_give isl_map
*extract_hull(struct isl_sched_node
*src
,
1162 struct isl_sched_node
*dst
)
1166 if (src
->compressed
)
1167 dom
= isl_set_copy(src
->hull
);
1169 dom
= isl_set_universe(isl_space_copy(src
->space
));
1170 if (dst
->compressed
)
1171 ran
= isl_set_copy(dst
->hull
);
1173 ran
= isl_set_universe(isl_space_copy(dst
->space
));
1175 return isl_map_from_domain_and_range(dom
, ran
);
1178 /* Intersect the domains of the nested relations in domain and range
1179 * of "tagged" with "map".
1181 static __isl_give isl_map
*map_intersect_domains(__isl_take isl_map
*tagged
,
1182 __isl_keep isl_map
*map
)
1186 tagged
= isl_map_zip(tagged
);
1187 set
= isl_map_wrap(isl_map_copy(map
));
1188 tagged
= isl_map_intersect_domain(tagged
, set
);
1189 tagged
= isl_map_zip(tagged
);
1193 /* Return a pointer to the node that lives in the domain space of "map",
1194 * an invalid node if there is no such node, or NULL in case of error.
1196 static struct isl_sched_node
*find_domain_node(isl_ctx
*ctx
,
1197 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1199 struct isl_sched_node
*node
;
1202 space
= isl_space_domain(isl_map_get_space(map
));
1203 node
= isl_sched_graph_find_node(ctx
, graph
, space
);
1204 isl_space_free(space
);
1209 /* Return a pointer to the node that lives in the range space of "map",
1210 * an invalid node if there is no such node, or NULL in case of error.
1212 static struct isl_sched_node
*find_range_node(isl_ctx
*ctx
,
1213 struct isl_sched_graph
*graph
, __isl_keep isl_map
*map
)
1215 struct isl_sched_node
*node
;
1218 space
= isl_space_range(isl_map_get_space(map
));
1219 node
= isl_sched_graph_find_node(ctx
, graph
, space
);
1220 isl_space_free(space
);
1225 /* Refrain from adding a new edge based on "map".
1226 * Instead, just free the map.
1227 * "tagged" is either a copy of "map" with additional tags or NULL.
1229 static isl_stat
skip_edge(__isl_take isl_map
*map
, __isl_take isl_map
*tagged
)
1232 isl_map_free(tagged
);
1237 /* Add a new edge to the graph based on the given map
1238 * and add it to data->graph->edge_table[data->type].
1239 * If a dependence relation of a given type happens to be identical
1240 * to one of the dependence relations of a type that was added before,
1241 * then we don't create a new edge, but instead mark the original edge
1242 * as also representing a dependence of the current type.
1244 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1245 * may be specified as "tagged" dependence relations. That is, "map"
1246 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1247 * the dependence on iterations and a and b are tags.
1248 * edge->map is set to the relation containing the elements i -> j,
1249 * while edge->tagged_condition and edge->tagged_validity contain
1250 * the union of all the "map" relations
1251 * for which extract_edge is called that result in the same edge->map.
1253 * Compute the gist with respect to the context.
1254 * This may remove some constraints on the parameters or
1255 * eliminate some parts of the dependence relation
1256 * that are not relevant on the context.
1258 * If the source or the destination node is compressed, then
1259 * intersect both "map" and "tagged" with the constraints that
1260 * were used to construct the compression.
1261 * This ensures that there are no schedule constraints defined
1262 * outside of these domains, while the scheduler no longer has
1263 * any control over those outside parts.
1265 static isl_stat
extract_edge(__isl_take isl_map
*map
, void *user
)
1268 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1269 struct isl_extract_edge_data
*data
= user
;
1270 struct isl_sched_graph
*graph
= data
->graph
;
1271 struct isl_sched_node
*src
, *dst
;
1272 struct isl_sched_edge
*edge
;
1274 isl_map
*tagged
= NULL
;
1275 isl_schedule_constraints
*sc
= data
->sc
;
1277 if (data
->type
== isl_edge_condition
||
1278 data
->type
== isl_edge_conditional_validity
) {
1279 if (isl_map_can_zip(map
)) {
1280 tagged
= isl_map_copy(map
);
1281 map
= isl_set_unwrap(isl_map_domain(isl_map_zip(map
)));
1283 tagged
= insert_dummy_tags(isl_map_copy(map
));
1287 src
= find_domain_node(ctx
, graph
, map
);
1288 dst
= find_range_node(ctx
, graph
, map
);
1292 if (!isl_sched_graph_is_node(graph
, src
) ||
1293 !isl_sched_graph_is_node(graph
, dst
))
1294 return skip_edge(map
, tagged
);
1296 context
= isl_schedule_constraints_get_context(sc
);
1297 map
= isl_map_gist_params(map
, context
);
1299 if (src
->compressed
|| dst
->compressed
) {
1301 hull
= extract_hull(src
, dst
);
1303 tagged
= map_intersect_domains(tagged
, hull
);
1304 map
= isl_map_intersect(map
, hull
);
1307 empty
= isl_map_plain_is_empty(map
);
1311 return skip_edge(map
, tagged
);
1313 graph
->edge
[graph
->n_edge
].src
= src
;
1314 graph
->edge
[graph
->n_edge
].dst
= dst
;
1315 graph
->edge
[graph
->n_edge
].map
= map
;
1316 graph
->edge
[graph
->n_edge
].types
= 0;
1317 graph
->edge
[graph
->n_edge
].tagged_condition
= NULL
;
1318 graph
->edge
[graph
->n_edge
].tagged_validity
= NULL
;
1319 set_type(&graph
->edge
[graph
->n_edge
], data
->type
);
1320 if (data
->type
== isl_edge_condition
)
1321 graph
->edge
[graph
->n_edge
].tagged_condition
=
1322 isl_union_map_from_map(tagged
);
1323 if (data
->type
== isl_edge_conditional_validity
)
1324 graph
->edge
[graph
->n_edge
].tagged_validity
=
1325 isl_union_map_from_map(tagged
);
1327 edge
= graph_find_matching_edge(graph
, &graph
->edge
[graph
->n_edge
]);
1330 return isl_stat_error
;
1332 if (edge
== &graph
->edge
[graph
->n_edge
])
1333 return graph_edge_table_add(ctx
, graph
, data
->type
,
1334 &graph
->edge
[graph
->n_edge
++]);
1336 if (merge_edge(edge
, &graph
->edge
[graph
->n_edge
]) < 0)
1337 return isl_stat_error
;
1339 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
1342 isl_map_free(tagged
);
1343 return isl_stat_error
;
1346 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1348 * The context is included in the domain before the nodes of
1349 * the graphs are extracted in order to be able to exploit
1350 * any possible additional equalities.
1351 * Note that this intersection is only performed locally here.
1353 isl_stat
isl_sched_graph_init(struct isl_sched_graph
*graph
,
1354 __isl_keep isl_schedule_constraints
*sc
)
1357 isl_union_set
*domain
;
1359 struct isl_extract_edge_data data
= { sc
};
1360 enum isl_edge_type i
;
1365 return isl_stat_error
;
1367 ctx
= isl_schedule_constraints_get_ctx(sc
);
1369 domain
= isl_schedule_constraints_get_domain(sc
);
1370 n
= isl_union_set_n_set(domain
);
1372 isl_union_set_free(domain
);
1374 return isl_stat_error
;
1376 n
= isl_schedule_constraints_n_map(sc
);
1377 if (n
< 0 || graph_alloc(ctx
, graph
, graph
->n
, n
) < 0)
1378 return isl_stat_error
;
1380 if (compute_max_row(graph
, sc
) < 0)
1381 return isl_stat_error
;
1382 graph
->root
= graph
;
1384 domain
= isl_schedule_constraints_get_domain(sc
);
1385 domain
= isl_union_set_intersect_params(domain
,
1386 isl_schedule_constraints_get_context(sc
));
1387 r
= isl_union_set_foreach_set(domain
, &extract_node
, graph
);
1388 isl_union_set_free(domain
);
1390 return isl_stat_error
;
1391 if (graph_init_table(ctx
, graph
) < 0)
1392 return isl_stat_error
;
1393 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1396 c
= isl_schedule_constraints_get(sc
, i
);
1397 n
= isl_union_map_n_map(c
);
1398 graph
->max_edge
[i
] = n
;
1399 isl_union_map_free(c
);
1401 return isl_stat_error
;
1403 if (graph_init_edge_tables(ctx
, graph
) < 0)
1404 return isl_stat_error
;
1407 for (i
= isl_edge_first
; i
<= isl_edge_last
; ++i
) {
1411 c
= isl_schedule_constraints_get(sc
, i
);
1412 r
= isl_union_map_foreach_map(c
, &extract_edge
, &data
);
1413 isl_union_map_free(c
);
1415 return isl_stat_error
;
1421 /* Check whether there is any dependence from node[j] to node[i]
1422 * or from node[i] to node[j].
1424 static isl_bool
node_follows_weak(int i
, int j
, void *user
)
1427 struct isl_sched_graph
*graph
= user
;
1429 f
= graph_has_any_edge(graph
, &graph
->node
[j
], &graph
->node
[i
]);
1432 return graph_has_any_edge(graph
, &graph
->node
[i
], &graph
->node
[j
]);
1435 /* Check whether there is a (conditional) validity dependence from node[j]
1436 * to node[i], forcing node[i] to follow node[j].
1438 static isl_bool
node_follows_strong(int i
, int j
, void *user
)
1440 struct isl_sched_graph
*graph
= user
;
1442 return isl_sched_graph_has_validity_edge(graph
, &graph
->node
[j
],
1446 /* Use Tarjan's algorithm for computing the strongly connected components
1447 * in the dependence graph only considering those edges defined by "follows".
1449 isl_stat
isl_sched_graph_detect_ccs(isl_ctx
*ctx
,
1450 struct isl_sched_graph
*graph
,
1451 isl_bool (*follows
)(int i
, int j
, void *user
))
1454 struct isl_tarjan_graph
*g
= NULL
;
1456 g
= isl_tarjan_graph_init(ctx
, graph
->n
, follows
, graph
);
1458 return isl_stat_error
;
1464 while (g
->order
[i
] != -1) {
1465 graph
->node
[g
->order
[i
]].scc
= graph
->scc
;
1473 isl_tarjan_graph_free(g
);
1478 /* Apply Tarjan's algorithm to detect the strongly connected components
1479 * in the dependence graph.
1480 * Only consider the (conditional) validity dependences and clear "weak".
1482 static isl_stat
detect_sccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1485 return isl_sched_graph_detect_ccs(ctx
, graph
, &node_follows_strong
);
1488 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1489 * in the dependence graph.
1490 * Consider all dependences and set "weak".
1492 static isl_stat
detect_wccs(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1495 return isl_sched_graph_detect_ccs(ctx
, graph
, &node_follows_weak
);
1498 static int cmp_scc(const void *a
, const void *b
, void *data
)
1500 struct isl_sched_graph
*graph
= data
;
1504 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
1507 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1509 static int sort_sccs(struct isl_sched_graph
*graph
)
1511 return isl_sort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
1514 /* Return a non-parametric set in the compressed space of "node" that is
1515 * bounded by the size in each direction
1517 * { [x] : -S_i <= x_i <= S_i }
1519 * If S_i is infinity in direction i, then there are no constraints
1520 * in that direction.
1522 * Cache the result in node->bounds.
1524 static __isl_give isl_basic_set
*get_size_bounds(struct isl_sched_node
*node
)
1527 isl_basic_set
*bounds
;
1531 return isl_basic_set_copy(node
->bounds
);
1533 if (node
->compressed
)
1534 space
= isl_pw_multi_aff_get_domain_space(node
->decompress
);
1536 space
= isl_space_copy(node
->space
);
1537 space
= isl_space_drop_all_params(space
);
1538 bounds
= isl_basic_set_universe(space
);
1540 for (i
= 0; i
< node
->nvar
; ++i
) {
1543 size
= isl_multi_val_get_val(node
->sizes
, i
);
1545 return isl_basic_set_free(bounds
);
1546 if (!isl_val_is_int(size
)) {
1550 bounds
= isl_basic_set_upper_bound_val(bounds
, isl_dim_set
, i
,
1551 isl_val_copy(size
));
1552 bounds
= isl_basic_set_lower_bound_val(bounds
, isl_dim_set
, i
,
1556 node
->bounds
= isl_basic_set_copy(bounds
);
1560 /* Compress the dependence relation "map", if needed, i.e.,
1561 * when the source node "src" and/or the destination node "dst"
1562 * has been compressed.
1564 static __isl_give isl_map
*compress(__isl_take isl_map
*map
,
1565 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1567 if (src
->compressed
)
1568 map
= isl_map_preimage_domain_pw_multi_aff(map
,
1569 isl_pw_multi_aff_copy(src
->decompress
));
1570 if (dst
->compressed
)
1571 map
= isl_map_preimage_range_pw_multi_aff(map
,
1572 isl_pw_multi_aff_copy(dst
->decompress
));
1576 /* Drop some constraints from "delta" that could be exploited
1577 * to construct loop coalescing schedules.
1578 * In particular, drop those constraint that bound the difference
1579 * to the size of the domain.
1580 * First project out the parameters to improve the effectiveness.
1582 static __isl_give isl_set
*drop_coalescing_constraints(
1583 __isl_take isl_set
*delta
, struct isl_sched_node
*node
)
1586 isl_basic_set
*bounds
;
1588 nparam
= isl_set_dim(delta
, isl_dim_param
);
1590 return isl_set_free(delta
);
1592 bounds
= get_size_bounds(node
);
1594 delta
= isl_set_project_out(delta
, isl_dim_param
, 0, nparam
);
1595 delta
= isl_set_remove_divs(delta
);
1596 delta
= isl_set_plain_gist_basic_set(delta
, bounds
);
1600 /* Given a dependence relation R from "node" to itself,
1601 * construct the set of coefficients of valid constraints for elements
1602 * in that dependence relation.
1603 * In particular, the result contains tuples of coefficients
1604 * c_0, c_n, c_x such that
1606 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1610 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1612 * We choose here to compute the dual of delta R.
1613 * Alternatively, we could have computed the dual of R, resulting
1614 * in a set of tuples c_0, c_n, c_x, c_y, and then
1615 * plugged in (c_0, c_n, c_x, -c_x).
1617 * If "need_param" is set, then the resulting coefficients effectively
1618 * include coefficients for the parameters c_n. Otherwise, they may
1619 * have been projected out already.
1620 * Since the constraints may be different for these two cases,
1621 * they are stored in separate caches.
1622 * In particular, if no parameter coefficients are required and
1623 * the schedule_treat_coalescing option is set, then the parameters
1624 * are projected out and some constraints that could be exploited
1625 * to construct coalescing schedules are removed before the dual
1628 * If "node" has been compressed, then the dependence relation
1629 * is also compressed before the set of coefficients is computed.
1631 static __isl_give isl_basic_set
*intra_coefficients(
1632 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1633 __isl_take isl_map
*map
, int need_param
)
1638 isl_basic_set
*coef
;
1639 isl_maybe_isl_basic_set m
;
1640 isl_map_to_basic_set
**hmap
= &graph
->intra_hmap
;
1646 ctx
= isl_map_get_ctx(map
);
1647 treat
= !need_param
&& isl_options_get_schedule_treat_coalescing(ctx
);
1649 hmap
= &graph
->intra_hmap_param
;
1650 m
= isl_map_to_basic_set_try_get(*hmap
, map
);
1651 if (m
.valid
< 0 || m
.valid
) {
1656 key
= isl_map_copy(map
);
1657 map
= compress(map
, node
, node
);
1658 delta
= isl_map_deltas(map
);
1660 delta
= drop_coalescing_constraints(delta
, node
);
1661 delta
= isl_set_remove_divs(delta
);
1662 coef
= isl_set_coefficients(delta
);
1663 *hmap
= isl_map_to_basic_set_set(*hmap
, key
, isl_basic_set_copy(coef
));
1668 /* Given a dependence relation R, construct the set of coefficients
1669 * of valid constraints for elements in that dependence relation.
1670 * In particular, the result contains tuples of coefficients
1671 * c_0, c_n, c_x, c_y such that
1673 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1675 * If the source or destination nodes of "edge" have been compressed,
1676 * then the dependence relation is also compressed before
1677 * the set of coefficients is computed.
1679 static __isl_give isl_basic_set
*inter_coefficients(
1680 struct isl_sched_graph
*graph
, struct isl_sched_edge
*edge
,
1681 __isl_take isl_map
*map
)
1685 isl_basic_set
*coef
;
1686 isl_maybe_isl_basic_set m
;
1688 m
= isl_map_to_basic_set_try_get(graph
->inter_hmap
, map
);
1689 if (m
.valid
< 0 || m
.valid
) {
1694 key
= isl_map_copy(map
);
1695 map
= compress(map
, edge
->src
, edge
->dst
);
1696 set
= isl_map_wrap(isl_map_remove_divs(map
));
1697 coef
= isl_set_coefficients(set
);
1698 graph
->inter_hmap
= isl_map_to_basic_set_set(graph
->inter_hmap
, key
,
1699 isl_basic_set_copy(coef
));
1704 /* Return the position of the coefficients of the variables in
1705 * the coefficients constraints "coef".
1707 * The space of "coef" is of the form
1709 * { coefficients[[cst, params] -> S] }
1711 * Return the position of S.
1713 static isl_size
coef_var_offset(__isl_keep isl_basic_set
*coef
)
1718 space
= isl_space_unwrap(isl_basic_set_get_space(coef
));
1719 offset
= isl_space_dim(space
, isl_dim_in
);
1720 isl_space_free(space
);
1725 /* Return the offset of the coefficient of the constant term of "node"
1728 * Within each node, the coefficients have the following order:
1729 * - positive and negative parts of c_i_x
1730 * - c_i_n (if parametric)
1733 static int node_cst_coef_offset(struct isl_sched_node
*node
)
1735 return node
->start
+ 2 * node
->nvar
+ node
->nparam
;
1738 /* Return the offset of the coefficients of the parameters of "node"
1741 * Within each node, the coefficients have the following order:
1742 * - positive and negative parts of c_i_x
1743 * - c_i_n (if parametric)
1746 static int node_par_coef_offset(struct isl_sched_node
*node
)
1748 return node
->start
+ 2 * node
->nvar
;
1751 /* Return the offset of the coefficients of the variables of "node"
1754 * Within each node, the coefficients have the following order:
1755 * - positive and negative parts of c_i_x
1756 * - c_i_n (if parametric)
1759 static int node_var_coef_offset(struct isl_sched_node
*node
)
1764 /* Return the position of the pair of variables encoding
1765 * coefficient "i" of "node".
1767 * The order of these variable pairs is the opposite of
1768 * that of the coefficients, with 2 variables per coefficient.
1770 static int node_var_coef_pos(struct isl_sched_node
*node
, int i
)
1772 return node_var_coef_offset(node
) + 2 * (node
->nvar
- 1 - i
);
1775 /* Construct an isl_dim_map for mapping constraints on coefficients
1776 * for "node" to the corresponding positions in graph->lp.
1777 * "offset" is the offset of the coefficients for the variables
1778 * in the input constraints.
1779 * "s" is the sign of the mapping.
1781 * The input constraints are given in terms of the coefficients
1782 * (c_0, c_x) or (c_0, c_n, c_x).
1783 * The mapping produced by this function essentially plugs in
1784 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1785 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1786 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1787 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1788 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1789 * Furthermore, the order of these pairs is the opposite of that
1790 * of the corresponding coefficients.
1792 * The caller can extend the mapping to also map the other coefficients
1793 * (and therefore not plug in 0).
1795 static __isl_give isl_dim_map
*intra_dim_map(isl_ctx
*ctx
,
1796 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
,
1801 isl_dim_map
*dim_map
;
1803 total
= isl_basic_set_dim(graph
->lp
, isl_dim_all
);
1804 if (!node
|| total
< 0)
1807 pos
= node_var_coef_pos(node
, 0);
1808 dim_map
= isl_dim_map_alloc(ctx
, total
);
1809 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, node
->nvar
, -s
);
1810 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, node
->nvar
, s
);
1815 /* Construct an isl_dim_map for mapping constraints on coefficients
1816 * for "src" (node i) and "dst" (node j) to the corresponding positions
1818 * "offset" is the offset of the coefficients for the variables of "src"
1819 * in the input constraints.
1820 * "s" is the sign of the mapping.
1822 * The input constraints are given in terms of the coefficients
1823 * (c_0, c_n, c_x, c_y).
1824 * The mapping produced by this function essentially plugs in
1825 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1826 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1827 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1828 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1829 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1830 * Furthermore, the order of these pairs is the opposite of that
1831 * of the corresponding coefficients.
1833 * The caller can further extend the mapping.
1835 static __isl_give isl_dim_map
*inter_dim_map(isl_ctx
*ctx
,
1836 struct isl_sched_graph
*graph
, struct isl_sched_node
*src
,
1837 struct isl_sched_node
*dst
, int offset
, int s
)
1841 isl_dim_map
*dim_map
;
1843 total
= isl_basic_set_dim(graph
->lp
, isl_dim_all
);
1844 if (!src
|| !dst
|| total
< 0)
1847 dim_map
= isl_dim_map_alloc(ctx
, total
);
1849 pos
= node_cst_coef_offset(dst
);
1850 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, s
);
1851 pos
= node_par_coef_offset(dst
);
1852 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, dst
->nparam
, s
);
1853 pos
= node_var_coef_pos(dst
, 0);
1854 isl_dim_map_range(dim_map
, pos
, -2, offset
+ src
->nvar
, 1,
1856 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
+ src
->nvar
, 1,
1859 pos
= node_cst_coef_offset(src
);
1860 isl_dim_map_range(dim_map
, pos
, 0, 0, 0, 1, -s
);
1861 pos
= node_par_coef_offset(src
);
1862 isl_dim_map_range(dim_map
, pos
, 1, 1, 1, src
->nparam
, -s
);
1863 pos
= node_var_coef_pos(src
, 0);
1864 isl_dim_map_range(dim_map
, pos
, -2, offset
, 1, src
->nvar
, s
);
1865 isl_dim_map_range(dim_map
, pos
+ 1, -2, offset
, 1, src
->nvar
, -s
);
1870 /* Add the constraints from "src" to "dst" using "dim_map",
1871 * after making sure there is enough room in "dst" for the extra constraints.
1873 static __isl_give isl_basic_set
*add_constraints_dim_map(
1874 __isl_take isl_basic_set
*dst
, __isl_take isl_basic_set
*src
,
1875 __isl_take isl_dim_map
*dim_map
)
1877 isl_size n_eq
, n_ineq
;
1879 n_eq
= isl_basic_set_n_equality(src
);
1880 n_ineq
= isl_basic_set_n_inequality(src
);
1881 if (n_eq
< 0 || n_ineq
< 0)
1882 dst
= isl_basic_set_free(dst
);
1883 dst
= isl_basic_set_extend_constraints(dst
, n_eq
, n_ineq
);
1884 dst
= isl_basic_set_add_constraints_dim_map(dst
, src
, dim_map
);
1888 /* Add constraints to graph->lp that force validity for the given
1889 * dependence from a node i to itself.
1890 * That is, add constraints that enforce
1892 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1893 * = c_i_x (y - x) >= 0
1895 * for each (x,y) in R.
1896 * We obtain general constraints on coefficients (c_0, c_x)
1897 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1898 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1899 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1900 * Note that the result of intra_coefficients may also contain
1901 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1903 static isl_stat
add_intra_validity_constraints(struct isl_sched_graph
*graph
,
1904 struct isl_sched_edge
*edge
)
1907 isl_map
*map
= isl_map_copy(edge
->map
);
1908 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1909 isl_dim_map
*dim_map
;
1910 isl_basic_set
*coef
;
1911 struct isl_sched_node
*node
= edge
->src
;
1913 coef
= intra_coefficients(graph
, node
, map
, 0);
1915 offset
= coef_var_offset(coef
);
1917 coef
= isl_basic_set_free(coef
);
1919 return isl_stat_error
;
1921 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
1922 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1927 /* Add constraints to graph->lp that force validity for the given
1928 * dependence from node i to node j.
1929 * That is, add constraints that enforce
1931 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1933 * for each (x,y) in R.
1934 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1935 * of valid constraints for R and then plug in
1936 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1937 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1938 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1940 static isl_stat
add_inter_validity_constraints(struct isl_sched_graph
*graph
,
1941 struct isl_sched_edge
*edge
)
1946 isl_dim_map
*dim_map
;
1947 isl_basic_set
*coef
;
1948 struct isl_sched_node
*src
= edge
->src
;
1949 struct isl_sched_node
*dst
= edge
->dst
;
1952 return isl_stat_error
;
1954 map
= isl_map_copy(edge
->map
);
1955 ctx
= isl_map_get_ctx(map
);
1956 coef
= inter_coefficients(graph
, edge
, map
);
1958 offset
= coef_var_offset(coef
);
1960 coef
= isl_basic_set_free(coef
);
1962 return isl_stat_error
;
1964 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
1966 edge
->start
= graph
->lp
->n_ineq
;
1967 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
1969 return isl_stat_error
;
1970 edge
->end
= graph
->lp
->n_ineq
;
1975 /* Add constraints to graph->lp that bound the dependence distance for the given
1976 * dependence from a node i to itself.
1977 * If s = 1, we add the constraint
1979 * c_i_x (y - x) <= m_0 + m_n n
1983 * -c_i_x (y - x) + m_0 + m_n n >= 0
1985 * for each (x,y) in R.
1986 * If s = -1, we add the constraint
1988 * -c_i_x (y - x) <= m_0 + m_n n
1992 * c_i_x (y - x) + m_0 + m_n n >= 0
1994 * for each (x,y) in R.
1995 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1996 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1997 * with each coefficient (except m_0) represented as a pair of non-negative
2001 * If "local" is set, then we add constraints
2003 * c_i_x (y - x) <= 0
2007 * -c_i_x (y - x) <= 0
2009 * instead, forcing the dependence distance to be (less than or) equal to 0.
2010 * That is, we plug in (0, 0, -s * c_i_x),
2011 * intra_coefficients is not required to have c_n in its result when
2012 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2013 * Note that dependences marked local are treated as validity constraints
2014 * by add_all_validity_constraints and therefore also have
2015 * their distances bounded by 0 from below.
2017 static isl_stat
add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
2018 struct isl_sched_edge
*edge
, int s
, int local
)
2022 isl_map
*map
= isl_map_copy(edge
->map
);
2023 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2024 isl_dim_map
*dim_map
;
2025 isl_basic_set
*coef
;
2026 struct isl_sched_node
*node
= edge
->src
;
2028 coef
= intra_coefficients(graph
, node
, map
, !local
);
2029 nparam
= isl_space_dim(node
->space
, isl_dim_param
);
2031 offset
= coef_var_offset(coef
);
2032 if (nparam
< 0 || offset
< 0)
2033 coef
= isl_basic_set_free(coef
);
2035 return isl_stat_error
;
2037 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, -s
);
2040 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2041 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2042 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2044 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2049 /* Add constraints to graph->lp that bound the dependence distance for the given
2050 * dependence from node i to node j.
2051 * If s = 1, we add the constraint
2053 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2058 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2061 * for each (x,y) in R.
2062 * If s = -1, we add the constraint
2064 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2069 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2072 * for each (x,y) in R.
2073 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2074 * of valid constraints for R and then plug in
2075 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2076 * s*c_i_x, -s*c_j_x)
2077 * with each coefficient (except m_0, c_*_0 and c_*_n)
2078 * represented as a pair of non-negative coefficients.
2081 * If "local" is set (and s = 1), then we add constraints
2083 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2087 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2089 * instead, forcing the dependence distance to be (less than or) equal to 0.
2090 * That is, we plug in
2091 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2092 * Note that dependences marked local are treated as validity constraints
2093 * by add_all_validity_constraints and therefore also have
2094 * their distances bounded by 0 from below.
2096 static isl_stat
add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
2097 struct isl_sched_edge
*edge
, int s
, int local
)
2101 isl_map
*map
= isl_map_copy(edge
->map
);
2102 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2103 isl_dim_map
*dim_map
;
2104 isl_basic_set
*coef
;
2105 struct isl_sched_node
*src
= edge
->src
;
2106 struct isl_sched_node
*dst
= edge
->dst
;
2108 coef
= inter_coefficients(graph
, edge
, map
);
2109 nparam
= isl_space_dim(src
->space
, isl_dim_param
);
2111 offset
= coef_var_offset(coef
);
2112 if (nparam
< 0 || offset
< 0)
2113 coef
= isl_basic_set_free(coef
);
2115 return isl_stat_error
;
2117 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, -s
);
2120 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
2121 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
2122 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
2125 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
2130 /* Should the distance over "edge" be forced to zero?
2131 * That is, is it marked as a local edge?
2132 * If "use_coincidence" is set, then coincidence edges are treated
2135 static int force_zero(struct isl_sched_edge
*edge
, int use_coincidence
)
2137 return is_local(edge
) || (use_coincidence
&& is_coincidence(edge
));
2140 /* Add all validity constraints to graph->lp.
2142 * An edge that is forced to be local needs to have its dependence
2143 * distances equal to zero. We take care of bounding them by 0 from below
2144 * here. add_all_proximity_constraints takes care of bounding them by 0
2147 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2148 * Otherwise, we ignore them.
2150 static int add_all_validity_constraints(struct isl_sched_graph
*graph
,
2151 int use_coincidence
)
2155 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2156 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2159 zero
= force_zero(edge
, use_coincidence
);
2160 if (!is_validity(edge
) && !zero
)
2162 if (edge
->src
!= edge
->dst
)
2164 if (add_intra_validity_constraints(graph
, edge
) < 0)
2168 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2169 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2172 zero
= force_zero(edge
, use_coincidence
);
2173 if (!is_validity(edge
) && !zero
)
2175 if (edge
->src
== edge
->dst
)
2177 if (add_inter_validity_constraints(graph
, edge
) < 0)
2184 /* Add constraints to graph->lp that bound the dependence distance
2185 * for all dependence relations.
2186 * If a given proximity dependence is identical to a validity
2187 * dependence, then the dependence distance is already bounded
2188 * from below (by zero), so we only need to bound the distance
2189 * from above. (This includes the case of "local" dependences
2190 * which are treated as validity dependence by add_all_validity_constraints.)
2191 * Otherwise, we need to bound the distance both from above and from below.
2193 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2194 * Otherwise, we ignore them.
2196 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
,
2197 int use_coincidence
)
2201 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2202 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2205 zero
= force_zero(edge
, use_coincidence
);
2206 if (!isl_sched_edge_is_proximity(edge
) && !zero
)
2208 if (edge
->src
== edge
->dst
&&
2209 add_intra_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2211 if (edge
->src
!= edge
->dst
&&
2212 add_inter_proximity_constraints(graph
, edge
, 1, zero
) < 0)
2214 if (is_validity(edge
) || zero
)
2216 if (edge
->src
== edge
->dst
&&
2217 add_intra_proximity_constraints(graph
, edge
, -1, 0) < 0)
2219 if (edge
->src
!= edge
->dst
&&
2220 add_inter_proximity_constraints(graph
, edge
, -1, 0) < 0)
2227 /* Normalize the rows of "indep" such that all rows are lexicographically
2228 * positive and such that each row contains as many final zeros as possible,
2229 * given the choice for the previous rows.
2230 * Do this by performing elementary row operations.
2232 static __isl_give isl_mat
*normalize_independent(__isl_take isl_mat
*indep
)
2234 indep
= isl_mat_reverse_gauss(indep
);
2235 indep
= isl_mat_lexnonneg_rows(indep
);
2239 /* Extract the linear part of the current schedule for node "node".
2241 static __isl_give isl_mat
*extract_linear_schedule(struct isl_sched_node
*node
)
2243 isl_size n_row
= isl_mat_rows(node
->sched
);
2247 return isl_mat_sub_alloc(node
->sched
, 0, n_row
,
2248 1 + node
->nparam
, node
->nvar
);
2251 /* Compute a basis for the rows in the linear part of the schedule
2252 * and extend this basis to a full basis. The remaining rows
2253 * can then be used to force linear independence from the rows
2256 * In particular, given the schedule rows S, we compute
2261 * with H the Hermite normal form of S. That is, all but the
2262 * first rank columns of H are zero and so each row in S is
2263 * a linear combination of the first rank rows of Q.
2264 * The matrix Q can be used as a variable transformation
2265 * that isolates the directions of S in the first rank rows.
2266 * Transposing S U = H yields
2270 * with all but the first rank rows of H^T zero.
2271 * The last rows of U^T are therefore linear combinations
2272 * of schedule coefficients that are all zero on schedule
2273 * coefficients that are linearly dependent on the rows of S.
2274 * At least one of these combinations is non-zero on
2275 * linearly independent schedule coefficients.
2276 * The rows are normalized to involve as few of the last
2277 * coefficients as possible and to have a positive initial value.
2279 isl_stat
isl_sched_node_update_vmap(struct isl_sched_node
*node
)
2283 H
= extract_linear_schedule(node
);
2285 H
= isl_mat_left_hermite(H
, 0, &U
, &Q
);
2286 isl_mat_free(node
->indep
);
2287 isl_mat_free(node
->vmap
);
2289 node
->indep
= isl_mat_transpose(U
);
2290 node
->rank
= isl_mat_initial_non_zero_cols(H
);
2291 node
->indep
= isl_mat_drop_rows(node
->indep
, 0, node
->rank
);
2292 node
->indep
= normalize_independent(node
->indep
);
2295 if (!node
->indep
|| !node
->vmap
|| node
->rank
< 0)
2296 return isl_stat_error
;
2300 /* Is "edge" marked as a validity or a conditional validity edge?
2302 static int is_any_validity(struct isl_sched_edge
*edge
)
2304 return is_validity(edge
) ||
2305 isl_sched_edge_is_conditional_validity(edge
);
2308 /* How many times should we count the constraints in "edge"?
2310 * We count as follows
2311 * validity -> 1 (>= 0)
2312 * validity+proximity -> 2 (>= 0 and upper bound)
2313 * proximity -> 2 (lower and upper bound)
2314 * local(+any) -> 2 (>= 0 and <= 0)
2316 * If an edge is only marked conditional_validity then it counts
2317 * as zero since it is only checked afterwards.
2319 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2320 * Otherwise, we ignore them.
2322 static int edge_multiplicity(struct isl_sched_edge
*edge
, int use_coincidence
)
2324 if (isl_sched_edge_is_proximity(edge
) ||
2325 force_zero(edge
, use_coincidence
))
2327 if (is_validity(edge
))
2332 /* How many times should the constraints in "edge" be counted
2333 * as a parametric intra-node constraint?
2335 * Only proximity edges that are not forced zero need
2336 * coefficient constraints that include coefficients for parameters.
2337 * If the edge is also a validity edge, then only
2338 * an upper bound is introduced. Otherwise, both lower and upper bounds
2341 static int parametric_intra_edge_multiplicity(struct isl_sched_edge
*edge
,
2342 int use_coincidence
)
2344 if (edge
->src
!= edge
->dst
)
2346 if (!isl_sched_edge_is_proximity(edge
))
2348 if (force_zero(edge
, use_coincidence
))
2350 if (is_validity(edge
))
2356 /* Add "f" times the number of equality and inequality constraints of "bset"
2357 * to "n_eq" and "n_ineq" and free "bset".
2359 static isl_stat
update_count(__isl_take isl_basic_set
*bset
,
2360 int f
, int *n_eq
, int *n_ineq
)
2364 eq
= isl_basic_set_n_equality(bset
);
2365 ineq
= isl_basic_set_n_inequality(bset
);
2366 isl_basic_set_free(bset
);
2368 if (eq
< 0 || ineq
< 0)
2369 return isl_stat_error
;
2377 /* Count the number of equality and inequality constraints
2378 * that will be added for the given map.
2380 * The edges that require parameter coefficients are counted separately.
2382 * "use_coincidence" is set if we should take into account coincidence edges.
2384 static isl_stat
count_map_constraints(struct isl_sched_graph
*graph
,
2385 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
2386 int *n_eq
, int *n_ineq
, int use_coincidence
)
2389 isl_basic_set
*coef
;
2390 int f
= edge_multiplicity(edge
, use_coincidence
);
2391 int fp
= parametric_intra_edge_multiplicity(edge
, use_coincidence
);
2398 if (edge
->src
!= edge
->dst
) {
2399 coef
= inter_coefficients(graph
, edge
, map
);
2400 return update_count(coef
, f
, n_eq
, n_ineq
);
2404 copy
= isl_map_copy(map
);
2405 coef
= intra_coefficients(graph
, edge
->src
, copy
, 1);
2406 if (update_count(coef
, fp
, n_eq
, n_ineq
) < 0)
2411 copy
= isl_map_copy(map
);
2412 coef
= intra_coefficients(graph
, edge
->src
, copy
, 0);
2413 if (update_count(coef
, f
- fp
, n_eq
, n_ineq
) < 0)
2421 return isl_stat_error
;
2424 /* Count the number of equality and inequality constraints
2425 * that will be added to the main lp problem.
2426 * We count as follows
2427 * validity -> 1 (>= 0)
2428 * validity+proximity -> 2 (>= 0 and upper bound)
2429 * proximity -> 2 (lower and upper bound)
2430 * local(+any) -> 2 (>= 0 and <= 0)
2432 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2433 * Otherwise, we ignore them.
2435 static int count_constraints(struct isl_sched_graph
*graph
,
2436 int *n_eq
, int *n_ineq
, int use_coincidence
)
2440 *n_eq
= *n_ineq
= 0;
2441 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2442 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2443 isl_map
*map
= isl_map_copy(edge
->map
);
2445 if (count_map_constraints(graph
, edge
, map
, n_eq
, n_ineq
,
2446 use_coincidence
) < 0)
2453 /* Count the number of constraints that will be added by
2454 * add_bound_constant_constraints to bound the values of the constant terms
2455 * and increment *n_eq and *n_ineq accordingly.
2457 * In practice, add_bound_constant_constraints only adds inequalities.
2459 static isl_stat
count_bound_constant_constraints(isl_ctx
*ctx
,
2460 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2462 if (isl_options_get_schedule_max_constant_term(ctx
) == -1)
2465 *n_ineq
+= graph
->n
;
2470 /* Add constraints to bound the values of the constant terms in the schedule,
2471 * if requested by the user.
2473 * The maximal value of the constant terms is defined by the option
2474 * "schedule_max_constant_term".
2476 static isl_stat
add_bound_constant_constraints(isl_ctx
*ctx
,
2477 struct isl_sched_graph
*graph
)
2483 max
= isl_options_get_schedule_max_constant_term(ctx
);
2487 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2489 return isl_stat_error
;
2491 for (i
= 0; i
< graph
->n
; ++i
) {
2492 struct isl_sched_node
*node
= &graph
->node
[i
];
2495 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2497 return isl_stat_error
;
2498 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2499 pos
= node_cst_coef_offset(node
);
2500 isl_int_set_si(graph
->lp
->ineq
[k
][1 + pos
], -1);
2501 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2507 /* Count the number of constraints that will be added by
2508 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2511 * In practice, add_bound_coefficient_constraints only adds inequalities.
2513 static int count_bound_coefficient_constraints(isl_ctx
*ctx
,
2514 struct isl_sched_graph
*graph
, int *n_eq
, int *n_ineq
)
2518 if (isl_options_get_schedule_max_coefficient(ctx
) == -1 &&
2519 !isl_options_get_schedule_treat_coalescing(ctx
))
2522 for (i
= 0; i
< graph
->n
; ++i
)
2523 *n_ineq
+= graph
->node
[i
].nparam
+ 2 * graph
->node
[i
].nvar
;
2528 /* Add constraints to graph->lp that bound the values of
2529 * the parameter schedule coefficients of "node" to "max" and
2530 * the variable schedule coefficients to the corresponding entry
2532 * In either case, a negative value means that no bound needs to be imposed.
2534 * For parameter coefficients, this amounts to adding a constraint
2542 * The variables coefficients are, however, not represented directly.
2543 * Instead, the variable coefficients c_x are written as differences
2544 * c_x = c_x^+ - c_x^-.
2547 * -max_i <= c_x_i <= max_i
2551 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2555 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2556 * c_x_i^+ - c_x_i^- + max_i >= 0
2558 static isl_stat
node_add_coefficient_constraints(isl_ctx
*ctx
,
2559 struct isl_sched_graph
*graph
, struct isl_sched_node
*node
, int max
)
2565 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2567 return isl_stat_error
;
2569 for (j
= 0; j
< node
->nparam
; ++j
) {
2575 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2577 return isl_stat_error
;
2578 dim
= 1 + node_par_coef_offset(node
) + j
;
2579 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2580 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
2581 isl_int_set_si(graph
->lp
->ineq
[k
][0], max
);
2584 ineq
= isl_vec_alloc(ctx
, 1 + total
);
2585 ineq
= isl_vec_clr(ineq
);
2587 return isl_stat_error
;
2588 for (i
= 0; i
< node
->nvar
; ++i
) {
2589 int pos
= 1 + node_var_coef_pos(node
, i
);
2591 if (isl_int_is_neg(node
->max
->el
[i
]))
2594 isl_int_set_si(ineq
->el
[pos
], 1);
2595 isl_int_set_si(ineq
->el
[pos
+ 1], -1);
2596 isl_int_set(ineq
->el
[0], node
->max
->el
[i
]);
2598 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2601 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2603 isl_seq_neg(ineq
->el
+ pos
, ineq
->el
+ pos
, 2);
2604 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2607 isl_seq_cpy(graph
->lp
->ineq
[k
], ineq
->el
, 1 + total
);
2609 isl_seq_clr(ineq
->el
+ pos
, 2);
2616 return isl_stat_error
;
2619 /* Add constraints that bound the values of the variable and parameter
2620 * coefficients of the schedule.
2622 * The maximal value of the coefficients is defined by the option
2623 * 'schedule_max_coefficient' and the entries in node->max.
2624 * These latter entries are only set if either the schedule_max_coefficient
2625 * option or the schedule_treat_coalescing option is set.
2627 static isl_stat
add_bound_coefficient_constraints(isl_ctx
*ctx
,
2628 struct isl_sched_graph
*graph
)
2633 max
= isl_options_get_schedule_max_coefficient(ctx
);
2635 if (max
== -1 && !isl_options_get_schedule_treat_coalescing(ctx
))
2638 for (i
= 0; i
< graph
->n
; ++i
) {
2639 struct isl_sched_node
*node
= &graph
->node
[i
];
2641 if (node_add_coefficient_constraints(ctx
, graph
, node
, max
) < 0)
2642 return isl_stat_error
;
2648 /* Add a constraint to graph->lp that equates the value at position
2649 * "sum_pos" to the sum of the "n" values starting at "first".
2651 static isl_stat
add_sum_constraint(struct isl_sched_graph
*graph
,
2652 int sum_pos
, int first
, int n
)
2657 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2659 return isl_stat_error
;
2661 k
= isl_basic_set_alloc_equality(graph
->lp
);
2663 return isl_stat_error
;
2664 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2665 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2666 for (i
= 0; i
< n
; ++i
)
2667 isl_int_set_si(graph
->lp
->eq
[k
][1 + first
+ i
], 1);
2672 /* Add a constraint to graph->lp that equates the value at position
2673 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2675 static isl_stat
add_param_sum_constraint(struct isl_sched_graph
*graph
,
2681 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2683 return isl_stat_error
;
2685 k
= isl_basic_set_alloc_equality(graph
->lp
);
2687 return isl_stat_error
;
2688 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2689 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2690 for (i
= 0; i
< graph
->n
; ++i
) {
2691 int pos
= 1 + node_par_coef_offset(&graph
->node
[i
]);
2693 for (j
= 0; j
< graph
->node
[i
].nparam
; ++j
)
2694 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2700 /* Add a constraint to graph->lp that equates the value at position
2701 * "sum_pos" to the sum of the variable coefficients of all nodes.
2703 static isl_stat
add_var_sum_constraint(struct isl_sched_graph
*graph
,
2709 total
= isl_basic_set_dim(graph
->lp
, isl_dim_set
);
2711 return isl_stat_error
;
2713 k
= isl_basic_set_alloc_equality(graph
->lp
);
2715 return isl_stat_error
;
2716 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2717 isl_int_set_si(graph
->lp
->eq
[k
][1 + sum_pos
], -1);
2718 for (i
= 0; i
< graph
->n
; ++i
) {
2719 struct isl_sched_node
*node
= &graph
->node
[i
];
2720 int pos
= 1 + node_var_coef_offset(node
);
2722 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2723 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2729 /* Construct an ILP problem for finding schedule coefficients
2730 * that result in non-negative, but small dependence distances
2731 * over all dependences.
2732 * In particular, the dependence distances over proximity edges
2733 * are bounded by m_0 + m_n n and we compute schedule coefficients
2734 * with small values (preferably zero) of m_n and m_0.
2736 * All variables of the ILP are non-negative. The actual coefficients
2737 * may be negative, so each coefficient is represented as the difference
2738 * of two non-negative variables. The negative part always appears
2739 * immediately before the positive part.
2740 * Other than that, the variables have the following order
2742 * - sum of positive and negative parts of m_n coefficients
2744 * - sum of all c_n coefficients
2745 * (unconstrained when computing non-parametric schedules)
2746 * - sum of positive and negative parts of all c_x coefficients
2747 * - positive and negative parts of m_n coefficients
2749 * - positive and negative parts of c_i_x, in opposite order
2750 * - c_i_n (if parametric)
2753 * The constraints are those from the edges plus two or three equalities
2754 * to express the sums.
2756 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2757 * Otherwise, we ignore them.
2759 static isl_stat
setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
2760 int use_coincidence
)
2770 parametric
= ctx
->opt
->schedule_parametric
;
2771 nparam
= isl_space_dim(graph
->node
[0].space
, isl_dim_param
);
2773 return isl_stat_error
;
2775 total
= param_pos
+ 2 * nparam
;
2776 for (i
= 0; i
< graph
->n
; ++i
) {
2777 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2778 if (isl_sched_node_update_vmap(node
) < 0)
2779 return isl_stat_error
;
2780 node
->start
= total
;
2781 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
2784 if (count_constraints(graph
, &n_eq
, &n_ineq
, use_coincidence
) < 0)
2785 return isl_stat_error
;
2786 if (count_bound_constant_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2787 return isl_stat_error
;
2788 if (count_bound_coefficient_constraints(ctx
, graph
, &n_eq
, &n_ineq
) < 0)
2789 return isl_stat_error
;
2791 space
= isl_space_set_alloc(ctx
, 0, total
);
2792 isl_basic_set_free(graph
->lp
);
2793 n_eq
+= 2 + parametric
;
2795 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
2797 if (add_sum_constraint(graph
, 0, param_pos
, 2 * nparam
) < 0)
2798 return isl_stat_error
;
2799 if (parametric
&& add_param_sum_constraint(graph
, 2) < 0)
2800 return isl_stat_error
;
2801 if (add_var_sum_constraint(graph
, 3) < 0)
2802 return isl_stat_error
;
2803 if (add_bound_constant_constraints(ctx
, graph
) < 0)
2804 return isl_stat_error
;
2805 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
2806 return isl_stat_error
;
2807 if (add_all_validity_constraints(graph
, use_coincidence
) < 0)
2808 return isl_stat_error
;
2809 if (add_all_proximity_constraints(graph
, use_coincidence
) < 0)
2810 return isl_stat_error
;
2815 /* Analyze the conflicting constraint found by
2816 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2817 * constraint of one of the edges between distinct nodes, living, moreover
2818 * in distinct SCCs, then record the source and sink SCC as this may
2819 * be a good place to cut between SCCs.
2821 static int check_conflict(int con
, void *user
)
2824 struct isl_sched_graph
*graph
= user
;
2826 if (graph
->src_scc
>= 0)
2829 con
-= graph
->lp
->n_eq
;
2831 if (con
>= graph
->lp
->n_ineq
)
2834 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2835 if (!is_validity(&graph
->edge
[i
]))
2837 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
2839 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
2841 if (graph
->edge
[i
].start
> con
)
2843 if (graph
->edge
[i
].end
<= con
)
2845 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
2846 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
2852 /* Check whether the next schedule row of the given node needs to be
2853 * non-trivial. Lower-dimensional domains may have some trivial rows,
2854 * but as soon as the number of remaining required non-trivial rows
2855 * is as large as the number or remaining rows to be computed,
2856 * all remaining rows need to be non-trivial.
2858 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
2860 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
2863 /* Construct a non-triviality region with triviality directions
2864 * corresponding to the rows of "indep".
2865 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2866 * while the triviality directions are expressed in terms of
2867 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2868 * before c^+_i. Furthermore,
2869 * the pairs of non-negative variables representing the coefficients
2870 * are stored in the opposite order.
2872 static __isl_give isl_mat
*construct_trivial(__isl_keep isl_mat
*indep
)
2879 n
= isl_mat_rows(indep
);
2880 n_var
= isl_mat_cols(indep
);
2881 if (n
< 0 || n_var
< 0)
2884 ctx
= isl_mat_get_ctx(indep
);
2885 mat
= isl_mat_alloc(ctx
, n
, 2 * n_var
);
2888 for (i
= 0; i
< n
; ++i
) {
2889 for (j
= 0; j
< n_var
; ++j
) {
2890 int nj
= n_var
- 1 - j
;
2891 isl_int_neg(mat
->row
[i
][2 * nj
], indep
->row
[i
][j
]);
2892 isl_int_set(mat
->row
[i
][2 * nj
+ 1], indep
->row
[i
][j
]);
2899 /* Solve the ILP problem constructed in setup_lp.
2900 * For each node such that all the remaining rows of its schedule
2901 * need to be non-trivial, we construct a non-triviality region.
2902 * This region imposes that the next row is independent of previous rows.
2903 * In particular, the non-triviality region enforces that at least
2904 * one of the linear combinations in the rows of node->indep is non-zero.
2906 static __isl_give isl_vec
*solve_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2912 for (i
= 0; i
< graph
->n
; ++i
) {
2913 struct isl_sched_node
*node
= &graph
->node
[i
];
2916 graph
->region
[i
].pos
= node_var_coef_offset(node
);
2917 if (needs_row(graph
, node
))
2918 trivial
= construct_trivial(node
->indep
);
2920 trivial
= isl_mat_zero(ctx
, 0, 0);
2921 graph
->region
[i
].trivial
= trivial
;
2923 lp
= isl_basic_set_copy(graph
->lp
);
2924 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
2925 graph
->region
, &check_conflict
, graph
);
2926 for (i
= 0; i
< graph
->n
; ++i
)
2927 isl_mat_free(graph
->region
[i
].trivial
);
2931 /* Extract the coefficients for the variables of "node" from "sol".
2933 * Each schedule coefficient c_i_x is represented as the difference
2934 * between two non-negative variables c_i_x^+ - c_i_x^-.
2935 * The c_i_x^- appear before their c_i_x^+ counterpart.
2936 * Furthermore, the order of these pairs is the opposite of that
2937 * of the corresponding coefficients.
2939 * Return c_i_x = c_i_x^+ - c_i_x^-
2941 static __isl_give isl_vec
*extract_var_coef(struct isl_sched_node
*node
,
2942 __isl_keep isl_vec
*sol
)
2950 csol
= isl_vec_alloc(isl_vec_get_ctx(sol
), node
->nvar
);
2954 pos
= 1 + node_var_coef_offset(node
);
2955 for (i
= 0; i
< node
->nvar
; ++i
)
2956 isl_int_sub(csol
->el
[node
->nvar
- 1 - i
],
2957 sol
->el
[pos
+ 2 * i
+ 1], sol
->el
[pos
+ 2 * i
]);
2962 /* Update the schedules of all nodes based on the given solution
2963 * of the LP problem.
2964 * The new row is added to the current band.
2965 * All possibly negative coefficients are encoded as a difference
2966 * of two non-negative variables, so we need to perform the subtraction
2969 * If coincident is set, then the caller guarantees that the new
2970 * row satisfies the coincidence constraints.
2972 static int update_schedule(struct isl_sched_graph
*graph
,
2973 __isl_take isl_vec
*sol
, int coincident
)
2976 isl_vec
*csol
= NULL
;
2981 isl_die(sol
->ctx
, isl_error_internal
,
2982 "no solution found", goto error
);
2983 if (graph
->n_total_row
>= graph
->max_row
)
2984 isl_die(sol
->ctx
, isl_error_internal
,
2985 "too many schedule rows", goto error
);
2987 for (i
= 0; i
< graph
->n
; ++i
) {
2988 struct isl_sched_node
*node
= &graph
->node
[i
];
2990 isl_size row
= isl_mat_rows(node
->sched
);
2993 csol
= extract_var_coef(node
, sol
);
2994 if (row
< 0 || !csol
)
2997 isl_map_free(node
->sched_map
);
2998 node
->sched_map
= NULL
;
2999 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
3002 pos
= node_cst_coef_offset(node
);
3003 node
->sched
= isl_mat_set_element(node
->sched
,
3004 row
, 0, sol
->el
[1 + pos
]);
3005 pos
= node_par_coef_offset(node
);
3006 for (j
= 0; j
< node
->nparam
; ++j
)
3007 node
->sched
= isl_mat_set_element(node
->sched
,
3008 row
, 1 + j
, sol
->el
[1 + pos
+ j
]);
3009 for (j
= 0; j
< node
->nvar
; ++j
)
3010 node
->sched
= isl_mat_set_element(node
->sched
,
3011 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
3012 node
->coincident
[graph
->n_total_row
] = coincident
;
3018 graph
->n_total_row
++;
3027 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3028 * and return this isl_aff.
3030 static __isl_give isl_aff
*extract_schedule_row(__isl_take isl_local_space
*ls
,
3031 struct isl_sched_node
*node
, int row
)
3039 aff
= isl_aff_zero_on_domain(ls
);
3040 if (isl_mat_get_element(node
->sched
, row
, 0, &v
) < 0)
3042 aff
= isl_aff_set_constant(aff
, v
);
3043 for (j
= 0; j
< node
->nparam
; ++j
) {
3044 if (isl_mat_get_element(node
->sched
, row
, 1 + j
, &v
) < 0)
3046 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
3048 for (j
= 0; j
< node
->nvar
; ++j
) {
3049 if (isl_mat_get_element(node
->sched
, row
,
3050 1 + node
->nparam
+ j
, &v
) < 0)
3052 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
3064 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3065 * and return this multi_aff.
3067 * The result is defined over the uncompressed node domain.
3069 __isl_give isl_multi_aff
*isl_sched_node_extract_partial_schedule_multi_aff(
3070 struct isl_sched_node
*node
, int first
, int n
)
3074 isl_local_space
*ls
;
3081 nrow
= isl_mat_rows(node
->sched
);
3084 if (node
->compressed
)
3085 space
= isl_pw_multi_aff_get_domain_space(node
->decompress
);
3087 space
= isl_space_copy(node
->space
);
3088 ls
= isl_local_space_from_space(isl_space_copy(space
));
3089 space
= isl_space_from_domain(space
);
3090 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
3091 ma
= isl_multi_aff_zero(space
);
3093 for (i
= first
; i
< first
+ n
; ++i
) {
3094 aff
= extract_schedule_row(isl_local_space_copy(ls
), node
, i
);
3095 ma
= isl_multi_aff_set_aff(ma
, i
- first
, aff
);
3098 isl_local_space_free(ls
);
3100 if (node
->compressed
)
3101 ma
= isl_multi_aff_pullback_multi_aff(ma
,
3102 isl_multi_aff_copy(node
->compress
));
3107 /* Convert node->sched into a multi_aff and return this multi_aff.
3109 * The result is defined over the uncompressed node domain.
3111 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
3112 struct isl_sched_node
*node
)
3116 nrow
= isl_mat_rows(node
->sched
);
3119 return isl_sched_node_extract_partial_schedule_multi_aff(node
, 0, nrow
);
3122 /* Convert node->sched into a map and return this map.
3124 * The result is cached in node->sched_map, which needs to be released
3125 * whenever node->sched is updated.
3126 * It is defined over the uncompressed node domain.
3128 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
3130 if (!node
->sched_map
) {
3133 ma
= node_extract_schedule_multi_aff(node
);
3134 node
->sched_map
= isl_map_from_multi_aff(ma
);
3137 return isl_map_copy(node
->sched_map
);
3140 /* Construct a map that can be used to update a dependence relation
3141 * based on the current schedule.
3142 * That is, construct a map expressing that source and sink
3143 * are executed within the same iteration of the current schedule.
3144 * This map can then be intersected with the dependence relation.
3145 * This is not the most efficient way, but this shouldn't be a critical
3148 static __isl_give isl_map
*specializer(struct isl_sched_node
*src
,
3149 struct isl_sched_node
*dst
)
3151 isl_map
*src_sched
, *dst_sched
;
3153 src_sched
= node_extract_schedule(src
);
3154 dst_sched
= node_extract_schedule(dst
);
3155 return isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
3158 /* Intersect the domains of the nested relations in domain and range
3159 * of "umap" with "map".
3161 static __isl_give isl_union_map
*intersect_domains(
3162 __isl_take isl_union_map
*umap
, __isl_keep isl_map
*map
)
3164 isl_union_set
*uset
;
3166 umap
= isl_union_map_zip(umap
);
3167 uset
= isl_union_set_from_set(isl_map_wrap(isl_map_copy(map
)));
3168 umap
= isl_union_map_intersect_domain(umap
, uset
);
3169 umap
= isl_union_map_zip(umap
);
3173 /* Update the dependence relation of the given edge based
3174 * on the current schedule.
3175 * If the dependence is carried completely by the current schedule, then
3176 * it is removed from the edge_tables. It is kept in the list of edges
3177 * as otherwise all edge_tables would have to be recomputed.
3179 * If the edge is of a type that can appear multiple times
3180 * between the same pair of nodes, then it is added to
3181 * the edge table (again). This prevents the situation
3182 * where none of these edges is referenced from the edge table
3183 * because the one that was referenced turned out to be empty and
3184 * was therefore removed from the table.
3186 static isl_stat
update_edge(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
3187 struct isl_sched_edge
*edge
)
3192 id
= specializer(edge
->src
, edge
->dst
);
3193 edge
->map
= isl_map_intersect(edge
->map
, isl_map_copy(id
));
3197 if (edge
->tagged_condition
) {
3198 edge
->tagged_condition
=
3199 intersect_domains(edge
->tagged_condition
, id
);
3200 if (!edge
->tagged_condition
)
3203 if (edge
->tagged_validity
) {
3204 edge
->tagged_validity
=
3205 intersect_domains(edge
->tagged_validity
, id
);
3206 if (!edge
->tagged_validity
)
3210 empty
= isl_map_plain_is_empty(edge
->map
);
3214 if (graph_remove_edge(graph
, edge
) < 0)
3216 } else if (is_multi_edge_type(edge
)) {
3217 if (graph_edge_tables_add(ctx
, graph
, edge
) < 0)
3225 return isl_stat_error
;
3228 /* Does the domain of "umap" intersect "uset"?
3230 static int domain_intersects(__isl_keep isl_union_map
*umap
,
3231 __isl_keep isl_union_set
*uset
)
3235 umap
= isl_union_map_copy(umap
);
3236 umap
= isl_union_map_intersect_domain(umap
, isl_union_set_copy(uset
));
3237 empty
= isl_union_map_is_empty(umap
);
3238 isl_union_map_free(umap
);
3240 return empty
< 0 ? -1 : !empty
;
3243 /* Does the range of "umap" intersect "uset"?
3245 static int range_intersects(__isl_keep isl_union_map
*umap
,
3246 __isl_keep isl_union_set
*uset
)
3250 umap
= isl_union_map_copy(umap
);
3251 umap
= isl_union_map_intersect_range(umap
, isl_union_set_copy(uset
));
3252 empty
= isl_union_map_is_empty(umap
);
3253 isl_union_map_free(umap
);
3255 return empty
< 0 ? -1 : !empty
;
3258 /* Are the condition dependences of "edge" local with respect to
3259 * the current schedule?
3261 * That is, are domain and range of the condition dependences mapped
3262 * to the same point?
3264 * In other words, is the condition false?
3266 static int is_condition_false(struct isl_sched_edge
*edge
)
3268 isl_union_map
*umap
;
3269 isl_map
*map
, *sched
, *test
;
3272 empty
= isl_union_map_is_empty(edge
->tagged_condition
);
3273 if (empty
< 0 || empty
)
3276 umap
= isl_union_map_copy(edge
->tagged_condition
);
3277 umap
= isl_union_map_zip(umap
);
3278 umap
= isl_union_set_unwrap(isl_union_map_domain(umap
));
3279 map
= isl_map_from_union_map(umap
);
3281 sched
= node_extract_schedule(edge
->src
);
3282 map
= isl_map_apply_domain(map
, sched
);
3283 sched
= node_extract_schedule(edge
->dst
);
3284 map
= isl_map_apply_range(map
, sched
);
3286 test
= isl_map_identity(isl_map_get_space(map
));
3287 local
= isl_map_is_subset(map
, test
);
3294 /* For each conditional validity constraint that is adjacent
3295 * to a condition with domain in condition_source or range in condition_sink,
3296 * turn it into an unconditional validity constraint.
3298 static int unconditionalize_adjacent_validity(struct isl_sched_graph
*graph
,
3299 __isl_take isl_union_set
*condition_source
,
3300 __isl_take isl_union_set
*condition_sink
)
3304 condition_source
= isl_union_set_coalesce(condition_source
);
3305 condition_sink
= isl_union_set_coalesce(condition_sink
);
3307 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3309 isl_union_map
*validity
;
3311 if (!isl_sched_edge_is_conditional_validity(&graph
->edge
[i
]))
3313 if (is_validity(&graph
->edge
[i
]))
3316 validity
= graph
->edge
[i
].tagged_validity
;
3317 adjacent
= domain_intersects(validity
, condition_sink
);
3318 if (adjacent
>= 0 && !adjacent
)
3319 adjacent
= range_intersects(validity
, condition_source
);
3325 set_validity(&graph
->edge
[i
]);
3328 isl_union_set_free(condition_source
);
3329 isl_union_set_free(condition_sink
);
3332 isl_union_set_free(condition_source
);
3333 isl_union_set_free(condition_sink
);
3337 /* Update the dependence relations of all edges based on the current schedule
3338 * and enforce conditional validity constraints that are adjacent
3339 * to satisfied condition constraints.
3341 * First check if any of the condition constraints are satisfied
3342 * (i.e., not local to the outer schedule) and keep track of
3343 * their domain and range.
3344 * Then update all dependence relations (which removes the non-local
3346 * Finally, if any condition constraints turned out to be satisfied,
3347 * then turn all adjacent conditional validity constraints into
3348 * unconditional validity constraints.
3350 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
3354 isl_union_set
*source
, *sink
;
3356 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3357 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
3358 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3360 isl_union_set
*uset
;
3361 isl_union_map
*umap
;
3363 if (!isl_sched_edge_is_condition(&graph
->edge
[i
]))
3365 if (is_local(&graph
->edge
[i
]))
3367 local
= is_condition_false(&graph
->edge
[i
]);
3375 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3376 uset
= isl_union_map_domain(umap
);
3377 source
= isl_union_set_union(source
, uset
);
3379 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_condition
);
3380 uset
= isl_union_map_range(umap
);
3381 sink
= isl_union_set_union(sink
, uset
);
3384 for (i
= 0; i
< graph
->n_edge
; ++i
) {
3385 if (update_edge(ctx
, graph
, &graph
->edge
[i
]) < 0)
3390 return unconditionalize_adjacent_validity(graph
, source
, sink
);
3392 isl_union_set_free(source
);
3393 isl_union_set_free(sink
);
3396 isl_union_set_free(source
);
3397 isl_union_set_free(sink
);
3401 static void next_band(struct isl_sched_graph
*graph
)
3403 graph
->band_start
= graph
->n_total_row
;
3406 /* Return the union of the universe domains of the nodes in "graph"
3407 * that satisfy "pred".
3409 static __isl_give isl_union_set
*isl_sched_graph_domain(isl_ctx
*ctx
,
3410 struct isl_sched_graph
*graph
,
3411 int (*pred
)(struct isl_sched_node
*node
, int data
), int data
)
3417 for (i
= 0; i
< graph
->n
; ++i
)
3418 if (pred(&graph
->node
[i
], data
))
3422 isl_die(ctx
, isl_error_internal
,
3423 "empty component", return NULL
);
3425 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3426 dom
= isl_union_set_from_set(set
);
3428 for (i
= i
+ 1; i
< graph
->n
; ++i
) {
3429 if (!pred(&graph
->node
[i
], data
))
3431 set
= isl_set_universe(isl_space_copy(graph
->node
[i
].space
));
3432 dom
= isl_union_set_union(dom
, isl_union_set_from_set(set
));
3438 /* Return a union of universe domains corresponding to the nodes
3439 * in the SCC with index "scc".
3441 __isl_give isl_union_set
*isl_sched_graph_extract_scc(isl_ctx
*ctx
,
3442 struct isl_sched_graph
*graph
, int scc
)
3444 return isl_sched_graph_domain(ctx
, graph
,
3445 &isl_sched_node_scc_exactly
, scc
);
3448 /* Return a list of unions of universe domains, where each element
3449 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3451 __isl_give isl_union_set_list
*isl_sched_graph_extract_sccs(isl_ctx
*ctx
,
3452 struct isl_sched_graph
*graph
)
3455 isl_union_set_list
*filters
;
3457 filters
= isl_union_set_list_alloc(ctx
, graph
->scc
);
3458 for (i
= 0; i
< graph
->scc
; ++i
) {
3461 dom
= isl_sched_graph_extract_scc(ctx
, graph
, i
);
3462 filters
= isl_union_set_list_add(filters
, dom
);
3468 /* Return a list of two unions of universe domains, one for the SCCs up
3469 * to and including graph->src_scc and another for the other SCCs.
3471 static __isl_give isl_union_set_list
*extract_split(isl_ctx
*ctx
,
3472 struct isl_sched_graph
*graph
)
3475 isl_union_set_list
*filters
;
3477 filters
= isl_union_set_list_alloc(ctx
, 2);
3478 dom
= isl_sched_graph_domain(ctx
, graph
,
3479 &node_scc_at_most
, graph
->src_scc
);
3480 filters
= isl_union_set_list_add(filters
, dom
);
3481 dom
= isl_sched_graph_domain(ctx
, graph
,
3482 &node_scc_at_least
, graph
->src_scc
+ 1);
3483 filters
= isl_union_set_list_add(filters
, dom
);
3488 /* Copy nodes that satisfy node_pred from the src dependence graph
3489 * to the dst dependence graph.
3491 static isl_stat
copy_nodes(struct isl_sched_graph
*dst
,
3492 struct isl_sched_graph
*src
,
3493 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
3498 for (i
= 0; i
< src
->n
; ++i
) {
3501 if (!node_pred(&src
->node
[i
], data
))
3505 dst
->node
[j
].space
= isl_space_copy(src
->node
[i
].space
);
3506 dst
->node
[j
].compressed
= src
->node
[i
].compressed
;
3507 dst
->node
[j
].hull
= isl_set_copy(src
->node
[i
].hull
);
3508 dst
->node
[j
].compress
=
3509 isl_multi_aff_copy(src
->node
[i
].compress
);
3510 dst
->node
[j
].decompress
=
3511 isl_pw_multi_aff_copy(src
->node
[i
].decompress
);
3512 dst
->node
[j
].nvar
= src
->node
[i
].nvar
;
3513 dst
->node
[j
].nparam
= src
->node
[i
].nparam
;
3514 dst
->node
[j
].sched
= isl_mat_copy(src
->node
[i
].sched
);
3515 dst
->node
[j
].sched_map
= isl_map_copy(src
->node
[i
].sched_map
);
3516 dst
->node
[j
].coincident
= src
->node
[i
].coincident
;
3517 dst
->node
[j
].sizes
= isl_multi_val_copy(src
->node
[i
].sizes
);
3518 dst
->node
[j
].bounds
= isl_basic_set_copy(src
->node
[i
].bounds
);
3519 dst
->node
[j
].max
= isl_vec_copy(src
->node
[i
].max
);
3522 if (!dst
->node
[j
].space
|| !dst
->node
[j
].sched
)
3523 return isl_stat_error
;
3524 if (dst
->node
[j
].compressed
&&
3525 (!dst
->node
[j
].hull
|| !dst
->node
[j
].compress
||
3526 !dst
->node
[j
].decompress
))
3527 return isl_stat_error
;
3533 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3534 * to the dst dependence graph.
3535 * If the source or destination node of the edge is not in the destination
3536 * graph, then it must be a backward proximity edge and it should simply
3539 static isl_stat
copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
3540 struct isl_sched_graph
*src
,
3541 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
3546 for (i
= 0; i
< src
->n_edge
; ++i
) {
3547 struct isl_sched_edge
*edge
= &src
->edge
[i
];
3549 isl_union_map
*tagged_condition
;
3550 isl_union_map
*tagged_validity
;
3551 struct isl_sched_node
*dst_src
, *dst_dst
;
3553 if (!edge_pred(edge
, data
))
3556 if (isl_map_plain_is_empty(edge
->map
))
3559 dst_src
= isl_sched_graph_find_node(ctx
, dst
, edge
->src
->space
);
3560 dst_dst
= isl_sched_graph_find_node(ctx
, dst
, edge
->dst
->space
);
3561 if (!dst_src
|| !dst_dst
)
3562 return isl_stat_error
;
3563 if (!isl_sched_graph_is_node(dst
, dst_src
) ||
3564 !isl_sched_graph_is_node(dst
, dst_dst
)) {
3565 if (is_validity(edge
) ||
3566 isl_sched_edge_is_conditional_validity(edge
))
3567 isl_die(ctx
, isl_error_internal
,
3568 "backward (conditional) validity edge",
3569 return isl_stat_error
);
3573 map
= isl_map_copy(edge
->map
);
3574 tagged_condition
= isl_union_map_copy(edge
->tagged_condition
);
3575 tagged_validity
= isl_union_map_copy(edge
->tagged_validity
);
3577 dst
->edge
[dst
->n_edge
].src
= dst_src
;
3578 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
3579 dst
->edge
[dst
->n_edge
].map
= map
;
3580 dst
->edge
[dst
->n_edge
].tagged_condition
= tagged_condition
;
3581 dst
->edge
[dst
->n_edge
].tagged_validity
= tagged_validity
;
3582 dst
->edge
[dst
->n_edge
].types
= edge
->types
;
3585 if (edge
->tagged_condition
&& !tagged_condition
)
3586 return isl_stat_error
;
3587 if (edge
->tagged_validity
&& !tagged_validity
)
3588 return isl_stat_error
;
3590 if (graph_edge_tables_add(ctx
, dst
,
3591 &dst
->edge
[dst
->n_edge
- 1]) < 0)
3592 return isl_stat_error
;
3598 /* Compute the maximal number of variables over all nodes.
3599 * This is the maximal number of linearly independent schedule
3600 * rows that we need to compute.
3601 * Just in case we end up in a part of the dependence graph
3602 * with only lower-dimensional domains, we make sure we will
3603 * compute the required amount of extra linearly independent rows.
3605 isl_stat
isl_sched_graph_compute_maxvar(struct isl_sched_graph
*graph
)
3610 for (i
= 0; i
< graph
->n
; ++i
) {
3611 struct isl_sched_node
*node
= &graph
->node
[i
];
3614 if (isl_sched_node_update_vmap(node
) < 0)
3615 return isl_stat_error
;
3616 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
3617 if (nvar
> graph
->maxvar
)
3618 graph
->maxvar
= nvar
;
3624 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3625 * "node_pred" and the edges satisfying "edge_pred" and store
3626 * the result in "sub".
3628 isl_stat
isl_sched_graph_extract_sub_graph(isl_ctx
*ctx
,
3629 struct isl_sched_graph
*graph
,
3630 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3631 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3632 int data
, struct isl_sched_graph
*sub
)
3634 int i
, n
= 0, n_edge
= 0;
3637 for (i
= 0; i
< graph
->n
; ++i
)
3638 if (node_pred(&graph
->node
[i
], data
))
3640 for (i
= 0; i
< graph
->n_edge
; ++i
)
3641 if (edge_pred(&graph
->edge
[i
], data
))
3643 if (graph_alloc(ctx
, sub
, n
, n_edge
) < 0)
3644 return isl_stat_error
;
3645 sub
->root
= graph
->root
;
3646 if (copy_nodes(sub
, graph
, node_pred
, data
) < 0)
3647 return isl_stat_error
;
3648 if (graph_init_table(ctx
, sub
) < 0)
3649 return isl_stat_error
;
3650 for (t
= 0; t
<= isl_edge_last
; ++t
)
3651 sub
->max_edge
[t
] = graph
->max_edge
[t
];
3652 if (graph_init_edge_tables(ctx
, sub
) < 0)
3653 return isl_stat_error
;
3654 if (copy_edges(ctx
, sub
, graph
, edge_pred
, data
) < 0)
3655 return isl_stat_error
;
3656 sub
->n_row
= graph
->n_row
;
3657 sub
->max_row
= graph
->max_row
;
3658 sub
->n_total_row
= graph
->n_total_row
;
3659 sub
->band_start
= graph
->band_start
;
3664 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
3665 struct isl_sched_graph
*graph
);
3666 static __isl_give isl_schedule_node
*compute_schedule_wcc(
3667 isl_schedule_node
*node
, struct isl_sched_graph
*graph
);
3669 /* Compute a schedule for a subgraph of "graph". In particular, for
3670 * the graph composed of nodes that satisfy node_pred and edges that
3671 * that satisfy edge_pred.
3672 * If the subgraph is known to consist of a single component, then wcc should
3673 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3674 * Otherwise, we call compute_schedule, which will check whether the subgraph
3677 * The schedule is inserted at "node" and the updated schedule node
3680 static __isl_give isl_schedule_node
*compute_sub_schedule(
3681 __isl_take isl_schedule_node
*node
, isl_ctx
*ctx
,
3682 struct isl_sched_graph
*graph
,
3683 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
3684 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
3687 struct isl_sched_graph split
= { 0 };
3689 if (isl_sched_graph_extract_sub_graph(ctx
, graph
, node_pred
, edge_pred
,
3694 node
= compute_schedule_wcc(node
, &split
);
3696 node
= compute_schedule(node
, &split
);
3698 isl_sched_graph_free(ctx
, &split
);
3701 isl_sched_graph_free(ctx
, &split
);
3702 return isl_schedule_node_free(node
);
3705 int isl_sched_edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
3707 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
3710 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
3712 return edge
->dst
->scc
<= scc
;
3715 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
3717 return edge
->src
->scc
>= scc
;
3720 /* Reset the current band by dropping all its schedule rows.
3722 static isl_stat
reset_band(struct isl_sched_graph
*graph
)
3727 drop
= graph
->n_total_row
- graph
->band_start
;
3728 graph
->n_total_row
-= drop
;
3729 graph
->n_row
-= drop
;
3731 for (i
= 0; i
< graph
->n
; ++i
) {
3732 struct isl_sched_node
*node
= &graph
->node
[i
];
3734 isl_map_free(node
->sched_map
);
3735 node
->sched_map
= NULL
;
3737 node
->sched
= isl_mat_drop_rows(node
->sched
,
3738 graph
->band_start
, drop
);
3741 return isl_stat_error
;
3747 /* Split the current graph into two parts and compute a schedule for each
3748 * part individually. In particular, one part consists of all SCCs up
3749 * to and including graph->src_scc, while the other part contains the other
3750 * SCCs. The split is enforced by a sequence node inserted at position "node"
3751 * in the schedule tree. Return the updated schedule node.
3752 * If either of these two parts consists of a sequence, then it is spliced
3753 * into the sequence containing the two parts.
3755 * The current band is reset. It would be possible to reuse
3756 * the previously computed rows as the first rows in the next
3757 * band, but recomputing them may result in better rows as we are looking
3758 * at a smaller part of the dependence graph.
3760 static __isl_give isl_schedule_node
*compute_split_schedule(
3761 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
3764 isl_union_set_list
*filters
;
3769 if (reset_band(graph
) < 0)
3770 return isl_schedule_node_free(node
);
3774 ctx
= isl_schedule_node_get_ctx(node
);
3775 filters
= extract_split(ctx
, graph
);
3776 node
= isl_schedule_node_insert_sequence(node
, filters
);
3777 node
= isl_schedule_node_grandchild(node
, 1, 0);
3779 node
= compute_sub_schedule(node
, ctx
, graph
,
3780 &node_scc_at_least
, &edge_src_scc_at_least
,
3781 graph
->src_scc
+ 1, 0);
3782 node
= isl_schedule_node_grandparent(node
);
3783 node
= isl_schedule_node_grandchild(node
, 0, 0);
3784 node
= compute_sub_schedule(node
, ctx
, graph
,
3785 &node_scc_at_most
, &edge_dst_scc_at_most
,
3787 node
= isl_schedule_node_grandparent(node
);
3789 node
= isl_schedule_node_sequence_splice_children(node
);
3794 /* Insert a band node at position "node" in the schedule tree corresponding
3795 * to the current band in "graph". Mark the band node permutable
3796 * if "permutable" is set.
3797 * The partial schedules and the coincidence property are extracted
3798 * from the graph nodes.
3799 * Return the updated schedule node.
3801 static __isl_give isl_schedule_node
*insert_current_band(
3802 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
3808 isl_multi_pw_aff
*mpa
;
3809 isl_multi_union_pw_aff
*mupa
;
3815 isl_die(isl_schedule_node_get_ctx(node
), isl_error_internal
,
3816 "graph should have at least one node",
3817 return isl_schedule_node_free(node
));
3819 start
= graph
->band_start
;
3820 end
= graph
->n_total_row
;
3823 ma
= isl_sched_node_extract_partial_schedule_multi_aff(&graph
->node
[0],
3825 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3826 mupa
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3828 for (i
= 1; i
< graph
->n
; ++i
) {
3829 isl_multi_union_pw_aff
*mupa_i
;
3831 ma
= isl_sched_node_extract_partial_schedule_multi_aff(
3832 &graph
->node
[i
], start
, n
);
3833 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
3834 mupa_i
= isl_multi_union_pw_aff_from_multi_pw_aff(mpa
);
3835 mupa
= isl_multi_union_pw_aff_union_add(mupa
, mupa_i
);
3837 node
= isl_schedule_node_insert_partial_schedule(node
, mupa
);
3839 for (i
= 0; i
< n
; ++i
)
3840 node
= isl_schedule_node_band_member_set_coincident(node
, i
,
3841 graph
->node
[0].coincident
[start
+ i
]);
3842 node
= isl_schedule_node_band_set_permutable(node
, permutable
);
3847 /* Update the dependence relations based on the current schedule,
3848 * add the current band to "node" and then continue with the computation
3850 * Return the updated schedule node.
3852 static __isl_give isl_schedule_node
*compute_next_band(
3853 __isl_take isl_schedule_node
*node
,
3854 struct isl_sched_graph
*graph
, int permutable
)
3861 ctx
= isl_schedule_node_get_ctx(node
);
3862 if (update_edges(ctx
, graph
) < 0)
3863 return isl_schedule_node_free(node
);
3864 node
= insert_current_band(node
, graph
, permutable
);
3867 node
= isl_schedule_node_child(node
, 0);
3868 node
= compute_schedule(node
, graph
);
3869 node
= isl_schedule_node_parent(node
);
3874 /* Add the constraints "coef" derived from an edge from "node" to itself
3875 * to graph->lp in order to respect the dependences and to try and carry them.
3876 * "pos" is the sequence number of the edge that needs to be carried.
3877 * "coef" represents general constraints on coefficients (c_0, c_x)
3878 * of valid constraints for (y - x) with x and y instances of the node.
3880 * The constraints added to graph->lp need to enforce
3882 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3883 * = c_j_x (y - x) >= e_i
3885 * for each (x,y) in the dependence relation of the edge.
3886 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3887 * taking into account that each coefficient in c_j_x is represented
3888 * as a pair of non-negative coefficients.
3890 static isl_stat
add_intra_constraints(struct isl_sched_graph
*graph
,
3891 struct isl_sched_node
*node
, __isl_take isl_basic_set
*coef
, int pos
)
3895 isl_dim_map
*dim_map
;
3897 offset
= coef_var_offset(coef
);
3899 coef
= isl_basic_set_free(coef
);
3901 return isl_stat_error
;
3903 ctx
= isl_basic_set_get_ctx(coef
);
3904 dim_map
= intra_dim_map(ctx
, graph
, node
, offset
, 1);
3905 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3906 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3911 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3912 * to graph->lp in order to respect the dependences and to try and carry them.
3913 * "pos" is the sequence number of the edge that needs to be carried or
3914 * -1 if no attempt should be made to carry the dependences.
3915 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3916 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3918 * The constraints added to graph->lp need to enforce
3920 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3922 * for each (x,y) in the dependence relation of the edge or
3924 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3928 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3930 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3931 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3932 * taking into account that each coefficient in c_j_x and c_k_x is represented
3933 * as a pair of non-negative coefficients.
3935 static isl_stat
add_inter_constraints(struct isl_sched_graph
*graph
,
3936 struct isl_sched_node
*src
, struct isl_sched_node
*dst
,
3937 __isl_take isl_basic_set
*coef
, int pos
)
3941 isl_dim_map
*dim_map
;
3943 offset
= coef_var_offset(coef
);
3945 coef
= isl_basic_set_free(coef
);
3947 return isl_stat_error
;
3949 ctx
= isl_basic_set_get_ctx(coef
);
3950 dim_map
= inter_dim_map(ctx
, graph
, src
, dst
, offset
, 1);
3952 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
3953 graph
->lp
= add_constraints_dim_map(graph
->lp
, coef
, dim_map
);
3958 /* Data structure for keeping track of the data needed
3959 * to exploit non-trivial lineality spaces.
3961 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3962 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3963 * "equivalent" connects instances to other instances on the same line(s).
3964 * "mask" contains the domain spaces of "equivalent".
3965 * Any instance set not in "mask" does not have a non-trivial lineality space.
3967 struct isl_exploit_lineality_data
{
3968 isl_bool any_non_trivial
;
3969 isl_union_map
*equivalent
;
3970 isl_union_set
*mask
;
3973 /* Data structure collecting information used during the construction
3974 * of an LP for carrying dependences.
3976 * "intra" is a sequence of coefficient constraints for intra-node edges.
3977 * "inter" is a sequence of coefficient constraints for inter-node edges.
3978 * "lineality" contains data used to exploit non-trivial lineality spaces.
3981 isl_basic_set_list
*intra
;
3982 isl_basic_set_list
*inter
;
3983 struct isl_exploit_lineality_data lineality
;
3986 /* Free all the data stored in "carry".
3988 static void isl_carry_clear(struct isl_carry
*carry
)
3990 isl_basic_set_list_free(carry
->intra
);
3991 isl_basic_set_list_free(carry
->inter
);
3992 isl_union_map_free(carry
->lineality
.equivalent
);
3993 isl_union_set_free(carry
->lineality
.mask
);
3996 /* Return a pointer to the node in "graph" that lives in "space".
3997 * If the requested node has been compressed, then "space"
3998 * corresponds to the compressed space.
3999 * The graph is assumed to have such a node.
4000 * Return NULL in case of error.
4002 * First try and see if "space" is the space of an uncompressed node.
4003 * If so, return that node.
4004 * Otherwise, "space" was constructed by construct_compressed_id and
4005 * contains a user pointer pointing to the node in the tuple id.
4006 * However, this node belongs to the original dependence graph.
4007 * If "graph" is a subgraph of this original dependence graph,
4008 * then the node with the same space still needs to be looked up
4009 * in the current graph.
4011 static struct isl_sched_node
*graph_find_compressed_node(isl_ctx
*ctx
,
4012 struct isl_sched_graph
*graph
, __isl_keep isl_space
*space
)
4015 struct isl_sched_node
*node
;
4020 node
= isl_sched_graph_find_node(ctx
, graph
, space
);
4023 if (isl_sched_graph_is_node(graph
, node
))
4026 id
= isl_space_get_tuple_id(space
, isl_dim_set
);
4027 node
= isl_id_get_user(id
);
4033 if (!isl_sched_graph_is_node(graph
->root
, node
))
4034 isl_die(ctx
, isl_error_internal
,
4035 "space points to invalid node", return NULL
);
4036 if (graph
!= graph
->root
)
4037 node
= isl_sched_graph_find_node(ctx
, graph
, node
->space
);
4038 if (!isl_sched_graph_is_node(graph
, node
))
4039 isl_die(ctx
, isl_error_internal
,
4040 "unable to find node", return NULL
);
4045 /* Internal data structure for add_all_constraints.
4047 * "graph" is the schedule constraint graph for which an LP problem
4048 * is being constructed.
4049 * "carry_inter" indicates whether inter-node edges should be carried.
4050 * "pos" is the position of the next edge that needs to be carried.
4052 struct isl_add_all_constraints_data
{
4054 struct isl_sched_graph
*graph
;
4059 /* Add the constraints "coef" derived from an edge from a node to itself
4060 * to data->graph->lp in order to respect the dependences and
4061 * to try and carry them.
4063 * The space of "coef" is of the form
4065 * coefficients[[c_cst] -> S[c_x]]
4067 * with S[c_x] the (compressed) space of the node.
4068 * Extract the node from the space and call add_intra_constraints.
4070 static isl_stat
lp_add_intra(__isl_take isl_basic_set
*coef
, void *user
)
4072 struct isl_add_all_constraints_data
*data
= user
;
4074 struct isl_sched_node
*node
;
4076 space
= isl_basic_set_get_space(coef
);
4077 space
= isl_space_range(isl_space_unwrap(space
));
4078 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4079 isl_space_free(space
);
4080 return add_intra_constraints(data
->graph
, node
, coef
, data
->pos
++);
4083 /* Add the constraints "coef" derived from an edge from a node j
4084 * to a node k to data->graph->lp in order to respect the dependences and
4085 * to try and carry them (provided data->carry_inter is set).
4087 * The space of "coef" is of the form
4089 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4091 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4092 * Extract the nodes from the space and call add_inter_constraints.
4094 static isl_stat
lp_add_inter(__isl_take isl_basic_set
*coef
, void *user
)
4096 struct isl_add_all_constraints_data
*data
= user
;
4097 isl_space
*space
, *dom
;
4098 struct isl_sched_node
*src
, *dst
;
4101 space
= isl_basic_set_get_space(coef
);
4102 space
= isl_space_unwrap(isl_space_range(isl_space_unwrap(space
)));
4103 dom
= isl_space_domain(isl_space_copy(space
));
4104 src
= graph_find_compressed_node(data
->ctx
, data
->graph
, dom
);
4105 isl_space_free(dom
);
4106 space
= isl_space_range(space
);
4107 dst
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4108 isl_space_free(space
);
4110 pos
= data
->carry_inter
? data
->pos
++ : -1;
4111 return add_inter_constraints(data
->graph
, src
, dst
, coef
, pos
);
4114 /* Add constraints to graph->lp that force all (conditional) validity
4115 * dependences to be respected and attempt to carry them.
4116 * "intra" is the sequence of coefficient constraints for intra-node edges.
4117 * "inter" is the sequence of coefficient constraints for inter-node edges.
4118 * "carry_inter" indicates whether inter-node edges should be carried or
4121 static isl_stat
add_all_constraints(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4122 __isl_keep isl_basic_set_list
*intra
,
4123 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4125 struct isl_add_all_constraints_data data
= { ctx
, graph
, carry_inter
};
4128 if (isl_basic_set_list_foreach(intra
, &lp_add_intra
, &data
) < 0)
4129 return isl_stat_error
;
4130 if (isl_basic_set_list_foreach(inter
, &lp_add_inter
, &data
) < 0)
4131 return isl_stat_error
;
4135 /* Internal data structure for count_all_constraints
4136 * for keeping track of the number of equality and inequality constraints.
4138 struct isl_sched_count
{
4143 /* Add the number of equality and inequality constraints of "bset"
4144 * to data->n_eq and data->n_ineq.
4146 static isl_stat
bset_update_count(__isl_take isl_basic_set
*bset
, void *user
)
4148 struct isl_sched_count
*data
= user
;
4150 return update_count(bset
, 1, &data
->n_eq
, &data
->n_ineq
);
4153 /* Count the number of equality and inequality constraints
4154 * that will be added to the carry_lp problem.
4155 * We count each edge exactly once.
4156 * "intra" is the sequence of coefficient constraints for intra-node edges.
4157 * "inter" is the sequence of coefficient constraints for inter-node edges.
4159 static isl_stat
count_all_constraints(__isl_keep isl_basic_set_list
*intra
,
4160 __isl_keep isl_basic_set_list
*inter
, int *n_eq
, int *n_ineq
)
4162 struct isl_sched_count data
;
4164 data
.n_eq
= data
.n_ineq
= 0;
4165 if (isl_basic_set_list_foreach(inter
, &bset_update_count
, &data
) < 0)
4166 return isl_stat_error
;
4167 if (isl_basic_set_list_foreach(intra
, &bset_update_count
, &data
) < 0)
4168 return isl_stat_error
;
4171 *n_ineq
= data
.n_ineq
;
4176 /* Construct an LP problem for finding schedule coefficients
4177 * such that the schedule carries as many validity dependences as possible.
4178 * In particular, for each dependence i, we bound the dependence distance
4179 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4180 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4181 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4182 * "intra" is the sequence of coefficient constraints for intra-node edges.
4183 * "inter" is the sequence of coefficient constraints for inter-node edges.
4184 * "n_edge" is the total number of edges.
4185 * "carry_inter" indicates whether inter-node edges should be carried or
4186 * only respected. That is, if "carry_inter" is not set, then
4187 * no e_i variables are introduced for the inter-node edges.
4189 * All variables of the LP are non-negative. The actual coefficients
4190 * may be negative, so each coefficient is represented as the difference
4191 * of two non-negative variables. The negative part always appears
4192 * immediately before the positive part.
4193 * Other than that, the variables have the following order
4195 * - sum of (1 - e_i) over all edges
4196 * - sum of all c_n coefficients
4197 * (unconstrained when computing non-parametric schedules)
4198 * - sum of positive and negative parts of all c_x coefficients
4202 * - positive and negative parts of c_i_x, in opposite order
4203 * - c_i_n (if parametric)
4206 * The constraints are those from the (validity) edges plus three equalities
4207 * to express the sums and n_edge inequalities to express e_i <= 1.
4209 static isl_stat
setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
4210 int n_edge
, __isl_keep isl_basic_set_list
*intra
,
4211 __isl_keep isl_basic_set_list
*inter
, int carry_inter
)
4220 for (i
= 0; i
< graph
->n
; ++i
) {
4221 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
4222 node
->start
= total
;
4223 total
+= 1 + node
->nparam
+ 2 * node
->nvar
;
4226 if (count_all_constraints(intra
, inter
, &n_eq
, &n_ineq
) < 0)
4227 return isl_stat_error
;
4229 space
= isl_space_set_alloc(ctx
, 0, total
);
4230 isl_basic_set_free(graph
->lp
);
4233 graph
->lp
= isl_basic_set_alloc_space(space
, 0, n_eq
, n_ineq
);
4234 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
4236 k
= isl_basic_set_alloc_equality(graph
->lp
);
4238 return isl_stat_error
;
4239 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
4240 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
4241 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
4242 for (i
= 0; i
< n_edge
; ++i
)
4243 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
4245 if (add_param_sum_constraint(graph
, 1) < 0)
4246 return isl_stat_error
;
4247 if (add_var_sum_constraint(graph
, 2) < 0)
4248 return isl_stat_error
;
4250 for (i
= 0; i
< n_edge
; ++i
) {
4251 k
= isl_basic_set_alloc_inequality(graph
->lp
);
4253 return isl_stat_error
;
4254 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
4255 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
4256 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
4259 if (add_all_constraints(ctx
, graph
, intra
, inter
, carry_inter
) < 0)
4260 return isl_stat_error
;
4265 static __isl_give isl_schedule_node
*compute_component_schedule(
4266 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
4269 /* If the schedule_split_scaled option is set and if the linear
4270 * parts of the scheduling rows for all nodes in the graphs have
4271 * a non-trivial common divisor, then remove this
4272 * common divisor from the linear part.
4273 * Otherwise, insert a band node directly and continue with
4274 * the construction of the schedule.
4276 * If a non-trivial common divisor is found, then
4277 * the linear part is reduced and the remainder is ignored.
4278 * The pieces of the graph that are assigned different remainders
4279 * form (groups of) strongly connected components within
4280 * the scaled down band. If needed, they can therefore
4281 * be ordered along this remainder in a sequence node.
4282 * However, this ordering is not enforced here in order to allow
4283 * the scheduler to combine some of the strongly connected components.
4285 static __isl_give isl_schedule_node
*split_scaled(
4286 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
4297 ctx
= isl_schedule_node_get_ctx(node
);
4298 if (!ctx
->opt
->schedule_split_scaled
)
4299 return compute_next_band(node
, graph
, 0);
4301 return compute_next_band(node
, graph
, 0);
4302 n_row
= isl_mat_rows(graph
->node
[0].sched
);
4304 return isl_schedule_node_free(node
);
4307 isl_int_init(gcd_i
);
4309 isl_int_set_si(gcd
, 0);
4313 for (i
= 0; i
< graph
->n
; ++i
) {
4314 struct isl_sched_node
*node
= &graph
->node
[i
];
4315 isl_size cols
= isl_mat_cols(node
->sched
);
4319 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
4320 isl_int_gcd(gcd
, gcd
, gcd_i
);
4323 isl_int_clear(gcd_i
);
4327 if (isl_int_cmp_si(gcd
, 1) <= 0) {
4329 return compute_next_band(node
, graph
, 0);
4332 for (i
= 0; i
< graph
->n
; ++i
) {
4333 struct isl_sched_node
*node
= &graph
->node
[i
];
4335 isl_int_fdiv_q(node
->sched
->row
[row
][0],
4336 node
->sched
->row
[row
][0], gcd
);
4337 isl_int_mul(node
->sched
->row
[row
][0],
4338 node
->sched
->row
[row
][0], gcd
);
4339 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
4346 return compute_next_band(node
, graph
, 0);
4349 return isl_schedule_node_free(node
);
4352 /* Is the schedule row "sol" trivial on node "node"?
4353 * That is, is the solution zero on the dimensions linearly independent of
4354 * the previously found solutions?
4355 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4357 * Each coefficient is represented as the difference between
4358 * two non-negative values in "sol".
4359 * We construct the schedule row s and check if it is linearly
4360 * independent of previously computed schedule rows
4361 * by computing T s, with T the linear combinations that are zero
4362 * on linearly dependent schedule rows.
4363 * If the result consists of all zeros, then the solution is trivial.
4365 static int is_trivial(struct isl_sched_node
*node
, __isl_keep isl_vec
*sol
)
4372 if (node
->nvar
== node
->rank
)
4375 node_sol
= extract_var_coef(node
, sol
);
4376 node_sol
= isl_mat_vec_product(isl_mat_copy(node
->indep
), node_sol
);
4380 trivial
= isl_seq_first_non_zero(node_sol
->el
,
4381 node
->nvar
- node
->rank
) == -1;
4383 isl_vec_free(node_sol
);
4388 /* Is the schedule row "sol" trivial on any node where it should
4390 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4392 static int is_any_trivial(struct isl_sched_graph
*graph
,
4393 __isl_keep isl_vec
*sol
)
4397 for (i
= 0; i
< graph
->n
; ++i
) {
4398 struct isl_sched_node
*node
= &graph
->node
[i
];
4401 if (!needs_row(graph
, node
))
4403 trivial
= is_trivial(node
, sol
);
4404 if (trivial
< 0 || trivial
)
4411 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4412 * If so, return the position of the coalesced dimension.
4413 * Otherwise, return node->nvar or -1 on error.
4415 * In particular, look for pairs of coefficients c_i and c_j such that
4416 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4417 * If any such pair is found, then return i.
4418 * If size_i is infinity, then no check on c_i needs to be performed.
4420 static int find_node_coalescing(struct isl_sched_node
*node
,
4421 __isl_keep isl_vec
*sol
)
4427 if (node
->nvar
<= 1)
4430 csol
= extract_var_coef(node
, sol
);
4434 for (i
= 0; i
< node
->nvar
; ++i
) {
4437 if (isl_int_is_zero(csol
->el
[i
]))
4439 v
= isl_multi_val_get_val(node
->sizes
, i
);
4442 if (!isl_val_is_int(v
)) {
4446 v
= isl_val_div_ui(v
, 2);
4447 v
= isl_val_ceil(v
);
4450 isl_int_mul(max
, v
->n
, csol
->el
[i
]);
4453 for (j
= 0; j
< node
->nvar
; ++j
) {
4456 if (isl_int_abs_gt(csol
->el
[j
], max
))
4472 /* Force the schedule coefficient at position "pos" of "node" to be zero
4474 * The coefficient is encoded as the difference between two non-negative
4475 * variables. Force these two variables to have the same value.
4477 static __isl_give isl_tab_lexmin
*zero_out_node_coef(
4478 __isl_take isl_tab_lexmin
*tl
, struct isl_sched_node
*node
, int pos
)
4484 ctx
= isl_space_get_ctx(node
->space
);
4485 dim
= isl_tab_lexmin_dim(tl
);
4487 return isl_tab_lexmin_free(tl
);
4488 eq
= isl_vec_alloc(ctx
, 1 + dim
);
4489 eq
= isl_vec_clr(eq
);
4491 return isl_tab_lexmin_free(tl
);
4493 pos
= 1 + node_var_coef_pos(node
, pos
);
4494 isl_int_set_si(eq
->el
[pos
], 1);
4495 isl_int_set_si(eq
->el
[pos
+ 1], -1);
4496 tl
= isl_tab_lexmin_add_eq(tl
, eq
->el
);
4502 /* Return the lexicographically smallest rational point in the basic set
4503 * from which "tl" was constructed, double checking that this input set
4506 static __isl_give isl_vec
*non_empty_solution(__isl_keep isl_tab_lexmin
*tl
)
4510 sol
= isl_tab_lexmin_get_solution(tl
);
4514 isl_die(isl_vec_get_ctx(sol
), isl_error_internal
,
4515 "error in schedule construction",
4516 return isl_vec_free(sol
));
4520 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4521 * carry any of the "n_edge" groups of dependences?
4522 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4523 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4524 * by the edge are carried by the solution.
4525 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4526 * one of those is carried.
4528 * Note that despite the fact that the problem is solved using a rational
4529 * solver, the solution is guaranteed to be integral.
4530 * Specifically, the dependence distance lower bounds e_i (and therefore
4531 * also their sum) are integers. See Lemma 5 of [1].
4533 * Any potential denominator of the sum is cleared by this function.
4534 * The denominator is not relevant for any of the other elements
4537 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4538 * Problem, Part II: Multi-Dimensional Time.
4539 * In Intl. Journal of Parallel Programming, 1992.
4541 static int carries_dependences(__isl_keep isl_vec
*sol
, int n_edge
)
4543 isl_int_divexact(sol
->el
[1], sol
->el
[1], sol
->el
[0]);
4544 isl_int_set_si(sol
->el
[0], 1);
4545 return isl_int_cmp_si(sol
->el
[1], n_edge
) < 0;
4548 /* Return the lexicographically smallest rational point in "lp",
4549 * assuming that all variables are non-negative and performing some
4550 * additional sanity checks.
4551 * If "want_integral" is set, then compute the lexicographically smallest
4552 * integer point instead.
4553 * In particular, "lp" should not be empty by construction.
4554 * Double check that this is the case.
4555 * If dependences are not carried for any of the "n_edge" edges,
4556 * then return an empty vector.
4558 * If the schedule_treat_coalescing option is set and
4559 * if the computed schedule performs loop coalescing on a given node,
4560 * i.e., if it is of the form
4562 * c_i i + c_j j + ...
4564 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4565 * to cut out this solution. Repeat this process until no more loop
4566 * coalescing occurs or until no more dependences can be carried.
4567 * In the latter case, revert to the previously computed solution.
4569 * If the caller requests an integral solution and if coalescing should
4570 * be treated, then perform the coalescing treatment first as
4571 * an integral solution computed before coalescing treatment
4572 * would carry the same number of edges and would therefore probably
4573 * also be coalescing.
4575 * To allow the coalescing treatment to be performed first,
4576 * the initial solution is allowed to be rational and it is only
4577 * cut out (if needed) in the next iteration, if no coalescing measures
4580 static __isl_give isl_vec
*non_neg_lexmin(struct isl_sched_graph
*graph
,
4581 __isl_take isl_basic_set
*lp
, int n_edge
, int want_integral
)
4586 isl_vec
*sol
= NULL
, *prev
;
4587 int treat_coalescing
;
4592 ctx
= isl_basic_set_get_ctx(lp
);
4593 treat_coalescing
= isl_options_get_schedule_treat_coalescing(ctx
);
4594 tl
= isl_tab_lexmin_from_basic_set(lp
);
4602 tl
= isl_tab_lexmin_cut_to_integer(tl
);
4604 sol
= non_empty_solution(tl
);
4608 integral
= isl_int_is_one(sol
->el
[0]);
4609 if (!carries_dependences(sol
, n_edge
)) {
4611 prev
= isl_vec_alloc(ctx
, 0);
4616 prev
= isl_vec_free(prev
);
4617 cut
= want_integral
&& !integral
;
4620 if (!treat_coalescing
)
4622 for (i
= 0; i
< graph
->n
; ++i
) {
4623 struct isl_sched_node
*node
= &graph
->node
[i
];
4625 pos
= find_node_coalescing(node
, sol
);
4628 if (pos
< node
->nvar
)
4633 tl
= zero_out_node_coef(tl
, &graph
->node
[i
], pos
);
4636 } while (try_again
);
4638 isl_tab_lexmin_free(tl
);
4642 isl_tab_lexmin_free(tl
);
4648 /* If "edge" is an edge from a node to itself, then add the corresponding
4649 * dependence relation to "umap".
4650 * If "node" has been compressed, then the dependence relation
4651 * is also compressed first.
4653 static __isl_give isl_union_map
*add_intra(__isl_take isl_union_map
*umap
,
4654 struct isl_sched_edge
*edge
)
4657 struct isl_sched_node
*node
= edge
->src
;
4659 if (edge
->src
!= edge
->dst
)
4662 map
= isl_map_copy(edge
->map
);
4663 map
= compress(map
, node
, node
);
4664 umap
= isl_union_map_add_map(umap
, map
);
4668 /* If "edge" is an edge from a node to another node, then add the corresponding
4669 * dependence relation to "umap".
4670 * If the source or destination nodes of "edge" have been compressed,
4671 * then the dependence relation is also compressed first.
4673 static __isl_give isl_union_map
*add_inter(__isl_take isl_union_map
*umap
,
4674 struct isl_sched_edge
*edge
)
4678 if (edge
->src
== edge
->dst
)
4681 map
= isl_map_copy(edge
->map
);
4682 map
= compress(map
, edge
->src
, edge
->dst
);
4683 umap
= isl_union_map_add_map(umap
, map
);
4687 /* Internal data structure used by union_drop_coalescing_constraints
4688 * to collect bounds on all relevant statements.
4690 * "graph" is the schedule constraint graph for which an LP problem
4691 * is being constructed.
4692 * "bounds" collects the bounds.
4694 struct isl_collect_bounds_data
{
4696 struct isl_sched_graph
*graph
;
4697 isl_union_set
*bounds
;
4700 /* Add the size bounds for the node with instance deltas in "set"
4703 static isl_stat
collect_bounds(__isl_take isl_set
*set
, void *user
)
4705 struct isl_collect_bounds_data
*data
= user
;
4706 struct isl_sched_node
*node
;
4710 space
= isl_set_get_space(set
);
4713 node
= graph_find_compressed_node(data
->ctx
, data
->graph
, space
);
4714 isl_space_free(space
);
4716 bounds
= isl_set_from_basic_set(get_size_bounds(node
));
4717 data
->bounds
= isl_union_set_add_set(data
->bounds
, bounds
);
4722 /* Drop some constraints from "delta" that could be exploited
4723 * to construct loop coalescing schedules.
4724 * In particular, drop those constraint that bound the difference
4725 * to the size of the domain.
4726 * Do this for each set/node in "delta" separately.
4727 * The parameters are assumed to have been projected out by the caller.
4729 static __isl_give isl_union_set
*union_drop_coalescing_constraints(isl_ctx
*ctx
,
4730 struct isl_sched_graph
*graph
, __isl_take isl_union_set
*delta
)
4732 struct isl_collect_bounds_data data
= { ctx
, graph
};
4734 data
.bounds
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
4735 if (isl_union_set_foreach_set(delta
, &collect_bounds
, &data
) < 0)
4736 data
.bounds
= isl_union_set_free(data
.bounds
);
4737 delta
= isl_union_set_plain_gist(delta
, data
.bounds
);
4742 /* Given a non-trivial lineality space "lineality", add the corresponding
4743 * universe set to data->mask and add a map from elements to
4744 * other elements along the lines in "lineality" to data->equivalent.
4745 * If this is the first time this function gets called
4746 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4747 * initialize data->mask and data->equivalent.
4749 * In particular, if the lineality space is defined by equality constraints
4753 * then construct an affine mapping
4757 * and compute the equivalence relation of having the same image under f:
4759 * { x -> x' : E x = E x' }
4761 static isl_stat
add_non_trivial_lineality(__isl_take isl_basic_set
*lineality
,
4762 struct isl_exploit_lineality_data
*data
)
4768 isl_multi_pw_aff
*mpa
;
4772 if (isl_basic_set_check_no_locals(lineality
) < 0)
4775 space
= isl_basic_set_get_space(lineality
);
4776 if (!data
->any_non_trivial
) {
4777 data
->equivalent
= isl_union_map_empty(isl_space_copy(space
));
4778 data
->mask
= isl_union_set_empty(isl_space_copy(space
));
4780 data
->any_non_trivial
= isl_bool_true
;
4782 univ
= isl_set_universe(isl_space_copy(space
));
4783 data
->mask
= isl_union_set_add_set(data
->mask
, univ
);
4785 eq
= isl_basic_set_extract_equalities(lineality
);
4786 n
= isl_mat_rows(eq
);
4788 space
= isl_space_free(space
);
4789 eq
= isl_mat_insert_zero_rows(eq
, 0, 1);
4790 eq
= isl_mat_set_element_si(eq
, 0, 0, 1);
4791 space
= isl_space_from_domain(space
);
4792 space
= isl_space_add_dims(space
, isl_dim_out
, n
);
4793 ma
= isl_multi_aff_from_aff_mat(space
, eq
);
4794 mpa
= isl_multi_pw_aff_from_multi_aff(ma
);
4795 map
= isl_multi_pw_aff_eq_map(mpa
, isl_multi_pw_aff_copy(mpa
));
4796 data
->equivalent
= isl_union_map_add_map(data
->equivalent
, map
);
4798 isl_basic_set_free(lineality
);
4801 isl_basic_set_free(lineality
);
4802 return isl_stat_error
;
4805 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4806 * the origin or, in other words, satisfies a number of equality constraints
4807 * that is smaller than the dimension of the set).
4808 * If so, extend data->mask and data->equivalent accordingly.
4810 * The input should not have any local variables already, but
4811 * isl_set_remove_divs is called to make sure it does not.
4813 static isl_stat
add_lineality(__isl_take isl_set
*set
, void *user
)
4815 struct isl_exploit_lineality_data
*data
= user
;
4816 isl_basic_set
*hull
;
4820 set
= isl_set_remove_divs(set
);
4821 hull
= isl_set_unshifted_simple_hull(set
);
4822 dim
= isl_basic_set_dim(hull
, isl_dim_set
);
4823 n_eq
= isl_basic_set_n_equality(hull
);
4824 if (dim
< 0 || n_eq
< 0)
4827 return add_non_trivial_lineality(hull
, data
);
4828 isl_basic_set_free(hull
);
4831 isl_basic_set_free(hull
);
4832 return isl_stat_error
;
4835 /* Check if the difference set on intra-node schedule constraints "intra"
4836 * has any non-trivial lineality space.
4837 * If so, then extend the difference set to a difference set
4838 * on equivalent elements. That is, if "intra" is
4840 * { y - x : (x,y) \in V }
4842 * and elements are equivalent if they have the same image under f,
4845 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4847 * or, since f is linear,
4849 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4851 * The results of the search for non-trivial lineality spaces is stored
4854 static __isl_give isl_union_set
*exploit_intra_lineality(
4855 __isl_take isl_union_set
*intra
,
4856 struct isl_exploit_lineality_data
*data
)
4858 isl_union_set
*lineality
;
4859 isl_union_set
*uset
;
4861 data
->any_non_trivial
= isl_bool_false
;
4862 lineality
= isl_union_set_copy(intra
);
4863 lineality
= isl_union_set_combined_lineality_space(lineality
);
4864 if (isl_union_set_foreach_set(lineality
, &add_lineality
, data
) < 0)
4865 data
->any_non_trivial
= isl_bool_error
;
4866 isl_union_set_free(lineality
);
4868 if (data
->any_non_trivial
< 0)
4869 return isl_union_set_free(intra
);
4870 if (!data
->any_non_trivial
)
4873 uset
= isl_union_set_copy(intra
);
4874 intra
= isl_union_set_subtract(intra
, isl_union_set_copy(data
->mask
));
4875 uset
= isl_union_set_apply(uset
, isl_union_map_copy(data
->equivalent
));
4876 intra
= isl_union_set_union(intra
, uset
);
4878 intra
= isl_union_set_remove_divs(intra
);
4883 /* If the difference set on intra-node schedule constraints was found to have
4884 * any non-trivial lineality space by exploit_intra_lineality,
4885 * as recorded in "data", then extend the inter-node
4886 * schedule constraints "inter" to schedule constraints on equivalent elements.
4887 * That is, if "inter" is V and
4888 * elements are equivalent if they have the same image under f, then return
4890 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4892 static __isl_give isl_union_map
*exploit_inter_lineality(
4893 __isl_take isl_union_map
*inter
,
4894 struct isl_exploit_lineality_data
*data
)
4896 isl_union_map
*umap
;
4898 if (data
->any_non_trivial
< 0)
4899 return isl_union_map_free(inter
);
4900 if (!data
->any_non_trivial
)
4903 umap
= isl_union_map_copy(inter
);
4904 inter
= isl_union_map_subtract_range(inter
,
4905 isl_union_set_copy(data
->mask
));
4906 umap
= isl_union_map_apply_range(umap
,
4907 isl_union_map_copy(data
->equivalent
));
4908 inter
= isl_union_map_union(inter
, umap
);
4909 umap
= isl_union_map_copy(inter
);
4910 inter
= isl_union_map_subtract_domain(inter
,
4911 isl_union_set_copy(data
->mask
));
4912 umap
= isl_union_map_apply_range(isl_union_map_copy(data
->equivalent
),
4914 inter
= isl_union_map_union(inter
, umap
);
4916 inter
= isl_union_map_remove_divs(inter
);
4921 /* For each (conditional) validity edge in "graph",
4922 * add the corresponding dependence relation using "add"
4923 * to a collection of dependence relations and return the result.
4924 * If "coincidence" is set, then coincidence edges are considered as well.
4926 static __isl_give isl_union_map
*collect_validity(struct isl_sched_graph
*graph
,
4927 __isl_give isl_union_map
*(*add
)(__isl_take isl_union_map
*umap
,
4928 struct isl_sched_edge
*edge
), int coincidence
)
4932 isl_union_map
*umap
;
4934 space
= isl_space_copy(graph
->node
[0].space
);
4935 umap
= isl_union_map_empty(space
);
4937 for (i
= 0; i
< graph
->n_edge
; ++i
) {
4938 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
4940 if (!is_any_validity(edge
) &&
4941 (!coincidence
|| !is_coincidence(edge
)))
4944 umap
= add(umap
, edge
);
4950 /* For each dependence relation on a (conditional) validity edge
4951 * from a node to itself,
4952 * construct the set of coefficients of valid constraints for elements
4953 * in that dependence relation and collect the results.
4954 * If "coincidence" is set, then coincidence edges are considered as well.
4956 * In particular, for each dependence relation R, constraints
4957 * on coefficients (c_0, c_x) are constructed such that
4959 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4961 * If the schedule_treat_coalescing option is set, then some constraints
4962 * that could be exploited to construct coalescing schedules
4963 * are removed before the dual is computed, but after the parameters
4964 * have been projected out.
4965 * The entire computation is essentially the same as that performed
4966 * by intra_coefficients, except that it operates on multiple
4967 * edges together and that the parameters are always projected out.
4969 * Additionally, exploit any non-trivial lineality space
4970 * in the difference set after removing coalescing constraints and
4971 * store the results of the non-trivial lineality space detection in "data".
4972 * The procedure is currently run unconditionally, but it is unlikely
4973 * to find any non-trivial lineality spaces if no coalescing constraints
4974 * have been removed.
4976 * Note that if a dependence relation is a union of basic maps,
4977 * then each basic map needs to be treated individually as it may only
4978 * be possible to carry the dependences expressed by some of those
4979 * basic maps and not all of them.
4980 * The collected validity constraints are therefore not coalesced and
4981 * it is assumed that they are not coalesced automatically.
4982 * Duplicate basic maps can be removed, however.
4983 * In particular, if the same basic map appears as a disjunct
4984 * in multiple edges, then it only needs to be carried once.
4986 static __isl_give isl_basic_set_list
*collect_intra_validity(isl_ctx
*ctx
,
4987 struct isl_sched_graph
*graph
, int coincidence
,
4988 struct isl_exploit_lineality_data
*data
)
4990 isl_union_map
*intra
;
4991 isl_union_set
*delta
;
4992 isl_basic_set_list
*list
;
4994 intra
= collect_validity(graph
, &add_intra
, coincidence
);
4995 delta
= isl_union_map_deltas(intra
);
4996 delta
= isl_union_set_project_out_all_params(delta
);
4997 delta
= isl_union_set_remove_divs(delta
);
4998 if (isl_options_get_schedule_treat_coalescing(ctx
))
4999 delta
= union_drop_coalescing_constraints(ctx
, graph
, delta
);
5000 delta
= exploit_intra_lineality(delta
, data
);
5001 list
= isl_union_set_get_basic_set_list(delta
);
5002 isl_union_set_free(delta
);
5004 return isl_basic_set_list_coefficients(list
);
5007 /* For each dependence relation on a (conditional) validity edge
5008 * from a node to some other node,
5009 * construct the set of coefficients of valid constraints for elements
5010 * in that dependence relation and collect the results.
5011 * If "coincidence" is set, then coincidence edges are considered as well.
5013 * In particular, for each dependence relation R, constraints
5014 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
5016 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
5018 * This computation is essentially the same as that performed
5019 * by inter_coefficients, except that it operates on multiple
5022 * Additionally, exploit any non-trivial lineality space
5023 * that may have been discovered by collect_intra_validity
5024 * (as stored in "data").
5026 * Note that if a dependence relation is a union of basic maps,
5027 * then each basic map needs to be treated individually as it may only
5028 * be possible to carry the dependences expressed by some of those
5029 * basic maps and not all of them.
5030 * The collected validity constraints are therefore not coalesced and
5031 * it is assumed that they are not coalesced automatically.
5032 * Duplicate basic maps can be removed, however.
5033 * In particular, if the same basic map appears as a disjunct
5034 * in multiple edges, then it only needs to be carried once.
5036 static __isl_give isl_basic_set_list
*collect_inter_validity(
5037 struct isl_sched_graph
*graph
, int coincidence
,
5038 struct isl_exploit_lineality_data
*data
)
5040 isl_union_map
*inter
;
5041 isl_union_set
*wrap
;
5042 isl_basic_set_list
*list
;
5044 inter
= collect_validity(graph
, &add_inter
, coincidence
);
5045 inter
= exploit_inter_lineality(inter
, data
);
5046 inter
= isl_union_map_remove_divs(inter
);
5047 wrap
= isl_union_map_wrap(inter
);
5048 list
= isl_union_set_get_basic_set_list(wrap
);
5049 isl_union_set_free(wrap
);
5050 return isl_basic_set_list_coefficients(list
);
5053 /* Construct an LP problem for finding schedule coefficients
5054 * such that the schedule carries as many of the "n_edge" groups of
5055 * dependences as possible based on the corresponding coefficient
5056 * constraints and return the lexicographically smallest non-trivial solution.
5057 * "intra" is the sequence of coefficient constraints for intra-node edges.
5058 * "inter" is the sequence of coefficient constraints for inter-node edges.
5059 * If "want_integral" is set, then compute an integral solution
5060 * for the coefficients rather than using the numerators
5061 * of a rational solution.
5062 * "carry_inter" indicates whether inter-node edges should be carried or
5065 * If none of the "n_edge" groups can be carried
5066 * then return an empty vector.
5068 static __isl_give isl_vec
*compute_carrying_sol_coef(isl_ctx
*ctx
,
5069 struct isl_sched_graph
*graph
, int n_edge
,
5070 __isl_keep isl_basic_set_list
*intra
,
5071 __isl_keep isl_basic_set_list
*inter
, int want_integral
,
5076 if (setup_carry_lp(ctx
, graph
, n_edge
, intra
, inter
, carry_inter
) < 0)
5079 lp
= isl_basic_set_copy(graph
->lp
);
5080 return non_neg_lexmin(graph
, lp
, n_edge
, want_integral
);
5083 /* Construct an LP problem for finding schedule coefficients
5084 * such that the schedule carries as many of the validity dependences
5086 * return the lexicographically smallest non-trivial solution.
5087 * If "fallback" is set, then the carrying is performed as a fallback
5088 * for the Pluto-like scheduler.
5089 * If "coincidence" is set, then try and carry coincidence edges as well.
5091 * The variable "n_edge" stores the number of groups that should be carried.
5092 * If none of the "n_edge" groups can be carried
5093 * then return an empty vector.
5094 * If, moreover, "n_edge" is zero, then the LP problem does not even
5095 * need to be constructed.
5097 * If a fallback solution is being computed, then compute an integral solution
5098 * for the coefficients rather than using the numerators
5099 * of a rational solution.
5101 * If a fallback solution is being computed, if there are any intra-node
5102 * dependences, and if requested by the user, then first try
5103 * to only carry those intra-node dependences.
5104 * If this fails to carry any dependences, then try again
5105 * with the inter-node dependences included.
5107 static __isl_give isl_vec
*compute_carrying_sol(isl_ctx
*ctx
,
5108 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5110 isl_size n_intra
, n_inter
;
5112 struct isl_carry carry
= { 0 };
5115 carry
.intra
= collect_intra_validity(ctx
, graph
, coincidence
,
5117 carry
.inter
= collect_inter_validity(graph
, coincidence
,
5119 n_intra
= isl_basic_set_list_n_basic_set(carry
.intra
);
5120 n_inter
= isl_basic_set_list_n_basic_set(carry
.inter
);
5121 if (n_intra
< 0 || n_inter
< 0)
5124 if (fallback
&& n_intra
> 0 &&
5125 isl_options_get_schedule_carry_self_first(ctx
)) {
5126 sol
= compute_carrying_sol_coef(ctx
, graph
, n_intra
,
5127 carry
.intra
, carry
.inter
, fallback
, 0);
5128 if (!sol
|| sol
->size
!= 0 || n_inter
== 0) {
5129 isl_carry_clear(&carry
);
5135 n_edge
= n_intra
+ n_inter
;
5137 isl_carry_clear(&carry
);
5138 return isl_vec_alloc(ctx
, 0);
5141 sol
= compute_carrying_sol_coef(ctx
, graph
, n_edge
,
5142 carry
.intra
, carry
.inter
, fallback
, 1);
5143 isl_carry_clear(&carry
);
5146 isl_carry_clear(&carry
);
5150 /* Construct a schedule row for each node such that as many validity dependences
5151 * as possible are carried and then continue with the next band.
5152 * If "fallback" is set, then the carrying is performed as a fallback
5153 * for the Pluto-like scheduler.
5154 * If "coincidence" is set, then try and carry coincidence edges as well.
5156 * If there are no validity dependences, then no dependence can be carried and
5157 * the procedure is guaranteed to fail. If there is more than one component,
5158 * then try computing a schedule on each component separately
5159 * to prevent or at least postpone this failure.
5161 * If a schedule row is computed, then check that dependences are carried
5162 * for at least one of the edges.
5164 * If the computed schedule row turns out to be trivial on one or
5165 * more nodes where it should not be trivial, then we throw it away
5166 * and try again on each component separately.
5168 * If there is only one component, then we accept the schedule row anyway,
5169 * but we do not consider it as a complete row and therefore do not
5170 * increment graph->n_row. Note that the ranks of the nodes that
5171 * do get a non-trivial schedule part will get updated regardless and
5172 * graph->maxvar is computed based on these ranks. The test for
5173 * whether more schedule rows are required in compute_schedule_wcc
5174 * is therefore not affected.
5176 * Insert a band corresponding to the schedule row at position "node"
5177 * of the schedule tree and continue with the construction of the schedule.
5178 * This insertion and the continued construction is performed by split_scaled
5179 * after optionally checking for non-trivial common divisors.
5181 static __isl_give isl_schedule_node
*carry(__isl_take isl_schedule_node
*node
,
5182 struct isl_sched_graph
*graph
, int fallback
, int coincidence
)
5191 ctx
= isl_schedule_node_get_ctx(node
);
5192 sol
= compute_carrying_sol(ctx
, graph
, fallback
, coincidence
);
5194 return isl_schedule_node_free(node
);
5195 if (sol
->size
== 0) {
5198 return compute_component_schedule(node
, graph
, 1);
5199 isl_die(ctx
, isl_error_unknown
, "unable to carry dependences",
5200 return isl_schedule_node_free(node
));
5203 trivial
= is_any_trivial(graph
, sol
);
5205 sol
= isl_vec_free(sol
);
5206 } else if (trivial
&& graph
->scc
> 1) {
5208 return compute_component_schedule(node
, graph
, 1);
5211 if (update_schedule(graph
, sol
, 0) < 0)
5212 return isl_schedule_node_free(node
);
5216 return split_scaled(node
, graph
);
5219 /* Construct a schedule row for each node such that as many validity dependences
5220 * as possible are carried and then continue with the next band.
5221 * Do so as a fallback for the Pluto-like scheduler.
5222 * If "coincidence" is set, then try and carry coincidence edges as well.
5224 static __isl_give isl_schedule_node
*carry_fallback(
5225 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5228 return carry(node
, graph
, 1, coincidence
);
5231 /* Construct a schedule row for each node such that as many validity dependences
5232 * as possible are carried and then continue with the next band.
5233 * Do so for the case where the Feautrier scheduler was selected
5236 static __isl_give isl_schedule_node
*carry_feautrier(
5237 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5239 return carry(node
, graph
, 0, 0);
5242 /* Construct a schedule row for each node such that as many validity dependences
5243 * as possible are carried and then continue with the next band.
5244 * Do so as a fallback for the Pluto-like scheduler.
5246 static __isl_give isl_schedule_node
*carry_dependences(
5247 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5249 return carry_fallback(node
, graph
, 0);
5252 /* Construct a schedule row for each node such that as many validity or
5253 * coincidence dependences as possible are carried and
5254 * then continue with the next band.
5255 * Do so as a fallback for the Pluto-like scheduler.
5257 static __isl_give isl_schedule_node
*carry_coincidence(
5258 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5260 return carry_fallback(node
, graph
, 1);
5263 /* Topologically sort statements mapped to the same schedule iteration
5264 * and add insert a sequence node in front of "node"
5265 * corresponding to this order.
5266 * If "initialized" is set, then it may be assumed that
5267 * isl_sched_graph_compute_maxvar
5268 * has been called on the current band. Otherwise, call
5269 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5271 * If it turns out to be impossible to sort the statements apart,
5272 * because different dependences impose different orderings
5273 * on the statements, then we extend the schedule such that
5274 * it carries at least one more dependence.
5276 static __isl_give isl_schedule_node
*sort_statements(
5277 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5281 isl_union_set_list
*filters
;
5286 ctx
= isl_schedule_node_get_ctx(node
);
5288 isl_die(ctx
, isl_error_internal
,
5289 "graph should have at least one node",
5290 return isl_schedule_node_free(node
));
5295 if (update_edges(ctx
, graph
) < 0)
5296 return isl_schedule_node_free(node
);
5298 if (graph
->n_edge
== 0)
5301 if (detect_sccs(ctx
, graph
) < 0)
5302 return isl_schedule_node_free(node
);
5305 if (graph
->scc
< graph
->n
) {
5306 if (!initialized
&& isl_sched_graph_compute_maxvar(graph
) < 0)
5307 return isl_schedule_node_free(node
);
5308 return carry_dependences(node
, graph
);
5311 filters
= isl_sched_graph_extract_sccs(ctx
, graph
);
5312 node
= isl_schedule_node_insert_sequence(node
, filters
);
5317 /* Are there any (non-empty) (conditional) validity edges in the graph?
5319 static int has_validity_edges(struct isl_sched_graph
*graph
)
5323 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5326 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
5331 if (is_any_validity(&graph
->edge
[i
]))
5338 /* Should we apply a Feautrier step?
5339 * That is, did the user request the Feautrier algorithm and are
5340 * there any validity dependences (left)?
5342 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
5344 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
5347 return has_validity_edges(graph
);
5350 /* Compute a schedule for a connected dependence graph using Feautrier's
5351 * multi-dimensional scheduling algorithm and return the updated schedule node.
5353 * The original algorithm is described in [1].
5354 * The main idea is to minimize the number of scheduling dimensions, by
5355 * trying to satisfy as many dependences as possible per scheduling dimension.
5357 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5358 * Problem, Part II: Multi-Dimensional Time.
5359 * In Intl. Journal of Parallel Programming, 1992.
5361 static __isl_give isl_schedule_node
*compute_schedule_wcc_feautrier(
5362 isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5364 return carry_feautrier(node
, graph
);
5367 /* Turn off the "local" bit on all (condition) edges.
5369 static void clear_local_edges(struct isl_sched_graph
*graph
)
5373 for (i
= 0; i
< graph
->n_edge
; ++i
)
5374 if (isl_sched_edge_is_condition(&graph
->edge
[i
]))
5375 clear_local(&graph
->edge
[i
]);
5378 /* Does "graph" have both condition and conditional validity edges?
5380 static int need_condition_check(struct isl_sched_graph
*graph
)
5383 int any_condition
= 0;
5384 int any_conditional_validity
= 0;
5386 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5387 if (isl_sched_edge_is_condition(&graph
->edge
[i
]))
5389 if (isl_sched_edge_is_conditional_validity(&graph
->edge
[i
]))
5390 any_conditional_validity
= 1;
5393 return any_condition
&& any_conditional_validity
;
5396 /* Does "graph" contain any coincidence edge?
5398 static int has_any_coincidence(struct isl_sched_graph
*graph
)
5402 for (i
= 0; i
< graph
->n_edge
; ++i
)
5403 if (is_coincidence(&graph
->edge
[i
]))
5409 /* Extract the final schedule row as a map with the iteration domain
5410 * of "node" as domain.
5412 static __isl_give isl_map
*final_row(struct isl_sched_node
*node
)
5417 n_row
= isl_mat_rows(node
->sched
);
5420 ma
= isl_sched_node_extract_partial_schedule_multi_aff(node
,
5422 return isl_map_from_multi_aff(ma
);
5425 /* Is the conditional validity dependence in the edge with index "edge_index"
5426 * violated by the latest (i.e., final) row of the schedule?
5427 * That is, is i scheduled after j
5428 * for any conditional validity dependence i -> j?
5430 static int is_violated(struct isl_sched_graph
*graph
, int edge_index
)
5432 isl_map
*src_sched
, *dst_sched
, *map
;
5433 struct isl_sched_edge
*edge
= &graph
->edge
[edge_index
];
5436 src_sched
= final_row(edge
->src
);
5437 dst_sched
= final_row(edge
->dst
);
5438 map
= isl_map_copy(edge
->map
);
5439 map
= isl_map_apply_domain(map
, src_sched
);
5440 map
= isl_map_apply_range(map
, dst_sched
);
5441 map
= isl_map_order_gt(map
, isl_dim_in
, 0, isl_dim_out
, 0);
5442 empty
= isl_map_is_empty(map
);
5451 /* Does "graph" have any satisfied condition edges that
5452 * are adjacent to the conditional validity constraint with
5453 * domain "conditional_source" and range "conditional_sink"?
5455 * A satisfied condition is one that is not local.
5456 * If a condition was forced to be local already (i.e., marked as local)
5457 * then there is no need to check if it is in fact local.
5459 * Additionally, mark all adjacent condition edges found as local.
5461 static int has_adjacent_true_conditions(struct isl_sched_graph
*graph
,
5462 __isl_keep isl_union_set
*conditional_source
,
5463 __isl_keep isl_union_set
*conditional_sink
)
5468 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5469 int adjacent
, local
;
5470 isl_union_map
*condition
;
5472 if (!isl_sched_edge_is_condition(&graph
->edge
[i
]))
5474 if (is_local(&graph
->edge
[i
]))
5477 condition
= graph
->edge
[i
].tagged_condition
;
5478 adjacent
= domain_intersects(condition
, conditional_sink
);
5479 if (adjacent
>= 0 && !adjacent
)
5480 adjacent
= range_intersects(condition
,
5481 conditional_source
);
5487 set_local(&graph
->edge
[i
]);
5489 local
= is_condition_false(&graph
->edge
[i
]);
5499 /* Are there any violated conditional validity dependences with
5500 * adjacent condition dependences that are not local with respect
5501 * to the current schedule?
5502 * That is, is the conditional validity constraint violated?
5504 * Additionally, mark all those adjacent condition dependences as local.
5505 * We also mark those adjacent condition dependences that were not marked
5506 * as local before, but just happened to be local already. This ensures
5507 * that they remain local if the schedule is recomputed.
5509 * We first collect domain and range of all violated conditional validity
5510 * dependences and then check if there are any adjacent non-local
5511 * condition dependences.
5513 static int has_violated_conditional_constraint(isl_ctx
*ctx
,
5514 struct isl_sched_graph
*graph
)
5518 isl_union_set
*source
, *sink
;
5520 source
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5521 sink
= isl_union_set_empty(isl_space_params_alloc(ctx
, 0));
5522 for (i
= 0; i
< graph
->n_edge
; ++i
) {
5523 isl_union_set
*uset
;
5524 isl_union_map
*umap
;
5527 if (!isl_sched_edge_is_conditional_validity(&graph
->edge
[i
]))
5530 violated
= is_violated(graph
, i
);
5538 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5539 uset
= isl_union_map_domain(umap
);
5540 source
= isl_union_set_union(source
, uset
);
5541 source
= isl_union_set_coalesce(source
);
5543 umap
= isl_union_map_copy(graph
->edge
[i
].tagged_validity
);
5544 uset
= isl_union_map_range(umap
);
5545 sink
= isl_union_set_union(sink
, uset
);
5546 sink
= isl_union_set_coalesce(sink
);
5550 any
= has_adjacent_true_conditions(graph
, source
, sink
);
5552 isl_union_set_free(source
);
5553 isl_union_set_free(sink
);
5556 isl_union_set_free(source
);
5557 isl_union_set_free(sink
);
5561 /* Examine the current band (the rows between graph->band_start and
5562 * graph->n_total_row), deciding whether to drop it or add it to "node"
5563 * and then continue with the computation of the next band, if any.
5564 * If "initialized" is set, then it may be assumed that
5565 * isl_sched_graph_compute_maxvar
5566 * has been called on the current band. Otherwise, call
5567 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5569 * The caller keeps looking for a new row as long as
5570 * graph->n_row < graph->maxvar. If the latest attempt to find
5571 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5573 * - split between SCCs and start over (assuming we found an interesting
5574 * pair of SCCs between which to split)
5575 * - continue with the next band (assuming the current band has at least
5577 * - if there is more than one SCC left, then split along all SCCs
5578 * - if outer coincidence needs to be enforced, then try to carry as many
5579 * validity or coincidence dependences as possible and
5580 * continue with the next band
5581 * - try to carry as many validity dependences as possible and
5582 * continue with the next band
5583 * In each case, we first insert a band node in the schedule tree
5584 * if any rows have been computed.
5586 * If the caller managed to complete the schedule and the current band
5587 * is empty, then finish off by topologically
5588 * sorting the statements based on the remaining dependences.
5589 * If, on the other hand, the current band has at least one row,
5590 * then continue with the next band. Note that this next band
5591 * will necessarily be empty, but the graph may still be split up
5592 * into weakly connected components before arriving back here.
5594 __isl_give isl_schedule_node
*isl_schedule_node_compute_finish_band(
5595 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5603 empty
= graph
->n_total_row
== graph
->band_start
;
5604 if (graph
->n_row
< graph
->maxvar
) {
5607 ctx
= isl_schedule_node_get_ctx(node
);
5608 if (!ctx
->opt
->schedule_maximize_band_depth
&& !empty
)
5609 return compute_next_band(node
, graph
, 1);
5610 if (graph
->src_scc
>= 0)
5611 return compute_split_schedule(node
, graph
);
5613 return compute_next_band(node
, graph
, 1);
5615 return compute_component_schedule(node
, graph
, 1);
5616 if (!initialized
&& isl_sched_graph_compute_maxvar(graph
) < 0)
5617 return isl_schedule_node_free(node
);
5618 if (isl_options_get_schedule_outer_coincidence(ctx
))
5619 return carry_coincidence(node
, graph
);
5620 return carry_dependences(node
, graph
);
5624 return compute_next_band(node
, graph
, 1);
5625 return sort_statements(node
, graph
, initialized
);
5628 /* Construct a band of schedule rows for a connected dependence graph.
5629 * The caller is responsible for determining the strongly connected
5630 * components and calling isl_sched_graph_compute_maxvar first.
5632 * We try to find a sequence of as many schedule rows as possible that result
5633 * in non-negative dependence distances (independent of the previous rows
5634 * in the sequence, i.e., such that the sequence is tilable), with as
5635 * many of the initial rows as possible satisfying the coincidence constraints.
5636 * The computation stops if we can't find any more rows or if we have found
5637 * all the rows we wanted to find.
5639 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5640 * outermost dimension to satisfy the coincidence constraints. If this
5641 * turns out to be impossible, we fall back on the general scheme above
5642 * and try to carry as many dependences as possible.
5644 * If "graph" contains both condition and conditional validity dependences,
5645 * then we need to check that that the conditional schedule constraint
5646 * is satisfied, i.e., there are no violated conditional validity dependences
5647 * that are adjacent to any non-local condition dependences.
5648 * If there are, then we mark all those adjacent condition dependences
5649 * as local and recompute the current band. Those dependences that
5650 * are marked local will then be forced to be local.
5651 * The initial computation is performed with no dependences marked as local.
5652 * If we are lucky, then there will be no violated conditional validity
5653 * dependences adjacent to any non-local condition dependences.
5654 * Otherwise, we mark some additional condition dependences as local and
5655 * recompute. We continue this process until there are no violations left or
5656 * until we are no longer able to compute a schedule.
5657 * Since there are only a finite number of dependences,
5658 * there will only be a finite number of iterations.
5660 isl_stat
isl_schedule_node_compute_wcc_band(isl_ctx
*ctx
,
5661 struct isl_sched_graph
*graph
)
5663 int has_coincidence
;
5664 int use_coincidence
;
5665 int force_coincidence
= 0;
5666 int check_conditional
;
5668 if (sort_sccs(graph
) < 0)
5669 return isl_stat_error
;
5671 clear_local_edges(graph
);
5672 check_conditional
= need_condition_check(graph
);
5673 has_coincidence
= has_any_coincidence(graph
);
5675 if (ctx
->opt
->schedule_outer_coincidence
)
5676 force_coincidence
= 1;
5678 use_coincidence
= has_coincidence
;
5679 while (graph
->n_row
< graph
->maxvar
) {
5684 graph
->src_scc
= -1;
5685 graph
->dst_scc
= -1;
5687 if (setup_lp(ctx
, graph
, use_coincidence
) < 0)
5688 return isl_stat_error
;
5689 sol
= solve_lp(ctx
, graph
);
5691 return isl_stat_error
;
5692 if (sol
->size
== 0) {
5693 int empty
= graph
->n_total_row
== graph
->band_start
;
5696 if (use_coincidence
&& (!force_coincidence
|| !empty
)) {
5697 use_coincidence
= 0;
5702 coincident
= !has_coincidence
|| use_coincidence
;
5703 if (update_schedule(graph
, sol
, coincident
) < 0)
5704 return isl_stat_error
;
5706 if (!check_conditional
)
5708 violated
= has_violated_conditional_constraint(ctx
, graph
);
5710 return isl_stat_error
;
5713 if (reset_band(graph
) < 0)
5714 return isl_stat_error
;
5715 use_coincidence
= has_coincidence
;
5721 /* Compute a schedule for a connected dependence graph by considering
5722 * the graph as a whole and return the updated schedule node.
5724 * The actual schedule rows of the current band are computed by
5725 * isl_schedule_node_compute_wcc_band. isl_schedule_node_compute_finish_band
5726 * takes care of integrating the band into "node" and continuing
5729 static __isl_give isl_schedule_node
*compute_schedule_wcc_whole(
5730 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5737 ctx
= isl_schedule_node_get_ctx(node
);
5738 if (isl_schedule_node_compute_wcc_band(ctx
, graph
) < 0)
5739 return isl_schedule_node_free(node
);
5741 return isl_schedule_node_compute_finish_band(node
, graph
, 1);
5744 /* Compute a schedule for a connected dependence graph and return
5745 * the updated schedule node.
5747 * If Feautrier's algorithm is selected, we first recursively try to satisfy
5748 * as many validity dependences as possible. When all validity dependences
5749 * are satisfied we extend the schedule to a full-dimensional schedule.
5751 * Call compute_schedule_wcc_whole or isl_schedule_node_compute_wcc_clustering
5752 * depending on whether the user has selected the option to try and
5753 * compute a schedule for the entire (weakly connected) component first.
5754 * If there is only a single strongly connected component (SCC), then
5755 * there is no point in trying to combine SCCs
5756 * in isl_schedule_node_compute_wcc_clustering, so compute_schedule_wcc_whole
5757 * is called instead.
5759 static __isl_give isl_schedule_node
*compute_schedule_wcc(
5760 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
)
5767 ctx
= isl_schedule_node_get_ctx(node
);
5768 if (detect_sccs(ctx
, graph
) < 0)
5769 return isl_schedule_node_free(node
);
5771 if (isl_sched_graph_compute_maxvar(graph
) < 0)
5772 return isl_schedule_node_free(node
);
5774 if (need_feautrier_step(ctx
, graph
))
5775 return compute_schedule_wcc_feautrier(node
, graph
);
5777 if (graph
->scc
<= 1 || isl_options_get_schedule_whole_component(ctx
))
5778 return compute_schedule_wcc_whole(node
, graph
);
5780 return isl_schedule_node_compute_wcc_clustering(node
, graph
);
5783 /* Compute a schedule for each group of nodes identified by node->scc
5784 * separately and then combine them in a sequence node (or as set node
5785 * if graph->weak is set) inserted at position "node" of the schedule tree.
5786 * Return the updated schedule node.
5788 * If "wcc" is set then each of the groups belongs to a single
5789 * weakly connected component in the dependence graph so that
5790 * there is no need for compute_sub_schedule to look for weakly
5791 * connected components.
5793 * If a set node would be introduced and if the number of components
5794 * is equal to the number of nodes, then check if the schedule
5795 * is already complete. If so, a redundant set node would be introduced
5796 * (without any further descendants) stating that the statements
5797 * can be executed in arbitrary order, which is also expressed
5798 * by the absence of any node. Refrain from inserting any nodes
5799 * in this case and simply return.
5801 static __isl_give isl_schedule_node
*compute_component_schedule(
5802 __isl_take isl_schedule_node
*node
, struct isl_sched_graph
*graph
,
5807 isl_union_set_list
*filters
;
5812 if (graph
->weak
&& graph
->scc
== graph
->n
) {
5813 if (isl_sched_graph_compute_maxvar(graph
) < 0)
5814 return isl_schedule_node_free(node
);
5815 if (graph
->n_row
>= graph
->maxvar
)
5819 ctx
= isl_schedule_node_get_ctx(node
);
5820 filters
= isl_sched_graph_extract_sccs(ctx
, graph
);
5822 node
= isl_schedule_node_insert_set(node
, filters
);
5824 node
= isl_schedule_node_insert_sequence(node
, filters
);
5826 for (component
= 0; component
< graph
->scc
; ++component
) {
5827 node
= isl_schedule_node_grandchild(node
, component
, 0);
5828 node
= compute_sub_schedule(node
, ctx
, graph
,
5829 &isl_sched_node_scc_exactly
,
5830 &isl_sched_edge_scc_exactly
,
5832 node
= isl_schedule_node_grandparent(node
);
5838 /* Compute a schedule for the given dependence graph and insert it at "node".
5839 * Return the updated schedule node.
5841 * We first check if the graph is connected (through validity and conditional
5842 * validity dependences) and, if not, compute a schedule
5843 * for each component separately.
5844 * If the schedule_serialize_sccs option is set, then we check for strongly
5845 * connected components instead and compute a separate schedule for
5846 * each such strongly connected component.
5848 static __isl_give isl_schedule_node
*compute_schedule(isl_schedule_node
*node
,
5849 struct isl_sched_graph
*graph
)
5856 ctx
= isl_schedule_node_get_ctx(node
);
5857 if (isl_options_get_schedule_serialize_sccs(ctx
)) {
5858 if (detect_sccs(ctx
, graph
) < 0)
5859 return isl_schedule_node_free(node
);
5861 if (detect_wccs(ctx
, graph
) < 0)
5862 return isl_schedule_node_free(node
);
5866 return compute_component_schedule(node
, graph
, 1);
5868 return compute_schedule_wcc(node
, graph
);
5871 /* Compute a schedule on sc->domain that respects the given schedule
5874 * In particular, the schedule respects all the validity dependences.
5875 * If the default isl scheduling algorithm is used, it tries to minimize
5876 * the dependence distances over the proximity dependences.
5877 * If Feautrier's scheduling algorithm is used, the proximity dependence
5878 * distances are only minimized during the extension to a full-dimensional
5881 * If there are any condition and conditional validity dependences,
5882 * then the conditional validity dependences may be violated inside
5883 * a tilable band, provided they have no adjacent non-local
5884 * condition dependences.
5886 __isl_give isl_schedule
*isl_schedule_constraints_compute_schedule(
5887 __isl_take isl_schedule_constraints
*sc
)
5889 isl_ctx
*ctx
= isl_schedule_constraints_get_ctx(sc
);
5890 struct isl_sched_graph graph
= { 0 };
5891 isl_schedule
*sched
;
5892 isl_schedule_node
*node
;
5893 isl_union_set
*domain
;
5896 sc
= isl_schedule_constraints_align_params(sc
);
5898 domain
= isl_schedule_constraints_get_domain(sc
);
5899 n
= isl_union_set_n_set(domain
);
5901 isl_schedule_constraints_free(sc
);
5902 return isl_schedule_from_domain(domain
);
5905 if (n
< 0 || isl_sched_graph_init(&graph
, sc
) < 0)
5906 domain
= isl_union_set_free(domain
);
5908 node
= isl_schedule_node_from_domain(domain
);
5909 node
= isl_schedule_node_child(node
, 0);
5911 node
= compute_schedule(node
, &graph
);
5912 sched
= isl_schedule_node_get_schedule(node
);
5913 isl_schedule_node_free(node
);
5915 isl_sched_graph_free(ctx
, &graph
);
5916 isl_schedule_constraints_free(sc
);
5921 /* Compute a schedule for the given union of domains that respects
5922 * all the validity dependences and minimizes
5923 * the dependence distances over the proximity dependences.
5925 * This function is kept for backward compatibility.
5927 __isl_give isl_schedule
*isl_union_set_compute_schedule(
5928 __isl_take isl_union_set
*domain
,
5929 __isl_take isl_union_map
*validity
,
5930 __isl_take isl_union_map
*proximity
)
5932 isl_schedule_constraints
*sc
;
5934 sc
= isl_schedule_constraints_on_domain(domain
);
5935 sc
= isl_schedule_constraints_set_validity(sc
, validity
);
5936 sc
= isl_schedule_constraints_set_proximity(sc
, proximity
);
5938 return isl_schedule_constraints_compute_schedule(sc
);