isl_qpolynomial_move_dims: use isl_qpolynomial_domain_dim
[isl.git] / isl_scheduler.c
blob25a59144a7dfc424d0ddbcb64a507f0f18620bcf
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
6 * Copyright 2017 Sven Verdoolaege
8 * Use of this software is governed by the MIT license
10 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
11 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 * 91893 Orsay, France
13 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
15 * CS 42112, 75589 Paris Cedex 12, France
18 #include <isl_ctx_private.h>
19 #include <isl_map_private.h>
20 #include <isl_space_private.h>
21 #include <isl_aff_private.h>
22 #include <isl/hash.h>
23 #include <isl/id.h>
24 #include <isl/constraint.h>
25 #include <isl/schedule.h>
26 #include <isl_schedule_constraints.h>
27 #include <isl/schedule_node.h>
28 #include <isl_mat_private.h>
29 #include <isl_vec_private.h>
30 #include <isl/set.h>
31 #include <isl_union_set_private.h>
32 #include <isl_seq.h>
33 #include <isl_tab.h>
34 #include <isl_dim_map.h>
35 #include <isl/map_to_basic_set.h>
36 #include <isl_sort.h>
37 #include <isl_options_private.h>
38 #include <isl_tarjan.h>
39 #include <isl_morph.h>
40 #include <isl/ilp.h>
41 #include <isl_val_private.h>
43 #include "isl_scheduler.h"
44 #include "isl_scheduler_clustering.h"
47 * The scheduling algorithm implemented in this file was inspired by
48 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
49 * Parallelization and Locality Optimization in the Polyhedral Model".
51 * For a detailed description of the variant implemented in isl,
52 * see Verdoolaege and Janssens, "Scheduling for PPCG" (2017).
56 static isl_bool node_has_tuples(const void *entry, const void *val)
58 struct isl_sched_node *node = (struct isl_sched_node *)entry;
59 isl_space *space = (isl_space *) val;
61 return isl_space_has_equal_tuples(node->space, space);
64 int isl_sched_node_scc_exactly(struct isl_sched_node *node, int scc)
66 return node->scc == scc;
69 static int node_scc_at_most(struct isl_sched_node *node, int scc)
71 return node->scc <= scc;
74 static int node_scc_at_least(struct isl_sched_node *node, int scc)
76 return node->scc >= scc;
79 /* Is "edge" marked as being of type "type"?
81 int isl_sched_edge_has_type(struct isl_sched_edge *edge,
82 enum isl_edge_type type)
84 return ISL_FL_ISSET(edge->types, 1 << type);
87 /* Mark "edge" as being of type "type".
89 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
91 ISL_FL_SET(edge->types, 1 << type);
94 /* No longer mark "edge" as being of type "type"?
96 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
98 ISL_FL_CLR(edge->types, 1 << type);
101 /* Is "edge" marked as a validity edge?
103 static int is_validity(struct isl_sched_edge *edge)
105 return isl_sched_edge_has_type(edge, isl_edge_validity);
108 /* Mark "edge" as a validity edge.
110 static void set_validity(struct isl_sched_edge *edge)
112 set_type(edge, isl_edge_validity);
115 /* Is "edge" marked as a proximity edge?
117 int isl_sched_edge_is_proximity(struct isl_sched_edge *edge)
119 return isl_sched_edge_has_type(edge, isl_edge_proximity);
122 /* Is "edge" marked as a local edge?
124 static int is_local(struct isl_sched_edge *edge)
126 return isl_sched_edge_has_type(edge, isl_edge_local);
129 /* Mark "edge" as a local edge.
131 static void set_local(struct isl_sched_edge *edge)
133 set_type(edge, isl_edge_local);
136 /* No longer mark "edge" as a local edge.
138 static void clear_local(struct isl_sched_edge *edge)
140 clear_type(edge, isl_edge_local);
143 /* Is "edge" marked as a coincidence edge?
145 static int is_coincidence(struct isl_sched_edge *edge)
147 return isl_sched_edge_has_type(edge, isl_edge_coincidence);
150 /* Is "edge" marked as a condition edge?
152 int isl_sched_edge_is_condition(struct isl_sched_edge *edge)
154 return isl_sched_edge_has_type(edge, isl_edge_condition);
157 /* Is "edge" marked as a conditional validity edge?
159 int isl_sched_edge_is_conditional_validity(struct isl_sched_edge *edge)
161 return isl_sched_edge_has_type(edge, isl_edge_conditional_validity);
164 /* Is "edge" of a type that can appear multiple times between
165 * the same pair of nodes?
167 * Condition edges and conditional validity edges may have tagged
168 * dependence relations, in which case an edge is added for each
169 * pair of tags.
171 static int is_multi_edge_type(struct isl_sched_edge *edge)
173 return isl_sched_edge_is_condition(edge) ||
174 isl_sched_edge_is_conditional_validity(edge);
177 /* Initialize node_table based on the list of nodes.
179 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
181 int i;
183 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
184 if (!graph->node_table)
185 return -1;
187 for (i = 0; i < graph->n; ++i) {
188 struct isl_hash_table_entry *entry;
189 uint32_t hash;
191 hash = isl_space_get_tuple_hash(graph->node[i].space);
192 entry = isl_hash_table_find(ctx, graph->node_table, hash,
193 &node_has_tuples,
194 graph->node[i].space, 1);
195 if (!entry)
196 return -1;
197 entry->data = &graph->node[i];
200 return 0;
203 /* Return a pointer to the node that lives within the given space,
204 * an invalid node if there is no such node, or NULL in case of error.
206 struct isl_sched_node *isl_sched_graph_find_node(isl_ctx *ctx,
207 struct isl_sched_graph *graph, __isl_keep isl_space *space)
209 struct isl_hash_table_entry *entry;
210 uint32_t hash;
212 if (!space)
213 return NULL;
215 hash = isl_space_get_tuple_hash(space);
216 entry = isl_hash_table_find(ctx, graph->node_table, hash,
217 &node_has_tuples, space, 0);
218 if (!entry)
219 return NULL;
220 if (entry == isl_hash_table_entry_none)
221 return graph->node + graph->n;
223 return entry->data;
226 /* Is "node" a node in "graph"?
228 int isl_sched_graph_is_node(struct isl_sched_graph *graph,
229 struct isl_sched_node *node)
231 return node && node >= &graph->node[0] && node < &graph->node[graph->n];
234 static isl_bool edge_has_src_and_dst(const void *entry, const void *val)
236 const struct isl_sched_edge *edge = entry;
237 const struct isl_sched_edge *temp = val;
239 return isl_bool_ok(edge->src == temp->src && edge->dst == temp->dst);
242 /* Add the given edge to graph->edge_table[type].
244 static isl_stat graph_edge_table_add(isl_ctx *ctx,
245 struct isl_sched_graph *graph, enum isl_edge_type type,
246 struct isl_sched_edge *edge)
248 struct isl_hash_table_entry *entry;
249 uint32_t hash;
251 hash = isl_hash_init();
252 hash = isl_hash_builtin(hash, edge->src);
253 hash = isl_hash_builtin(hash, edge->dst);
254 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
255 &edge_has_src_and_dst, edge, 1);
256 if (!entry)
257 return isl_stat_error;
258 entry->data = edge;
260 return isl_stat_ok;
263 /* Add "edge" to all relevant edge tables.
264 * That is, for every type of the edge, add it to the corresponding table.
266 static isl_stat graph_edge_tables_add(isl_ctx *ctx,
267 struct isl_sched_graph *graph, struct isl_sched_edge *edge)
269 enum isl_edge_type t;
271 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
272 if (!isl_sched_edge_has_type(edge, t))
273 continue;
274 if (graph_edge_table_add(ctx, graph, t, edge) < 0)
275 return isl_stat_error;
278 return isl_stat_ok;
281 /* Allocate the edge_tables based on the maximal number of edges of
282 * each type.
284 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
286 int i;
288 for (i = 0; i <= isl_edge_last; ++i) {
289 graph->edge_table[i] = isl_hash_table_alloc(ctx,
290 graph->max_edge[i]);
291 if (!graph->edge_table[i])
292 return -1;
295 return 0;
298 /* If graph->edge_table[type] contains an edge from the given source
299 * to the given destination, then return the hash table entry of this edge.
300 * Otherwise, return NULL.
302 static struct isl_hash_table_entry *graph_find_edge_entry(
303 struct isl_sched_graph *graph,
304 enum isl_edge_type type,
305 struct isl_sched_node *src, struct isl_sched_node *dst)
307 isl_ctx *ctx = isl_space_get_ctx(src->space);
308 uint32_t hash;
309 struct isl_sched_edge temp = { .src = src, .dst = dst };
311 hash = isl_hash_init();
312 hash = isl_hash_builtin(hash, temp.src);
313 hash = isl_hash_builtin(hash, temp.dst);
314 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
315 &edge_has_src_and_dst, &temp, 0);
319 /* If graph->edge_table[type] contains an edge from the given source
320 * to the given destination, then return this edge.
321 * Return "none" if no such edge can be found.
322 * Return NULL on error.
324 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
325 enum isl_edge_type type,
326 struct isl_sched_node *src, struct isl_sched_node *dst,
327 struct isl_sched_edge *none)
329 struct isl_hash_table_entry *entry;
331 entry = graph_find_edge_entry(graph, type, src, dst);
332 if (!entry)
333 return NULL;
334 if (entry == isl_hash_table_entry_none)
335 return none;
337 return entry->data;
340 /* Check whether the dependence graph has an edge of the given type
341 * between the given two nodes.
343 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
344 enum isl_edge_type type,
345 struct isl_sched_node *src, struct isl_sched_node *dst)
347 struct isl_sched_edge dummy;
348 struct isl_sched_edge *edge;
349 isl_bool empty;
351 edge = graph_find_edge(graph, type, src, dst, &dummy);
352 if (!edge)
353 return isl_bool_error;
354 if (edge == &dummy)
355 return isl_bool_false;
357 empty = isl_map_plain_is_empty(edge->map);
359 return isl_bool_not(empty);
362 /* Look for any edge with the same src, dst and map fields as "model".
364 * Return the matching edge if one can be found.
365 * Return "model" if no matching edge is found.
366 * Return NULL on error.
368 static struct isl_sched_edge *graph_find_matching_edge(
369 struct isl_sched_graph *graph, struct isl_sched_edge *model)
371 enum isl_edge_type i;
372 struct isl_sched_edge *edge;
374 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
375 int is_equal;
377 edge = graph_find_edge(graph, i, model->src, model->dst, model);
378 if (!edge)
379 return NULL;
380 if (edge == model)
381 continue;
382 is_equal = isl_map_plain_is_equal(model->map, edge->map);
383 if (is_equal < 0)
384 return NULL;
385 if (is_equal)
386 return edge;
389 return model;
392 /* Remove the given edge from all the edge_tables that refer to it.
394 static isl_stat graph_remove_edge(struct isl_sched_graph *graph,
395 struct isl_sched_edge *edge)
397 isl_ctx *ctx = isl_map_get_ctx(edge->map);
398 enum isl_edge_type i;
400 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
401 struct isl_hash_table_entry *entry;
403 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
404 if (!entry)
405 return isl_stat_error;
406 if (entry == isl_hash_table_entry_none)
407 continue;
408 if (entry->data != edge)
409 continue;
410 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
413 return isl_stat_ok;
416 /* Check whether the dependence graph has any edge
417 * between the given two nodes.
419 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
420 struct isl_sched_node *src, struct isl_sched_node *dst)
422 enum isl_edge_type i;
423 isl_bool r;
425 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
426 r = graph_has_edge(graph, i, src, dst);
427 if (r < 0 || r)
428 return r;
431 return r;
434 /* Check whether the dependence graph has a validity edge
435 * between the given two nodes.
437 * Conditional validity edges are essentially validity edges that
438 * can be ignored if the corresponding condition edges are iteration private.
439 * Here, we are only checking for the presence of validity
440 * edges, so we need to consider the conditional validity edges too.
441 * In particular, this function is used during the detection
442 * of strongly connected components and we cannot ignore
443 * conditional validity edges during this detection.
445 isl_bool isl_sched_graph_has_validity_edge(struct isl_sched_graph *graph,
446 struct isl_sched_node *src, struct isl_sched_node *dst)
448 isl_bool r;
450 r = graph_has_edge(graph, isl_edge_validity, src, dst);
451 if (r < 0 || r)
452 return r;
454 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
457 /* Perform all the required memory allocations for a schedule graph "graph"
458 * with "n_node" nodes and "n_edge" edge and initialize the corresponding
459 * fields.
461 static isl_stat graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
462 int n_node, int n_edge)
464 int i;
466 graph->n = n_node;
467 graph->n_edge = n_edge;
468 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
469 graph->sorted = isl_calloc_array(ctx, int, graph->n);
470 graph->region = isl_alloc_array(ctx,
471 struct isl_trivial_region, graph->n);
472 graph->edge = isl_calloc_array(ctx,
473 struct isl_sched_edge, graph->n_edge);
475 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
476 graph->intra_hmap_param = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
477 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
479 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
480 !graph->sorted)
481 return isl_stat_error;
483 for(i = 0; i < graph->n; ++i)
484 graph->sorted[i] = i;
486 return isl_stat_ok;
489 /* Free the memory associated to node "node" in "graph".
490 * The "coincident" field is shared by nodes in a graph and its subgraph.
491 * It therefore only needs to be freed for the original dependence graph,
492 * i.e., one that is not the result of splitting.
494 static void clear_node(struct isl_sched_graph *graph,
495 struct isl_sched_node *node)
497 isl_space_free(node->space);
498 isl_set_free(node->hull);
499 isl_multi_aff_free(node->compress);
500 isl_pw_multi_aff_free(node->decompress);
501 isl_mat_free(node->sched);
502 isl_map_free(node->sched_map);
503 isl_mat_free(node->indep);
504 isl_mat_free(node->vmap);
505 if (graph->root == graph)
506 free(node->coincident);
507 isl_multi_val_free(node->sizes);
508 isl_basic_set_free(node->bounds);
509 isl_vec_free(node->max);
512 void isl_sched_graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
514 int i;
516 isl_map_to_basic_set_free(graph->intra_hmap);
517 isl_map_to_basic_set_free(graph->intra_hmap_param);
518 isl_map_to_basic_set_free(graph->inter_hmap);
520 if (graph->node)
521 for (i = 0; i < graph->n; ++i)
522 clear_node(graph, &graph->node[i]);
523 free(graph->node);
524 free(graph->sorted);
525 if (graph->edge)
526 for (i = 0; i < graph->n_edge; ++i) {
527 isl_map_free(graph->edge[i].map);
528 isl_union_map_free(graph->edge[i].tagged_condition);
529 isl_union_map_free(graph->edge[i].tagged_validity);
531 free(graph->edge);
532 free(graph->region);
533 for (i = 0; i <= isl_edge_last; ++i)
534 isl_hash_table_free(ctx, graph->edge_table[i]);
535 isl_hash_table_free(ctx, graph->node_table);
536 isl_basic_set_free(graph->lp);
539 /* For each "set" on which this function is called, increment
540 * graph->n by one and update graph->maxvar.
542 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
544 struct isl_sched_graph *graph = user;
545 isl_size nvar = isl_set_dim(set, isl_dim_set);
547 graph->n++;
548 if (nvar > graph->maxvar)
549 graph->maxvar = nvar;
551 isl_set_free(set);
553 if (nvar < 0)
554 return isl_stat_error;
555 return isl_stat_ok;
558 /* Compute the number of rows that should be allocated for the schedule.
559 * In particular, we need one row for each variable or one row
560 * for each basic map in the dependences.
561 * Note that it is practically impossible to exhaust both
562 * the number of dependences and the number of variables.
564 static isl_stat compute_max_row(struct isl_sched_graph *graph,
565 __isl_keep isl_schedule_constraints *sc)
567 int n_edge;
568 isl_stat r;
569 isl_union_set *domain;
571 graph->n = 0;
572 graph->maxvar = 0;
573 domain = isl_schedule_constraints_get_domain(sc);
574 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
575 isl_union_set_free(domain);
576 if (r < 0)
577 return isl_stat_error;
578 n_edge = isl_schedule_constraints_n_basic_map(sc);
579 if (n_edge < 0)
580 return isl_stat_error;
581 graph->max_row = n_edge + graph->maxvar;
583 return isl_stat_ok;
586 /* Does "bset" have any defining equalities for its set variables?
588 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
590 int i;
591 isl_size n;
593 n = isl_basic_set_dim(bset, isl_dim_set);
594 if (n < 0)
595 return isl_bool_error;
597 for (i = 0; i < n; ++i) {
598 isl_bool has;
600 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
601 NULL);
602 if (has < 0 || has)
603 return has;
606 return isl_bool_false;
609 /* Set the entries of node->max to the value of the schedule_max_coefficient
610 * option, if set.
612 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
614 int max;
616 max = isl_options_get_schedule_max_coefficient(ctx);
617 if (max == -1)
618 return isl_stat_ok;
620 node->max = isl_vec_alloc(ctx, node->nvar);
621 node->max = isl_vec_set_si(node->max, max);
622 if (!node->max)
623 return isl_stat_error;
625 return isl_stat_ok;
628 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
629 * option (if set) and half of the minimum of the sizes in the other
630 * dimensions. Round up when computing the half such that
631 * if the minimum of the sizes is one, half of the size is taken to be one
632 * rather than zero.
633 * If the global minimum is unbounded (i.e., if both
634 * the schedule_max_coefficient is not set and the sizes in the other
635 * dimensions are unbounded), then store a negative value.
636 * If the schedule coefficient is close to the size of the instance set
637 * in another dimension, then the schedule may represent a loop
638 * coalescing transformation (especially if the coefficient
639 * in that other dimension is one). Forcing the coefficient to be
640 * smaller than or equal to half the minimal size should avoid this
641 * situation.
643 static isl_stat compute_max_coefficient(isl_ctx *ctx,
644 struct isl_sched_node *node)
646 int max;
647 int i, j;
648 isl_vec *v;
650 max = isl_options_get_schedule_max_coefficient(ctx);
651 v = isl_vec_alloc(ctx, node->nvar);
652 if (!v)
653 return isl_stat_error;
655 for (i = 0; i < node->nvar; ++i) {
656 isl_int_set_si(v->el[i], max);
657 isl_int_mul_si(v->el[i], v->el[i], 2);
660 for (i = 0; i < node->nvar; ++i) {
661 isl_val *size;
663 size = isl_multi_val_get_val(node->sizes, i);
664 if (!size)
665 goto error;
666 if (!isl_val_is_int(size)) {
667 isl_val_free(size);
668 continue;
670 for (j = 0; j < node->nvar; ++j) {
671 if (j == i)
672 continue;
673 if (isl_int_is_neg(v->el[j]) ||
674 isl_int_gt(v->el[j], size->n))
675 isl_int_set(v->el[j], size->n);
677 isl_val_free(size);
680 for (i = 0; i < node->nvar; ++i)
681 isl_int_cdiv_q_ui(v->el[i], v->el[i], 2);
683 node->max = v;
684 return isl_stat_ok;
685 error:
686 isl_vec_free(v);
687 return isl_stat_error;
690 /* Construct an identifier for node "node", which will represent "set".
691 * The name of the identifier is either "compressed" or
692 * "compressed_<name>", with <name> the name of the space of "set".
693 * The user pointer of the identifier points to "node".
695 static __isl_give isl_id *construct_compressed_id(__isl_keep isl_set *set,
696 struct isl_sched_node *node)
698 isl_bool has_name;
699 isl_ctx *ctx;
700 isl_id *id;
701 isl_printer *p;
702 const char *name;
703 char *id_name;
705 has_name = isl_set_has_tuple_name(set);
706 if (has_name < 0)
707 return NULL;
709 ctx = isl_set_get_ctx(set);
710 if (!has_name)
711 return isl_id_alloc(ctx, "compressed", node);
713 p = isl_printer_to_str(ctx);
714 name = isl_set_get_tuple_name(set);
715 p = isl_printer_print_str(p, "compressed_");
716 p = isl_printer_print_str(p, name);
717 id_name = isl_printer_get_str(p);
718 isl_printer_free(p);
720 id = isl_id_alloc(ctx, id_name, node);
721 free(id_name);
723 return id;
726 /* Construct a map that isolates the variable in position "pos" in "set".
728 * That is, construct
730 * [i_0, ..., i_pos-1, i_pos+1, ...] -> [i_pos]
732 static __isl_give isl_map *isolate(__isl_take isl_set *set, int pos)
734 isl_map *map;
736 map = isl_set_project_onto_map(set, isl_dim_set, pos, 1);
737 map = isl_map_project_out(map, isl_dim_in, pos, 1);
738 return map;
741 /* Compute and return the size of "set" in dimension "dim".
742 * The size is taken to be the difference in values for that variable
743 * for fixed values of the other variables.
744 * This assumes that "set" is convex.
745 * In particular, the variable is first isolated from the other variables
746 * in the range of a map
748 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
750 * and then duplicated
752 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
754 * The shared variables are then projected out and the maximal value
755 * of i_dim' - i_dim is computed.
757 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
759 isl_map *map;
760 isl_local_space *ls;
761 isl_aff *obj;
762 isl_val *v;
764 map = isolate(set, dim);
765 map = isl_map_range_product(map, isl_map_copy(map));
766 map = isl_set_unwrap(isl_map_range(map));
767 set = isl_map_deltas(map);
768 ls = isl_local_space_from_space(isl_set_get_space(set));
769 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
770 v = isl_set_max_val(set, obj);
771 isl_aff_free(obj);
772 isl_set_free(set);
774 return v;
777 /* Perform a compression on "node" where "hull" represents the constraints
778 * that were used to derive the compression, while "compress" and
779 * "decompress" map the original space to the compressed space and
780 * vice versa.
782 * If "node" was not compressed already, then simply store
783 * the compression information.
784 * Otherwise the "original" space is actually the result
785 * of a previous compression, which is then combined
786 * with the present compression.
788 * The dimensionality of the compressed domain is also adjusted.
789 * Other information, such as the sizes and the maximal coefficient values,
790 * has not been computed yet and therefore does not need to be adjusted.
792 static isl_stat compress_node(struct isl_sched_node *node,
793 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
794 __isl_take isl_pw_multi_aff *decompress)
796 node->nvar = isl_multi_aff_dim(compress, isl_dim_out);
797 if (!node->compressed) {
798 node->compressed = 1;
799 node->hull = hull;
800 node->compress = compress;
801 node->decompress = decompress;
802 } else {
803 hull = isl_set_preimage_multi_aff(hull,
804 isl_multi_aff_copy(node->compress));
805 node->hull = isl_set_intersect(node->hull, hull);
806 node->compress = isl_multi_aff_pullback_multi_aff(
807 compress, node->compress);
808 node->decompress = isl_pw_multi_aff_pullback_pw_multi_aff(
809 node->decompress, decompress);
812 if (!node->hull || !node->compress || !node->decompress)
813 return isl_stat_error;
815 return isl_stat_ok;
818 /* Given that dimension "pos" in "set" has a fixed value
819 * in terms of the other dimensions, (further) compress "node"
820 * by projecting out this dimension.
821 * "set" may be the result of a previous compression.
822 * "uncompressed" is the original domain (without compression).
824 * The compression function simply projects out the dimension.
825 * The decompression function adds back the dimension
826 * in the right position as an expression of the other dimensions
827 * derived from "set".
828 * As in extract_node, the compressed space has an identifier
829 * that references "node" such that each compressed space is unique and
830 * such that the node can be recovered from the compressed space.
832 * The constraint removed through the compression is added to the "hull"
833 * such that only edges that relate to the original domains
834 * are taken into account.
835 * In particular, it is obtained by composing compression and decompression and
836 * taking the relation among the variables in the range.
838 static isl_stat project_out_fixed(struct isl_sched_node *node,
839 __isl_keep isl_set *uncompressed, __isl_take isl_set *set, int pos)
841 isl_id *id;
842 isl_space *space;
843 isl_set *domain;
844 isl_map *map;
845 isl_multi_aff *compress;
846 isl_pw_multi_aff *decompress, *pma;
847 isl_multi_pw_aff *mpa;
848 isl_set *hull;
850 map = isolate(isl_set_copy(set), pos);
851 pma = isl_pw_multi_aff_from_map(map);
852 domain = isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(pma));
853 pma = isl_pw_multi_aff_gist(pma, domain);
854 space = isl_pw_multi_aff_get_domain_space(pma);
855 mpa = isl_multi_pw_aff_identity(isl_space_map_from_set(space));
856 mpa = isl_multi_pw_aff_range_splice(mpa, pos,
857 isl_multi_pw_aff_from_pw_multi_aff(pma));
858 decompress = isl_pw_multi_aff_from_multi_pw_aff(mpa);
859 space = isl_set_get_space(set);
860 compress = isl_multi_aff_project_out_map(space, isl_dim_set, pos, 1);
861 id = construct_compressed_id(uncompressed, node);
862 compress = isl_multi_aff_set_tuple_id(compress, isl_dim_out, id);
863 space = isl_space_reverse(isl_multi_aff_get_space(compress));
864 decompress = isl_pw_multi_aff_reset_space(decompress, space);
865 pma = isl_pw_multi_aff_pullback_multi_aff(
866 isl_pw_multi_aff_copy(decompress), isl_multi_aff_copy(compress));
867 hull = isl_map_range(isl_map_from_pw_multi_aff(pma));
869 isl_set_free(set);
871 return compress_node(node, hull, compress, decompress);
874 /* Compute the size of the compressed domain in each dimension and
875 * store the results in node->sizes.
876 * "uncompressed" is the original domain (without compression).
878 * First compress the domain if needed and then compute the size
879 * in each direction.
880 * If the domain is not convex, then the sizes are computed
881 * on a convex superset in order to avoid picking up sizes
882 * that are valid for the individual disjuncts, but not for
883 * the domain as a whole.
885 * If any of the sizes turns out to be zero, then this means
886 * that this dimension has a fixed value in terms of
887 * the other dimensions. Perform an (extra) compression
888 * to remove this dimension.
890 static isl_stat compute_sizes(struct isl_sched_node *node,
891 __isl_keep isl_set *uncompressed)
893 int j;
894 isl_size n;
895 isl_multi_val *mv;
896 isl_set *set = isl_set_copy(uncompressed);
898 if (node->compressed)
899 set = isl_set_preimage_pw_multi_aff(set,
900 isl_pw_multi_aff_copy(node->decompress));
901 set = isl_set_from_basic_set(isl_set_simple_hull(set));
902 mv = isl_multi_val_zero(isl_set_get_space(set));
903 n = isl_set_dim(set, isl_dim_set);
904 if (n < 0)
905 mv = isl_multi_val_free(mv);
906 for (j = 0; j < n; ++j) {
907 isl_bool is_zero;
908 isl_val *v;
910 v = compute_size(isl_set_copy(set), j);
911 is_zero = isl_val_is_zero(v);
912 mv = isl_multi_val_set_val(mv, j, v);
913 if (is_zero >= 0 && is_zero) {
914 isl_multi_val_free(mv);
915 if (project_out_fixed(node, uncompressed, set, j) < 0)
916 return isl_stat_error;
917 return compute_sizes(node, uncompressed);
920 node->sizes = mv;
921 isl_set_free(set);
922 if (!node->sizes)
923 return isl_stat_error;
924 return isl_stat_ok;
927 /* Compute the size of the instance set "set" of "node", after compression,
928 * as well as bounds on the corresponding coefficients, if needed.
930 * The sizes are needed when the schedule_treat_coalescing option is set.
931 * The bounds are needed when the schedule_treat_coalescing option or
932 * the schedule_max_coefficient option is set.
934 * If the schedule_treat_coalescing option is not set, then at most
935 * the bounds need to be set and this is done in set_max_coefficient.
936 * Otherwise, compute the size of the compressed domain
937 * in each direction and store the results in node->size.
938 * Finally, set the bounds on the coefficients based on the sizes
939 * and the schedule_max_coefficient option in compute_max_coefficient.
941 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
942 __isl_take isl_set *set)
944 isl_stat r;
946 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
947 isl_set_free(set);
948 return set_max_coefficient(ctx, node);
951 r = compute_sizes(node, set);
952 isl_set_free(set);
953 if (r < 0)
954 return isl_stat_error;
955 return compute_max_coefficient(ctx, node);
958 /* Add a new node to the graph representing the given instance set.
959 * "nvar" is the (possibly compressed) number of variables and
960 * may be smaller than then number of set variables in "set"
961 * if "compressed" is set.
962 * If "compressed" is set, then "hull" represents the constraints
963 * that were used to derive the compression, while "compress" and
964 * "decompress" map the original space to the compressed space and
965 * vice versa.
966 * If "compressed" is not set, then "hull", "compress" and "decompress"
967 * should be NULL.
969 * Compute the size of the instance set and bounds on the coefficients,
970 * if needed.
972 static isl_stat add_node(struct isl_sched_graph *graph,
973 __isl_take isl_set *set, int nvar, int compressed,
974 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
975 __isl_take isl_pw_multi_aff *decompress)
977 isl_size nparam;
978 isl_ctx *ctx;
979 isl_mat *sched;
980 isl_space *space;
981 int *coincident;
982 struct isl_sched_node *node;
984 nparam = isl_set_dim(set, isl_dim_param);
985 if (nparam < 0)
986 goto error;
988 ctx = isl_set_get_ctx(set);
989 if (!ctx->opt->schedule_parametric)
990 nparam = 0;
991 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
992 node = &graph->node[graph->n];
993 graph->n++;
994 space = isl_set_get_space(set);
995 node->space = space;
996 node->nvar = nvar;
997 node->nparam = nparam;
998 node->sched = sched;
999 node->sched_map = NULL;
1000 coincident = isl_calloc_array(ctx, int, graph->max_row);
1001 node->coincident = coincident;
1002 node->compressed = compressed;
1003 node->hull = hull;
1004 node->compress = compress;
1005 node->decompress = decompress;
1006 if (compute_sizes_and_max(ctx, node, set) < 0)
1007 return isl_stat_error;
1009 if (!space || !sched || (graph->max_row && !coincident))
1010 return isl_stat_error;
1011 if (compressed && (!hull || !compress || !decompress))
1012 return isl_stat_error;
1014 return isl_stat_ok;
1015 error:
1016 isl_set_free(set);
1017 isl_set_free(hull);
1018 isl_multi_aff_free(compress);
1019 isl_pw_multi_aff_free(decompress);
1020 return isl_stat_error;
1023 /* Add a new node to the graph representing the given set.
1025 * If any of the set variables is defined by an equality, then
1026 * we perform variable compression such that we can perform
1027 * the scheduling on the compressed domain.
1028 * In this case, an identifier is used that references the new node
1029 * such that each compressed space is unique and
1030 * such that the node can be recovered from the compressed space.
1032 static isl_stat extract_node(__isl_take isl_set *set, void *user)
1034 isl_size nvar;
1035 isl_bool has_equality;
1036 isl_id *id;
1037 isl_basic_set *hull;
1038 isl_set *hull_set;
1039 isl_morph *morph;
1040 isl_multi_aff *compress, *decompress_ma;
1041 isl_pw_multi_aff *decompress;
1042 struct isl_sched_graph *graph = user;
1044 hull = isl_set_affine_hull(isl_set_copy(set));
1045 hull = isl_basic_set_remove_divs(hull);
1046 nvar = isl_set_dim(set, isl_dim_set);
1047 has_equality = has_any_defining_equality(hull);
1049 if (nvar < 0 || has_equality < 0)
1050 goto error;
1051 if (!has_equality) {
1052 isl_basic_set_free(hull);
1053 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
1056 id = construct_compressed_id(set, &graph->node[graph->n]);
1057 morph = isl_basic_set_variable_compression_with_id(hull, id);
1058 isl_id_free(id);
1059 nvar = isl_morph_ran_dim(morph, isl_dim_set);
1060 if (nvar < 0)
1061 set = isl_set_free(set);
1062 compress = isl_morph_get_var_multi_aff(morph);
1063 morph = isl_morph_inverse(morph);
1064 decompress_ma = isl_morph_get_var_multi_aff(morph);
1065 decompress = isl_pw_multi_aff_from_multi_aff(decompress_ma);
1066 isl_morph_free(morph);
1068 hull_set = isl_set_from_basic_set(hull);
1069 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
1070 error:
1071 isl_basic_set_free(hull);
1072 isl_set_free(set);
1073 return isl_stat_error;
1076 struct isl_extract_edge_data {
1077 isl_schedule_constraints *sc;
1078 enum isl_edge_type type;
1079 struct isl_sched_graph *graph;
1082 /* Merge edge2 into edge1, freeing the contents of edge2.
1083 * Return 0 on success and -1 on failure.
1085 * edge1 and edge2 are assumed to have the same value for the map field.
1087 static int merge_edge(struct isl_sched_edge *edge1,
1088 struct isl_sched_edge *edge2)
1090 edge1->types |= edge2->types;
1091 isl_map_free(edge2->map);
1093 if (isl_sched_edge_is_condition(edge2)) {
1094 if (!edge1->tagged_condition)
1095 edge1->tagged_condition = edge2->tagged_condition;
1096 else
1097 edge1->tagged_condition =
1098 isl_union_map_union(edge1->tagged_condition,
1099 edge2->tagged_condition);
1102 if (isl_sched_edge_is_conditional_validity(edge2)) {
1103 if (!edge1->tagged_validity)
1104 edge1->tagged_validity = edge2->tagged_validity;
1105 else
1106 edge1->tagged_validity =
1107 isl_union_map_union(edge1->tagged_validity,
1108 edge2->tagged_validity);
1111 if (isl_sched_edge_is_condition(edge2) && !edge1->tagged_condition)
1112 return -1;
1113 if (isl_sched_edge_is_conditional_validity(edge2) &&
1114 !edge1->tagged_validity)
1115 return -1;
1117 return 0;
1120 /* Insert dummy tags in domain and range of "map".
1122 * In particular, if "map" is of the form
1124 * A -> B
1126 * then return
1128 * [A -> dummy_tag] -> [B -> dummy_tag]
1130 * where the dummy_tags are identical and equal to any dummy tags
1131 * introduced by any other call to this function.
1133 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1135 static char dummy;
1136 isl_ctx *ctx;
1137 isl_id *id;
1138 isl_space *space;
1139 isl_set *domain, *range;
1141 ctx = isl_map_get_ctx(map);
1143 id = isl_id_alloc(ctx, NULL, &dummy);
1144 space = isl_space_params(isl_map_get_space(map));
1145 space = isl_space_set_from_params(space);
1146 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1147 space = isl_space_map_from_set(space);
1149 domain = isl_map_wrap(map);
1150 range = isl_map_wrap(isl_map_universe(space));
1151 map = isl_map_from_domain_and_range(domain, range);
1152 map = isl_map_zip(map);
1154 return map;
1157 /* Given that at least one of "src" or "dst" is compressed, return
1158 * a map between the spaces of these nodes restricted to the affine
1159 * hull that was used in the compression.
1161 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1162 struct isl_sched_node *dst)
1164 isl_set *dom, *ran;
1166 if (src->compressed)
1167 dom = isl_set_copy(src->hull);
1168 else
1169 dom = isl_set_universe(isl_space_copy(src->space));
1170 if (dst->compressed)
1171 ran = isl_set_copy(dst->hull);
1172 else
1173 ran = isl_set_universe(isl_space_copy(dst->space));
1175 return isl_map_from_domain_and_range(dom, ran);
1178 /* Intersect the domains of the nested relations in domain and range
1179 * of "tagged" with "map".
1181 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1182 __isl_keep isl_map *map)
1184 isl_set *set;
1186 tagged = isl_map_zip(tagged);
1187 set = isl_map_wrap(isl_map_copy(map));
1188 tagged = isl_map_intersect_domain(tagged, set);
1189 tagged = isl_map_zip(tagged);
1190 return tagged;
1193 /* Return a pointer to the node that lives in the domain space of "map",
1194 * an invalid node if there is no such node, or NULL in case of error.
1196 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1197 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1199 struct isl_sched_node *node;
1200 isl_space *space;
1202 space = isl_space_domain(isl_map_get_space(map));
1203 node = isl_sched_graph_find_node(ctx, graph, space);
1204 isl_space_free(space);
1206 return node;
1209 /* Return a pointer to the node that lives in the range space of "map",
1210 * an invalid node if there is no such node, or NULL in case of error.
1212 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1213 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1215 struct isl_sched_node *node;
1216 isl_space *space;
1218 space = isl_space_range(isl_map_get_space(map));
1219 node = isl_sched_graph_find_node(ctx, graph, space);
1220 isl_space_free(space);
1222 return node;
1225 /* Refrain from adding a new edge based on "map".
1226 * Instead, just free the map.
1227 * "tagged" is either a copy of "map" with additional tags or NULL.
1229 static isl_stat skip_edge(__isl_take isl_map *map, __isl_take isl_map *tagged)
1231 isl_map_free(map);
1232 isl_map_free(tagged);
1234 return isl_stat_ok;
1237 /* Add a new edge to the graph based on the given map
1238 * and add it to data->graph->edge_table[data->type].
1239 * If a dependence relation of a given type happens to be identical
1240 * to one of the dependence relations of a type that was added before,
1241 * then we don't create a new edge, but instead mark the original edge
1242 * as also representing a dependence of the current type.
1244 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1245 * may be specified as "tagged" dependence relations. That is, "map"
1246 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1247 * the dependence on iterations and a and b are tags.
1248 * edge->map is set to the relation containing the elements i -> j,
1249 * while edge->tagged_condition and edge->tagged_validity contain
1250 * the union of all the "map" relations
1251 * for which extract_edge is called that result in the same edge->map.
1253 * Compute the gist with respect to the context.
1254 * This may remove some constraints on the parameters or
1255 * eliminate some parts of the dependence relation
1256 * that are not relevant on the context.
1258 * If the source or the destination node is compressed, then
1259 * intersect both "map" and "tagged" with the constraints that
1260 * were used to construct the compression.
1261 * This ensures that there are no schedule constraints defined
1262 * outside of these domains, while the scheduler no longer has
1263 * any control over those outside parts.
1265 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1267 isl_bool empty;
1268 isl_ctx *ctx = isl_map_get_ctx(map);
1269 struct isl_extract_edge_data *data = user;
1270 struct isl_sched_graph *graph = data->graph;
1271 struct isl_sched_node *src, *dst;
1272 struct isl_sched_edge *edge;
1273 isl_set *context;
1274 isl_map *tagged = NULL;
1275 isl_schedule_constraints *sc = data->sc;
1277 if (data->type == isl_edge_condition ||
1278 data->type == isl_edge_conditional_validity) {
1279 if (isl_map_can_zip(map)) {
1280 tagged = isl_map_copy(map);
1281 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1282 } else {
1283 tagged = insert_dummy_tags(isl_map_copy(map));
1287 src = find_domain_node(ctx, graph, map);
1288 dst = find_range_node(ctx, graph, map);
1290 if (!src || !dst)
1291 goto error;
1292 if (!isl_sched_graph_is_node(graph, src) ||
1293 !isl_sched_graph_is_node(graph, dst))
1294 return skip_edge(map, tagged);
1296 context = isl_schedule_constraints_get_context(sc);
1297 map = isl_map_gist_params(map, context);
1299 if (src->compressed || dst->compressed) {
1300 isl_map *hull;
1301 hull = extract_hull(src, dst);
1302 if (tagged)
1303 tagged = map_intersect_domains(tagged, hull);
1304 map = isl_map_intersect(map, hull);
1307 empty = isl_map_plain_is_empty(map);
1308 if (empty < 0)
1309 goto error;
1310 if (empty)
1311 return skip_edge(map, tagged);
1313 graph->edge[graph->n_edge].src = src;
1314 graph->edge[graph->n_edge].dst = dst;
1315 graph->edge[graph->n_edge].map = map;
1316 graph->edge[graph->n_edge].types = 0;
1317 graph->edge[graph->n_edge].tagged_condition = NULL;
1318 graph->edge[graph->n_edge].tagged_validity = NULL;
1319 set_type(&graph->edge[graph->n_edge], data->type);
1320 if (data->type == isl_edge_condition)
1321 graph->edge[graph->n_edge].tagged_condition =
1322 isl_union_map_from_map(tagged);
1323 if (data->type == isl_edge_conditional_validity)
1324 graph->edge[graph->n_edge].tagged_validity =
1325 isl_union_map_from_map(tagged);
1327 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1328 if (!edge) {
1329 graph->n_edge++;
1330 return isl_stat_error;
1332 if (edge == &graph->edge[graph->n_edge])
1333 return graph_edge_table_add(ctx, graph, data->type,
1334 &graph->edge[graph->n_edge++]);
1336 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1337 return isl_stat_error;
1339 return graph_edge_table_add(ctx, graph, data->type, edge);
1340 error:
1341 isl_map_free(map);
1342 isl_map_free(tagged);
1343 return isl_stat_error;
1346 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1348 * The context is included in the domain before the nodes of
1349 * the graphs are extracted in order to be able to exploit
1350 * any possible additional equalities.
1351 * Note that this intersection is only performed locally here.
1353 isl_stat isl_sched_graph_init(struct isl_sched_graph *graph,
1354 __isl_keep isl_schedule_constraints *sc)
1356 isl_ctx *ctx;
1357 isl_union_set *domain;
1358 isl_union_map *c;
1359 struct isl_extract_edge_data data = { sc };
1360 enum isl_edge_type i;
1361 isl_stat r;
1362 isl_size n;
1364 if (!sc)
1365 return isl_stat_error;
1367 ctx = isl_schedule_constraints_get_ctx(sc);
1369 domain = isl_schedule_constraints_get_domain(sc);
1370 n = isl_union_set_n_set(domain);
1371 graph->n = n;
1372 isl_union_set_free(domain);
1373 if (n < 0)
1374 return isl_stat_error;
1376 n = isl_schedule_constraints_n_map(sc);
1377 if (n < 0 || graph_alloc(ctx, graph, graph->n, n) < 0)
1378 return isl_stat_error;
1380 if (compute_max_row(graph, sc) < 0)
1381 return isl_stat_error;
1382 graph->root = graph;
1383 graph->n = 0;
1384 domain = isl_schedule_constraints_get_domain(sc);
1385 domain = isl_union_set_intersect_params(domain,
1386 isl_schedule_constraints_get_context(sc));
1387 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1388 isl_union_set_free(domain);
1389 if (r < 0)
1390 return isl_stat_error;
1391 if (graph_init_table(ctx, graph) < 0)
1392 return isl_stat_error;
1393 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1394 isl_size n;
1396 c = isl_schedule_constraints_get(sc, i);
1397 n = isl_union_map_n_map(c);
1398 graph->max_edge[i] = n;
1399 isl_union_map_free(c);
1400 if (n < 0)
1401 return isl_stat_error;
1403 if (graph_init_edge_tables(ctx, graph) < 0)
1404 return isl_stat_error;
1405 graph->n_edge = 0;
1406 data.graph = graph;
1407 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1408 isl_stat r;
1410 data.type = i;
1411 c = isl_schedule_constraints_get(sc, i);
1412 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1413 isl_union_map_free(c);
1414 if (r < 0)
1415 return isl_stat_error;
1418 return isl_stat_ok;
1421 /* Check whether there is any dependence from node[j] to node[i]
1422 * or from node[i] to node[j].
1424 static isl_bool node_follows_weak(int i, int j, void *user)
1426 isl_bool f;
1427 struct isl_sched_graph *graph = user;
1429 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1430 if (f < 0 || f)
1431 return f;
1432 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1435 /* Check whether there is a (conditional) validity dependence from node[j]
1436 * to node[i], forcing node[i] to follow node[j].
1438 static isl_bool node_follows_strong(int i, int j, void *user)
1440 struct isl_sched_graph *graph = user;
1442 return isl_sched_graph_has_validity_edge(graph, &graph->node[j],
1443 &graph->node[i]);
1446 /* Use Tarjan's algorithm for computing the strongly connected components
1447 * in the dependence graph only considering those edges defined by "follows".
1449 isl_stat isl_sched_graph_detect_ccs(isl_ctx *ctx,
1450 struct isl_sched_graph *graph,
1451 isl_bool (*follows)(int i, int j, void *user))
1453 int i, n;
1454 struct isl_tarjan_graph *g = NULL;
1456 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1457 if (!g)
1458 return isl_stat_error;
1460 graph->scc = 0;
1461 i = 0;
1462 n = graph->n;
1463 while (n) {
1464 while (g->order[i] != -1) {
1465 graph->node[g->order[i]].scc = graph->scc;
1466 --n;
1467 ++i;
1469 ++i;
1470 graph->scc++;
1473 isl_tarjan_graph_free(g);
1475 return isl_stat_ok;
1478 /* Apply Tarjan's algorithm to detect the strongly connected components
1479 * in the dependence graph.
1480 * Only consider the (conditional) validity dependences and clear "weak".
1482 static isl_stat detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1484 graph->weak = 0;
1485 return isl_sched_graph_detect_ccs(ctx, graph, &node_follows_strong);
1488 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1489 * in the dependence graph.
1490 * Consider all dependences and set "weak".
1492 static isl_stat detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1494 graph->weak = 1;
1495 return isl_sched_graph_detect_ccs(ctx, graph, &node_follows_weak);
1498 static int cmp_scc(const void *a, const void *b, void *data)
1500 struct isl_sched_graph *graph = data;
1501 const int *i1 = a;
1502 const int *i2 = b;
1504 return graph->node[*i1].scc - graph->node[*i2].scc;
1507 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1509 static int sort_sccs(struct isl_sched_graph *graph)
1511 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1514 /* Return a non-parametric set in the compressed space of "node" that is
1515 * bounded by the size in each direction
1517 * { [x] : -S_i <= x_i <= S_i }
1519 * If S_i is infinity in direction i, then there are no constraints
1520 * in that direction.
1522 * Cache the result in node->bounds.
1524 static __isl_give isl_basic_set *get_size_bounds(struct isl_sched_node *node)
1526 isl_space *space;
1527 isl_basic_set *bounds;
1528 int i;
1530 if (node->bounds)
1531 return isl_basic_set_copy(node->bounds);
1533 if (node->compressed)
1534 space = isl_pw_multi_aff_get_domain_space(node->decompress);
1535 else
1536 space = isl_space_copy(node->space);
1537 space = isl_space_drop_all_params(space);
1538 bounds = isl_basic_set_universe(space);
1540 for (i = 0; i < node->nvar; ++i) {
1541 isl_val *size;
1543 size = isl_multi_val_get_val(node->sizes, i);
1544 if (!size)
1545 return isl_basic_set_free(bounds);
1546 if (!isl_val_is_int(size)) {
1547 isl_val_free(size);
1548 continue;
1550 bounds = isl_basic_set_upper_bound_val(bounds, isl_dim_set, i,
1551 isl_val_copy(size));
1552 bounds = isl_basic_set_lower_bound_val(bounds, isl_dim_set, i,
1553 isl_val_neg(size));
1556 node->bounds = isl_basic_set_copy(bounds);
1557 return bounds;
1560 /* Compress the dependence relation "map", if needed, i.e.,
1561 * when the source node "src" and/or the destination node "dst"
1562 * has been compressed.
1564 static __isl_give isl_map *compress(__isl_take isl_map *map,
1565 struct isl_sched_node *src, struct isl_sched_node *dst)
1567 if (src->compressed)
1568 map = isl_map_preimage_domain_pw_multi_aff(map,
1569 isl_pw_multi_aff_copy(src->decompress));
1570 if (dst->compressed)
1571 map = isl_map_preimage_range_pw_multi_aff(map,
1572 isl_pw_multi_aff_copy(dst->decompress));
1573 return map;
1576 /* Drop some constraints from "delta" that could be exploited
1577 * to construct loop coalescing schedules.
1578 * In particular, drop those constraint that bound the difference
1579 * to the size of the domain.
1580 * First project out the parameters to improve the effectiveness.
1582 static __isl_give isl_set *drop_coalescing_constraints(
1583 __isl_take isl_set *delta, struct isl_sched_node *node)
1585 isl_size nparam;
1586 isl_basic_set *bounds;
1588 nparam = isl_set_dim(delta, isl_dim_param);
1589 if (nparam < 0)
1590 return isl_set_free(delta);
1592 bounds = get_size_bounds(node);
1594 delta = isl_set_project_out(delta, isl_dim_param, 0, nparam);
1595 delta = isl_set_remove_divs(delta);
1596 delta = isl_set_plain_gist_basic_set(delta, bounds);
1597 return delta;
1600 /* Given a dependence relation R from "node" to itself,
1601 * construct the set of coefficients of valid constraints for elements
1602 * in that dependence relation.
1603 * In particular, the result contains tuples of coefficients
1604 * c_0, c_n, c_x such that
1606 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1608 * or, equivalently,
1610 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1612 * We choose here to compute the dual of delta R.
1613 * Alternatively, we could have computed the dual of R, resulting
1614 * in a set of tuples c_0, c_n, c_x, c_y, and then
1615 * plugged in (c_0, c_n, c_x, -c_x).
1617 * If "need_param" is set, then the resulting coefficients effectively
1618 * include coefficients for the parameters c_n. Otherwise, they may
1619 * have been projected out already.
1620 * Since the constraints may be different for these two cases,
1621 * they are stored in separate caches.
1622 * In particular, if no parameter coefficients are required and
1623 * the schedule_treat_coalescing option is set, then the parameters
1624 * are projected out and some constraints that could be exploited
1625 * to construct coalescing schedules are removed before the dual
1626 * is computed.
1628 * If "node" has been compressed, then the dependence relation
1629 * is also compressed before the set of coefficients is computed.
1631 static __isl_give isl_basic_set *intra_coefficients(
1632 struct isl_sched_graph *graph, struct isl_sched_node *node,
1633 __isl_take isl_map *map, int need_param)
1635 isl_ctx *ctx;
1636 isl_set *delta;
1637 isl_map *key;
1638 isl_basic_set *coef;
1639 isl_maybe_isl_basic_set m;
1640 isl_map_to_basic_set **hmap = &graph->intra_hmap;
1641 int treat;
1643 if (!map)
1644 return NULL;
1646 ctx = isl_map_get_ctx(map);
1647 treat = !need_param && isl_options_get_schedule_treat_coalescing(ctx);
1648 if (!treat)
1649 hmap = &graph->intra_hmap_param;
1650 m = isl_map_to_basic_set_try_get(*hmap, map);
1651 if (m.valid < 0 || m.valid) {
1652 isl_map_free(map);
1653 return m.value;
1656 key = isl_map_copy(map);
1657 map = compress(map, node, node);
1658 delta = isl_map_deltas(map);
1659 if (treat)
1660 delta = drop_coalescing_constraints(delta, node);
1661 delta = isl_set_remove_divs(delta);
1662 coef = isl_set_coefficients(delta);
1663 *hmap = isl_map_to_basic_set_set(*hmap, key, isl_basic_set_copy(coef));
1665 return coef;
1668 /* Given a dependence relation R, construct the set of coefficients
1669 * of valid constraints for elements in that dependence relation.
1670 * In particular, the result contains tuples of coefficients
1671 * c_0, c_n, c_x, c_y such that
1673 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1675 * If the source or destination nodes of "edge" have been compressed,
1676 * then the dependence relation is also compressed before
1677 * the set of coefficients is computed.
1679 static __isl_give isl_basic_set *inter_coefficients(
1680 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1681 __isl_take isl_map *map)
1683 isl_set *set;
1684 isl_map *key;
1685 isl_basic_set *coef;
1686 isl_maybe_isl_basic_set m;
1688 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1689 if (m.valid < 0 || m.valid) {
1690 isl_map_free(map);
1691 return m.value;
1694 key = isl_map_copy(map);
1695 map = compress(map, edge->src, edge->dst);
1696 set = isl_map_wrap(isl_map_remove_divs(map));
1697 coef = isl_set_coefficients(set);
1698 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1699 isl_basic_set_copy(coef));
1701 return coef;
1704 /* Return the position of the coefficients of the variables in
1705 * the coefficients constraints "coef".
1707 * The space of "coef" is of the form
1709 * { coefficients[[cst, params] -> S] }
1711 * Return the position of S.
1713 static isl_size coef_var_offset(__isl_keep isl_basic_set *coef)
1715 isl_size offset;
1716 isl_space *space;
1718 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1719 offset = isl_space_dim(space, isl_dim_in);
1720 isl_space_free(space);
1722 return offset;
1725 /* Return the offset of the coefficient of the constant term of "node"
1726 * within the (I)LP.
1728 * Within each node, the coefficients have the following order:
1729 * - positive and negative parts of c_i_x
1730 * - c_i_n (if parametric)
1731 * - c_i_0
1733 static int node_cst_coef_offset(struct isl_sched_node *node)
1735 return node->start + 2 * node->nvar + node->nparam;
1738 /* Return the offset of the coefficients of the parameters of "node"
1739 * within the (I)LP.
1741 * Within each node, the coefficients have the following order:
1742 * - positive and negative parts of c_i_x
1743 * - c_i_n (if parametric)
1744 * - c_i_0
1746 static int node_par_coef_offset(struct isl_sched_node *node)
1748 return node->start + 2 * node->nvar;
1751 /* Return the offset of the coefficients of the variables of "node"
1752 * within the (I)LP.
1754 * Within each node, the coefficients have the following order:
1755 * - positive and negative parts of c_i_x
1756 * - c_i_n (if parametric)
1757 * - c_i_0
1759 static int node_var_coef_offset(struct isl_sched_node *node)
1761 return node->start;
1764 /* Return the position of the pair of variables encoding
1765 * coefficient "i" of "node".
1767 * The order of these variable pairs is the opposite of
1768 * that of the coefficients, with 2 variables per coefficient.
1770 static int node_var_coef_pos(struct isl_sched_node *node, int i)
1772 return node_var_coef_offset(node) + 2 * (node->nvar - 1 - i);
1775 /* Construct an isl_dim_map for mapping constraints on coefficients
1776 * for "node" to the corresponding positions in graph->lp.
1777 * "offset" is the offset of the coefficients for the variables
1778 * in the input constraints.
1779 * "s" is the sign of the mapping.
1781 * The input constraints are given in terms of the coefficients
1782 * (c_0, c_x) or (c_0, c_n, c_x).
1783 * The mapping produced by this function essentially plugs in
1784 * (0, c_i_x^+ - c_i_x^-) if s = 1 and
1785 * (0, -c_i_x^+ + c_i_x^-) if s = -1 or
1786 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1787 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1788 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1789 * Furthermore, the order of these pairs is the opposite of that
1790 * of the corresponding coefficients.
1792 * The caller can extend the mapping to also map the other coefficients
1793 * (and therefore not plug in 0).
1795 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1796 struct isl_sched_graph *graph, struct isl_sched_node *node,
1797 int offset, int s)
1799 int pos;
1800 isl_size total;
1801 isl_dim_map *dim_map;
1803 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1804 if (!node || total < 0)
1805 return NULL;
1807 pos = node_var_coef_pos(node, 0);
1808 dim_map = isl_dim_map_alloc(ctx, total);
1809 isl_dim_map_range(dim_map, pos, -2, offset, 1, node->nvar, -s);
1810 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, node->nvar, s);
1812 return dim_map;
1815 /* Construct an isl_dim_map for mapping constraints on coefficients
1816 * for "src" (node i) and "dst" (node j) to the corresponding positions
1817 * in graph->lp.
1818 * "offset" is the offset of the coefficients for the variables of "src"
1819 * in the input constraints.
1820 * "s" is the sign of the mapping.
1822 * The input constraints are given in terms of the coefficients
1823 * (c_0, c_n, c_x, c_y).
1824 * The mapping produced by this function essentially plugs in
1825 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1826 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1827 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1828 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1829 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1830 * Furthermore, the order of these pairs is the opposite of that
1831 * of the corresponding coefficients.
1833 * The caller can further extend the mapping.
1835 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1836 struct isl_sched_graph *graph, struct isl_sched_node *src,
1837 struct isl_sched_node *dst, int offset, int s)
1839 int pos;
1840 isl_size total;
1841 isl_dim_map *dim_map;
1843 total = isl_basic_set_dim(graph->lp, isl_dim_all);
1844 if (!src || !dst || total < 0)
1845 return NULL;
1847 dim_map = isl_dim_map_alloc(ctx, total);
1849 pos = node_cst_coef_offset(dst);
1850 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, s);
1851 pos = node_par_coef_offset(dst);
1852 isl_dim_map_range(dim_map, pos, 1, 1, 1, dst->nparam, s);
1853 pos = node_var_coef_pos(dst, 0);
1854 isl_dim_map_range(dim_map, pos, -2, offset + src->nvar, 1,
1855 dst->nvar, -s);
1856 isl_dim_map_range(dim_map, pos + 1, -2, offset + src->nvar, 1,
1857 dst->nvar, s);
1859 pos = node_cst_coef_offset(src);
1860 isl_dim_map_range(dim_map, pos, 0, 0, 0, 1, -s);
1861 pos = node_par_coef_offset(src);
1862 isl_dim_map_range(dim_map, pos, 1, 1, 1, src->nparam, -s);
1863 pos = node_var_coef_pos(src, 0);
1864 isl_dim_map_range(dim_map, pos, -2, offset, 1, src->nvar, s);
1865 isl_dim_map_range(dim_map, pos + 1, -2, offset, 1, src->nvar, -s);
1867 return dim_map;
1870 /* Add the constraints from "src" to "dst" using "dim_map",
1871 * after making sure there is enough room in "dst" for the extra constraints.
1873 static __isl_give isl_basic_set *add_constraints_dim_map(
1874 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1875 __isl_take isl_dim_map *dim_map)
1877 isl_size n_eq, n_ineq;
1879 n_eq = isl_basic_set_n_equality(src);
1880 n_ineq = isl_basic_set_n_inequality(src);
1881 if (n_eq < 0 || n_ineq < 0)
1882 dst = isl_basic_set_free(dst);
1883 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1884 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1885 return dst;
1888 /* Add constraints to graph->lp that force validity for the given
1889 * dependence from a node i to itself.
1890 * That is, add constraints that enforce
1892 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1893 * = c_i_x (y - x) >= 0
1895 * for each (x,y) in R.
1896 * We obtain general constraints on coefficients (c_0, c_x)
1897 * of valid constraints for (y - x) and then plug in (0, c_i_x^+ - c_i_x^-),
1898 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1899 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1900 * Note that the result of intra_coefficients may also contain
1901 * parameter coefficients c_n, in which case 0 is plugged in for them as well.
1903 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1904 struct isl_sched_edge *edge)
1906 isl_size offset;
1907 isl_map *map = isl_map_copy(edge->map);
1908 isl_ctx *ctx = isl_map_get_ctx(map);
1909 isl_dim_map *dim_map;
1910 isl_basic_set *coef;
1911 struct isl_sched_node *node = edge->src;
1913 coef = intra_coefficients(graph, node, map, 0);
1915 offset = coef_var_offset(coef);
1916 if (offset < 0)
1917 coef = isl_basic_set_free(coef);
1918 if (!coef)
1919 return isl_stat_error;
1921 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1922 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1924 return isl_stat_ok;
1927 /* Add constraints to graph->lp that force validity for the given
1928 * dependence from node i to node j.
1929 * That is, add constraints that enforce
1931 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1933 * for each (x,y) in R.
1934 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1935 * of valid constraints for R and then plug in
1936 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1937 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1938 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1940 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1941 struct isl_sched_edge *edge)
1943 isl_size offset;
1944 isl_map *map;
1945 isl_ctx *ctx;
1946 isl_dim_map *dim_map;
1947 isl_basic_set *coef;
1948 struct isl_sched_node *src = edge->src;
1949 struct isl_sched_node *dst = edge->dst;
1951 if (!graph->lp)
1952 return isl_stat_error;
1954 map = isl_map_copy(edge->map);
1955 ctx = isl_map_get_ctx(map);
1956 coef = inter_coefficients(graph, edge, map);
1958 offset = coef_var_offset(coef);
1959 if (offset < 0)
1960 coef = isl_basic_set_free(coef);
1961 if (!coef)
1962 return isl_stat_error;
1964 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1966 edge->start = graph->lp->n_ineq;
1967 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1968 if (!graph->lp)
1969 return isl_stat_error;
1970 edge->end = graph->lp->n_ineq;
1972 return isl_stat_ok;
1975 /* Add constraints to graph->lp that bound the dependence distance for the given
1976 * dependence from a node i to itself.
1977 * If s = 1, we add the constraint
1979 * c_i_x (y - x) <= m_0 + m_n n
1981 * or
1983 * -c_i_x (y - x) + m_0 + m_n n >= 0
1985 * for each (x,y) in R.
1986 * If s = -1, we add the constraint
1988 * -c_i_x (y - x) <= m_0 + m_n n
1990 * or
1992 * c_i_x (y - x) + m_0 + m_n n >= 0
1994 * for each (x,y) in R.
1995 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1996 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1997 * with each coefficient (except m_0) represented as a pair of non-negative
1998 * coefficients.
2001 * If "local" is set, then we add constraints
2003 * c_i_x (y - x) <= 0
2005 * or
2007 * -c_i_x (y - x) <= 0
2009 * instead, forcing the dependence distance to be (less than or) equal to 0.
2010 * That is, we plug in (0, 0, -s * c_i_x),
2011 * intra_coefficients is not required to have c_n in its result when
2012 * "local" is set. If they are missing, then (0, -s * c_i_x) is plugged in.
2013 * Note that dependences marked local are treated as validity constraints
2014 * by add_all_validity_constraints and therefore also have
2015 * their distances bounded by 0 from below.
2017 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
2018 struct isl_sched_edge *edge, int s, int local)
2020 isl_size offset;
2021 isl_size nparam;
2022 isl_map *map = isl_map_copy(edge->map);
2023 isl_ctx *ctx = isl_map_get_ctx(map);
2024 isl_dim_map *dim_map;
2025 isl_basic_set *coef;
2026 struct isl_sched_node *node = edge->src;
2028 coef = intra_coefficients(graph, node, map, !local);
2029 nparam = isl_space_dim(node->space, isl_dim_param);
2031 offset = coef_var_offset(coef);
2032 if (nparam < 0 || offset < 0)
2033 coef = isl_basic_set_free(coef);
2034 if (!coef)
2035 return isl_stat_error;
2037 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
2039 if (!local) {
2040 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2041 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2042 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2044 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2046 return isl_stat_ok;
2049 /* Add constraints to graph->lp that bound the dependence distance for the given
2050 * dependence from node i to node j.
2051 * If s = 1, we add the constraint
2053 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
2054 * <= m_0 + m_n n
2056 * or
2058 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
2059 * m_0 + m_n n >= 0
2061 * for each (x,y) in R.
2062 * If s = -1, we add the constraint
2064 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
2065 * <= m_0 + m_n n
2067 * or
2069 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
2070 * m_0 + m_n n >= 0
2072 * for each (x,y) in R.
2073 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
2074 * of valid constraints for R and then plug in
2075 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
2076 * s*c_i_x, -s*c_j_x)
2077 * with each coefficient (except m_0, c_*_0 and c_*_n)
2078 * represented as a pair of non-negative coefficients.
2081 * If "local" is set (and s = 1), then we add constraints
2083 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
2085 * or
2087 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
2089 * instead, forcing the dependence distance to be (less than or) equal to 0.
2090 * That is, we plug in
2091 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
2092 * Note that dependences marked local are treated as validity constraints
2093 * by add_all_validity_constraints and therefore also have
2094 * their distances bounded by 0 from below.
2096 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
2097 struct isl_sched_edge *edge, int s, int local)
2099 isl_size offset;
2100 isl_size nparam;
2101 isl_map *map = isl_map_copy(edge->map);
2102 isl_ctx *ctx = isl_map_get_ctx(map);
2103 isl_dim_map *dim_map;
2104 isl_basic_set *coef;
2105 struct isl_sched_node *src = edge->src;
2106 struct isl_sched_node *dst = edge->dst;
2108 coef = inter_coefficients(graph, edge, map);
2109 nparam = isl_space_dim(src->space, isl_dim_param);
2111 offset = coef_var_offset(coef);
2112 if (nparam < 0 || offset < 0)
2113 coef = isl_basic_set_free(coef);
2114 if (!coef)
2115 return isl_stat_error;
2117 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
2119 if (!local) {
2120 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
2121 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
2122 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
2125 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
2127 return isl_stat_ok;
2130 /* Should the distance over "edge" be forced to zero?
2131 * That is, is it marked as a local edge?
2132 * If "use_coincidence" is set, then coincidence edges are treated
2133 * as local edges.
2135 static int force_zero(struct isl_sched_edge *edge, int use_coincidence)
2137 return is_local(edge) || (use_coincidence && is_coincidence(edge));
2140 /* Add all validity constraints to graph->lp.
2142 * An edge that is forced to be local needs to have its dependence
2143 * distances equal to zero. We take care of bounding them by 0 from below
2144 * here. add_all_proximity_constraints takes care of bounding them by 0
2145 * from above.
2147 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2148 * Otherwise, we ignore them.
2150 static int add_all_validity_constraints(struct isl_sched_graph *graph,
2151 int use_coincidence)
2153 int i;
2155 for (i = 0; i < graph->n_edge; ++i) {
2156 struct isl_sched_edge *edge = &graph->edge[i];
2157 int zero;
2159 zero = force_zero(edge, use_coincidence);
2160 if (!is_validity(edge) && !zero)
2161 continue;
2162 if (edge->src != edge->dst)
2163 continue;
2164 if (add_intra_validity_constraints(graph, edge) < 0)
2165 return -1;
2168 for (i = 0; i < graph->n_edge; ++i) {
2169 struct isl_sched_edge *edge = &graph->edge[i];
2170 int zero;
2172 zero = force_zero(edge, use_coincidence);
2173 if (!is_validity(edge) && !zero)
2174 continue;
2175 if (edge->src == edge->dst)
2176 continue;
2177 if (add_inter_validity_constraints(graph, edge) < 0)
2178 return -1;
2181 return 0;
2184 /* Add constraints to graph->lp that bound the dependence distance
2185 * for all dependence relations.
2186 * If a given proximity dependence is identical to a validity
2187 * dependence, then the dependence distance is already bounded
2188 * from below (by zero), so we only need to bound the distance
2189 * from above. (This includes the case of "local" dependences
2190 * which are treated as validity dependence by add_all_validity_constraints.)
2191 * Otherwise, we need to bound the distance both from above and from below.
2193 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2194 * Otherwise, we ignore them.
2196 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
2197 int use_coincidence)
2199 int i;
2201 for (i = 0; i < graph->n_edge; ++i) {
2202 struct isl_sched_edge *edge = &graph->edge[i];
2203 int zero;
2205 zero = force_zero(edge, use_coincidence);
2206 if (!isl_sched_edge_is_proximity(edge) && !zero)
2207 continue;
2208 if (edge->src == edge->dst &&
2209 add_intra_proximity_constraints(graph, edge, 1, zero) < 0)
2210 return -1;
2211 if (edge->src != edge->dst &&
2212 add_inter_proximity_constraints(graph, edge, 1, zero) < 0)
2213 return -1;
2214 if (is_validity(edge) || zero)
2215 continue;
2216 if (edge->src == edge->dst &&
2217 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
2218 return -1;
2219 if (edge->src != edge->dst &&
2220 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
2221 return -1;
2224 return 0;
2227 /* Normalize the rows of "indep" such that all rows are lexicographically
2228 * positive and such that each row contains as many final zeros as possible,
2229 * given the choice for the previous rows.
2230 * Do this by performing elementary row operations.
2232 static __isl_give isl_mat *normalize_independent(__isl_take isl_mat *indep)
2234 indep = isl_mat_reverse_gauss(indep);
2235 indep = isl_mat_lexnonneg_rows(indep);
2236 return indep;
2239 /* Extract the linear part of the current schedule for node "node".
2241 static __isl_give isl_mat *extract_linear_schedule(struct isl_sched_node *node)
2243 isl_size n_row = isl_mat_rows(node->sched);
2245 if (n_row < 0)
2246 return NULL;
2247 return isl_mat_sub_alloc(node->sched, 0, n_row,
2248 1 + node->nparam, node->nvar);
2251 /* Compute a basis for the rows in the linear part of the schedule
2252 * and extend this basis to a full basis. The remaining rows
2253 * can then be used to force linear independence from the rows
2254 * in the schedule.
2256 * In particular, given the schedule rows S, we compute
2258 * S = H Q
2259 * S U = H
2261 * with H the Hermite normal form of S. That is, all but the
2262 * first rank columns of H are zero and so each row in S is
2263 * a linear combination of the first rank rows of Q.
2264 * The matrix Q can be used as a variable transformation
2265 * that isolates the directions of S in the first rank rows.
2266 * Transposing S U = H yields
2268 * U^T S^T = H^T
2270 * with all but the first rank rows of H^T zero.
2271 * The last rows of U^T are therefore linear combinations
2272 * of schedule coefficients that are all zero on schedule
2273 * coefficients that are linearly dependent on the rows of S.
2274 * At least one of these combinations is non-zero on
2275 * linearly independent schedule coefficients.
2276 * The rows are normalized to involve as few of the last
2277 * coefficients as possible and to have a positive initial value.
2279 isl_stat isl_sched_node_update_vmap(struct isl_sched_node *node)
2281 isl_mat *H, *U, *Q;
2283 H = extract_linear_schedule(node);
2285 H = isl_mat_left_hermite(H, 0, &U, &Q);
2286 isl_mat_free(node->indep);
2287 isl_mat_free(node->vmap);
2288 node->vmap = Q;
2289 node->indep = isl_mat_transpose(U);
2290 node->rank = isl_mat_initial_non_zero_cols(H);
2291 node->indep = isl_mat_drop_rows(node->indep, 0, node->rank);
2292 node->indep = normalize_independent(node->indep);
2293 isl_mat_free(H);
2295 if (!node->indep || !node->vmap || node->rank < 0)
2296 return isl_stat_error;
2297 return isl_stat_ok;
2300 /* Is "edge" marked as a validity or a conditional validity edge?
2302 static int is_any_validity(struct isl_sched_edge *edge)
2304 return is_validity(edge) ||
2305 isl_sched_edge_is_conditional_validity(edge);
2308 /* How many times should we count the constraints in "edge"?
2310 * We count as follows
2311 * validity -> 1 (>= 0)
2312 * validity+proximity -> 2 (>= 0 and upper bound)
2313 * proximity -> 2 (lower and upper bound)
2314 * local(+any) -> 2 (>= 0 and <= 0)
2316 * If an edge is only marked conditional_validity then it counts
2317 * as zero since it is only checked afterwards.
2319 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2320 * Otherwise, we ignore them.
2322 static int edge_multiplicity(struct isl_sched_edge *edge, int use_coincidence)
2324 if (isl_sched_edge_is_proximity(edge) ||
2325 force_zero(edge, use_coincidence))
2326 return 2;
2327 if (is_validity(edge))
2328 return 1;
2329 return 0;
2332 /* How many times should the constraints in "edge" be counted
2333 * as a parametric intra-node constraint?
2335 * Only proximity edges that are not forced zero need
2336 * coefficient constraints that include coefficients for parameters.
2337 * If the edge is also a validity edge, then only
2338 * an upper bound is introduced. Otherwise, both lower and upper bounds
2339 * are introduced.
2341 static int parametric_intra_edge_multiplicity(struct isl_sched_edge *edge,
2342 int use_coincidence)
2344 if (edge->src != edge->dst)
2345 return 0;
2346 if (!isl_sched_edge_is_proximity(edge))
2347 return 0;
2348 if (force_zero(edge, use_coincidence))
2349 return 0;
2350 if (is_validity(edge))
2351 return 1;
2352 else
2353 return 2;
2356 /* Add "f" times the number of equality and inequality constraints of "bset"
2357 * to "n_eq" and "n_ineq" and free "bset".
2359 static isl_stat update_count(__isl_take isl_basic_set *bset,
2360 int f, int *n_eq, int *n_ineq)
2362 isl_size eq, ineq;
2364 eq = isl_basic_set_n_equality(bset);
2365 ineq = isl_basic_set_n_inequality(bset);
2366 isl_basic_set_free(bset);
2368 if (eq < 0 || ineq < 0)
2369 return isl_stat_error;
2371 *n_eq += eq;
2372 *n_ineq += ineq;
2374 return isl_stat_ok;
2377 /* Count the number of equality and inequality constraints
2378 * that will be added for the given map.
2380 * The edges that require parameter coefficients are counted separately.
2382 * "use_coincidence" is set if we should take into account coincidence edges.
2384 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2385 struct isl_sched_edge *edge, __isl_take isl_map *map,
2386 int *n_eq, int *n_ineq, int use_coincidence)
2388 isl_map *copy;
2389 isl_basic_set *coef;
2390 int f = edge_multiplicity(edge, use_coincidence);
2391 int fp = parametric_intra_edge_multiplicity(edge, use_coincidence);
2393 if (f == 0) {
2394 isl_map_free(map);
2395 return isl_stat_ok;
2398 if (edge->src != edge->dst) {
2399 coef = inter_coefficients(graph, edge, map);
2400 return update_count(coef, f, n_eq, n_ineq);
2403 if (fp > 0) {
2404 copy = isl_map_copy(map);
2405 coef = intra_coefficients(graph, edge->src, copy, 1);
2406 if (update_count(coef, fp, n_eq, n_ineq) < 0)
2407 goto error;
2410 if (f > fp) {
2411 copy = isl_map_copy(map);
2412 coef = intra_coefficients(graph, edge->src, copy, 0);
2413 if (update_count(coef, f - fp, n_eq, n_ineq) < 0)
2414 goto error;
2417 isl_map_free(map);
2418 return isl_stat_ok;
2419 error:
2420 isl_map_free(map);
2421 return isl_stat_error;
2424 /* Count the number of equality and inequality constraints
2425 * that will be added to the main lp problem.
2426 * We count as follows
2427 * validity -> 1 (>= 0)
2428 * validity+proximity -> 2 (>= 0 and upper bound)
2429 * proximity -> 2 (lower and upper bound)
2430 * local(+any) -> 2 (>= 0 and <= 0)
2432 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2433 * Otherwise, we ignore them.
2435 static int count_constraints(struct isl_sched_graph *graph,
2436 int *n_eq, int *n_ineq, int use_coincidence)
2438 int i;
2440 *n_eq = *n_ineq = 0;
2441 for (i = 0; i < graph->n_edge; ++i) {
2442 struct isl_sched_edge *edge = &graph->edge[i];
2443 isl_map *map = isl_map_copy(edge->map);
2445 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2446 use_coincidence) < 0)
2447 return -1;
2450 return 0;
2453 /* Count the number of constraints that will be added by
2454 * add_bound_constant_constraints to bound the values of the constant terms
2455 * and increment *n_eq and *n_ineq accordingly.
2457 * In practice, add_bound_constant_constraints only adds inequalities.
2459 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2460 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2462 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2463 return isl_stat_ok;
2465 *n_ineq += graph->n;
2467 return isl_stat_ok;
2470 /* Add constraints to bound the values of the constant terms in the schedule,
2471 * if requested by the user.
2473 * The maximal value of the constant terms is defined by the option
2474 * "schedule_max_constant_term".
2476 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2477 struct isl_sched_graph *graph)
2479 int i, k;
2480 int max;
2481 isl_size total;
2483 max = isl_options_get_schedule_max_constant_term(ctx);
2484 if (max == -1)
2485 return isl_stat_ok;
2487 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2488 if (total < 0)
2489 return isl_stat_error;
2491 for (i = 0; i < graph->n; ++i) {
2492 struct isl_sched_node *node = &graph->node[i];
2493 int pos;
2495 k = isl_basic_set_alloc_inequality(graph->lp);
2496 if (k < 0)
2497 return isl_stat_error;
2498 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2499 pos = node_cst_coef_offset(node);
2500 isl_int_set_si(graph->lp->ineq[k][1 + pos], -1);
2501 isl_int_set_si(graph->lp->ineq[k][0], max);
2504 return isl_stat_ok;
2507 /* Count the number of constraints that will be added by
2508 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2509 * accordingly.
2511 * In practice, add_bound_coefficient_constraints only adds inequalities.
2513 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2514 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2516 int i;
2518 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2519 !isl_options_get_schedule_treat_coalescing(ctx))
2520 return 0;
2522 for (i = 0; i < graph->n; ++i)
2523 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2525 return 0;
2528 /* Add constraints to graph->lp that bound the values of
2529 * the parameter schedule coefficients of "node" to "max" and
2530 * the variable schedule coefficients to the corresponding entry
2531 * in node->max.
2532 * In either case, a negative value means that no bound needs to be imposed.
2534 * For parameter coefficients, this amounts to adding a constraint
2536 * c_n <= max
2538 * i.e.,
2540 * -c_n + max >= 0
2542 * The variables coefficients are, however, not represented directly.
2543 * Instead, the variable coefficients c_x are written as differences
2544 * c_x = c_x^+ - c_x^-.
2545 * That is,
2547 * -max_i <= c_x_i <= max_i
2549 * is encoded as
2551 * -max_i <= c_x_i^+ - c_x_i^- <= max_i
2553 * or
2555 * -(c_x_i^+ - c_x_i^-) + max_i >= 0
2556 * c_x_i^+ - c_x_i^- + max_i >= 0
2558 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2559 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2561 int i, j, k;
2562 isl_size total;
2563 isl_vec *ineq;
2565 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2566 if (total < 0)
2567 return isl_stat_error;
2569 for (j = 0; j < node->nparam; ++j) {
2570 int dim;
2572 if (max < 0)
2573 continue;
2575 k = isl_basic_set_alloc_inequality(graph->lp);
2576 if (k < 0)
2577 return isl_stat_error;
2578 dim = 1 + node_par_coef_offset(node) + j;
2579 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2580 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2581 isl_int_set_si(graph->lp->ineq[k][0], max);
2584 ineq = isl_vec_alloc(ctx, 1 + total);
2585 ineq = isl_vec_clr(ineq);
2586 if (!ineq)
2587 return isl_stat_error;
2588 for (i = 0; i < node->nvar; ++i) {
2589 int pos = 1 + node_var_coef_pos(node, i);
2591 if (isl_int_is_neg(node->max->el[i]))
2592 continue;
2594 isl_int_set_si(ineq->el[pos], 1);
2595 isl_int_set_si(ineq->el[pos + 1], -1);
2596 isl_int_set(ineq->el[0], node->max->el[i]);
2598 k = isl_basic_set_alloc_inequality(graph->lp);
2599 if (k < 0)
2600 goto error;
2601 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2603 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2);
2604 k = isl_basic_set_alloc_inequality(graph->lp);
2605 if (k < 0)
2606 goto error;
2607 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2609 isl_seq_clr(ineq->el + pos, 2);
2611 isl_vec_free(ineq);
2613 return isl_stat_ok;
2614 error:
2615 isl_vec_free(ineq);
2616 return isl_stat_error;
2619 /* Add constraints that bound the values of the variable and parameter
2620 * coefficients of the schedule.
2622 * The maximal value of the coefficients is defined by the option
2623 * 'schedule_max_coefficient' and the entries in node->max.
2624 * These latter entries are only set if either the schedule_max_coefficient
2625 * option or the schedule_treat_coalescing option is set.
2627 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2628 struct isl_sched_graph *graph)
2630 int i;
2631 int max;
2633 max = isl_options_get_schedule_max_coefficient(ctx);
2635 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2636 return isl_stat_ok;
2638 for (i = 0; i < graph->n; ++i) {
2639 struct isl_sched_node *node = &graph->node[i];
2641 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2642 return isl_stat_error;
2645 return isl_stat_ok;
2648 /* Add a constraint to graph->lp that equates the value at position
2649 * "sum_pos" to the sum of the "n" values starting at "first".
2651 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2652 int sum_pos, int first, int n)
2654 int i, k;
2655 isl_size total;
2657 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2658 if (total < 0)
2659 return isl_stat_error;
2661 k = isl_basic_set_alloc_equality(graph->lp);
2662 if (k < 0)
2663 return isl_stat_error;
2664 isl_seq_clr(graph->lp->eq[k], 1 + total);
2665 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2666 for (i = 0; i < n; ++i)
2667 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2669 return isl_stat_ok;
2672 /* Add a constraint to graph->lp that equates the value at position
2673 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2675 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2676 int sum_pos)
2678 int i, j, k;
2679 isl_size total;
2681 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2682 if (total < 0)
2683 return isl_stat_error;
2685 k = isl_basic_set_alloc_equality(graph->lp);
2686 if (k < 0)
2687 return isl_stat_error;
2688 isl_seq_clr(graph->lp->eq[k], 1 + total);
2689 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2690 for (i = 0; i < graph->n; ++i) {
2691 int pos = 1 + node_par_coef_offset(&graph->node[i]);
2693 for (j = 0; j < graph->node[i].nparam; ++j)
2694 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2697 return isl_stat_ok;
2700 /* Add a constraint to graph->lp that equates the value at position
2701 * "sum_pos" to the sum of the variable coefficients of all nodes.
2703 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2704 int sum_pos)
2706 int i, j, k;
2707 isl_size total;
2709 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2710 if (total < 0)
2711 return isl_stat_error;
2713 k = isl_basic_set_alloc_equality(graph->lp);
2714 if (k < 0)
2715 return isl_stat_error;
2716 isl_seq_clr(graph->lp->eq[k], 1 + total);
2717 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2718 for (i = 0; i < graph->n; ++i) {
2719 struct isl_sched_node *node = &graph->node[i];
2720 int pos = 1 + node_var_coef_offset(node);
2722 for (j = 0; j < 2 * node->nvar; ++j)
2723 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2726 return isl_stat_ok;
2729 /* Construct an ILP problem for finding schedule coefficients
2730 * that result in non-negative, but small dependence distances
2731 * over all dependences.
2732 * In particular, the dependence distances over proximity edges
2733 * are bounded by m_0 + m_n n and we compute schedule coefficients
2734 * with small values (preferably zero) of m_n and m_0.
2736 * All variables of the ILP are non-negative. The actual coefficients
2737 * may be negative, so each coefficient is represented as the difference
2738 * of two non-negative variables. The negative part always appears
2739 * immediately before the positive part.
2740 * Other than that, the variables have the following order
2742 * - sum of positive and negative parts of m_n coefficients
2743 * - m_0
2744 * - sum of all c_n coefficients
2745 * (unconstrained when computing non-parametric schedules)
2746 * - sum of positive and negative parts of all c_x coefficients
2747 * - positive and negative parts of m_n coefficients
2748 * - for each node
2749 * - positive and negative parts of c_i_x, in opposite order
2750 * - c_i_n (if parametric)
2751 * - c_i_0
2753 * The constraints are those from the edges plus two or three equalities
2754 * to express the sums.
2756 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2757 * Otherwise, we ignore them.
2759 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2760 int use_coincidence)
2762 int i;
2763 isl_size nparam;
2764 unsigned total;
2765 isl_space *space;
2766 int parametric;
2767 int param_pos;
2768 int n_eq, n_ineq;
2770 parametric = ctx->opt->schedule_parametric;
2771 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2772 if (nparam < 0)
2773 return isl_stat_error;
2774 param_pos = 4;
2775 total = param_pos + 2 * nparam;
2776 for (i = 0; i < graph->n; ++i) {
2777 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2778 if (isl_sched_node_update_vmap(node) < 0)
2779 return isl_stat_error;
2780 node->start = total;
2781 total += 1 + node->nparam + 2 * node->nvar;
2784 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2785 return isl_stat_error;
2786 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2787 return isl_stat_error;
2788 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2789 return isl_stat_error;
2791 space = isl_space_set_alloc(ctx, 0, total);
2792 isl_basic_set_free(graph->lp);
2793 n_eq += 2 + parametric;
2795 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2797 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2798 return isl_stat_error;
2799 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2800 return isl_stat_error;
2801 if (add_var_sum_constraint(graph, 3) < 0)
2802 return isl_stat_error;
2803 if (add_bound_constant_constraints(ctx, graph) < 0)
2804 return isl_stat_error;
2805 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2806 return isl_stat_error;
2807 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2808 return isl_stat_error;
2809 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2810 return isl_stat_error;
2812 return isl_stat_ok;
2815 /* Analyze the conflicting constraint found by
2816 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2817 * constraint of one of the edges between distinct nodes, living, moreover
2818 * in distinct SCCs, then record the source and sink SCC as this may
2819 * be a good place to cut between SCCs.
2821 static int check_conflict(int con, void *user)
2823 int i;
2824 struct isl_sched_graph *graph = user;
2826 if (graph->src_scc >= 0)
2827 return 0;
2829 con -= graph->lp->n_eq;
2831 if (con >= graph->lp->n_ineq)
2832 return 0;
2834 for (i = 0; i < graph->n_edge; ++i) {
2835 if (!is_validity(&graph->edge[i]))
2836 continue;
2837 if (graph->edge[i].src == graph->edge[i].dst)
2838 continue;
2839 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2840 continue;
2841 if (graph->edge[i].start > con)
2842 continue;
2843 if (graph->edge[i].end <= con)
2844 continue;
2845 graph->src_scc = graph->edge[i].src->scc;
2846 graph->dst_scc = graph->edge[i].dst->scc;
2849 return 0;
2852 /* Check whether the next schedule row of the given node needs to be
2853 * non-trivial. Lower-dimensional domains may have some trivial rows,
2854 * but as soon as the number of remaining required non-trivial rows
2855 * is as large as the number or remaining rows to be computed,
2856 * all remaining rows need to be non-trivial.
2858 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2860 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2863 /* Construct a non-triviality region with triviality directions
2864 * corresponding to the rows of "indep".
2865 * The rows of "indep" are expressed in terms of the schedule coefficients c_i,
2866 * while the triviality directions are expressed in terms of
2867 * pairs of non-negative variables c^+_i - c^-_i, with c^-_i appearing
2868 * before c^+_i. Furthermore,
2869 * the pairs of non-negative variables representing the coefficients
2870 * are stored in the opposite order.
2872 static __isl_give isl_mat *construct_trivial(__isl_keep isl_mat *indep)
2874 isl_ctx *ctx;
2875 isl_mat *mat;
2876 int i, j;
2877 isl_size n, n_var;
2879 n = isl_mat_rows(indep);
2880 n_var = isl_mat_cols(indep);
2881 if (n < 0 || n_var < 0)
2882 return NULL;
2884 ctx = isl_mat_get_ctx(indep);
2885 mat = isl_mat_alloc(ctx, n, 2 * n_var);
2886 if (!mat)
2887 return NULL;
2888 for (i = 0; i < n; ++i) {
2889 for (j = 0; j < n_var; ++j) {
2890 int nj = n_var - 1 - j;
2891 isl_int_neg(mat->row[i][2 * nj], indep->row[i][j]);
2892 isl_int_set(mat->row[i][2 * nj + 1], indep->row[i][j]);
2896 return mat;
2899 /* Solve the ILP problem constructed in setup_lp.
2900 * For each node such that all the remaining rows of its schedule
2901 * need to be non-trivial, we construct a non-triviality region.
2902 * This region imposes that the next row is independent of previous rows.
2903 * In particular, the non-triviality region enforces that at least
2904 * one of the linear combinations in the rows of node->indep is non-zero.
2906 static __isl_give isl_vec *solve_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2908 int i;
2909 isl_vec *sol;
2910 isl_basic_set *lp;
2912 for (i = 0; i < graph->n; ++i) {
2913 struct isl_sched_node *node = &graph->node[i];
2914 isl_mat *trivial;
2916 graph->region[i].pos = node_var_coef_offset(node);
2917 if (needs_row(graph, node))
2918 trivial = construct_trivial(node->indep);
2919 else
2920 trivial = isl_mat_zero(ctx, 0, 0);
2921 graph->region[i].trivial = trivial;
2923 lp = isl_basic_set_copy(graph->lp);
2924 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2925 graph->region, &check_conflict, graph);
2926 for (i = 0; i < graph->n; ++i)
2927 isl_mat_free(graph->region[i].trivial);
2928 return sol;
2931 /* Extract the coefficients for the variables of "node" from "sol".
2933 * Each schedule coefficient c_i_x is represented as the difference
2934 * between two non-negative variables c_i_x^+ - c_i_x^-.
2935 * The c_i_x^- appear before their c_i_x^+ counterpart.
2936 * Furthermore, the order of these pairs is the opposite of that
2937 * of the corresponding coefficients.
2939 * Return c_i_x = c_i_x^+ - c_i_x^-
2941 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2942 __isl_keep isl_vec *sol)
2944 int i;
2945 int pos;
2946 isl_vec *csol;
2948 if (!sol)
2949 return NULL;
2950 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2951 if (!csol)
2952 return NULL;
2954 pos = 1 + node_var_coef_offset(node);
2955 for (i = 0; i < node->nvar; ++i)
2956 isl_int_sub(csol->el[node->nvar - 1 - i],
2957 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2959 return csol;
2962 /* Update the schedules of all nodes based on the given solution
2963 * of the LP problem.
2964 * The new row is added to the current band.
2965 * All possibly negative coefficients are encoded as a difference
2966 * of two non-negative variables, so we need to perform the subtraction
2967 * here.
2969 * If coincident is set, then the caller guarantees that the new
2970 * row satisfies the coincidence constraints.
2972 static int update_schedule(struct isl_sched_graph *graph,
2973 __isl_take isl_vec *sol, int coincident)
2975 int i, j;
2976 isl_vec *csol = NULL;
2978 if (!sol)
2979 goto error;
2980 if (sol->size == 0)
2981 isl_die(sol->ctx, isl_error_internal,
2982 "no solution found", goto error);
2983 if (graph->n_total_row >= graph->max_row)
2984 isl_die(sol->ctx, isl_error_internal,
2985 "too many schedule rows", goto error);
2987 for (i = 0; i < graph->n; ++i) {
2988 struct isl_sched_node *node = &graph->node[i];
2989 int pos;
2990 isl_size row = isl_mat_rows(node->sched);
2992 isl_vec_free(csol);
2993 csol = extract_var_coef(node, sol);
2994 if (row < 0 || !csol)
2995 goto error;
2997 isl_map_free(node->sched_map);
2998 node->sched_map = NULL;
2999 node->sched = isl_mat_add_rows(node->sched, 1);
3000 if (!node->sched)
3001 goto error;
3002 pos = node_cst_coef_offset(node);
3003 node->sched = isl_mat_set_element(node->sched,
3004 row, 0, sol->el[1 + pos]);
3005 pos = node_par_coef_offset(node);
3006 for (j = 0; j < node->nparam; ++j)
3007 node->sched = isl_mat_set_element(node->sched,
3008 row, 1 + j, sol->el[1 + pos + j]);
3009 for (j = 0; j < node->nvar; ++j)
3010 node->sched = isl_mat_set_element(node->sched,
3011 row, 1 + node->nparam + j, csol->el[j]);
3012 node->coincident[graph->n_total_row] = coincident;
3014 isl_vec_free(sol);
3015 isl_vec_free(csol);
3017 graph->n_row++;
3018 graph->n_total_row++;
3020 return 0;
3021 error:
3022 isl_vec_free(sol);
3023 isl_vec_free(csol);
3024 return -1;
3027 /* Convert row "row" of node->sched into an isl_aff living in "ls"
3028 * and return this isl_aff.
3030 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
3031 struct isl_sched_node *node, int row)
3033 int j;
3034 isl_int v;
3035 isl_aff *aff;
3037 isl_int_init(v);
3039 aff = isl_aff_zero_on_domain(ls);
3040 if (isl_mat_get_element(node->sched, row, 0, &v) < 0)
3041 goto error;
3042 aff = isl_aff_set_constant(aff, v);
3043 for (j = 0; j < node->nparam; ++j) {
3044 if (isl_mat_get_element(node->sched, row, 1 + j, &v) < 0)
3045 goto error;
3046 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
3048 for (j = 0; j < node->nvar; ++j) {
3049 if (isl_mat_get_element(node->sched, row,
3050 1 + node->nparam + j, &v) < 0)
3051 goto error;
3052 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
3055 isl_int_clear(v);
3057 return aff;
3058 error:
3059 isl_int_clear(v);
3060 isl_aff_free(aff);
3061 return NULL;
3064 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
3065 * and return this multi_aff.
3067 * The result is defined over the uncompressed node domain.
3069 __isl_give isl_multi_aff *isl_sched_node_extract_partial_schedule_multi_aff(
3070 struct isl_sched_node *node, int first, int n)
3072 int i;
3073 isl_space *space;
3074 isl_local_space *ls;
3075 isl_aff *aff;
3076 isl_multi_aff *ma;
3077 isl_size nrow;
3079 if (!node)
3080 return NULL;
3081 nrow = isl_mat_rows(node->sched);
3082 if (nrow < 0)
3083 return NULL;
3084 if (node->compressed)
3085 space = isl_pw_multi_aff_get_domain_space(node->decompress);
3086 else
3087 space = isl_space_copy(node->space);
3088 ls = isl_local_space_from_space(isl_space_copy(space));
3089 space = isl_space_from_domain(space);
3090 space = isl_space_add_dims(space, isl_dim_out, n);
3091 ma = isl_multi_aff_zero(space);
3093 for (i = first; i < first + n; ++i) {
3094 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
3095 ma = isl_multi_aff_set_aff(ma, i - first, aff);
3098 isl_local_space_free(ls);
3100 if (node->compressed)
3101 ma = isl_multi_aff_pullback_multi_aff(ma,
3102 isl_multi_aff_copy(node->compress));
3104 return ma;
3107 /* Convert node->sched into a multi_aff and return this multi_aff.
3109 * The result is defined over the uncompressed node domain.
3111 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
3112 struct isl_sched_node *node)
3114 isl_size nrow;
3116 nrow = isl_mat_rows(node->sched);
3117 if (nrow < 0)
3118 return NULL;
3119 return isl_sched_node_extract_partial_schedule_multi_aff(node, 0, nrow);
3122 /* Convert node->sched into a map and return this map.
3124 * The result is cached in node->sched_map, which needs to be released
3125 * whenever node->sched is updated.
3126 * It is defined over the uncompressed node domain.
3128 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
3130 if (!node->sched_map) {
3131 isl_multi_aff *ma;
3133 ma = node_extract_schedule_multi_aff(node);
3134 node->sched_map = isl_map_from_multi_aff(ma);
3137 return isl_map_copy(node->sched_map);
3140 /* Construct a map that can be used to update a dependence relation
3141 * based on the current schedule.
3142 * That is, construct a map expressing that source and sink
3143 * are executed within the same iteration of the current schedule.
3144 * This map can then be intersected with the dependence relation.
3145 * This is not the most efficient way, but this shouldn't be a critical
3146 * operation.
3148 static __isl_give isl_map *specializer(struct isl_sched_node *src,
3149 struct isl_sched_node *dst)
3151 isl_map *src_sched, *dst_sched;
3153 src_sched = node_extract_schedule(src);
3154 dst_sched = node_extract_schedule(dst);
3155 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
3158 /* Intersect the domains of the nested relations in domain and range
3159 * of "umap" with "map".
3161 static __isl_give isl_union_map *intersect_domains(
3162 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
3164 isl_union_set *uset;
3166 umap = isl_union_map_zip(umap);
3167 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
3168 umap = isl_union_map_intersect_domain(umap, uset);
3169 umap = isl_union_map_zip(umap);
3170 return umap;
3173 /* Update the dependence relation of the given edge based
3174 * on the current schedule.
3175 * If the dependence is carried completely by the current schedule, then
3176 * it is removed from the edge_tables. It is kept in the list of edges
3177 * as otherwise all edge_tables would have to be recomputed.
3179 * If the edge is of a type that can appear multiple times
3180 * between the same pair of nodes, then it is added to
3181 * the edge table (again). This prevents the situation
3182 * where none of these edges is referenced from the edge table
3183 * because the one that was referenced turned out to be empty and
3184 * was therefore removed from the table.
3186 static isl_stat update_edge(isl_ctx *ctx, struct isl_sched_graph *graph,
3187 struct isl_sched_edge *edge)
3189 int empty;
3190 isl_map *id;
3192 id = specializer(edge->src, edge->dst);
3193 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
3194 if (!edge->map)
3195 goto error;
3197 if (edge->tagged_condition) {
3198 edge->tagged_condition =
3199 intersect_domains(edge->tagged_condition, id);
3200 if (!edge->tagged_condition)
3201 goto error;
3203 if (edge->tagged_validity) {
3204 edge->tagged_validity =
3205 intersect_domains(edge->tagged_validity, id);
3206 if (!edge->tagged_validity)
3207 goto error;
3210 empty = isl_map_plain_is_empty(edge->map);
3211 if (empty < 0)
3212 goto error;
3213 if (empty) {
3214 if (graph_remove_edge(graph, edge) < 0)
3215 goto error;
3216 } else if (is_multi_edge_type(edge)) {
3217 if (graph_edge_tables_add(ctx, graph, edge) < 0)
3218 goto error;
3221 isl_map_free(id);
3222 return isl_stat_ok;
3223 error:
3224 isl_map_free(id);
3225 return isl_stat_error;
3228 /* Does the domain of "umap" intersect "uset"?
3230 static int domain_intersects(__isl_keep isl_union_map *umap,
3231 __isl_keep isl_union_set *uset)
3233 int empty;
3235 umap = isl_union_map_copy(umap);
3236 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
3237 empty = isl_union_map_is_empty(umap);
3238 isl_union_map_free(umap);
3240 return empty < 0 ? -1 : !empty;
3243 /* Does the range of "umap" intersect "uset"?
3245 static int range_intersects(__isl_keep isl_union_map *umap,
3246 __isl_keep isl_union_set *uset)
3248 int empty;
3250 umap = isl_union_map_copy(umap);
3251 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
3252 empty = isl_union_map_is_empty(umap);
3253 isl_union_map_free(umap);
3255 return empty < 0 ? -1 : !empty;
3258 /* Are the condition dependences of "edge" local with respect to
3259 * the current schedule?
3261 * That is, are domain and range of the condition dependences mapped
3262 * to the same point?
3264 * In other words, is the condition false?
3266 static int is_condition_false(struct isl_sched_edge *edge)
3268 isl_union_map *umap;
3269 isl_map *map, *sched, *test;
3270 int empty, local;
3272 empty = isl_union_map_is_empty(edge->tagged_condition);
3273 if (empty < 0 || empty)
3274 return empty;
3276 umap = isl_union_map_copy(edge->tagged_condition);
3277 umap = isl_union_map_zip(umap);
3278 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
3279 map = isl_map_from_union_map(umap);
3281 sched = node_extract_schedule(edge->src);
3282 map = isl_map_apply_domain(map, sched);
3283 sched = node_extract_schedule(edge->dst);
3284 map = isl_map_apply_range(map, sched);
3286 test = isl_map_identity(isl_map_get_space(map));
3287 local = isl_map_is_subset(map, test);
3288 isl_map_free(map);
3289 isl_map_free(test);
3291 return local;
3294 /* For each conditional validity constraint that is adjacent
3295 * to a condition with domain in condition_source or range in condition_sink,
3296 * turn it into an unconditional validity constraint.
3298 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
3299 __isl_take isl_union_set *condition_source,
3300 __isl_take isl_union_set *condition_sink)
3302 int i;
3304 condition_source = isl_union_set_coalesce(condition_source);
3305 condition_sink = isl_union_set_coalesce(condition_sink);
3307 for (i = 0; i < graph->n_edge; ++i) {
3308 int adjacent;
3309 isl_union_map *validity;
3311 if (!isl_sched_edge_is_conditional_validity(&graph->edge[i]))
3312 continue;
3313 if (is_validity(&graph->edge[i]))
3314 continue;
3316 validity = graph->edge[i].tagged_validity;
3317 adjacent = domain_intersects(validity, condition_sink);
3318 if (adjacent >= 0 && !adjacent)
3319 adjacent = range_intersects(validity, condition_source);
3320 if (adjacent < 0)
3321 goto error;
3322 if (!adjacent)
3323 continue;
3325 set_validity(&graph->edge[i]);
3328 isl_union_set_free(condition_source);
3329 isl_union_set_free(condition_sink);
3330 return 0;
3331 error:
3332 isl_union_set_free(condition_source);
3333 isl_union_set_free(condition_sink);
3334 return -1;
3337 /* Update the dependence relations of all edges based on the current schedule
3338 * and enforce conditional validity constraints that are adjacent
3339 * to satisfied condition constraints.
3341 * First check if any of the condition constraints are satisfied
3342 * (i.e., not local to the outer schedule) and keep track of
3343 * their domain and range.
3344 * Then update all dependence relations (which removes the non-local
3345 * constraints).
3346 * Finally, if any condition constraints turned out to be satisfied,
3347 * then turn all adjacent conditional validity constraints into
3348 * unconditional validity constraints.
3350 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
3352 int i;
3353 int any = 0;
3354 isl_union_set *source, *sink;
3356 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3357 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
3358 for (i = 0; i < graph->n_edge; ++i) {
3359 int local;
3360 isl_union_set *uset;
3361 isl_union_map *umap;
3363 if (!isl_sched_edge_is_condition(&graph->edge[i]))
3364 continue;
3365 if (is_local(&graph->edge[i]))
3366 continue;
3367 local = is_condition_false(&graph->edge[i]);
3368 if (local < 0)
3369 goto error;
3370 if (local)
3371 continue;
3373 any = 1;
3375 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3376 uset = isl_union_map_domain(umap);
3377 source = isl_union_set_union(source, uset);
3379 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
3380 uset = isl_union_map_range(umap);
3381 sink = isl_union_set_union(sink, uset);
3384 for (i = 0; i < graph->n_edge; ++i) {
3385 if (update_edge(ctx, graph, &graph->edge[i]) < 0)
3386 goto error;
3389 if (any)
3390 return unconditionalize_adjacent_validity(graph, source, sink);
3392 isl_union_set_free(source);
3393 isl_union_set_free(sink);
3394 return 0;
3395 error:
3396 isl_union_set_free(source);
3397 isl_union_set_free(sink);
3398 return -1;
3401 static void next_band(struct isl_sched_graph *graph)
3403 graph->band_start = graph->n_total_row;
3406 /* Return the union of the universe domains of the nodes in "graph"
3407 * that satisfy "pred".
3409 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3410 struct isl_sched_graph *graph,
3411 int (*pred)(struct isl_sched_node *node, int data), int data)
3413 int i;
3414 isl_set *set;
3415 isl_union_set *dom;
3417 for (i = 0; i < graph->n; ++i)
3418 if (pred(&graph->node[i], data))
3419 break;
3421 if (i >= graph->n)
3422 isl_die(ctx, isl_error_internal,
3423 "empty component", return NULL);
3425 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3426 dom = isl_union_set_from_set(set);
3428 for (i = i + 1; i < graph->n; ++i) {
3429 if (!pred(&graph->node[i], data))
3430 continue;
3431 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3432 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3435 return dom;
3438 /* Return a union of universe domains corresponding to the nodes
3439 * in the SCC with index "scc".
3441 __isl_give isl_union_set *isl_sched_graph_extract_scc(isl_ctx *ctx,
3442 struct isl_sched_graph *graph, int scc)
3444 return isl_sched_graph_domain(ctx, graph,
3445 &isl_sched_node_scc_exactly, scc);
3448 /* Return a list of unions of universe domains, where each element
3449 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3451 __isl_give isl_union_set_list *isl_sched_graph_extract_sccs(isl_ctx *ctx,
3452 struct isl_sched_graph *graph)
3454 int i;
3455 isl_union_set_list *filters;
3457 filters = isl_union_set_list_alloc(ctx, graph->scc);
3458 for (i = 0; i < graph->scc; ++i) {
3459 isl_union_set *dom;
3461 dom = isl_sched_graph_extract_scc(ctx, graph, i);
3462 filters = isl_union_set_list_add(filters, dom);
3465 return filters;
3468 /* Return a list of two unions of universe domains, one for the SCCs up
3469 * to and including graph->src_scc and another for the other SCCs.
3471 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3472 struct isl_sched_graph *graph)
3474 isl_union_set *dom;
3475 isl_union_set_list *filters;
3477 filters = isl_union_set_list_alloc(ctx, 2);
3478 dom = isl_sched_graph_domain(ctx, graph,
3479 &node_scc_at_most, graph->src_scc);
3480 filters = isl_union_set_list_add(filters, dom);
3481 dom = isl_sched_graph_domain(ctx, graph,
3482 &node_scc_at_least, graph->src_scc + 1);
3483 filters = isl_union_set_list_add(filters, dom);
3485 return filters;
3488 /* Copy nodes that satisfy node_pred from the src dependence graph
3489 * to the dst dependence graph.
3491 static isl_stat copy_nodes(struct isl_sched_graph *dst,
3492 struct isl_sched_graph *src,
3493 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3495 int i;
3497 dst->n = 0;
3498 for (i = 0; i < src->n; ++i) {
3499 int j;
3501 if (!node_pred(&src->node[i], data))
3502 continue;
3504 j = dst->n;
3505 dst->node[j].space = isl_space_copy(src->node[i].space);
3506 dst->node[j].compressed = src->node[i].compressed;
3507 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3508 dst->node[j].compress =
3509 isl_multi_aff_copy(src->node[i].compress);
3510 dst->node[j].decompress =
3511 isl_pw_multi_aff_copy(src->node[i].decompress);
3512 dst->node[j].nvar = src->node[i].nvar;
3513 dst->node[j].nparam = src->node[i].nparam;
3514 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3515 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3516 dst->node[j].coincident = src->node[i].coincident;
3517 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3518 dst->node[j].bounds = isl_basic_set_copy(src->node[i].bounds);
3519 dst->node[j].max = isl_vec_copy(src->node[i].max);
3520 dst->n++;
3522 if (!dst->node[j].space || !dst->node[j].sched)
3523 return isl_stat_error;
3524 if (dst->node[j].compressed &&
3525 (!dst->node[j].hull || !dst->node[j].compress ||
3526 !dst->node[j].decompress))
3527 return isl_stat_error;
3530 return isl_stat_ok;
3533 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3534 * to the dst dependence graph.
3535 * If the source or destination node of the edge is not in the destination
3536 * graph, then it must be a backward proximity edge and it should simply
3537 * be ignored.
3539 static isl_stat copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3540 struct isl_sched_graph *src,
3541 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3543 int i;
3545 dst->n_edge = 0;
3546 for (i = 0; i < src->n_edge; ++i) {
3547 struct isl_sched_edge *edge = &src->edge[i];
3548 isl_map *map;
3549 isl_union_map *tagged_condition;
3550 isl_union_map *tagged_validity;
3551 struct isl_sched_node *dst_src, *dst_dst;
3553 if (!edge_pred(edge, data))
3554 continue;
3556 if (isl_map_plain_is_empty(edge->map))
3557 continue;
3559 dst_src = isl_sched_graph_find_node(ctx, dst, edge->src->space);
3560 dst_dst = isl_sched_graph_find_node(ctx, dst, edge->dst->space);
3561 if (!dst_src || !dst_dst)
3562 return isl_stat_error;
3563 if (!isl_sched_graph_is_node(dst, dst_src) ||
3564 !isl_sched_graph_is_node(dst, dst_dst)) {
3565 if (is_validity(edge) ||
3566 isl_sched_edge_is_conditional_validity(edge))
3567 isl_die(ctx, isl_error_internal,
3568 "backward (conditional) validity edge",
3569 return isl_stat_error);
3570 continue;
3573 map = isl_map_copy(edge->map);
3574 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3575 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3577 dst->edge[dst->n_edge].src = dst_src;
3578 dst->edge[dst->n_edge].dst = dst_dst;
3579 dst->edge[dst->n_edge].map = map;
3580 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3581 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3582 dst->edge[dst->n_edge].types = edge->types;
3583 dst->n_edge++;
3585 if (edge->tagged_condition && !tagged_condition)
3586 return isl_stat_error;
3587 if (edge->tagged_validity && !tagged_validity)
3588 return isl_stat_error;
3590 if (graph_edge_tables_add(ctx, dst,
3591 &dst->edge[dst->n_edge - 1]) < 0)
3592 return isl_stat_error;
3595 return isl_stat_ok;
3598 /* Compute the maximal number of variables over all nodes.
3599 * This is the maximal number of linearly independent schedule
3600 * rows that we need to compute.
3601 * Just in case we end up in a part of the dependence graph
3602 * with only lower-dimensional domains, we make sure we will
3603 * compute the required amount of extra linearly independent rows.
3605 isl_stat isl_sched_graph_compute_maxvar(struct isl_sched_graph *graph)
3607 int i;
3609 graph->maxvar = 0;
3610 for (i = 0; i < graph->n; ++i) {
3611 struct isl_sched_node *node = &graph->node[i];
3612 int nvar;
3614 if (isl_sched_node_update_vmap(node) < 0)
3615 return isl_stat_error;
3616 nvar = node->nvar + graph->n_row - node->rank;
3617 if (nvar > graph->maxvar)
3618 graph->maxvar = nvar;
3621 return isl_stat_ok;
3624 /* Extract the subgraph of "graph" that consists of the nodes satisfying
3625 * "node_pred" and the edges satisfying "edge_pred" and store
3626 * the result in "sub".
3628 isl_stat isl_sched_graph_extract_sub_graph(isl_ctx *ctx,
3629 struct isl_sched_graph *graph,
3630 int (*node_pred)(struct isl_sched_node *node, int data),
3631 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3632 int data, struct isl_sched_graph *sub)
3634 int i, n = 0, n_edge = 0;
3635 int t;
3637 for (i = 0; i < graph->n; ++i)
3638 if (node_pred(&graph->node[i], data))
3639 ++n;
3640 for (i = 0; i < graph->n_edge; ++i)
3641 if (edge_pred(&graph->edge[i], data))
3642 ++n_edge;
3643 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3644 return isl_stat_error;
3645 sub->root = graph->root;
3646 if (copy_nodes(sub, graph, node_pred, data) < 0)
3647 return isl_stat_error;
3648 if (graph_init_table(ctx, sub) < 0)
3649 return isl_stat_error;
3650 for (t = 0; t <= isl_edge_last; ++t)
3651 sub->max_edge[t] = graph->max_edge[t];
3652 if (graph_init_edge_tables(ctx, sub) < 0)
3653 return isl_stat_error;
3654 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3655 return isl_stat_error;
3656 sub->n_row = graph->n_row;
3657 sub->max_row = graph->max_row;
3658 sub->n_total_row = graph->n_total_row;
3659 sub->band_start = graph->band_start;
3661 return isl_stat_ok;
3664 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3665 struct isl_sched_graph *graph);
3666 static __isl_give isl_schedule_node *compute_schedule_wcc(
3667 isl_schedule_node *node, struct isl_sched_graph *graph);
3669 /* Compute a schedule for a subgraph of "graph". In particular, for
3670 * the graph composed of nodes that satisfy node_pred and edges that
3671 * that satisfy edge_pred.
3672 * If the subgraph is known to consist of a single component, then wcc should
3673 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3674 * Otherwise, we call compute_schedule, which will check whether the subgraph
3675 * is connected.
3677 * The schedule is inserted at "node" and the updated schedule node
3678 * is returned.
3680 static __isl_give isl_schedule_node *compute_sub_schedule(
3681 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3682 struct isl_sched_graph *graph,
3683 int (*node_pred)(struct isl_sched_node *node, int data),
3684 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3685 int data, int wcc)
3687 struct isl_sched_graph split = { 0 };
3689 if (isl_sched_graph_extract_sub_graph(ctx, graph, node_pred, edge_pred,
3690 data, &split) < 0)
3691 goto error;
3693 if (wcc)
3694 node = compute_schedule_wcc(node, &split);
3695 else
3696 node = compute_schedule(node, &split);
3698 isl_sched_graph_free(ctx, &split);
3699 return node;
3700 error:
3701 isl_sched_graph_free(ctx, &split);
3702 return isl_schedule_node_free(node);
3705 int isl_sched_edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3707 return edge->src->scc == scc && edge->dst->scc == scc;
3710 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3712 return edge->dst->scc <= scc;
3715 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3717 return edge->src->scc >= scc;
3720 /* Reset the current band by dropping all its schedule rows.
3722 static isl_stat reset_band(struct isl_sched_graph *graph)
3724 int i;
3725 int drop;
3727 drop = graph->n_total_row - graph->band_start;
3728 graph->n_total_row -= drop;
3729 graph->n_row -= drop;
3731 for (i = 0; i < graph->n; ++i) {
3732 struct isl_sched_node *node = &graph->node[i];
3734 isl_map_free(node->sched_map);
3735 node->sched_map = NULL;
3737 node->sched = isl_mat_drop_rows(node->sched,
3738 graph->band_start, drop);
3740 if (!node->sched)
3741 return isl_stat_error;
3744 return isl_stat_ok;
3747 /* Split the current graph into two parts and compute a schedule for each
3748 * part individually. In particular, one part consists of all SCCs up
3749 * to and including graph->src_scc, while the other part contains the other
3750 * SCCs. The split is enforced by a sequence node inserted at position "node"
3751 * in the schedule tree. Return the updated schedule node.
3752 * If either of these two parts consists of a sequence, then it is spliced
3753 * into the sequence containing the two parts.
3755 * The current band is reset. It would be possible to reuse
3756 * the previously computed rows as the first rows in the next
3757 * band, but recomputing them may result in better rows as we are looking
3758 * at a smaller part of the dependence graph.
3760 static __isl_give isl_schedule_node *compute_split_schedule(
3761 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3763 isl_ctx *ctx;
3764 isl_union_set_list *filters;
3766 if (!node)
3767 return NULL;
3769 if (reset_band(graph) < 0)
3770 return isl_schedule_node_free(node);
3772 next_band(graph);
3774 ctx = isl_schedule_node_get_ctx(node);
3775 filters = extract_split(ctx, graph);
3776 node = isl_schedule_node_insert_sequence(node, filters);
3777 node = isl_schedule_node_grandchild(node, 1, 0);
3779 node = compute_sub_schedule(node, ctx, graph,
3780 &node_scc_at_least, &edge_src_scc_at_least,
3781 graph->src_scc + 1, 0);
3782 node = isl_schedule_node_grandparent(node);
3783 node = isl_schedule_node_grandchild(node, 0, 0);
3784 node = compute_sub_schedule(node, ctx, graph,
3785 &node_scc_at_most, &edge_dst_scc_at_most,
3786 graph->src_scc, 0);
3787 node = isl_schedule_node_grandparent(node);
3789 node = isl_schedule_node_sequence_splice_children(node);
3791 return node;
3794 /* Insert a band node at position "node" in the schedule tree corresponding
3795 * to the current band in "graph". Mark the band node permutable
3796 * if "permutable" is set.
3797 * The partial schedules and the coincidence property are extracted
3798 * from the graph nodes.
3799 * Return the updated schedule node.
3801 static __isl_give isl_schedule_node *insert_current_band(
3802 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3803 int permutable)
3805 int i;
3806 int start, end, n;
3807 isl_multi_aff *ma;
3808 isl_multi_pw_aff *mpa;
3809 isl_multi_union_pw_aff *mupa;
3811 if (!node)
3812 return NULL;
3814 if (graph->n < 1)
3815 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3816 "graph should have at least one node",
3817 return isl_schedule_node_free(node));
3819 start = graph->band_start;
3820 end = graph->n_total_row;
3821 n = end - start;
3823 ma = isl_sched_node_extract_partial_schedule_multi_aff(&graph->node[0],
3824 start, n);
3825 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3826 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3828 for (i = 1; i < graph->n; ++i) {
3829 isl_multi_union_pw_aff *mupa_i;
3831 ma = isl_sched_node_extract_partial_schedule_multi_aff(
3832 &graph->node[i], start, n);
3833 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3834 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3835 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3837 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3839 for (i = 0; i < n; ++i)
3840 node = isl_schedule_node_band_member_set_coincident(node, i,
3841 graph->node[0].coincident[start + i]);
3842 node = isl_schedule_node_band_set_permutable(node, permutable);
3844 return node;
3847 /* Update the dependence relations based on the current schedule,
3848 * add the current band to "node" and then continue with the computation
3849 * of the next band.
3850 * Return the updated schedule node.
3852 static __isl_give isl_schedule_node *compute_next_band(
3853 __isl_take isl_schedule_node *node,
3854 struct isl_sched_graph *graph, int permutable)
3856 isl_ctx *ctx;
3858 if (!node)
3859 return NULL;
3861 ctx = isl_schedule_node_get_ctx(node);
3862 if (update_edges(ctx, graph) < 0)
3863 return isl_schedule_node_free(node);
3864 node = insert_current_band(node, graph, permutable);
3865 next_band(graph);
3867 node = isl_schedule_node_child(node, 0);
3868 node = compute_schedule(node, graph);
3869 node = isl_schedule_node_parent(node);
3871 return node;
3874 /* Add the constraints "coef" derived from an edge from "node" to itself
3875 * to graph->lp in order to respect the dependences and to try and carry them.
3876 * "pos" is the sequence number of the edge that needs to be carried.
3877 * "coef" represents general constraints on coefficients (c_0, c_x)
3878 * of valid constraints for (y - x) with x and y instances of the node.
3880 * The constraints added to graph->lp need to enforce
3882 * (c_j_0 + c_j_x y) - (c_j_0 + c_j_x x)
3883 * = c_j_x (y - x) >= e_i
3885 * for each (x,y) in the dependence relation of the edge.
3886 * That is, (-e_i, c_j_x) needs to be plugged in for (c_0, c_x),
3887 * taking into account that each coefficient in c_j_x is represented
3888 * as a pair of non-negative coefficients.
3890 static isl_stat add_intra_constraints(struct isl_sched_graph *graph,
3891 struct isl_sched_node *node, __isl_take isl_basic_set *coef, int pos)
3893 isl_size offset;
3894 isl_ctx *ctx;
3895 isl_dim_map *dim_map;
3897 offset = coef_var_offset(coef);
3898 if (offset < 0)
3899 coef = isl_basic_set_free(coef);
3900 if (!coef)
3901 return isl_stat_error;
3903 ctx = isl_basic_set_get_ctx(coef);
3904 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3905 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3906 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3908 return isl_stat_ok;
3911 /* Add the constraints "coef" derived from an edge from "src" to "dst"
3912 * to graph->lp in order to respect the dependences and to try and carry them.
3913 * "pos" is the sequence number of the edge that needs to be carried or
3914 * -1 if no attempt should be made to carry the dependences.
3915 * "coef" represents general constraints on coefficients (c_0, c_n, c_x, c_y)
3916 * of valid constraints for (x, y) with x and y instances of "src" and "dst".
3918 * The constraints added to graph->lp need to enforce
3920 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3922 * for each (x,y) in the dependence relation of the edge or
3924 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= 0
3926 * if pos is -1.
3927 * That is,
3928 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3929 * or
3930 * (c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3931 * needs to be plugged in for (c_0, c_n, c_x, c_y),
3932 * taking into account that each coefficient in c_j_x and c_k_x is represented
3933 * as a pair of non-negative coefficients.
3935 static isl_stat add_inter_constraints(struct isl_sched_graph *graph,
3936 struct isl_sched_node *src, struct isl_sched_node *dst,
3937 __isl_take isl_basic_set *coef, int pos)
3939 isl_size offset;
3940 isl_ctx *ctx;
3941 isl_dim_map *dim_map;
3943 offset = coef_var_offset(coef);
3944 if (offset < 0)
3945 coef = isl_basic_set_free(coef);
3946 if (!coef)
3947 return isl_stat_error;
3949 ctx = isl_basic_set_get_ctx(coef);
3950 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3951 if (pos >= 0)
3952 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3953 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3955 return isl_stat_ok;
3958 /* Data structure for keeping track of the data needed
3959 * to exploit non-trivial lineality spaces.
3961 * "any_non_trivial" is true if there are any non-trivial lineality spaces.
3962 * If "any_non_trivial" is not true, then "equivalent" and "mask" may be NULL.
3963 * "equivalent" connects instances to other instances on the same line(s).
3964 * "mask" contains the domain spaces of "equivalent".
3965 * Any instance set not in "mask" does not have a non-trivial lineality space.
3967 struct isl_exploit_lineality_data {
3968 isl_bool any_non_trivial;
3969 isl_union_map *equivalent;
3970 isl_union_set *mask;
3973 /* Data structure collecting information used during the construction
3974 * of an LP for carrying dependences.
3976 * "intra" is a sequence of coefficient constraints for intra-node edges.
3977 * "inter" is a sequence of coefficient constraints for inter-node edges.
3978 * "lineality" contains data used to exploit non-trivial lineality spaces.
3980 struct isl_carry {
3981 isl_basic_set_list *intra;
3982 isl_basic_set_list *inter;
3983 struct isl_exploit_lineality_data lineality;
3986 /* Free all the data stored in "carry".
3988 static void isl_carry_clear(struct isl_carry *carry)
3990 isl_basic_set_list_free(carry->intra);
3991 isl_basic_set_list_free(carry->inter);
3992 isl_union_map_free(carry->lineality.equivalent);
3993 isl_union_set_free(carry->lineality.mask);
3996 /* Return a pointer to the node in "graph" that lives in "space".
3997 * If the requested node has been compressed, then "space"
3998 * corresponds to the compressed space.
3999 * The graph is assumed to have such a node.
4000 * Return NULL in case of error.
4002 * First try and see if "space" is the space of an uncompressed node.
4003 * If so, return that node.
4004 * Otherwise, "space" was constructed by construct_compressed_id and
4005 * contains a user pointer pointing to the node in the tuple id.
4006 * However, this node belongs to the original dependence graph.
4007 * If "graph" is a subgraph of this original dependence graph,
4008 * then the node with the same space still needs to be looked up
4009 * in the current graph.
4011 static struct isl_sched_node *graph_find_compressed_node(isl_ctx *ctx,
4012 struct isl_sched_graph *graph, __isl_keep isl_space *space)
4014 isl_id *id;
4015 struct isl_sched_node *node;
4017 if (!space)
4018 return NULL;
4020 node = isl_sched_graph_find_node(ctx, graph, space);
4021 if (!node)
4022 return NULL;
4023 if (isl_sched_graph_is_node(graph, node))
4024 return node;
4026 id = isl_space_get_tuple_id(space, isl_dim_set);
4027 node = isl_id_get_user(id);
4028 isl_id_free(id);
4030 if (!node)
4031 return NULL;
4033 if (!isl_sched_graph_is_node(graph->root, node))
4034 isl_die(ctx, isl_error_internal,
4035 "space points to invalid node", return NULL);
4036 if (graph != graph->root)
4037 node = isl_sched_graph_find_node(ctx, graph, node->space);
4038 if (!isl_sched_graph_is_node(graph, node))
4039 isl_die(ctx, isl_error_internal,
4040 "unable to find node", return NULL);
4042 return node;
4045 /* Internal data structure for add_all_constraints.
4047 * "graph" is the schedule constraint graph for which an LP problem
4048 * is being constructed.
4049 * "carry_inter" indicates whether inter-node edges should be carried.
4050 * "pos" is the position of the next edge that needs to be carried.
4052 struct isl_add_all_constraints_data {
4053 isl_ctx *ctx;
4054 struct isl_sched_graph *graph;
4055 int carry_inter;
4056 int pos;
4059 /* Add the constraints "coef" derived from an edge from a node to itself
4060 * to data->graph->lp in order to respect the dependences and
4061 * to try and carry them.
4063 * The space of "coef" is of the form
4065 * coefficients[[c_cst] -> S[c_x]]
4067 * with S[c_x] the (compressed) space of the node.
4068 * Extract the node from the space and call add_intra_constraints.
4070 static isl_stat lp_add_intra(__isl_take isl_basic_set *coef, void *user)
4072 struct isl_add_all_constraints_data *data = user;
4073 isl_space *space;
4074 struct isl_sched_node *node;
4076 space = isl_basic_set_get_space(coef);
4077 space = isl_space_range(isl_space_unwrap(space));
4078 node = graph_find_compressed_node(data->ctx, data->graph, space);
4079 isl_space_free(space);
4080 return add_intra_constraints(data->graph, node, coef, data->pos++);
4083 /* Add the constraints "coef" derived from an edge from a node j
4084 * to a node k to data->graph->lp in order to respect the dependences and
4085 * to try and carry them (provided data->carry_inter is set).
4087 * The space of "coef" is of the form
4089 * coefficients[[c_cst, c_n] -> [S_j[c_x] -> S_k[c_y]]]
4091 * with S_j[c_x] and S_k[c_y] the (compressed) spaces of the nodes.
4092 * Extract the nodes from the space and call add_inter_constraints.
4094 static isl_stat lp_add_inter(__isl_take isl_basic_set *coef, void *user)
4096 struct isl_add_all_constraints_data *data = user;
4097 isl_space *space, *dom;
4098 struct isl_sched_node *src, *dst;
4099 int pos;
4101 space = isl_basic_set_get_space(coef);
4102 space = isl_space_unwrap(isl_space_range(isl_space_unwrap(space)));
4103 dom = isl_space_domain(isl_space_copy(space));
4104 src = graph_find_compressed_node(data->ctx, data->graph, dom);
4105 isl_space_free(dom);
4106 space = isl_space_range(space);
4107 dst = graph_find_compressed_node(data->ctx, data->graph, space);
4108 isl_space_free(space);
4110 pos = data->carry_inter ? data->pos++ : -1;
4111 return add_inter_constraints(data->graph, src, dst, coef, pos);
4114 /* Add constraints to graph->lp that force all (conditional) validity
4115 * dependences to be respected and attempt to carry them.
4116 * "intra" is the sequence of coefficient constraints for intra-node edges.
4117 * "inter" is the sequence of coefficient constraints for inter-node edges.
4118 * "carry_inter" indicates whether inter-node edges should be carried or
4119 * only respected.
4121 static isl_stat add_all_constraints(isl_ctx *ctx, struct isl_sched_graph *graph,
4122 __isl_keep isl_basic_set_list *intra,
4123 __isl_keep isl_basic_set_list *inter, int carry_inter)
4125 struct isl_add_all_constraints_data data = { ctx, graph, carry_inter };
4127 data.pos = 0;
4128 if (isl_basic_set_list_foreach(intra, &lp_add_intra, &data) < 0)
4129 return isl_stat_error;
4130 if (isl_basic_set_list_foreach(inter, &lp_add_inter, &data) < 0)
4131 return isl_stat_error;
4132 return isl_stat_ok;
4135 /* Internal data structure for count_all_constraints
4136 * for keeping track of the number of equality and inequality constraints.
4138 struct isl_sched_count {
4139 int n_eq;
4140 int n_ineq;
4143 /* Add the number of equality and inequality constraints of "bset"
4144 * to data->n_eq and data->n_ineq.
4146 static isl_stat bset_update_count(__isl_take isl_basic_set *bset, void *user)
4148 struct isl_sched_count *data = user;
4150 return update_count(bset, 1, &data->n_eq, &data->n_ineq);
4153 /* Count the number of equality and inequality constraints
4154 * that will be added to the carry_lp problem.
4155 * We count each edge exactly once.
4156 * "intra" is the sequence of coefficient constraints for intra-node edges.
4157 * "inter" is the sequence of coefficient constraints for inter-node edges.
4159 static isl_stat count_all_constraints(__isl_keep isl_basic_set_list *intra,
4160 __isl_keep isl_basic_set_list *inter, int *n_eq, int *n_ineq)
4162 struct isl_sched_count data;
4164 data.n_eq = data.n_ineq = 0;
4165 if (isl_basic_set_list_foreach(inter, &bset_update_count, &data) < 0)
4166 return isl_stat_error;
4167 if (isl_basic_set_list_foreach(intra, &bset_update_count, &data) < 0)
4168 return isl_stat_error;
4170 *n_eq = data.n_eq;
4171 *n_ineq = data.n_ineq;
4173 return isl_stat_ok;
4176 /* Construct an LP problem for finding schedule coefficients
4177 * such that the schedule carries as many validity dependences as possible.
4178 * In particular, for each dependence i, we bound the dependence distance
4179 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
4180 * of all e_i's. Dependences with e_i = 0 in the solution are simply
4181 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
4182 * "intra" is the sequence of coefficient constraints for intra-node edges.
4183 * "inter" is the sequence of coefficient constraints for inter-node edges.
4184 * "n_edge" is the total number of edges.
4185 * "carry_inter" indicates whether inter-node edges should be carried or
4186 * only respected. That is, if "carry_inter" is not set, then
4187 * no e_i variables are introduced for the inter-node edges.
4189 * All variables of the LP are non-negative. The actual coefficients
4190 * may be negative, so each coefficient is represented as the difference
4191 * of two non-negative variables. The negative part always appears
4192 * immediately before the positive part.
4193 * Other than that, the variables have the following order
4195 * - sum of (1 - e_i) over all edges
4196 * - sum of all c_n coefficients
4197 * (unconstrained when computing non-parametric schedules)
4198 * - sum of positive and negative parts of all c_x coefficients
4199 * - for each edge
4200 * - e_i
4201 * - for each node
4202 * - positive and negative parts of c_i_x, in opposite order
4203 * - c_i_n (if parametric)
4204 * - c_i_0
4206 * The constraints are those from the (validity) edges plus three equalities
4207 * to express the sums and n_edge inequalities to express e_i <= 1.
4209 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
4210 int n_edge, __isl_keep isl_basic_set_list *intra,
4211 __isl_keep isl_basic_set_list *inter, int carry_inter)
4213 int i;
4214 int k;
4215 isl_space *space;
4216 unsigned total;
4217 int n_eq, n_ineq;
4219 total = 3 + n_edge;
4220 for (i = 0; i < graph->n; ++i) {
4221 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
4222 node->start = total;
4223 total += 1 + node->nparam + 2 * node->nvar;
4226 if (count_all_constraints(intra, inter, &n_eq, &n_ineq) < 0)
4227 return isl_stat_error;
4229 space = isl_space_set_alloc(ctx, 0, total);
4230 isl_basic_set_free(graph->lp);
4231 n_eq += 3;
4232 n_ineq += n_edge;
4233 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
4234 graph->lp = isl_basic_set_set_rational(graph->lp);
4236 k = isl_basic_set_alloc_equality(graph->lp);
4237 if (k < 0)
4238 return isl_stat_error;
4239 isl_seq_clr(graph->lp->eq[k], 1 + total);
4240 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
4241 isl_int_set_si(graph->lp->eq[k][1], 1);
4242 for (i = 0; i < n_edge; ++i)
4243 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
4245 if (add_param_sum_constraint(graph, 1) < 0)
4246 return isl_stat_error;
4247 if (add_var_sum_constraint(graph, 2) < 0)
4248 return isl_stat_error;
4250 for (i = 0; i < n_edge; ++i) {
4251 k = isl_basic_set_alloc_inequality(graph->lp);
4252 if (k < 0)
4253 return isl_stat_error;
4254 isl_seq_clr(graph->lp->ineq[k], 1 + total);
4255 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
4256 isl_int_set_si(graph->lp->ineq[k][0], 1);
4259 if (add_all_constraints(ctx, graph, intra, inter, carry_inter) < 0)
4260 return isl_stat_error;
4262 return isl_stat_ok;
4265 static __isl_give isl_schedule_node *compute_component_schedule(
4266 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4267 int wcc);
4269 /* If the schedule_split_scaled option is set and if the linear
4270 * parts of the scheduling rows for all nodes in the graphs have
4271 * a non-trivial common divisor, then remove this
4272 * common divisor from the linear part.
4273 * Otherwise, insert a band node directly and continue with
4274 * the construction of the schedule.
4276 * If a non-trivial common divisor is found, then
4277 * the linear part is reduced and the remainder is ignored.
4278 * The pieces of the graph that are assigned different remainders
4279 * form (groups of) strongly connected components within
4280 * the scaled down band. If needed, they can therefore
4281 * be ordered along this remainder in a sequence node.
4282 * However, this ordering is not enforced here in order to allow
4283 * the scheduler to combine some of the strongly connected components.
4285 static __isl_give isl_schedule_node *split_scaled(
4286 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4288 int i;
4289 int row;
4290 isl_ctx *ctx;
4291 isl_int gcd, gcd_i;
4292 isl_size n_row;
4294 if (!node)
4295 return NULL;
4297 ctx = isl_schedule_node_get_ctx(node);
4298 if (!ctx->opt->schedule_split_scaled)
4299 return compute_next_band(node, graph, 0);
4300 if (graph->n <= 1)
4301 return compute_next_band(node, graph, 0);
4302 n_row = isl_mat_rows(graph->node[0].sched);
4303 if (n_row < 0)
4304 return isl_schedule_node_free(node);
4306 isl_int_init(gcd);
4307 isl_int_init(gcd_i);
4309 isl_int_set_si(gcd, 0);
4311 row = n_row - 1;
4313 for (i = 0; i < graph->n; ++i) {
4314 struct isl_sched_node *node = &graph->node[i];
4315 isl_size cols = isl_mat_cols(node->sched);
4317 if (cols < 0)
4318 break;
4319 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
4320 isl_int_gcd(gcd, gcd, gcd_i);
4323 isl_int_clear(gcd_i);
4324 if (i < graph->n)
4325 goto error;
4327 if (isl_int_cmp_si(gcd, 1) <= 0) {
4328 isl_int_clear(gcd);
4329 return compute_next_band(node, graph, 0);
4332 for (i = 0; i < graph->n; ++i) {
4333 struct isl_sched_node *node = &graph->node[i];
4335 isl_int_fdiv_q(node->sched->row[row][0],
4336 node->sched->row[row][0], gcd);
4337 isl_int_mul(node->sched->row[row][0],
4338 node->sched->row[row][0], gcd);
4339 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
4340 if (!node->sched)
4341 goto error;
4344 isl_int_clear(gcd);
4346 return compute_next_band(node, graph, 0);
4347 error:
4348 isl_int_clear(gcd);
4349 return isl_schedule_node_free(node);
4352 /* Is the schedule row "sol" trivial on node "node"?
4353 * That is, is the solution zero on the dimensions linearly independent of
4354 * the previously found solutions?
4355 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
4357 * Each coefficient is represented as the difference between
4358 * two non-negative values in "sol".
4359 * We construct the schedule row s and check if it is linearly
4360 * independent of previously computed schedule rows
4361 * by computing T s, with T the linear combinations that are zero
4362 * on linearly dependent schedule rows.
4363 * If the result consists of all zeros, then the solution is trivial.
4365 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
4367 int trivial;
4368 isl_vec *node_sol;
4370 if (!sol)
4371 return -1;
4372 if (node->nvar == node->rank)
4373 return 0;
4375 node_sol = extract_var_coef(node, sol);
4376 node_sol = isl_mat_vec_product(isl_mat_copy(node->indep), node_sol);
4377 if (!node_sol)
4378 return -1;
4380 trivial = isl_seq_first_non_zero(node_sol->el,
4381 node->nvar - node->rank) == -1;
4383 isl_vec_free(node_sol);
4385 return trivial;
4388 /* Is the schedule row "sol" trivial on any node where it should
4389 * not be trivial?
4390 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
4392 static int is_any_trivial(struct isl_sched_graph *graph,
4393 __isl_keep isl_vec *sol)
4395 int i;
4397 for (i = 0; i < graph->n; ++i) {
4398 struct isl_sched_node *node = &graph->node[i];
4399 int trivial;
4401 if (!needs_row(graph, node))
4402 continue;
4403 trivial = is_trivial(node, sol);
4404 if (trivial < 0 || trivial)
4405 return trivial;
4408 return 0;
4411 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
4412 * If so, return the position of the coalesced dimension.
4413 * Otherwise, return node->nvar or -1 on error.
4415 * In particular, look for pairs of coefficients c_i and c_j such that
4416 * |c_j/c_i| > ceil(size_i/2), i.e., |c_j| > |c_i * ceil(size_i/2)|.
4417 * If any such pair is found, then return i.
4418 * If size_i is infinity, then no check on c_i needs to be performed.
4420 static int find_node_coalescing(struct isl_sched_node *node,
4421 __isl_keep isl_vec *sol)
4423 int i, j;
4424 isl_int max;
4425 isl_vec *csol;
4427 if (node->nvar <= 1)
4428 return node->nvar;
4430 csol = extract_var_coef(node, sol);
4431 if (!csol)
4432 return -1;
4433 isl_int_init(max);
4434 for (i = 0; i < node->nvar; ++i) {
4435 isl_val *v;
4437 if (isl_int_is_zero(csol->el[i]))
4438 continue;
4439 v = isl_multi_val_get_val(node->sizes, i);
4440 if (!v)
4441 goto error;
4442 if (!isl_val_is_int(v)) {
4443 isl_val_free(v);
4444 continue;
4446 v = isl_val_div_ui(v, 2);
4447 v = isl_val_ceil(v);
4448 if (!v)
4449 goto error;
4450 isl_int_mul(max, v->n, csol->el[i]);
4451 isl_val_free(v);
4453 for (j = 0; j < node->nvar; ++j) {
4454 if (j == i)
4455 continue;
4456 if (isl_int_abs_gt(csol->el[j], max))
4457 break;
4459 if (j < node->nvar)
4460 break;
4463 isl_int_clear(max);
4464 isl_vec_free(csol);
4465 return i;
4466 error:
4467 isl_int_clear(max);
4468 isl_vec_free(csol);
4469 return -1;
4472 /* Force the schedule coefficient at position "pos" of "node" to be zero
4473 * in "tl".
4474 * The coefficient is encoded as the difference between two non-negative
4475 * variables. Force these two variables to have the same value.
4477 static __isl_give isl_tab_lexmin *zero_out_node_coef(
4478 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
4480 int dim;
4481 isl_ctx *ctx;
4482 isl_vec *eq;
4484 ctx = isl_space_get_ctx(node->space);
4485 dim = isl_tab_lexmin_dim(tl);
4486 if (dim < 0)
4487 return isl_tab_lexmin_free(tl);
4488 eq = isl_vec_alloc(ctx, 1 + dim);
4489 eq = isl_vec_clr(eq);
4490 if (!eq)
4491 return isl_tab_lexmin_free(tl);
4493 pos = 1 + node_var_coef_pos(node, pos);
4494 isl_int_set_si(eq->el[pos], 1);
4495 isl_int_set_si(eq->el[pos + 1], -1);
4496 tl = isl_tab_lexmin_add_eq(tl, eq->el);
4497 isl_vec_free(eq);
4499 return tl;
4502 /* Return the lexicographically smallest rational point in the basic set
4503 * from which "tl" was constructed, double checking that this input set
4504 * was not empty.
4506 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4508 isl_vec *sol;
4510 sol = isl_tab_lexmin_get_solution(tl);
4511 if (!sol)
4512 return NULL;
4513 if (sol->size == 0)
4514 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4515 "error in schedule construction",
4516 return isl_vec_free(sol));
4517 return sol;
4520 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4521 * carry any of the "n_edge" groups of dependences?
4522 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4523 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4524 * by the edge are carried by the solution.
4525 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4526 * one of those is carried.
4528 * Note that despite the fact that the problem is solved using a rational
4529 * solver, the solution is guaranteed to be integral.
4530 * Specifically, the dependence distance lower bounds e_i (and therefore
4531 * also their sum) are integers. See Lemma 5 of [1].
4533 * Any potential denominator of the sum is cleared by this function.
4534 * The denominator is not relevant for any of the other elements
4535 * in the solution.
4537 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4538 * Problem, Part II: Multi-Dimensional Time.
4539 * In Intl. Journal of Parallel Programming, 1992.
4541 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4543 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4544 isl_int_set_si(sol->el[0], 1);
4545 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4548 /* Return the lexicographically smallest rational point in "lp",
4549 * assuming that all variables are non-negative and performing some
4550 * additional sanity checks.
4551 * If "want_integral" is set, then compute the lexicographically smallest
4552 * integer point instead.
4553 * In particular, "lp" should not be empty by construction.
4554 * Double check that this is the case.
4555 * If dependences are not carried for any of the "n_edge" edges,
4556 * then return an empty vector.
4558 * If the schedule_treat_coalescing option is set and
4559 * if the computed schedule performs loop coalescing on a given node,
4560 * i.e., if it is of the form
4562 * c_i i + c_j j + ...
4564 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4565 * to cut out this solution. Repeat this process until no more loop
4566 * coalescing occurs or until no more dependences can be carried.
4567 * In the latter case, revert to the previously computed solution.
4569 * If the caller requests an integral solution and if coalescing should
4570 * be treated, then perform the coalescing treatment first as
4571 * an integral solution computed before coalescing treatment
4572 * would carry the same number of edges and would therefore probably
4573 * also be coalescing.
4575 * To allow the coalescing treatment to be performed first,
4576 * the initial solution is allowed to be rational and it is only
4577 * cut out (if needed) in the next iteration, if no coalescing measures
4578 * were taken.
4580 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4581 __isl_take isl_basic_set *lp, int n_edge, int want_integral)
4583 int i, pos, cut;
4584 isl_ctx *ctx;
4585 isl_tab_lexmin *tl;
4586 isl_vec *sol = NULL, *prev;
4587 int treat_coalescing;
4588 int try_again;
4590 if (!lp)
4591 return NULL;
4592 ctx = isl_basic_set_get_ctx(lp);
4593 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4594 tl = isl_tab_lexmin_from_basic_set(lp);
4596 cut = 0;
4597 do {
4598 int integral;
4600 try_again = 0;
4601 if (cut)
4602 tl = isl_tab_lexmin_cut_to_integer(tl);
4603 prev = sol;
4604 sol = non_empty_solution(tl);
4605 if (!sol)
4606 goto error;
4608 integral = isl_int_is_one(sol->el[0]);
4609 if (!carries_dependences(sol, n_edge)) {
4610 if (!prev)
4611 prev = isl_vec_alloc(ctx, 0);
4612 isl_vec_free(sol);
4613 sol = prev;
4614 break;
4616 prev = isl_vec_free(prev);
4617 cut = want_integral && !integral;
4618 if (cut)
4619 try_again = 1;
4620 if (!treat_coalescing)
4621 continue;
4622 for (i = 0; i < graph->n; ++i) {
4623 struct isl_sched_node *node = &graph->node[i];
4625 pos = find_node_coalescing(node, sol);
4626 if (pos < 0)
4627 goto error;
4628 if (pos < node->nvar)
4629 break;
4631 if (i < graph->n) {
4632 try_again = 1;
4633 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4634 cut = 0;
4636 } while (try_again);
4638 isl_tab_lexmin_free(tl);
4640 return sol;
4641 error:
4642 isl_tab_lexmin_free(tl);
4643 isl_vec_free(prev);
4644 isl_vec_free(sol);
4645 return NULL;
4648 /* If "edge" is an edge from a node to itself, then add the corresponding
4649 * dependence relation to "umap".
4650 * If "node" has been compressed, then the dependence relation
4651 * is also compressed first.
4653 static __isl_give isl_union_map *add_intra(__isl_take isl_union_map *umap,
4654 struct isl_sched_edge *edge)
4656 isl_map *map;
4657 struct isl_sched_node *node = edge->src;
4659 if (edge->src != edge->dst)
4660 return umap;
4662 map = isl_map_copy(edge->map);
4663 map = compress(map, node, node);
4664 umap = isl_union_map_add_map(umap, map);
4665 return umap;
4668 /* If "edge" is an edge from a node to another node, then add the corresponding
4669 * dependence relation to "umap".
4670 * If the source or destination nodes of "edge" have been compressed,
4671 * then the dependence relation is also compressed first.
4673 static __isl_give isl_union_map *add_inter(__isl_take isl_union_map *umap,
4674 struct isl_sched_edge *edge)
4676 isl_map *map;
4678 if (edge->src == edge->dst)
4679 return umap;
4681 map = isl_map_copy(edge->map);
4682 map = compress(map, edge->src, edge->dst);
4683 umap = isl_union_map_add_map(umap, map);
4684 return umap;
4687 /* Internal data structure used by union_drop_coalescing_constraints
4688 * to collect bounds on all relevant statements.
4690 * "graph" is the schedule constraint graph for which an LP problem
4691 * is being constructed.
4692 * "bounds" collects the bounds.
4694 struct isl_collect_bounds_data {
4695 isl_ctx *ctx;
4696 struct isl_sched_graph *graph;
4697 isl_union_set *bounds;
4700 /* Add the size bounds for the node with instance deltas in "set"
4701 * to data->bounds.
4703 static isl_stat collect_bounds(__isl_take isl_set *set, void *user)
4705 struct isl_collect_bounds_data *data = user;
4706 struct isl_sched_node *node;
4707 isl_space *space;
4708 isl_set *bounds;
4710 space = isl_set_get_space(set);
4711 isl_set_free(set);
4713 node = graph_find_compressed_node(data->ctx, data->graph, space);
4714 isl_space_free(space);
4716 bounds = isl_set_from_basic_set(get_size_bounds(node));
4717 data->bounds = isl_union_set_add_set(data->bounds, bounds);
4719 return isl_stat_ok;
4722 /* Drop some constraints from "delta" that could be exploited
4723 * to construct loop coalescing schedules.
4724 * In particular, drop those constraint that bound the difference
4725 * to the size of the domain.
4726 * Do this for each set/node in "delta" separately.
4727 * The parameters are assumed to have been projected out by the caller.
4729 static __isl_give isl_union_set *union_drop_coalescing_constraints(isl_ctx *ctx,
4730 struct isl_sched_graph *graph, __isl_take isl_union_set *delta)
4732 struct isl_collect_bounds_data data = { ctx, graph };
4734 data.bounds = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4735 if (isl_union_set_foreach_set(delta, &collect_bounds, &data) < 0)
4736 data.bounds = isl_union_set_free(data.bounds);
4737 delta = isl_union_set_plain_gist(delta, data.bounds);
4739 return delta;
4742 /* Given a non-trivial lineality space "lineality", add the corresponding
4743 * universe set to data->mask and add a map from elements to
4744 * other elements along the lines in "lineality" to data->equivalent.
4745 * If this is the first time this function gets called
4746 * (data->any_non_trivial is still false), then set data->any_non_trivial and
4747 * initialize data->mask and data->equivalent.
4749 * In particular, if the lineality space is defined by equality constraints
4751 * E x = 0
4753 * then construct an affine mapping
4755 * f : x -> E x
4757 * and compute the equivalence relation of having the same image under f:
4759 * { x -> x' : E x = E x' }
4761 static isl_stat add_non_trivial_lineality(__isl_take isl_basic_set *lineality,
4762 struct isl_exploit_lineality_data *data)
4764 isl_mat *eq;
4765 isl_space *space;
4766 isl_set *univ;
4767 isl_multi_aff *ma;
4768 isl_multi_pw_aff *mpa;
4769 isl_map *map;
4770 isl_size n;
4772 if (isl_basic_set_check_no_locals(lineality) < 0)
4773 goto error;
4775 space = isl_basic_set_get_space(lineality);
4776 if (!data->any_non_trivial) {
4777 data->equivalent = isl_union_map_empty(isl_space_copy(space));
4778 data->mask = isl_union_set_empty(isl_space_copy(space));
4780 data->any_non_trivial = isl_bool_true;
4782 univ = isl_set_universe(isl_space_copy(space));
4783 data->mask = isl_union_set_add_set(data->mask, univ);
4785 eq = isl_basic_set_extract_equalities(lineality);
4786 n = isl_mat_rows(eq);
4787 if (n < 0)
4788 space = isl_space_free(space);
4789 eq = isl_mat_insert_zero_rows(eq, 0, 1);
4790 eq = isl_mat_set_element_si(eq, 0, 0, 1);
4791 space = isl_space_from_domain(space);
4792 space = isl_space_add_dims(space, isl_dim_out, n);
4793 ma = isl_multi_aff_from_aff_mat(space, eq);
4794 mpa = isl_multi_pw_aff_from_multi_aff(ma);
4795 map = isl_multi_pw_aff_eq_map(mpa, isl_multi_pw_aff_copy(mpa));
4796 data->equivalent = isl_union_map_add_map(data->equivalent, map);
4798 isl_basic_set_free(lineality);
4799 return isl_stat_ok;
4800 error:
4801 isl_basic_set_free(lineality);
4802 return isl_stat_error;
4805 /* Check if the lineality space "set" is non-trivial (i.e., is not just
4806 * the origin or, in other words, satisfies a number of equality constraints
4807 * that is smaller than the dimension of the set).
4808 * If so, extend data->mask and data->equivalent accordingly.
4810 * The input should not have any local variables already, but
4811 * isl_set_remove_divs is called to make sure it does not.
4813 static isl_stat add_lineality(__isl_take isl_set *set, void *user)
4815 struct isl_exploit_lineality_data *data = user;
4816 isl_basic_set *hull;
4817 isl_size dim;
4818 isl_size n_eq;
4820 set = isl_set_remove_divs(set);
4821 hull = isl_set_unshifted_simple_hull(set);
4822 dim = isl_basic_set_dim(hull, isl_dim_set);
4823 n_eq = isl_basic_set_n_equality(hull);
4824 if (dim < 0 || n_eq < 0)
4825 goto error;
4826 if (dim != n_eq)
4827 return add_non_trivial_lineality(hull, data);
4828 isl_basic_set_free(hull);
4829 return isl_stat_ok;
4830 error:
4831 isl_basic_set_free(hull);
4832 return isl_stat_error;
4835 /* Check if the difference set on intra-node schedule constraints "intra"
4836 * has any non-trivial lineality space.
4837 * If so, then extend the difference set to a difference set
4838 * on equivalent elements. That is, if "intra" is
4840 * { y - x : (x,y) \in V }
4842 * and elements are equivalent if they have the same image under f,
4843 * then return
4845 * { y' - x' : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4847 * or, since f is linear,
4849 * { y' - x' : (x,y) \in V and f(y - x) = f(y' - x') }
4851 * The results of the search for non-trivial lineality spaces is stored
4852 * in "data".
4854 static __isl_give isl_union_set *exploit_intra_lineality(
4855 __isl_take isl_union_set *intra,
4856 struct isl_exploit_lineality_data *data)
4858 isl_union_set *lineality;
4859 isl_union_set *uset;
4861 data->any_non_trivial = isl_bool_false;
4862 lineality = isl_union_set_copy(intra);
4863 lineality = isl_union_set_combined_lineality_space(lineality);
4864 if (isl_union_set_foreach_set(lineality, &add_lineality, data) < 0)
4865 data->any_non_trivial = isl_bool_error;
4866 isl_union_set_free(lineality);
4868 if (data->any_non_trivial < 0)
4869 return isl_union_set_free(intra);
4870 if (!data->any_non_trivial)
4871 return intra;
4873 uset = isl_union_set_copy(intra);
4874 intra = isl_union_set_subtract(intra, isl_union_set_copy(data->mask));
4875 uset = isl_union_set_apply(uset, isl_union_map_copy(data->equivalent));
4876 intra = isl_union_set_union(intra, uset);
4878 intra = isl_union_set_remove_divs(intra);
4880 return intra;
4883 /* If the difference set on intra-node schedule constraints was found to have
4884 * any non-trivial lineality space by exploit_intra_lineality,
4885 * as recorded in "data", then extend the inter-node
4886 * schedule constraints "inter" to schedule constraints on equivalent elements.
4887 * That is, if "inter" is V and
4888 * elements are equivalent if they have the same image under f, then return
4890 * { (x', y') : (x,y) \in V and f(x) = f(x') and f(y) = f(y') }
4892 static __isl_give isl_union_map *exploit_inter_lineality(
4893 __isl_take isl_union_map *inter,
4894 struct isl_exploit_lineality_data *data)
4896 isl_union_map *umap;
4898 if (data->any_non_trivial < 0)
4899 return isl_union_map_free(inter);
4900 if (!data->any_non_trivial)
4901 return inter;
4903 umap = isl_union_map_copy(inter);
4904 inter = isl_union_map_subtract_range(inter,
4905 isl_union_set_copy(data->mask));
4906 umap = isl_union_map_apply_range(umap,
4907 isl_union_map_copy(data->equivalent));
4908 inter = isl_union_map_union(inter, umap);
4909 umap = isl_union_map_copy(inter);
4910 inter = isl_union_map_subtract_domain(inter,
4911 isl_union_set_copy(data->mask));
4912 umap = isl_union_map_apply_range(isl_union_map_copy(data->equivalent),
4913 umap);
4914 inter = isl_union_map_union(inter, umap);
4916 inter = isl_union_map_remove_divs(inter);
4918 return inter;
4921 /* For each (conditional) validity edge in "graph",
4922 * add the corresponding dependence relation using "add"
4923 * to a collection of dependence relations and return the result.
4924 * If "coincidence" is set, then coincidence edges are considered as well.
4926 static __isl_give isl_union_map *collect_validity(struct isl_sched_graph *graph,
4927 __isl_give isl_union_map *(*add)(__isl_take isl_union_map *umap,
4928 struct isl_sched_edge *edge), int coincidence)
4930 int i;
4931 isl_space *space;
4932 isl_union_map *umap;
4934 space = isl_space_copy(graph->node[0].space);
4935 umap = isl_union_map_empty(space);
4937 for (i = 0; i < graph->n_edge; ++i) {
4938 struct isl_sched_edge *edge = &graph->edge[i];
4940 if (!is_any_validity(edge) &&
4941 (!coincidence || !is_coincidence(edge)))
4942 continue;
4944 umap = add(umap, edge);
4947 return umap;
4950 /* For each dependence relation on a (conditional) validity edge
4951 * from a node to itself,
4952 * construct the set of coefficients of valid constraints for elements
4953 * in that dependence relation and collect the results.
4954 * If "coincidence" is set, then coincidence edges are considered as well.
4956 * In particular, for each dependence relation R, constraints
4957 * on coefficients (c_0, c_x) are constructed such that
4959 * c_0 + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
4961 * If the schedule_treat_coalescing option is set, then some constraints
4962 * that could be exploited to construct coalescing schedules
4963 * are removed before the dual is computed, but after the parameters
4964 * have been projected out.
4965 * The entire computation is essentially the same as that performed
4966 * by intra_coefficients, except that it operates on multiple
4967 * edges together and that the parameters are always projected out.
4969 * Additionally, exploit any non-trivial lineality space
4970 * in the difference set after removing coalescing constraints and
4971 * store the results of the non-trivial lineality space detection in "data".
4972 * The procedure is currently run unconditionally, but it is unlikely
4973 * to find any non-trivial lineality spaces if no coalescing constraints
4974 * have been removed.
4976 * Note that if a dependence relation is a union of basic maps,
4977 * then each basic map needs to be treated individually as it may only
4978 * be possible to carry the dependences expressed by some of those
4979 * basic maps and not all of them.
4980 * The collected validity constraints are therefore not coalesced and
4981 * it is assumed that they are not coalesced automatically.
4982 * Duplicate basic maps can be removed, however.
4983 * In particular, if the same basic map appears as a disjunct
4984 * in multiple edges, then it only needs to be carried once.
4986 static __isl_give isl_basic_set_list *collect_intra_validity(isl_ctx *ctx,
4987 struct isl_sched_graph *graph, int coincidence,
4988 struct isl_exploit_lineality_data *data)
4990 isl_union_map *intra;
4991 isl_union_set *delta;
4992 isl_basic_set_list *list;
4994 intra = collect_validity(graph, &add_intra, coincidence);
4995 delta = isl_union_map_deltas(intra);
4996 delta = isl_union_set_project_out_all_params(delta);
4997 delta = isl_union_set_remove_divs(delta);
4998 if (isl_options_get_schedule_treat_coalescing(ctx))
4999 delta = union_drop_coalescing_constraints(ctx, graph, delta);
5000 delta = exploit_intra_lineality(delta, data);
5001 list = isl_union_set_get_basic_set_list(delta);
5002 isl_union_set_free(delta);
5004 return isl_basic_set_list_coefficients(list);
5007 /* For each dependence relation on a (conditional) validity edge
5008 * from a node to some other node,
5009 * construct the set of coefficients of valid constraints for elements
5010 * in that dependence relation and collect the results.
5011 * If "coincidence" is set, then coincidence edges are considered as well.
5013 * In particular, for each dependence relation R, constraints
5014 * on coefficients (c_0, c_n, c_x, c_y) are constructed such that
5016 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
5018 * This computation is essentially the same as that performed
5019 * by inter_coefficients, except that it operates on multiple
5020 * edges together.
5022 * Additionally, exploit any non-trivial lineality space
5023 * that may have been discovered by collect_intra_validity
5024 * (as stored in "data").
5026 * Note that if a dependence relation is a union of basic maps,
5027 * then each basic map needs to be treated individually as it may only
5028 * be possible to carry the dependences expressed by some of those
5029 * basic maps and not all of them.
5030 * The collected validity constraints are therefore not coalesced and
5031 * it is assumed that they are not coalesced automatically.
5032 * Duplicate basic maps can be removed, however.
5033 * In particular, if the same basic map appears as a disjunct
5034 * in multiple edges, then it only needs to be carried once.
5036 static __isl_give isl_basic_set_list *collect_inter_validity(
5037 struct isl_sched_graph *graph, int coincidence,
5038 struct isl_exploit_lineality_data *data)
5040 isl_union_map *inter;
5041 isl_union_set *wrap;
5042 isl_basic_set_list *list;
5044 inter = collect_validity(graph, &add_inter, coincidence);
5045 inter = exploit_inter_lineality(inter, data);
5046 inter = isl_union_map_remove_divs(inter);
5047 wrap = isl_union_map_wrap(inter);
5048 list = isl_union_set_get_basic_set_list(wrap);
5049 isl_union_set_free(wrap);
5050 return isl_basic_set_list_coefficients(list);
5053 /* Construct an LP problem for finding schedule coefficients
5054 * such that the schedule carries as many of the "n_edge" groups of
5055 * dependences as possible based on the corresponding coefficient
5056 * constraints and return the lexicographically smallest non-trivial solution.
5057 * "intra" is the sequence of coefficient constraints for intra-node edges.
5058 * "inter" is the sequence of coefficient constraints for inter-node edges.
5059 * If "want_integral" is set, then compute an integral solution
5060 * for the coefficients rather than using the numerators
5061 * of a rational solution.
5062 * "carry_inter" indicates whether inter-node edges should be carried or
5063 * only respected.
5065 * If none of the "n_edge" groups can be carried
5066 * then return an empty vector.
5068 static __isl_give isl_vec *compute_carrying_sol_coef(isl_ctx *ctx,
5069 struct isl_sched_graph *graph, int n_edge,
5070 __isl_keep isl_basic_set_list *intra,
5071 __isl_keep isl_basic_set_list *inter, int want_integral,
5072 int carry_inter)
5074 isl_basic_set *lp;
5076 if (setup_carry_lp(ctx, graph, n_edge, intra, inter, carry_inter) < 0)
5077 return NULL;
5079 lp = isl_basic_set_copy(graph->lp);
5080 return non_neg_lexmin(graph, lp, n_edge, want_integral);
5083 /* Construct an LP problem for finding schedule coefficients
5084 * such that the schedule carries as many of the validity dependences
5085 * as possible and
5086 * return the lexicographically smallest non-trivial solution.
5087 * If "fallback" is set, then the carrying is performed as a fallback
5088 * for the Pluto-like scheduler.
5089 * If "coincidence" is set, then try and carry coincidence edges as well.
5091 * The variable "n_edge" stores the number of groups that should be carried.
5092 * If none of the "n_edge" groups can be carried
5093 * then return an empty vector.
5094 * If, moreover, "n_edge" is zero, then the LP problem does not even
5095 * need to be constructed.
5097 * If a fallback solution is being computed, then compute an integral solution
5098 * for the coefficients rather than using the numerators
5099 * of a rational solution.
5101 * If a fallback solution is being computed, if there are any intra-node
5102 * dependences, and if requested by the user, then first try
5103 * to only carry those intra-node dependences.
5104 * If this fails to carry any dependences, then try again
5105 * with the inter-node dependences included.
5107 static __isl_give isl_vec *compute_carrying_sol(isl_ctx *ctx,
5108 struct isl_sched_graph *graph, int fallback, int coincidence)
5110 isl_size n_intra, n_inter;
5111 int n_edge;
5112 struct isl_carry carry = { 0 };
5113 isl_vec *sol;
5115 carry.intra = collect_intra_validity(ctx, graph, coincidence,
5116 &carry.lineality);
5117 carry.inter = collect_inter_validity(graph, coincidence,
5118 &carry.lineality);
5119 n_intra = isl_basic_set_list_n_basic_set(carry.intra);
5120 n_inter = isl_basic_set_list_n_basic_set(carry.inter);
5121 if (n_intra < 0 || n_inter < 0)
5122 goto error;
5124 if (fallback && n_intra > 0 &&
5125 isl_options_get_schedule_carry_self_first(ctx)) {
5126 sol = compute_carrying_sol_coef(ctx, graph, n_intra,
5127 carry.intra, carry.inter, fallback, 0);
5128 if (!sol || sol->size != 0 || n_inter == 0) {
5129 isl_carry_clear(&carry);
5130 return sol;
5132 isl_vec_free(sol);
5135 n_edge = n_intra + n_inter;
5136 if (n_edge == 0) {
5137 isl_carry_clear(&carry);
5138 return isl_vec_alloc(ctx, 0);
5141 sol = compute_carrying_sol_coef(ctx, graph, n_edge,
5142 carry.intra, carry.inter, fallback, 1);
5143 isl_carry_clear(&carry);
5144 return sol;
5145 error:
5146 isl_carry_clear(&carry);
5147 return NULL;
5150 /* Construct a schedule row for each node such that as many validity dependences
5151 * as possible are carried and then continue with the next band.
5152 * If "fallback" is set, then the carrying is performed as a fallback
5153 * for the Pluto-like scheduler.
5154 * If "coincidence" is set, then try and carry coincidence edges as well.
5156 * If there are no validity dependences, then no dependence can be carried and
5157 * the procedure is guaranteed to fail. If there is more than one component,
5158 * then try computing a schedule on each component separately
5159 * to prevent or at least postpone this failure.
5161 * If a schedule row is computed, then check that dependences are carried
5162 * for at least one of the edges.
5164 * If the computed schedule row turns out to be trivial on one or
5165 * more nodes where it should not be trivial, then we throw it away
5166 * and try again on each component separately.
5168 * If there is only one component, then we accept the schedule row anyway,
5169 * but we do not consider it as a complete row and therefore do not
5170 * increment graph->n_row. Note that the ranks of the nodes that
5171 * do get a non-trivial schedule part will get updated regardless and
5172 * graph->maxvar is computed based on these ranks. The test for
5173 * whether more schedule rows are required in compute_schedule_wcc
5174 * is therefore not affected.
5176 * Insert a band corresponding to the schedule row at position "node"
5177 * of the schedule tree and continue with the construction of the schedule.
5178 * This insertion and the continued construction is performed by split_scaled
5179 * after optionally checking for non-trivial common divisors.
5181 static __isl_give isl_schedule_node *carry(__isl_take isl_schedule_node *node,
5182 struct isl_sched_graph *graph, int fallback, int coincidence)
5184 int trivial;
5185 isl_ctx *ctx;
5186 isl_vec *sol;
5188 if (!node)
5189 return NULL;
5191 ctx = isl_schedule_node_get_ctx(node);
5192 sol = compute_carrying_sol(ctx, graph, fallback, coincidence);
5193 if (!sol)
5194 return isl_schedule_node_free(node);
5195 if (sol->size == 0) {
5196 isl_vec_free(sol);
5197 if (graph->scc > 1)
5198 return compute_component_schedule(node, graph, 1);
5199 isl_die(ctx, isl_error_unknown, "unable to carry dependences",
5200 return isl_schedule_node_free(node));
5203 trivial = is_any_trivial(graph, sol);
5204 if (trivial < 0) {
5205 sol = isl_vec_free(sol);
5206 } else if (trivial && graph->scc > 1) {
5207 isl_vec_free(sol);
5208 return compute_component_schedule(node, graph, 1);
5211 if (update_schedule(graph, sol, 0) < 0)
5212 return isl_schedule_node_free(node);
5213 if (trivial)
5214 graph->n_row--;
5216 return split_scaled(node, graph);
5219 /* Construct a schedule row for each node such that as many validity dependences
5220 * as possible are carried and then continue with the next band.
5221 * Do so as a fallback for the Pluto-like scheduler.
5222 * If "coincidence" is set, then try and carry coincidence edges as well.
5224 static __isl_give isl_schedule_node *carry_fallback(
5225 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5226 int coincidence)
5228 return carry(node, graph, 1, coincidence);
5231 /* Construct a schedule row for each node such that as many validity dependences
5232 * as possible are carried and then continue with the next band.
5233 * Do so for the case where the Feautrier scheduler was selected
5234 * by the user.
5236 static __isl_give isl_schedule_node *carry_feautrier(
5237 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5239 return carry(node, graph, 0, 0);
5242 /* Construct a schedule row for each node such that as many validity dependences
5243 * as possible are carried and then continue with the next band.
5244 * Do so as a fallback for the Pluto-like scheduler.
5246 static __isl_give isl_schedule_node *carry_dependences(
5247 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5249 return carry_fallback(node, graph, 0);
5252 /* Construct a schedule row for each node such that as many validity or
5253 * coincidence dependences as possible are carried and
5254 * then continue with the next band.
5255 * Do so as a fallback for the Pluto-like scheduler.
5257 static __isl_give isl_schedule_node *carry_coincidence(
5258 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5260 return carry_fallback(node, graph, 1);
5263 /* Topologically sort statements mapped to the same schedule iteration
5264 * and add insert a sequence node in front of "node"
5265 * corresponding to this order.
5266 * If "initialized" is set, then it may be assumed that
5267 * isl_sched_graph_compute_maxvar
5268 * has been called on the current band. Otherwise, call
5269 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5271 * If it turns out to be impossible to sort the statements apart,
5272 * because different dependences impose different orderings
5273 * on the statements, then we extend the schedule such that
5274 * it carries at least one more dependence.
5276 static __isl_give isl_schedule_node *sort_statements(
5277 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5278 int initialized)
5280 isl_ctx *ctx;
5281 isl_union_set_list *filters;
5283 if (!node)
5284 return NULL;
5286 ctx = isl_schedule_node_get_ctx(node);
5287 if (graph->n < 1)
5288 isl_die(ctx, isl_error_internal,
5289 "graph should have at least one node",
5290 return isl_schedule_node_free(node));
5292 if (graph->n == 1)
5293 return node;
5295 if (update_edges(ctx, graph) < 0)
5296 return isl_schedule_node_free(node);
5298 if (graph->n_edge == 0)
5299 return node;
5301 if (detect_sccs(ctx, graph) < 0)
5302 return isl_schedule_node_free(node);
5304 next_band(graph);
5305 if (graph->scc < graph->n) {
5306 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5307 return isl_schedule_node_free(node);
5308 return carry_dependences(node, graph);
5311 filters = isl_sched_graph_extract_sccs(ctx, graph);
5312 node = isl_schedule_node_insert_sequence(node, filters);
5314 return node;
5317 /* Are there any (non-empty) (conditional) validity edges in the graph?
5319 static int has_validity_edges(struct isl_sched_graph *graph)
5321 int i;
5323 for (i = 0; i < graph->n_edge; ++i) {
5324 int empty;
5326 empty = isl_map_plain_is_empty(graph->edge[i].map);
5327 if (empty < 0)
5328 return -1;
5329 if (empty)
5330 continue;
5331 if (is_any_validity(&graph->edge[i]))
5332 return 1;
5335 return 0;
5338 /* Should we apply a Feautrier step?
5339 * That is, did the user request the Feautrier algorithm and are
5340 * there any validity dependences (left)?
5342 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
5344 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
5345 return 0;
5347 return has_validity_edges(graph);
5350 /* Compute a schedule for a connected dependence graph using Feautrier's
5351 * multi-dimensional scheduling algorithm and return the updated schedule node.
5353 * The original algorithm is described in [1].
5354 * The main idea is to minimize the number of scheduling dimensions, by
5355 * trying to satisfy as many dependences as possible per scheduling dimension.
5357 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
5358 * Problem, Part II: Multi-Dimensional Time.
5359 * In Intl. Journal of Parallel Programming, 1992.
5361 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
5362 isl_schedule_node *node, struct isl_sched_graph *graph)
5364 return carry_feautrier(node, graph);
5367 /* Turn off the "local" bit on all (condition) edges.
5369 static void clear_local_edges(struct isl_sched_graph *graph)
5371 int i;
5373 for (i = 0; i < graph->n_edge; ++i)
5374 if (isl_sched_edge_is_condition(&graph->edge[i]))
5375 clear_local(&graph->edge[i]);
5378 /* Does "graph" have both condition and conditional validity edges?
5380 static int need_condition_check(struct isl_sched_graph *graph)
5382 int i;
5383 int any_condition = 0;
5384 int any_conditional_validity = 0;
5386 for (i = 0; i < graph->n_edge; ++i) {
5387 if (isl_sched_edge_is_condition(&graph->edge[i]))
5388 any_condition = 1;
5389 if (isl_sched_edge_is_conditional_validity(&graph->edge[i]))
5390 any_conditional_validity = 1;
5393 return any_condition && any_conditional_validity;
5396 /* Does "graph" contain any coincidence edge?
5398 static int has_any_coincidence(struct isl_sched_graph *graph)
5400 int i;
5402 for (i = 0; i < graph->n_edge; ++i)
5403 if (is_coincidence(&graph->edge[i]))
5404 return 1;
5406 return 0;
5409 /* Extract the final schedule row as a map with the iteration domain
5410 * of "node" as domain.
5412 static __isl_give isl_map *final_row(struct isl_sched_node *node)
5414 isl_multi_aff *ma;
5415 isl_size n_row;
5417 n_row = isl_mat_rows(node->sched);
5418 if (n_row < 0)
5419 return NULL;
5420 ma = isl_sched_node_extract_partial_schedule_multi_aff(node,
5421 n_row - 1, 1);
5422 return isl_map_from_multi_aff(ma);
5425 /* Is the conditional validity dependence in the edge with index "edge_index"
5426 * violated by the latest (i.e., final) row of the schedule?
5427 * That is, is i scheduled after j
5428 * for any conditional validity dependence i -> j?
5430 static int is_violated(struct isl_sched_graph *graph, int edge_index)
5432 isl_map *src_sched, *dst_sched, *map;
5433 struct isl_sched_edge *edge = &graph->edge[edge_index];
5434 int empty;
5436 src_sched = final_row(edge->src);
5437 dst_sched = final_row(edge->dst);
5438 map = isl_map_copy(edge->map);
5439 map = isl_map_apply_domain(map, src_sched);
5440 map = isl_map_apply_range(map, dst_sched);
5441 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
5442 empty = isl_map_is_empty(map);
5443 isl_map_free(map);
5445 if (empty < 0)
5446 return -1;
5448 return !empty;
5451 /* Does "graph" have any satisfied condition edges that
5452 * are adjacent to the conditional validity constraint with
5453 * domain "conditional_source" and range "conditional_sink"?
5455 * A satisfied condition is one that is not local.
5456 * If a condition was forced to be local already (i.e., marked as local)
5457 * then there is no need to check if it is in fact local.
5459 * Additionally, mark all adjacent condition edges found as local.
5461 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
5462 __isl_keep isl_union_set *conditional_source,
5463 __isl_keep isl_union_set *conditional_sink)
5465 int i;
5466 int any = 0;
5468 for (i = 0; i < graph->n_edge; ++i) {
5469 int adjacent, local;
5470 isl_union_map *condition;
5472 if (!isl_sched_edge_is_condition(&graph->edge[i]))
5473 continue;
5474 if (is_local(&graph->edge[i]))
5475 continue;
5477 condition = graph->edge[i].tagged_condition;
5478 adjacent = domain_intersects(condition, conditional_sink);
5479 if (adjacent >= 0 && !adjacent)
5480 adjacent = range_intersects(condition,
5481 conditional_source);
5482 if (adjacent < 0)
5483 return -1;
5484 if (!adjacent)
5485 continue;
5487 set_local(&graph->edge[i]);
5489 local = is_condition_false(&graph->edge[i]);
5490 if (local < 0)
5491 return -1;
5492 if (!local)
5493 any = 1;
5496 return any;
5499 /* Are there any violated conditional validity dependences with
5500 * adjacent condition dependences that are not local with respect
5501 * to the current schedule?
5502 * That is, is the conditional validity constraint violated?
5504 * Additionally, mark all those adjacent condition dependences as local.
5505 * We also mark those adjacent condition dependences that were not marked
5506 * as local before, but just happened to be local already. This ensures
5507 * that they remain local if the schedule is recomputed.
5509 * We first collect domain and range of all violated conditional validity
5510 * dependences and then check if there are any adjacent non-local
5511 * condition dependences.
5513 static int has_violated_conditional_constraint(isl_ctx *ctx,
5514 struct isl_sched_graph *graph)
5516 int i;
5517 int any = 0;
5518 isl_union_set *source, *sink;
5520 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5521 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
5522 for (i = 0; i < graph->n_edge; ++i) {
5523 isl_union_set *uset;
5524 isl_union_map *umap;
5525 int violated;
5527 if (!isl_sched_edge_is_conditional_validity(&graph->edge[i]))
5528 continue;
5530 violated = is_violated(graph, i);
5531 if (violated < 0)
5532 goto error;
5533 if (!violated)
5534 continue;
5536 any = 1;
5538 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5539 uset = isl_union_map_domain(umap);
5540 source = isl_union_set_union(source, uset);
5541 source = isl_union_set_coalesce(source);
5543 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
5544 uset = isl_union_map_range(umap);
5545 sink = isl_union_set_union(sink, uset);
5546 sink = isl_union_set_coalesce(sink);
5549 if (any)
5550 any = has_adjacent_true_conditions(graph, source, sink);
5552 isl_union_set_free(source);
5553 isl_union_set_free(sink);
5554 return any;
5555 error:
5556 isl_union_set_free(source);
5557 isl_union_set_free(sink);
5558 return -1;
5561 /* Examine the current band (the rows between graph->band_start and
5562 * graph->n_total_row), deciding whether to drop it or add it to "node"
5563 * and then continue with the computation of the next band, if any.
5564 * If "initialized" is set, then it may be assumed that
5565 * isl_sched_graph_compute_maxvar
5566 * has been called on the current band. Otherwise, call
5567 * isl_sched_graph_compute_maxvar if and before carry_dependences gets called.
5569 * The caller keeps looking for a new row as long as
5570 * graph->n_row < graph->maxvar. If the latest attempt to find
5571 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
5572 * then we either
5573 * - split between SCCs and start over (assuming we found an interesting
5574 * pair of SCCs between which to split)
5575 * - continue with the next band (assuming the current band has at least
5576 * one row)
5577 * - if there is more than one SCC left, then split along all SCCs
5578 * - if outer coincidence needs to be enforced, then try to carry as many
5579 * validity or coincidence dependences as possible and
5580 * continue with the next band
5581 * - try to carry as many validity dependences as possible and
5582 * continue with the next band
5583 * In each case, we first insert a band node in the schedule tree
5584 * if any rows have been computed.
5586 * If the caller managed to complete the schedule and the current band
5587 * is empty, then finish off by topologically
5588 * sorting the statements based on the remaining dependences.
5589 * If, on the other hand, the current band has at least one row,
5590 * then continue with the next band. Note that this next band
5591 * will necessarily be empty, but the graph may still be split up
5592 * into weakly connected components before arriving back here.
5594 __isl_give isl_schedule_node *isl_schedule_node_compute_finish_band(
5595 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5596 int initialized)
5598 int empty;
5600 if (!node)
5601 return NULL;
5603 empty = graph->n_total_row == graph->band_start;
5604 if (graph->n_row < graph->maxvar) {
5605 isl_ctx *ctx;
5607 ctx = isl_schedule_node_get_ctx(node);
5608 if (!ctx->opt->schedule_maximize_band_depth && !empty)
5609 return compute_next_band(node, graph, 1);
5610 if (graph->src_scc >= 0)
5611 return compute_split_schedule(node, graph);
5612 if (!empty)
5613 return compute_next_band(node, graph, 1);
5614 if (graph->scc > 1)
5615 return compute_component_schedule(node, graph, 1);
5616 if (!initialized && isl_sched_graph_compute_maxvar(graph) < 0)
5617 return isl_schedule_node_free(node);
5618 if (isl_options_get_schedule_outer_coincidence(ctx))
5619 return carry_coincidence(node, graph);
5620 return carry_dependences(node, graph);
5623 if (!empty)
5624 return compute_next_band(node, graph, 1);
5625 return sort_statements(node, graph, initialized);
5628 /* Construct a band of schedule rows for a connected dependence graph.
5629 * The caller is responsible for determining the strongly connected
5630 * components and calling isl_sched_graph_compute_maxvar first.
5632 * We try to find a sequence of as many schedule rows as possible that result
5633 * in non-negative dependence distances (independent of the previous rows
5634 * in the sequence, i.e., such that the sequence is tilable), with as
5635 * many of the initial rows as possible satisfying the coincidence constraints.
5636 * The computation stops if we can't find any more rows or if we have found
5637 * all the rows we wanted to find.
5639 * If ctx->opt->schedule_outer_coincidence is set, then we force the
5640 * outermost dimension to satisfy the coincidence constraints. If this
5641 * turns out to be impossible, we fall back on the general scheme above
5642 * and try to carry as many dependences as possible.
5644 * If "graph" contains both condition and conditional validity dependences,
5645 * then we need to check that that the conditional schedule constraint
5646 * is satisfied, i.e., there are no violated conditional validity dependences
5647 * that are adjacent to any non-local condition dependences.
5648 * If there are, then we mark all those adjacent condition dependences
5649 * as local and recompute the current band. Those dependences that
5650 * are marked local will then be forced to be local.
5651 * The initial computation is performed with no dependences marked as local.
5652 * If we are lucky, then there will be no violated conditional validity
5653 * dependences adjacent to any non-local condition dependences.
5654 * Otherwise, we mark some additional condition dependences as local and
5655 * recompute. We continue this process until there are no violations left or
5656 * until we are no longer able to compute a schedule.
5657 * Since there are only a finite number of dependences,
5658 * there will only be a finite number of iterations.
5660 isl_stat isl_schedule_node_compute_wcc_band(isl_ctx *ctx,
5661 struct isl_sched_graph *graph)
5663 int has_coincidence;
5664 int use_coincidence;
5665 int force_coincidence = 0;
5666 int check_conditional;
5668 if (sort_sccs(graph) < 0)
5669 return isl_stat_error;
5671 clear_local_edges(graph);
5672 check_conditional = need_condition_check(graph);
5673 has_coincidence = has_any_coincidence(graph);
5675 if (ctx->opt->schedule_outer_coincidence)
5676 force_coincidence = 1;
5678 use_coincidence = has_coincidence;
5679 while (graph->n_row < graph->maxvar) {
5680 isl_vec *sol;
5681 int violated;
5682 int coincident;
5684 graph->src_scc = -1;
5685 graph->dst_scc = -1;
5687 if (setup_lp(ctx, graph, use_coincidence) < 0)
5688 return isl_stat_error;
5689 sol = solve_lp(ctx, graph);
5690 if (!sol)
5691 return isl_stat_error;
5692 if (sol->size == 0) {
5693 int empty = graph->n_total_row == graph->band_start;
5695 isl_vec_free(sol);
5696 if (use_coincidence && (!force_coincidence || !empty)) {
5697 use_coincidence = 0;
5698 continue;
5700 return isl_stat_ok;
5702 coincident = !has_coincidence || use_coincidence;
5703 if (update_schedule(graph, sol, coincident) < 0)
5704 return isl_stat_error;
5706 if (!check_conditional)
5707 continue;
5708 violated = has_violated_conditional_constraint(ctx, graph);
5709 if (violated < 0)
5710 return isl_stat_error;
5711 if (!violated)
5712 continue;
5713 if (reset_band(graph) < 0)
5714 return isl_stat_error;
5715 use_coincidence = has_coincidence;
5718 return isl_stat_ok;
5721 /* Compute a schedule for a connected dependence graph by considering
5722 * the graph as a whole and return the updated schedule node.
5724 * The actual schedule rows of the current band are computed by
5725 * isl_schedule_node_compute_wcc_band. isl_schedule_node_compute_finish_band
5726 * takes care of integrating the band into "node" and continuing
5727 * the computation.
5729 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
5730 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5732 isl_ctx *ctx;
5734 if (!node)
5735 return NULL;
5737 ctx = isl_schedule_node_get_ctx(node);
5738 if (isl_schedule_node_compute_wcc_band(ctx, graph) < 0)
5739 return isl_schedule_node_free(node);
5741 return isl_schedule_node_compute_finish_band(node, graph, 1);
5744 /* Compute a schedule for a connected dependence graph and return
5745 * the updated schedule node.
5747 * If Feautrier's algorithm is selected, we first recursively try to satisfy
5748 * as many validity dependences as possible. When all validity dependences
5749 * are satisfied we extend the schedule to a full-dimensional schedule.
5751 * Call compute_schedule_wcc_whole or isl_schedule_node_compute_wcc_clustering
5752 * depending on whether the user has selected the option to try and
5753 * compute a schedule for the entire (weakly connected) component first.
5754 * If there is only a single strongly connected component (SCC), then
5755 * there is no point in trying to combine SCCs
5756 * in isl_schedule_node_compute_wcc_clustering, so compute_schedule_wcc_whole
5757 * is called instead.
5759 static __isl_give isl_schedule_node *compute_schedule_wcc(
5760 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
5762 isl_ctx *ctx;
5764 if (!node)
5765 return NULL;
5767 ctx = isl_schedule_node_get_ctx(node);
5768 if (detect_sccs(ctx, graph) < 0)
5769 return isl_schedule_node_free(node);
5771 if (isl_sched_graph_compute_maxvar(graph) < 0)
5772 return isl_schedule_node_free(node);
5774 if (need_feautrier_step(ctx, graph))
5775 return compute_schedule_wcc_feautrier(node, graph);
5777 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
5778 return compute_schedule_wcc_whole(node, graph);
5779 else
5780 return isl_schedule_node_compute_wcc_clustering(node, graph);
5783 /* Compute a schedule for each group of nodes identified by node->scc
5784 * separately and then combine them in a sequence node (or as set node
5785 * if graph->weak is set) inserted at position "node" of the schedule tree.
5786 * Return the updated schedule node.
5788 * If "wcc" is set then each of the groups belongs to a single
5789 * weakly connected component in the dependence graph so that
5790 * there is no need for compute_sub_schedule to look for weakly
5791 * connected components.
5793 * If a set node would be introduced and if the number of components
5794 * is equal to the number of nodes, then check if the schedule
5795 * is already complete. If so, a redundant set node would be introduced
5796 * (without any further descendants) stating that the statements
5797 * can be executed in arbitrary order, which is also expressed
5798 * by the absence of any node. Refrain from inserting any nodes
5799 * in this case and simply return.
5801 static __isl_give isl_schedule_node *compute_component_schedule(
5802 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
5803 int wcc)
5805 int component;
5806 isl_ctx *ctx;
5807 isl_union_set_list *filters;
5809 if (!node)
5810 return NULL;
5812 if (graph->weak && graph->scc == graph->n) {
5813 if (isl_sched_graph_compute_maxvar(graph) < 0)
5814 return isl_schedule_node_free(node);
5815 if (graph->n_row >= graph->maxvar)
5816 return node;
5819 ctx = isl_schedule_node_get_ctx(node);
5820 filters = isl_sched_graph_extract_sccs(ctx, graph);
5821 if (graph->weak)
5822 node = isl_schedule_node_insert_set(node, filters);
5823 else
5824 node = isl_schedule_node_insert_sequence(node, filters);
5826 for (component = 0; component < graph->scc; ++component) {
5827 node = isl_schedule_node_grandchild(node, component, 0);
5828 node = compute_sub_schedule(node, ctx, graph,
5829 &isl_sched_node_scc_exactly,
5830 &isl_sched_edge_scc_exactly,
5831 component, wcc);
5832 node = isl_schedule_node_grandparent(node);
5835 return node;
5838 /* Compute a schedule for the given dependence graph and insert it at "node".
5839 * Return the updated schedule node.
5841 * We first check if the graph is connected (through validity and conditional
5842 * validity dependences) and, if not, compute a schedule
5843 * for each component separately.
5844 * If the schedule_serialize_sccs option is set, then we check for strongly
5845 * connected components instead and compute a separate schedule for
5846 * each such strongly connected component.
5848 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
5849 struct isl_sched_graph *graph)
5851 isl_ctx *ctx;
5853 if (!node)
5854 return NULL;
5856 ctx = isl_schedule_node_get_ctx(node);
5857 if (isl_options_get_schedule_serialize_sccs(ctx)) {
5858 if (detect_sccs(ctx, graph) < 0)
5859 return isl_schedule_node_free(node);
5860 } else {
5861 if (detect_wccs(ctx, graph) < 0)
5862 return isl_schedule_node_free(node);
5865 if (graph->scc > 1)
5866 return compute_component_schedule(node, graph, 1);
5868 return compute_schedule_wcc(node, graph);
5871 /* Compute a schedule on sc->domain that respects the given schedule
5872 * constraints.
5874 * In particular, the schedule respects all the validity dependences.
5875 * If the default isl scheduling algorithm is used, it tries to minimize
5876 * the dependence distances over the proximity dependences.
5877 * If Feautrier's scheduling algorithm is used, the proximity dependence
5878 * distances are only minimized during the extension to a full-dimensional
5879 * schedule.
5881 * If there are any condition and conditional validity dependences,
5882 * then the conditional validity dependences may be violated inside
5883 * a tilable band, provided they have no adjacent non-local
5884 * condition dependences.
5886 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
5887 __isl_take isl_schedule_constraints *sc)
5889 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
5890 struct isl_sched_graph graph = { 0 };
5891 isl_schedule *sched;
5892 isl_schedule_node *node;
5893 isl_union_set *domain;
5894 isl_size n;
5896 sc = isl_schedule_constraints_align_params(sc);
5898 domain = isl_schedule_constraints_get_domain(sc);
5899 n = isl_union_set_n_set(domain);
5900 if (n == 0) {
5901 isl_schedule_constraints_free(sc);
5902 return isl_schedule_from_domain(domain);
5905 if (n < 0 || isl_sched_graph_init(&graph, sc) < 0)
5906 domain = isl_union_set_free(domain);
5908 node = isl_schedule_node_from_domain(domain);
5909 node = isl_schedule_node_child(node, 0);
5910 if (graph.n > 0)
5911 node = compute_schedule(node, &graph);
5912 sched = isl_schedule_node_get_schedule(node);
5913 isl_schedule_node_free(node);
5915 isl_sched_graph_free(ctx, &graph);
5916 isl_schedule_constraints_free(sc);
5918 return sched;
5921 /* Compute a schedule for the given union of domains that respects
5922 * all the validity dependences and minimizes
5923 * the dependence distances over the proximity dependences.
5925 * This function is kept for backward compatibility.
5927 __isl_give isl_schedule *isl_union_set_compute_schedule(
5928 __isl_take isl_union_set *domain,
5929 __isl_take isl_union_map *validity,
5930 __isl_take isl_union_map *proximity)
5932 isl_schedule_constraints *sc;
5934 sc = isl_schedule_constraints_on_domain(domain);
5935 sc = isl_schedule_constraints_set_validity(sc, validity);
5936 sc = isl_schedule_constraints_set_proximity(sc, proximity);
5938 return isl_schedule_constraints_compute_schedule(sc);