2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
32 #define EL_BASE qpolynomial
34 #include <isl_list_templ.c>
37 #define EL_BASE pw_qpolynomial
39 #include <isl_list_templ.c>
41 static unsigned pos(__isl_keep isl_space
*space
, enum isl_dim_type type
)
44 case isl_dim_param
: return 0;
45 case isl_dim_in
: return space
->nparam
;
46 case isl_dim_out
: return space
->nparam
+ space
->n_in
;
51 isl_bool
isl_poly_is_cst(__isl_keep isl_poly
*poly
)
54 return isl_bool_error
;
56 return isl_bool_ok(poly
->var
< 0);
59 __isl_keep isl_poly_cst
*isl_poly_as_cst(__isl_keep isl_poly
*poly
)
64 isl_assert(poly
->ctx
, poly
->var
< 0, return NULL
);
66 return (isl_poly_cst
*) poly
;
69 __isl_keep isl_poly_rec
*isl_poly_as_rec(__isl_keep isl_poly
*poly
)
74 isl_assert(poly
->ctx
, poly
->var
>= 0, return NULL
);
76 return (isl_poly_rec
*) poly
;
79 /* Compare two polynomials.
81 * Return -1 if "poly1" is "smaller" than "poly2", 1 if "poly1" is "greater"
82 * than "poly2" and 0 if they are equal.
84 static int isl_poly_plain_cmp(__isl_keep isl_poly
*poly1
,
85 __isl_keep isl_poly
*poly2
)
89 isl_poly_rec
*rec1
, *rec2
;
93 is_cst1
= isl_poly_is_cst(poly1
);
98 if (poly1
->var
!= poly2
->var
)
99 return poly1
->var
- poly2
->var
;
102 isl_poly_cst
*cst1
, *cst2
;
105 cst1
= isl_poly_as_cst(poly1
);
106 cst2
= isl_poly_as_cst(poly2
);
109 cmp
= isl_int_cmp(cst1
->n
, cst2
->n
);
112 return isl_int_cmp(cst1
->d
, cst2
->d
);
115 rec1
= isl_poly_as_rec(poly1
);
116 rec2
= isl_poly_as_rec(poly2
);
120 if (rec1
->n
!= rec2
->n
)
121 return rec1
->n
- rec2
->n
;
123 for (i
= 0; i
< rec1
->n
; ++i
) {
124 int cmp
= isl_poly_plain_cmp(rec1
->p
[i
], rec2
->p
[i
]);
132 isl_bool
isl_poly_is_equal(__isl_keep isl_poly
*poly1
,
133 __isl_keep isl_poly
*poly2
)
137 isl_poly_rec
*rec1
, *rec2
;
139 is_cst1
= isl_poly_is_cst(poly1
);
140 if (is_cst1
< 0 || !poly2
)
141 return isl_bool_error
;
143 return isl_bool_true
;
144 if (poly1
->var
!= poly2
->var
)
145 return isl_bool_false
;
147 isl_poly_cst
*cst1
, *cst2
;
149 cst1
= isl_poly_as_cst(poly1
);
150 cst2
= isl_poly_as_cst(poly2
);
152 return isl_bool_error
;
153 r
= isl_int_eq(cst1
->n
, cst2
->n
) &&
154 isl_int_eq(cst1
->d
, cst2
->d
);
155 return isl_bool_ok(r
);
158 rec1
= isl_poly_as_rec(poly1
);
159 rec2
= isl_poly_as_rec(poly2
);
161 return isl_bool_error
;
163 if (rec1
->n
!= rec2
->n
)
164 return isl_bool_false
;
166 for (i
= 0; i
< rec1
->n
; ++i
) {
167 isl_bool eq
= isl_poly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
172 return isl_bool_true
;
175 isl_bool
isl_poly_is_zero(__isl_keep isl_poly
*poly
)
180 is_cst
= isl_poly_is_cst(poly
);
181 if (is_cst
< 0 || !is_cst
)
184 cst
= isl_poly_as_cst(poly
);
186 return isl_bool_error
;
188 return isl_bool_ok(isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
));
191 int isl_poly_sgn(__isl_keep isl_poly
*poly
)
196 is_cst
= isl_poly_is_cst(poly
);
197 if (is_cst
< 0 || !is_cst
)
200 cst
= isl_poly_as_cst(poly
);
204 return isl_int_sgn(cst
->n
);
207 isl_bool
isl_poly_is_nan(__isl_keep isl_poly
*poly
)
212 is_cst
= isl_poly_is_cst(poly
);
213 if (is_cst
< 0 || !is_cst
)
216 cst
= isl_poly_as_cst(poly
);
218 return isl_bool_error
;
220 return isl_bool_ok(isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
));
223 isl_bool
isl_poly_is_infty(__isl_keep isl_poly
*poly
)
228 is_cst
= isl_poly_is_cst(poly
);
229 if (is_cst
< 0 || !is_cst
)
232 cst
= isl_poly_as_cst(poly
);
234 return isl_bool_error
;
236 return isl_bool_ok(isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
));
239 isl_bool
isl_poly_is_neginfty(__isl_keep isl_poly
*poly
)
244 is_cst
= isl_poly_is_cst(poly
);
245 if (is_cst
< 0 || !is_cst
)
248 cst
= isl_poly_as_cst(poly
);
250 return isl_bool_error
;
252 return isl_bool_ok(isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
));
255 isl_bool
isl_poly_is_one(__isl_keep isl_poly
*poly
)
261 is_cst
= isl_poly_is_cst(poly
);
262 if (is_cst
< 0 || !is_cst
)
265 cst
= isl_poly_as_cst(poly
);
267 return isl_bool_error
;
269 r
= isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
270 return isl_bool_ok(r
);
273 isl_bool
isl_poly_is_negone(__isl_keep isl_poly
*poly
)
278 is_cst
= isl_poly_is_cst(poly
);
279 if (is_cst
< 0 || !is_cst
)
282 cst
= isl_poly_as_cst(poly
);
284 return isl_bool_error
;
286 return isl_bool_ok(isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
));
289 __isl_give isl_poly_cst
*isl_poly_cst_alloc(isl_ctx
*ctx
)
293 cst
= isl_alloc_type(ctx
, struct isl_poly_cst
);
302 isl_int_init(cst
->n
);
303 isl_int_init(cst
->d
);
308 __isl_give isl_poly
*isl_poly_zero(isl_ctx
*ctx
)
312 cst
= isl_poly_cst_alloc(ctx
);
316 isl_int_set_si(cst
->n
, 0);
317 isl_int_set_si(cst
->d
, 1);
322 __isl_give isl_poly
*isl_poly_one(isl_ctx
*ctx
)
326 cst
= isl_poly_cst_alloc(ctx
);
330 isl_int_set_si(cst
->n
, 1);
331 isl_int_set_si(cst
->d
, 1);
336 __isl_give isl_poly
*isl_poly_infty(isl_ctx
*ctx
)
340 cst
= isl_poly_cst_alloc(ctx
);
344 isl_int_set_si(cst
->n
, 1);
345 isl_int_set_si(cst
->d
, 0);
350 __isl_give isl_poly
*isl_poly_neginfty(isl_ctx
*ctx
)
354 cst
= isl_poly_cst_alloc(ctx
);
358 isl_int_set_si(cst
->n
, -1);
359 isl_int_set_si(cst
->d
, 0);
364 __isl_give isl_poly
*isl_poly_nan(isl_ctx
*ctx
)
368 cst
= isl_poly_cst_alloc(ctx
);
372 isl_int_set_si(cst
->n
, 0);
373 isl_int_set_si(cst
->d
, 0);
378 __isl_give isl_poly
*isl_poly_rat_cst(isl_ctx
*ctx
, isl_int n
, isl_int d
)
382 cst
= isl_poly_cst_alloc(ctx
);
386 isl_int_set(cst
->n
, n
);
387 isl_int_set(cst
->d
, d
);
392 __isl_give isl_poly_rec
*isl_poly_alloc_rec(isl_ctx
*ctx
, int var
, int size
)
396 isl_assert(ctx
, var
>= 0, return NULL
);
397 isl_assert(ctx
, size
>= 0, return NULL
);
398 rec
= isl_calloc(ctx
, struct isl_poly_rec
,
399 sizeof(struct isl_poly_rec
) +
400 size
* sizeof(struct isl_poly
*));
415 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
416 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
)
418 qp
= isl_qpolynomial_cow(qp
);
422 isl_space_free(qp
->dim
);
427 isl_qpolynomial_free(qp
);
428 isl_space_free(space
);
432 /* Reset the space of "qp". This function is called from isl_pw_templ.c
433 * and doesn't know if the space of an element object is represented
434 * directly or through its domain. It therefore passes along both.
436 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
437 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
438 __isl_take isl_space
*domain
)
440 isl_space_free(space
);
441 return isl_qpolynomial_reset_domain_space(qp
, domain
);
444 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
446 return qp
? qp
->dim
->ctx
: NULL
;
449 /* Return the domain space of "qp".
451 static __isl_keep isl_space
*isl_qpolynomial_peek_domain_space(
452 __isl_keep isl_qpolynomial
*qp
)
454 return qp
? qp
->dim
: NULL
;
457 /* Return a copy of the domain space of "qp".
459 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
460 __isl_keep isl_qpolynomial
*qp
)
462 return isl_space_copy(isl_qpolynomial_peek_domain_space(qp
));
466 #define TYPE isl_qpolynomial
468 #define PEEK_SPACE peek_domain_space
471 #include "isl_type_has_equal_space_bin_templ.c"
473 #include "isl_type_check_equal_space_templ.c"
477 /* Return a copy of the local space on which "qp" is defined.
479 static __isl_give isl_local_space
*isl_qpolynomial_get_domain_local_space(
480 __isl_keep isl_qpolynomial
*qp
)
487 space
= isl_qpolynomial_get_domain_space(qp
);
488 return isl_local_space_alloc_div(space
, isl_mat_copy(qp
->div
));
491 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
496 space
= isl_space_copy(qp
->dim
);
497 space
= isl_space_from_domain(space
);
498 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
502 /* Return the number of variables of the given type in the domain of "qp".
504 isl_size
isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial
*qp
,
505 enum isl_dim_type type
)
510 space
= isl_qpolynomial_peek_domain_space(qp
);
513 return isl_size_error
;
514 if (type
== isl_dim_div
)
515 return qp
->div
->n_row
;
516 dim
= isl_space_dim(space
, type
);
518 return isl_size_error
;
519 if (type
== isl_dim_all
) {
522 n_div
= isl_qpolynomial_domain_dim(qp
, isl_dim_div
);
524 return isl_size_error
;
530 /* Given the type of a dimension of an isl_qpolynomial,
531 * return the type of the corresponding dimension in its domain.
532 * This function is only called for "type" equal to isl_dim_in or
535 static enum isl_dim_type
domain_type(enum isl_dim_type type
)
537 return type
== isl_dim_in
? isl_dim_set
: type
;
540 /* Externally, an isl_qpolynomial has a map space, but internally, the
541 * ls field corresponds to the domain of that space.
543 isl_size
isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
544 enum isl_dim_type type
)
547 return isl_size_error
;
548 if (type
== isl_dim_out
)
550 type
= domain_type(type
);
551 return isl_qpolynomial_domain_dim(qp
, type
);
554 /* Return the offset of the first variable of type "type" within
555 * the variables of the domain of "qp".
557 static isl_size
isl_qpolynomial_domain_var_offset(
558 __isl_keep isl_qpolynomial
*qp
, enum isl_dim_type type
)
562 space
= isl_qpolynomial_peek_domain_space(qp
);
566 case isl_dim_set
: return isl_space_offset(space
, type
);
567 case isl_dim_div
: return isl_space_dim(space
, isl_dim_all
);
570 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
571 "invalid dimension type", return isl_size_error
);
575 /* Return the offset of the first coefficient of type "type" in
576 * the domain of "qp".
578 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial
*qp
,
579 enum isl_dim_type type
)
587 return 1 + isl_qpolynomial_domain_var_offset(qp
, type
);
593 isl_bool
isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
595 return qp
? isl_poly_is_zero(qp
->poly
) : isl_bool_error
;
598 isl_bool
isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
600 return qp
? isl_poly_is_one(qp
->poly
) : isl_bool_error
;
603 isl_bool
isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
605 return qp
? isl_poly_is_nan(qp
->poly
) : isl_bool_error
;
608 isl_bool
isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
610 return qp
? isl_poly_is_infty(qp
->poly
) : isl_bool_error
;
613 isl_bool
isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
615 return qp
? isl_poly_is_neginfty(qp
->poly
) : isl_bool_error
;
618 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
620 return qp
? isl_poly_sgn(qp
->poly
) : 0;
623 static void poly_free_cst(__isl_take isl_poly_cst
*cst
)
625 isl_int_clear(cst
->n
);
626 isl_int_clear(cst
->d
);
629 static void poly_free_rec(__isl_take isl_poly_rec
*rec
)
633 for (i
= 0; i
< rec
->n
; ++i
)
634 isl_poly_free(rec
->p
[i
]);
637 __isl_give isl_poly
*isl_poly_copy(__isl_keep isl_poly
*poly
)
646 __isl_give isl_poly
*isl_poly_dup_cst(__isl_keep isl_poly
*poly
)
651 cst
= isl_poly_as_cst(poly
);
655 dup
= isl_poly_as_cst(isl_poly_zero(poly
->ctx
));
658 isl_int_set(dup
->n
, cst
->n
);
659 isl_int_set(dup
->d
, cst
->d
);
664 __isl_give isl_poly
*isl_poly_dup_rec(__isl_keep isl_poly
*poly
)
670 rec
= isl_poly_as_rec(poly
);
674 dup
= isl_poly_alloc_rec(poly
->ctx
, poly
->var
, rec
->n
);
678 for (i
= 0; i
< rec
->n
; ++i
) {
679 dup
->p
[i
] = isl_poly_copy(rec
->p
[i
]);
687 isl_poly_free(&dup
->poly
);
691 __isl_give isl_poly
*isl_poly_dup(__isl_keep isl_poly
*poly
)
695 is_cst
= isl_poly_is_cst(poly
);
699 return isl_poly_dup_cst(poly
);
701 return isl_poly_dup_rec(poly
);
704 __isl_give isl_poly
*isl_poly_cow(__isl_take isl_poly
*poly
)
712 return isl_poly_dup(poly
);
715 __isl_null isl_poly
*isl_poly_free(__isl_take isl_poly
*poly
)
724 poly_free_cst((isl_poly_cst
*) poly
);
726 poly_free_rec((isl_poly_rec
*) poly
);
728 isl_ctx_deref(poly
->ctx
);
733 static void isl_poly_cst_reduce(__isl_keep isl_poly_cst
*cst
)
738 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
739 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
740 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
741 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
746 __isl_give isl_poly
*isl_poly_sum_cst(__isl_take isl_poly
*poly1
,
747 __isl_take isl_poly
*poly2
)
752 poly1
= isl_poly_cow(poly1
);
753 if (!poly1
|| !poly2
)
756 cst1
= isl_poly_as_cst(poly1
);
757 cst2
= isl_poly_as_cst(poly2
);
759 if (isl_int_eq(cst1
->d
, cst2
->d
))
760 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
762 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
763 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
764 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
767 isl_poly_cst_reduce(cst1
);
769 isl_poly_free(poly2
);
772 isl_poly_free(poly1
);
773 isl_poly_free(poly2
);
777 static __isl_give isl_poly
*replace_by_zero(__isl_take isl_poly
*poly
)
785 return isl_poly_zero(ctx
);
788 static __isl_give isl_poly
*replace_by_constant_term(__isl_take isl_poly
*poly
)
796 rec
= isl_poly_as_rec(poly
);
799 cst
= isl_poly_copy(rec
->p
[0]);
807 __isl_give isl_poly
*isl_poly_sum(__isl_take isl_poly
*poly1
,
808 __isl_take isl_poly
*poly2
)
811 isl_bool is_zero
, is_nan
, is_cst
;
812 isl_poly_rec
*rec1
, *rec2
;
814 if (!poly1
|| !poly2
)
817 is_nan
= isl_poly_is_nan(poly1
);
821 isl_poly_free(poly2
);
825 is_nan
= isl_poly_is_nan(poly2
);
829 isl_poly_free(poly1
);
833 is_zero
= isl_poly_is_zero(poly1
);
837 isl_poly_free(poly1
);
841 is_zero
= isl_poly_is_zero(poly2
);
845 isl_poly_free(poly2
);
849 if (poly1
->var
< poly2
->var
)
850 return isl_poly_sum(poly2
, poly1
);
852 if (poly2
->var
< poly1
->var
) {
856 is_infty
= isl_poly_is_infty(poly2
);
857 if (is_infty
>= 0 && !is_infty
)
858 is_infty
= isl_poly_is_neginfty(poly2
);
862 isl_poly_free(poly1
);
865 poly1
= isl_poly_cow(poly1
);
866 rec
= isl_poly_as_rec(poly1
);
869 rec
->p
[0] = isl_poly_sum(rec
->p
[0], poly2
);
871 poly1
= replace_by_constant_term(poly1
);
875 is_cst
= isl_poly_is_cst(poly1
);
879 return isl_poly_sum_cst(poly1
, poly2
);
881 rec1
= isl_poly_as_rec(poly1
);
882 rec2
= isl_poly_as_rec(poly2
);
886 if (rec1
->n
< rec2
->n
)
887 return isl_poly_sum(poly2
, poly1
);
889 poly1
= isl_poly_cow(poly1
);
890 rec1
= isl_poly_as_rec(poly1
);
894 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
897 rec1
->p
[i
] = isl_poly_sum(rec1
->p
[i
],
898 isl_poly_copy(rec2
->p
[i
]));
901 if (i
!= rec1
->n
- 1)
903 is_zero
= isl_poly_is_zero(rec1
->p
[i
]);
907 isl_poly_free(rec1
->p
[i
]);
913 poly1
= replace_by_zero(poly1
);
914 else if (rec1
->n
== 1)
915 poly1
= replace_by_constant_term(poly1
);
917 isl_poly_free(poly2
);
921 isl_poly_free(poly1
);
922 isl_poly_free(poly2
);
926 __isl_give isl_poly
*isl_poly_cst_add_isl_int(__isl_take isl_poly
*poly
,
931 poly
= isl_poly_cow(poly
);
935 cst
= isl_poly_as_cst(poly
);
937 isl_int_addmul(cst
->n
, cst
->d
, v
);
942 __isl_give isl_poly
*isl_poly_add_isl_int(__isl_take isl_poly
*poly
, isl_int v
)
947 is_cst
= isl_poly_is_cst(poly
);
949 return isl_poly_free(poly
);
951 return isl_poly_cst_add_isl_int(poly
, v
);
953 poly
= isl_poly_cow(poly
);
954 rec
= isl_poly_as_rec(poly
);
958 rec
->p
[0] = isl_poly_add_isl_int(rec
->p
[0], v
);
968 __isl_give isl_poly
*isl_poly_cst_mul_isl_int(__isl_take isl_poly
*poly
,
974 is_zero
= isl_poly_is_zero(poly
);
976 return isl_poly_free(poly
);
980 poly
= isl_poly_cow(poly
);
984 cst
= isl_poly_as_cst(poly
);
986 isl_int_mul(cst
->n
, cst
->n
, v
);
991 __isl_give isl_poly
*isl_poly_mul_isl_int(__isl_take isl_poly
*poly
, isl_int v
)
997 is_cst
= isl_poly_is_cst(poly
);
999 return isl_poly_free(poly
);
1001 return isl_poly_cst_mul_isl_int(poly
, v
);
1003 poly
= isl_poly_cow(poly
);
1004 rec
= isl_poly_as_rec(poly
);
1008 for (i
= 0; i
< rec
->n
; ++i
) {
1009 rec
->p
[i
] = isl_poly_mul_isl_int(rec
->p
[i
], v
);
1016 isl_poly_free(poly
);
1020 /* Multiply the constant polynomial "poly" by "v".
1022 static __isl_give isl_poly
*isl_poly_cst_scale_val(__isl_take isl_poly
*poly
,
1023 __isl_keep isl_val
*v
)
1028 is_zero
= isl_poly_is_zero(poly
);
1030 return isl_poly_free(poly
);
1034 poly
= isl_poly_cow(poly
);
1038 cst
= isl_poly_as_cst(poly
);
1040 isl_int_mul(cst
->n
, cst
->n
, v
->n
);
1041 isl_int_mul(cst
->d
, cst
->d
, v
->d
);
1042 isl_poly_cst_reduce(cst
);
1047 /* Multiply the polynomial "poly" by "v".
1049 static __isl_give isl_poly
*isl_poly_scale_val(__isl_take isl_poly
*poly
,
1050 __isl_keep isl_val
*v
)
1056 is_cst
= isl_poly_is_cst(poly
);
1058 return isl_poly_free(poly
);
1060 return isl_poly_cst_scale_val(poly
, v
);
1062 poly
= isl_poly_cow(poly
);
1063 rec
= isl_poly_as_rec(poly
);
1067 for (i
= 0; i
< rec
->n
; ++i
) {
1068 rec
->p
[i
] = isl_poly_scale_val(rec
->p
[i
], v
);
1075 isl_poly_free(poly
);
1079 __isl_give isl_poly
*isl_poly_mul_cst(__isl_take isl_poly
*poly1
,
1080 __isl_take isl_poly
*poly2
)
1085 poly1
= isl_poly_cow(poly1
);
1086 if (!poly1
|| !poly2
)
1089 cst1
= isl_poly_as_cst(poly1
);
1090 cst2
= isl_poly_as_cst(poly2
);
1092 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
1093 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
1095 isl_poly_cst_reduce(cst1
);
1097 isl_poly_free(poly2
);
1100 isl_poly_free(poly1
);
1101 isl_poly_free(poly2
);
1105 __isl_give isl_poly
*isl_poly_mul_rec(__isl_take isl_poly
*poly1
,
1106 __isl_take isl_poly
*poly2
)
1110 isl_poly_rec
*res
= NULL
;
1114 rec1
= isl_poly_as_rec(poly1
);
1115 rec2
= isl_poly_as_rec(poly2
);
1118 size
= rec1
->n
+ rec2
->n
- 1;
1119 res
= isl_poly_alloc_rec(poly1
->ctx
, poly1
->var
, size
);
1123 for (i
= 0; i
< rec1
->n
; ++i
) {
1124 res
->p
[i
] = isl_poly_mul(isl_poly_copy(rec2
->p
[0]),
1125 isl_poly_copy(rec1
->p
[i
]));
1130 for (; i
< size
; ++i
) {
1131 res
->p
[i
] = isl_poly_zero(poly1
->ctx
);
1136 for (i
= 0; i
< rec1
->n
; ++i
) {
1137 for (j
= 1; j
< rec2
->n
; ++j
) {
1139 poly
= isl_poly_mul(isl_poly_copy(rec2
->p
[j
]),
1140 isl_poly_copy(rec1
->p
[i
]));
1141 res
->p
[i
+ j
] = isl_poly_sum(res
->p
[i
+ j
], poly
);
1147 isl_poly_free(poly1
);
1148 isl_poly_free(poly2
);
1152 isl_poly_free(poly1
);
1153 isl_poly_free(poly2
);
1154 isl_poly_free(&res
->poly
);
1158 __isl_give isl_poly
*isl_poly_mul(__isl_take isl_poly
*poly1
,
1159 __isl_take isl_poly
*poly2
)
1161 isl_bool is_zero
, is_nan
, is_one
, is_cst
;
1163 if (!poly1
|| !poly2
)
1166 is_nan
= isl_poly_is_nan(poly1
);
1170 isl_poly_free(poly2
);
1174 is_nan
= isl_poly_is_nan(poly2
);
1178 isl_poly_free(poly1
);
1182 is_zero
= isl_poly_is_zero(poly1
);
1186 isl_poly_free(poly2
);
1190 is_zero
= isl_poly_is_zero(poly2
);
1194 isl_poly_free(poly1
);
1198 is_one
= isl_poly_is_one(poly1
);
1202 isl_poly_free(poly1
);
1206 is_one
= isl_poly_is_one(poly2
);
1210 isl_poly_free(poly2
);
1214 if (poly1
->var
< poly2
->var
)
1215 return isl_poly_mul(poly2
, poly1
);
1217 if (poly2
->var
< poly1
->var
) {
1222 is_infty
= isl_poly_is_infty(poly2
);
1223 if (is_infty
>= 0 && !is_infty
)
1224 is_infty
= isl_poly_is_neginfty(poly2
);
1228 isl_ctx
*ctx
= poly1
->ctx
;
1229 isl_poly_free(poly1
);
1230 isl_poly_free(poly2
);
1231 return isl_poly_nan(ctx
);
1233 poly1
= isl_poly_cow(poly1
);
1234 rec
= isl_poly_as_rec(poly1
);
1238 for (i
= 0; i
< rec
->n
; ++i
) {
1239 rec
->p
[i
] = isl_poly_mul(rec
->p
[i
],
1240 isl_poly_copy(poly2
));
1244 isl_poly_free(poly2
);
1248 is_cst
= isl_poly_is_cst(poly1
);
1252 return isl_poly_mul_cst(poly1
, poly2
);
1254 return isl_poly_mul_rec(poly1
, poly2
);
1256 isl_poly_free(poly1
);
1257 isl_poly_free(poly2
);
1261 __isl_give isl_poly
*isl_poly_pow(__isl_take isl_poly
*poly
, unsigned power
)
1271 res
= isl_poly_copy(poly
);
1273 res
= isl_poly_one(poly
->ctx
);
1275 while (power
>>= 1) {
1276 poly
= isl_poly_mul(poly
, isl_poly_copy(poly
));
1278 res
= isl_poly_mul(res
, isl_poly_copy(poly
));
1281 isl_poly_free(poly
);
1285 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*space
,
1286 unsigned n_div
, __isl_take isl_poly
*poly
)
1288 struct isl_qpolynomial
*qp
= NULL
;
1291 total
= isl_space_dim(space
, isl_dim_all
);
1292 if (total
< 0 || !poly
)
1295 if (!isl_space_is_set(space
))
1296 isl_die(isl_space_get_ctx(space
), isl_error_invalid
,
1297 "domain of polynomial should be a set", goto error
);
1299 qp
= isl_calloc_type(space
->ctx
, struct isl_qpolynomial
);
1304 qp
->div
= isl_mat_alloc(space
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1313 isl_space_free(space
);
1314 isl_poly_free(poly
);
1315 isl_qpolynomial_free(qp
);
1319 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1328 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1330 struct isl_qpolynomial
*dup
;
1335 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1336 isl_poly_copy(qp
->poly
));
1339 isl_mat_free(dup
->div
);
1340 dup
->div
= isl_mat_copy(qp
->div
);
1346 isl_qpolynomial_free(dup
);
1350 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1358 return isl_qpolynomial_dup(qp
);
1361 __isl_null isl_qpolynomial
*isl_qpolynomial_free(
1362 __isl_take isl_qpolynomial
*qp
)
1370 isl_space_free(qp
->dim
);
1371 isl_mat_free(qp
->div
);
1372 isl_poly_free(qp
->poly
);
1378 __isl_give isl_poly
*isl_poly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1384 rec
= isl_poly_alloc_rec(ctx
, pos
, 1 + power
);
1387 for (i
= 0; i
< 1 + power
; ++i
) {
1388 rec
->p
[i
] = isl_poly_zero(ctx
);
1393 cst
= isl_poly_as_cst(rec
->p
[power
]);
1394 isl_int_set_si(cst
->n
, 1);
1398 isl_poly_free(&rec
->poly
);
1402 /* r array maps original positions to new positions.
1404 static __isl_give isl_poly
*reorder(__isl_take isl_poly
*poly
, int *r
)
1412 is_cst
= isl_poly_is_cst(poly
);
1414 return isl_poly_free(poly
);
1418 rec
= isl_poly_as_rec(poly
);
1422 isl_assert(poly
->ctx
, rec
->n
>= 1, goto error
);
1424 base
= isl_poly_var_pow(poly
->ctx
, r
[poly
->var
], 1);
1425 res
= reorder(isl_poly_copy(rec
->p
[rec
->n
- 1]), r
);
1427 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1428 res
= isl_poly_mul(res
, isl_poly_copy(base
));
1429 res
= isl_poly_sum(res
, reorder(isl_poly_copy(rec
->p
[i
]), r
));
1432 isl_poly_free(base
);
1433 isl_poly_free(poly
);
1437 isl_poly_free(poly
);
1441 static isl_bool
compatible_divs(__isl_keep isl_mat
*div1
,
1442 __isl_keep isl_mat
*div2
)
1447 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1448 div1
->n_col
>= div2
->n_col
,
1449 return isl_bool_error
);
1451 if (div1
->n_row
== div2
->n_row
)
1452 return isl_mat_is_equal(div1
, div2
);
1454 n_row
= div1
->n_row
;
1455 n_col
= div1
->n_col
;
1456 div1
->n_row
= div2
->n_row
;
1457 div1
->n_col
= div2
->n_col
;
1459 equal
= isl_mat_is_equal(div1
, div2
);
1461 div1
->n_row
= n_row
;
1462 div1
->n_col
= n_col
;
1467 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1471 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1472 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1477 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1480 struct isl_div_sort_info
{
1485 static int div_sort_cmp(const void *p1
, const void *p2
)
1487 const struct isl_div_sort_info
*i1
, *i2
;
1488 i1
= (const struct isl_div_sort_info
*) p1
;
1489 i2
= (const struct isl_div_sort_info
*) p2
;
1491 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1494 /* Sort divs and remove duplicates.
1496 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1501 struct isl_div_sort_info
*array
= NULL
;
1502 int *pos
= NULL
, *at
= NULL
;
1503 int *reordering
= NULL
;
1508 if (qp
->div
->n_row
<= 1)
1511 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
1513 return isl_qpolynomial_free(qp
);
1515 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1517 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1518 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1519 len
= qp
->div
->n_col
- 2;
1520 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1521 if (!array
|| !pos
|| !at
|| !reordering
)
1524 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1525 array
[i
].div
= qp
->div
;
1531 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1534 for (i
= 0; i
< div_pos
; ++i
)
1537 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1538 if (pos
[array
[i
].row
] == i
)
1540 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1541 pos
[at
[i
]] = pos
[array
[i
].row
];
1542 at
[pos
[array
[i
].row
]] = at
[i
];
1543 at
[i
] = array
[i
].row
;
1544 pos
[array
[i
].row
] = i
;
1548 for (i
= 0; i
< len
- div_pos
; ++i
) {
1550 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1551 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1552 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1553 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1554 2 + div_pos
+ i
- skip
);
1555 qp
->div
= isl_mat_drop_cols(qp
->div
,
1556 2 + div_pos
+ i
- skip
, 1);
1559 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1562 qp
->poly
= reorder(qp
->poly
, reordering
);
1564 if (!qp
->poly
|| !qp
->div
)
1578 isl_qpolynomial_free(qp
);
1582 static __isl_give isl_poly
*expand(__isl_take isl_poly
*poly
, int *exp
,
1589 is_cst
= isl_poly_is_cst(poly
);
1591 return isl_poly_free(poly
);
1595 if (poly
->var
< first
)
1598 if (exp
[poly
->var
- first
] == poly
->var
- first
)
1601 poly
= isl_poly_cow(poly
);
1605 poly
->var
= exp
[poly
->var
- first
] + first
;
1607 rec
= isl_poly_as_rec(poly
);
1611 for (i
= 0; i
< rec
->n
; ++i
) {
1612 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1619 isl_poly_free(poly
);
1623 static __isl_give isl_qpolynomial
*with_merged_divs(
1624 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1625 __isl_take isl_qpolynomial
*qp2
),
1626 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1630 isl_mat
*div
= NULL
;
1633 qp1
= isl_qpolynomial_cow(qp1
);
1634 qp2
= isl_qpolynomial_cow(qp2
);
1639 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1640 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1642 n_div1
= qp1
->div
->n_row
;
1643 n_div2
= qp2
->div
->n_row
;
1644 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, n_div1
);
1645 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, n_div2
);
1646 if ((n_div1
&& !exp1
) || (n_div2
&& !exp2
))
1649 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1653 isl_mat_free(qp1
->div
);
1654 qp1
->div
= isl_mat_copy(div
);
1655 isl_mat_free(qp2
->div
);
1656 qp2
->div
= isl_mat_copy(div
);
1658 qp1
->poly
= expand(qp1
->poly
, exp1
, div
->n_col
- div
->n_row
- 2);
1659 qp2
->poly
= expand(qp2
->poly
, exp2
, div
->n_col
- div
->n_row
- 2);
1661 if (!qp1
->poly
|| !qp2
->poly
)
1668 return fn(qp1
, qp2
);
1673 isl_qpolynomial_free(qp1
);
1674 isl_qpolynomial_free(qp2
);
1678 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1679 __isl_take isl_qpolynomial
*qp2
)
1681 isl_bool compatible
;
1683 qp1
= isl_qpolynomial_cow(qp1
);
1685 if (isl_qpolynomial_check_equal_space(qp1
, qp2
) < 0)
1688 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1689 return isl_qpolynomial_add(qp2
, qp1
);
1691 compatible
= compatible_divs(qp1
->div
, qp2
->div
);
1695 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1697 qp1
->poly
= isl_poly_sum(qp1
->poly
, isl_poly_copy(qp2
->poly
));
1701 isl_qpolynomial_free(qp2
);
1705 isl_qpolynomial_free(qp1
);
1706 isl_qpolynomial_free(qp2
);
1710 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1711 __isl_keep isl_set
*dom
,
1712 __isl_take isl_qpolynomial
*qp1
,
1713 __isl_take isl_qpolynomial
*qp2
)
1715 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1716 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1720 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1721 __isl_take isl_qpolynomial
*qp2
)
1723 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1726 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1727 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1729 if (isl_int_is_zero(v
))
1732 qp
= isl_qpolynomial_cow(qp
);
1736 qp
->poly
= isl_poly_add_isl_int(qp
->poly
, v
);
1742 isl_qpolynomial_free(qp
);
1747 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1752 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1755 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1756 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1758 if (isl_int_is_one(v
))
1761 if (qp
&& isl_int_is_zero(v
)) {
1762 isl_qpolynomial
*zero
;
1763 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1764 isl_qpolynomial_free(qp
);
1768 qp
= isl_qpolynomial_cow(qp
);
1772 qp
->poly
= isl_poly_mul_isl_int(qp
->poly
, v
);
1778 isl_qpolynomial_free(qp
);
1782 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1783 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1785 return isl_qpolynomial_mul_isl_int(qp
, v
);
1788 /* Multiply "qp" by "v".
1790 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_val(
1791 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1796 if (!isl_val_is_rat(v
))
1797 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1798 "expecting rational factor", goto error
);
1800 if (isl_val_is_one(v
)) {
1805 if (isl_val_is_zero(v
)) {
1808 space
= isl_qpolynomial_get_domain_space(qp
);
1809 isl_qpolynomial_free(qp
);
1811 return isl_qpolynomial_zero_on_domain(space
);
1814 qp
= isl_qpolynomial_cow(qp
);
1818 qp
->poly
= isl_poly_scale_val(qp
->poly
, v
);
1820 qp
= isl_qpolynomial_free(qp
);
1826 isl_qpolynomial_free(qp
);
1830 /* Divide "qp" by "v".
1832 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_down_val(
1833 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1838 if (!isl_val_is_rat(v
))
1839 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1840 "expecting rational factor", goto error
);
1841 if (isl_val_is_zero(v
))
1842 isl_die(isl_val_get_ctx(v
), isl_error_invalid
,
1843 "cannot scale down by zero", goto error
);
1845 return isl_qpolynomial_scale_val(qp
, isl_val_inv(v
));
1848 isl_qpolynomial_free(qp
);
1852 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1853 __isl_take isl_qpolynomial
*qp2
)
1855 isl_bool compatible
;
1857 qp1
= isl_qpolynomial_cow(qp1
);
1859 if (isl_qpolynomial_check_equal_space(qp1
, qp2
) < 0)
1862 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1863 return isl_qpolynomial_mul(qp2
, qp1
);
1865 compatible
= compatible_divs(qp1
->div
, qp2
->div
);
1869 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1871 qp1
->poly
= isl_poly_mul(qp1
->poly
, isl_poly_copy(qp2
->poly
));
1875 isl_qpolynomial_free(qp2
);
1879 isl_qpolynomial_free(qp1
);
1880 isl_qpolynomial_free(qp2
);
1884 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1887 qp
= isl_qpolynomial_cow(qp
);
1892 qp
->poly
= isl_poly_pow(qp
->poly
, power
);
1898 isl_qpolynomial_free(qp
);
1902 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1903 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1910 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1914 for (i
= 0; i
< pwqp
->n
; ++i
) {
1915 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1917 return isl_pw_qpolynomial_free(pwqp
);
1923 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1924 __isl_take isl_space
*domain
)
1928 return isl_qpolynomial_alloc(domain
, 0, isl_poly_zero(domain
->ctx
));
1931 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1932 __isl_take isl_space
*domain
)
1936 return isl_qpolynomial_alloc(domain
, 0, isl_poly_one(domain
->ctx
));
1939 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1940 __isl_take isl_space
*domain
)
1944 return isl_qpolynomial_alloc(domain
, 0, isl_poly_infty(domain
->ctx
));
1947 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1948 __isl_take isl_space
*domain
)
1952 return isl_qpolynomial_alloc(domain
, 0, isl_poly_neginfty(domain
->ctx
));
1955 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1956 __isl_take isl_space
*domain
)
1960 return isl_qpolynomial_alloc(domain
, 0, isl_poly_nan(domain
->ctx
));
1963 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1964 __isl_take isl_space
*domain
,
1967 struct isl_qpolynomial
*qp
;
1970 qp
= isl_qpolynomial_zero_on_domain(domain
);
1974 cst
= isl_poly_as_cst(qp
->poly
);
1975 isl_int_set(cst
->n
, v
);
1980 isl_bool
isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1981 isl_int
*n
, isl_int
*d
)
1987 return isl_bool_error
;
1989 is_cst
= isl_poly_is_cst(qp
->poly
);
1990 if (is_cst
< 0 || !is_cst
)
1993 cst
= isl_poly_as_cst(qp
->poly
);
1995 return isl_bool_error
;
1998 isl_int_set(*n
, cst
->n
);
2000 isl_int_set(*d
, cst
->d
);
2002 return isl_bool_true
;
2005 /* Return the constant term of "poly".
2007 static __isl_give isl_val
*isl_poly_get_constant_val(__isl_keep isl_poly
*poly
)
2015 while ((is_cst
= isl_poly_is_cst(poly
)) == isl_bool_false
) {
2018 rec
= isl_poly_as_rec(poly
);
2026 cst
= isl_poly_as_cst(poly
);
2029 return isl_val_rat_from_isl_int(cst
->poly
.ctx
, cst
->n
, cst
->d
);
2032 /* Return the constant term of "qp".
2034 __isl_give isl_val
*isl_qpolynomial_get_constant_val(
2035 __isl_keep isl_qpolynomial
*qp
)
2040 return isl_poly_get_constant_val(qp
->poly
);
2043 isl_bool
isl_poly_is_affine(__isl_keep isl_poly
*poly
)
2049 return isl_bool_error
;
2052 return isl_bool_true
;
2054 rec
= isl_poly_as_rec(poly
);
2056 return isl_bool_error
;
2059 return isl_bool_false
;
2061 isl_assert(poly
->ctx
, rec
->n
> 1, return isl_bool_error
);
2063 is_cst
= isl_poly_is_cst(rec
->p
[1]);
2064 if (is_cst
< 0 || !is_cst
)
2067 return isl_poly_is_affine(rec
->p
[0]);
2070 isl_bool
isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
2073 return isl_bool_error
;
2075 if (qp
->div
->n_row
> 0)
2076 return isl_bool_false
;
2078 return isl_poly_is_affine(qp
->poly
);
2081 static void update_coeff(__isl_keep isl_vec
*aff
,
2082 __isl_keep isl_poly_cst
*cst
, int pos
)
2087 if (isl_int_is_zero(cst
->n
))
2092 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
2093 isl_int_divexact(f
, cst
->d
, gcd
);
2094 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
2095 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
2096 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
2101 int isl_poly_update_affine(__isl_keep isl_poly
*poly
, __isl_keep isl_vec
*aff
)
2109 if (poly
->var
< 0) {
2112 cst
= isl_poly_as_cst(poly
);
2115 update_coeff(aff
, cst
, 0);
2119 rec
= isl_poly_as_rec(poly
);
2122 isl_assert(poly
->ctx
, rec
->n
== 2, return -1);
2124 cst
= isl_poly_as_cst(rec
->p
[1]);
2127 update_coeff(aff
, cst
, 1 + poly
->var
);
2129 return isl_poly_update_affine(rec
->p
[0], aff
);
2132 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
2133 __isl_keep isl_qpolynomial
*qp
)
2138 d
= isl_qpolynomial_domain_dim(qp
, isl_dim_all
);
2142 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
);
2146 isl_seq_clr(aff
->el
+ 1, 1 + d
);
2147 isl_int_set_si(aff
->el
[0], 1);
2149 if (isl_poly_update_affine(qp
->poly
, aff
) < 0)
2158 /* Compare two quasi-polynomials.
2160 * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2161 * than "qp2" and 0 if they are equal.
2163 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial
*qp1
,
2164 __isl_keep isl_qpolynomial
*qp2
)
2175 cmp
= isl_space_cmp(qp1
->dim
, qp2
->dim
);
2179 cmp
= isl_local_cmp(qp1
->div
, qp2
->div
);
2183 return isl_poly_plain_cmp(qp1
->poly
, qp2
->poly
);
2186 /* Is "qp1" obviously equal to "qp2"?
2188 * NaN is not equal to anything, not even to another NaN.
2190 isl_bool
isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
2191 __isl_keep isl_qpolynomial
*qp2
)
2196 return isl_bool_error
;
2198 if (isl_qpolynomial_is_nan(qp1
) || isl_qpolynomial_is_nan(qp2
))
2199 return isl_bool_false
;
2201 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
2202 if (equal
< 0 || !equal
)
2205 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
2206 if (equal
< 0 || !equal
)
2209 return isl_poly_is_equal(qp1
->poly
, qp2
->poly
);
2212 static isl_stat
poly_update_den(__isl_keep isl_poly
*poly
, isl_int
*d
)
2218 is_cst
= isl_poly_is_cst(poly
);
2220 return isl_stat_error
;
2223 cst
= isl_poly_as_cst(poly
);
2225 return isl_stat_error
;
2226 isl_int_lcm(*d
, *d
, cst
->d
);
2230 rec
= isl_poly_as_rec(poly
);
2232 return isl_stat_error
;
2234 for (i
= 0; i
< rec
->n
; ++i
)
2235 poly_update_den(rec
->p
[i
], d
);
2240 __isl_give isl_val
*isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
)
2246 d
= isl_val_one(isl_qpolynomial_get_ctx(qp
));
2249 if (poly_update_den(qp
->poly
, &d
->n
) < 0)
2250 return isl_val_free(d
);
2254 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
2255 __isl_take isl_space
*domain
, int pos
, int power
)
2257 struct isl_ctx
*ctx
;
2264 return isl_qpolynomial_alloc(domain
, 0,
2265 isl_poly_var_pow(ctx
, pos
, power
));
2268 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(
2269 __isl_take isl_space
*domain
, enum isl_dim_type type
, unsigned pos
)
2273 if (isl_space_check_is_set(domain
) < 0)
2275 if (isl_space_check_range(domain
, type
, pos
, 1) < 0)
2278 off
= isl_space_offset(domain
, type
);
2282 return isl_qpolynomial_var_pow_on_domain(domain
, off
+ pos
, 1);
2284 isl_space_free(domain
);
2288 __isl_give isl_poly
*isl_poly_subs(__isl_take isl_poly
*poly
,
2289 unsigned first
, unsigned n
, __isl_keep isl_poly
**subs
)
2294 isl_poly
*base
, *res
;
2296 is_cst
= isl_poly_is_cst(poly
);
2298 return isl_poly_free(poly
);
2302 if (poly
->var
< first
)
2305 rec
= isl_poly_as_rec(poly
);
2309 isl_assert(poly
->ctx
, rec
->n
>= 1, goto error
);
2311 if (poly
->var
>= first
+ n
)
2312 base
= isl_poly_var_pow(poly
->ctx
, poly
->var
, 1);
2314 base
= isl_poly_copy(subs
[poly
->var
- first
]);
2316 res
= isl_poly_subs(isl_poly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
2317 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2319 t
= isl_poly_subs(isl_poly_copy(rec
->p
[i
]), first
, n
, subs
);
2320 res
= isl_poly_mul(res
, isl_poly_copy(base
));
2321 res
= isl_poly_sum(res
, t
);
2324 isl_poly_free(base
);
2325 isl_poly_free(poly
);
2329 isl_poly_free(poly
);
2333 __isl_give isl_poly
*isl_poly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
2334 isl_int denom
, unsigned len
)
2339 isl_assert(ctx
, len
>= 1, return NULL
);
2341 poly
= isl_poly_rat_cst(ctx
, f
[0], denom
);
2342 for (i
= 0; i
< len
- 1; ++i
) {
2346 if (isl_int_is_zero(f
[1 + i
]))
2349 c
= isl_poly_rat_cst(ctx
, f
[1 + i
], denom
);
2350 t
= isl_poly_var_pow(ctx
, i
, 1);
2351 t
= isl_poly_mul(c
, t
);
2352 poly
= isl_poly_sum(poly
, t
);
2358 /* Remove common factor of non-constant terms and denominator.
2360 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
2362 isl_ctx
*ctx
= qp
->div
->ctx
;
2363 unsigned total
= qp
->div
->n_col
- 2;
2365 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
2366 isl_int_gcd(ctx
->normalize_gcd
,
2367 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
2368 if (isl_int_is_one(ctx
->normalize_gcd
))
2371 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
2372 ctx
->normalize_gcd
, total
);
2373 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
2374 ctx
->normalize_gcd
);
2375 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
2376 ctx
->normalize_gcd
);
2379 /* Replace the integer division identified by "div" by the polynomial "s".
2380 * The integer division is assumed not to appear in the definition
2381 * of any other integer divisions.
2383 static __isl_give isl_qpolynomial
*substitute_div(
2384 __isl_take isl_qpolynomial
*qp
, int div
, __isl_take isl_poly
*s
)
2394 qp
= isl_qpolynomial_cow(qp
);
2398 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
2401 qp
->poly
= isl_poly_subs(qp
->poly
, div_pos
+ div
, 1, &s
);
2405 ctx
= isl_qpolynomial_get_ctx(qp
);
2406 reordering
= isl_alloc_array(ctx
, int, div_pos
+ qp
->div
->n_row
);
2409 for (i
= 0; i
< div_pos
+ div
; ++i
)
2411 for (i
= div_pos
+ div
+ 1; i
< div_pos
+ qp
->div
->n_row
; ++i
)
2412 reordering
[i
] = i
- 1;
2413 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
2414 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + div_pos
+ div
, 1);
2415 qp
->poly
= reorder(qp
->poly
, reordering
);
2418 if (!qp
->poly
|| !qp
->div
)
2424 isl_qpolynomial_free(qp
);
2429 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2430 * divisions because d is equal to 1 by their definition, i.e., e.
2432 static __isl_give isl_qpolynomial
*substitute_non_divs(
2433 __isl_take isl_qpolynomial
*qp
)
2439 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
2441 return isl_qpolynomial_free(qp
);
2443 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
2444 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
2446 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
2447 if (isl_int_is_zero(qp
->div
->row
[j
][2 + div_pos
+ i
]))
2449 isl_seq_combine(qp
->div
->row
[j
] + 1,
2450 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
2451 qp
->div
->row
[j
][2 + div_pos
+ i
],
2452 qp
->div
->row
[i
] + 1, 1 + div_pos
+ i
);
2453 isl_int_set_si(qp
->div
->row
[j
][2 + div_pos
+ i
], 0);
2454 normalize_div(qp
, j
);
2456 s
= isl_poly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
2457 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
2458 qp
= substitute_div(qp
, i
, s
);
2465 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2466 * with d the denominator. When replacing the coefficient e of x by
2467 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2468 * inside the division, so we need to add floor(e/d) * x outside.
2469 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2470 * to adjust the coefficient of x in each later div that depends on the
2471 * current div "div" and also in the affine expressions in the rows of "mat"
2472 * (if they too depend on "div").
2474 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2475 __isl_keep isl_mat
**mat
)
2479 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2482 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2483 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2484 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2486 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2487 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2488 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2489 *mat
= isl_mat_col_addmul(*mat
, i
, v
, 1 + total
+ div
);
2490 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2491 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2493 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2494 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2500 /* Check if the last non-zero coefficient is bigger that half of the
2501 * denominator. If so, we will invert the div to further reduce the number
2502 * of distinct divs that may appear.
2503 * If the last non-zero coefficient is exactly half the denominator,
2504 * then we continue looking for earlier coefficients that are bigger
2505 * than half the denominator.
2507 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2512 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2513 if (isl_int_is_zero(div
->row
[row
][i
]))
2515 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2516 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2517 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2527 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2528 * We only invert the coefficients of e (and the coefficient of q in
2529 * later divs and in the rows of "mat"). After calling this function, the
2530 * coefficients of e should be reduced again.
2532 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2533 __isl_keep isl_mat
**mat
)
2535 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2537 isl_seq_neg(qp
->div
->row
[div
] + 1,
2538 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2539 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2540 isl_int_add(qp
->div
->row
[div
][1],
2541 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2542 *mat
= isl_mat_col_neg(*mat
, 1 + total
+ div
);
2543 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2544 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2547 /* Reduce all divs of "qp" to have coefficients
2548 * in the interval [0, d-1], with d the denominator and such that the
2549 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2550 * The modifications to the integer divisions need to be reflected
2551 * in the factors of the polynomial that refer to the original
2552 * integer divisions. To this end, the modifications are collected
2553 * as a set of affine expressions and then plugged into the polynomial.
2555 * After the reduction, some divs may have become redundant or identical,
2556 * so we call substitute_non_divs and sort_divs. If these functions
2557 * eliminate divs or merge two or more divs into one, the coefficients
2558 * of the enclosing divs may have to be reduced again, so we call
2559 * ourselves recursively if the number of divs decreases.
2561 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2568 isl_size n_div
, total
, new_n_div
;
2570 total
= isl_qpolynomial_domain_dim(qp
, isl_dim_all
);
2571 n_div
= isl_qpolynomial_domain_dim(qp
, isl_dim_div
);
2572 o_div
= isl_qpolynomial_domain_offset(qp
, isl_dim_div
);
2573 if (total
< 0 || n_div
< 0)
2574 return isl_qpolynomial_free(qp
);
2575 ctx
= isl_qpolynomial_get_ctx(qp
);
2576 mat
= isl_mat_zero(ctx
, n_div
, 1 + total
);
2578 for (i
= 0; i
< n_div
; ++i
)
2579 mat
= isl_mat_set_element_si(mat
, i
, o_div
+ i
, 1);
2581 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2582 normalize_div(qp
, i
);
2583 reduce_div(qp
, i
, &mat
);
2584 if (needs_invert(qp
->div
, i
)) {
2585 invert_div(qp
, i
, &mat
);
2586 reduce_div(qp
, i
, &mat
);
2592 s
= isl_alloc_array(ctx
, struct isl_poly
*, n_div
);
2595 for (i
= 0; i
< n_div
; ++i
)
2596 s
[i
] = isl_poly_from_affine(ctx
, mat
->row
[i
], ctx
->one
,
2598 qp
->poly
= isl_poly_subs(qp
->poly
, o_div
- 1, n_div
, s
);
2599 for (i
= 0; i
< n_div
; ++i
)
2600 isl_poly_free(s
[i
]);
2607 qp
= substitute_non_divs(qp
);
2609 new_n_div
= isl_qpolynomial_domain_dim(qp
, isl_dim_div
);
2611 return isl_qpolynomial_free(qp
);
2612 if (new_n_div
< n_div
)
2613 return reduce_divs(qp
);
2617 isl_qpolynomial_free(qp
);
2622 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2623 __isl_take isl_space
*domain
, const isl_int n
, const isl_int d
)
2625 struct isl_qpolynomial
*qp
;
2628 qp
= isl_qpolynomial_zero_on_domain(domain
);
2632 cst
= isl_poly_as_cst(qp
->poly
);
2633 isl_int_set(cst
->n
, n
);
2634 isl_int_set(cst
->d
, d
);
2639 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2641 __isl_give isl_qpolynomial
*isl_qpolynomial_val_on_domain(
2642 __isl_take isl_space
*domain
, __isl_take isl_val
*val
)
2644 isl_qpolynomial
*qp
;
2647 qp
= isl_qpolynomial_zero_on_domain(domain
);
2651 cst
= isl_poly_as_cst(qp
->poly
);
2652 isl_int_set(cst
->n
, val
->n
);
2653 isl_int_set(cst
->d
, val
->d
);
2659 isl_qpolynomial_free(qp
);
2663 static isl_stat
poly_set_active(__isl_keep isl_poly
*poly
, int *active
, int d
)
2669 is_cst
= isl_poly_is_cst(poly
);
2671 return isl_stat_error
;
2676 active
[poly
->var
] = 1;
2678 rec
= isl_poly_as_rec(poly
);
2679 for (i
= 0; i
< rec
->n
; ++i
)
2680 if (poly_set_active(rec
->p
[i
], active
, d
) < 0)
2681 return isl_stat_error
;
2686 static isl_stat
set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2692 space
= isl_qpolynomial_peek_domain_space(qp
);
2693 d
= isl_space_dim(space
, isl_dim_all
);
2694 if (d
< 0 || !active
)
2695 return isl_stat_error
;
2697 for (i
= 0; i
< d
; ++i
)
2698 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2699 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2705 return poly_set_active(qp
->poly
, active
, d
);
2709 #define TYPE isl_qpolynomial
2711 #include "check_type_range_templ.c"
2713 isl_bool
isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2714 enum isl_dim_type type
, unsigned first
, unsigned n
)
2718 isl_bool involves
= isl_bool_false
;
2724 return isl_bool_error
;
2726 return isl_bool_false
;
2728 if (isl_qpolynomial_check_range(qp
, type
, first
, n
) < 0)
2729 return isl_bool_error
;
2730 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2731 type
== isl_dim_in
, return isl_bool_error
);
2733 space
= isl_qpolynomial_peek_domain_space(qp
);
2734 d
= isl_space_dim(space
, isl_dim_all
);
2736 return isl_bool_error
;
2737 active
= isl_calloc_array(qp
->dim
->ctx
, int, d
);
2738 if (set_active(qp
, active
) < 0)
2741 offset
= isl_qpolynomial_domain_var_offset(qp
, domain_type(type
));
2745 for (i
= 0; i
< n
; ++i
)
2746 if (active
[first
+ i
]) {
2747 involves
= isl_bool_true
;
2756 return isl_bool_error
;
2759 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2760 * of the divs that do appear in the quasi-polynomial.
2762 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2763 __isl_take isl_qpolynomial
*qp
)
2770 int *reordering
= NULL
;
2777 if (qp
->div
->n_row
== 0)
2780 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
2782 return isl_qpolynomial_free(qp
);
2783 len
= qp
->div
->n_col
- 2;
2784 ctx
= isl_qpolynomial_get_ctx(qp
);
2785 active
= isl_calloc_array(ctx
, int, len
);
2789 if (poly_set_active(qp
->poly
, active
, len
) < 0)
2792 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2793 if (!active
[div_pos
+ i
]) {
2797 for (j
= 0; j
< i
; ++j
) {
2798 if (isl_int_is_zero(qp
->div
->row
[i
][2 + div_pos
+ j
]))
2800 active
[div_pos
+ j
] = 1;
2810 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2814 for (i
= 0; i
< div_pos
; ++i
)
2818 n_div
= qp
->div
->n_row
;
2819 for (i
= 0; i
< n_div
; ++i
) {
2820 if (!active
[div_pos
+ i
]) {
2821 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2822 qp
->div
= isl_mat_drop_cols(qp
->div
,
2823 2 + div_pos
+ i
- skip
, 1);
2826 reordering
[div_pos
+ i
] = div_pos
+ i
- skip
;
2829 qp
->poly
= reorder(qp
->poly
, reordering
);
2831 if (!qp
->poly
|| !qp
->div
)
2841 isl_qpolynomial_free(qp
);
2845 __isl_give isl_poly
*isl_poly_drop(__isl_take isl_poly
*poly
,
2846 unsigned first
, unsigned n
)
2853 if (n
== 0 || poly
->var
< 0 || poly
->var
< first
)
2855 if (poly
->var
< first
+ n
) {
2856 poly
= replace_by_constant_term(poly
);
2857 return isl_poly_drop(poly
, first
, n
);
2859 poly
= isl_poly_cow(poly
);
2863 rec
= isl_poly_as_rec(poly
);
2867 for (i
= 0; i
< rec
->n
; ++i
) {
2868 rec
->p
[i
] = isl_poly_drop(rec
->p
[i
], first
, n
);
2875 isl_poly_free(poly
);
2879 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2880 __isl_take isl_qpolynomial
*qp
,
2881 enum isl_dim_type type
, unsigned pos
, const char *s
)
2883 qp
= isl_qpolynomial_cow(qp
);
2886 if (type
== isl_dim_out
)
2887 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2888 "cannot set name of output/set dimension",
2889 return isl_qpolynomial_free(qp
));
2890 type
= domain_type(type
);
2891 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2896 isl_qpolynomial_free(qp
);
2900 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2901 __isl_take isl_qpolynomial
*qp
,
2902 enum isl_dim_type type
, unsigned first
, unsigned n
)
2908 if (type
== isl_dim_out
)
2909 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2910 "cannot drop output/set dimension",
2912 if (isl_qpolynomial_check_range(qp
, type
, first
, n
) < 0)
2913 return isl_qpolynomial_free(qp
);
2914 type
= domain_type(type
);
2915 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2918 qp
= isl_qpolynomial_cow(qp
);
2922 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2923 type
== isl_dim_set
, goto error
);
2925 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2929 offset
= isl_qpolynomial_domain_var_offset(qp
, type
);
2934 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2938 qp
->poly
= isl_poly_drop(qp
->poly
, first
, n
);
2944 isl_qpolynomial_free(qp
);
2948 /* Project the domain of the quasi-polynomial onto its parameter space.
2949 * The quasi-polynomial may not involve any of the domain dimensions.
2951 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2952 __isl_take isl_qpolynomial
*qp
)
2958 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2960 return isl_qpolynomial_free(qp
);
2961 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2963 return isl_qpolynomial_free(qp
);
2965 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2966 "polynomial involves some of the domain dimensions",
2967 return isl_qpolynomial_free(qp
));
2968 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2969 space
= isl_qpolynomial_get_domain_space(qp
);
2970 space
= isl_space_params(space
);
2971 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2975 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2976 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2986 if (eq
->n_eq
== 0) {
2987 isl_basic_set_free(eq
);
2991 qp
= isl_qpolynomial_cow(qp
);
2994 qp
->div
= isl_mat_cow(qp
->div
);
2998 total
= isl_basic_set_offset(eq
, isl_dim_div
);
3000 isl_int_init(denom
);
3001 for (i
= 0; i
< eq
->n_eq
; ++i
) {
3002 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
3003 if (j
< 0 || j
== 0 || j
>= total
)
3006 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
3007 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
3009 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
3010 &qp
->div
->row
[k
][0]);
3011 normalize_div(qp
, k
);
3014 if (isl_int_is_pos(eq
->eq
[i
][j
]))
3015 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
3016 isl_int_abs(denom
, eq
->eq
[i
][j
]);
3017 isl_int_set_si(eq
->eq
[i
][j
], 0);
3019 poly
= isl_poly_from_affine(qp
->dim
->ctx
,
3020 eq
->eq
[i
], denom
, total
);
3021 qp
->poly
= isl_poly_subs(qp
->poly
, j
- 1, 1, &poly
);
3022 isl_poly_free(poly
);
3024 isl_int_clear(denom
);
3029 isl_basic_set_free(eq
);
3031 qp
= substitute_non_divs(qp
);
3036 isl_basic_set_free(eq
);
3037 isl_qpolynomial_free(qp
);
3041 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
3043 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
3044 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
3048 if (qp
->div
->n_row
> 0)
3049 eq
= isl_basic_set_add_dims(eq
, isl_dim_set
, qp
->div
->n_row
);
3050 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
3052 isl_basic_set_free(eq
);
3053 isl_qpolynomial_free(qp
);
3057 /* Look for equalities among the variables shared by context and qp
3058 * and the integer divisions of qp, if any.
3059 * The equalities are then used to eliminate variables and/or integer
3060 * divisions from qp.
3062 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
3063 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
3065 isl_local_space
*ls
;
3068 ls
= isl_qpolynomial_get_domain_local_space(qp
);
3069 context
= isl_local_space_lift_set(ls
, context
);
3071 aff
= isl_set_affine_hull(context
);
3072 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
3075 __isl_give isl_qpolynomial
*isl_qpolynomial_gist_params(
3076 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
3078 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
3079 isl_set
*dom_context
= isl_set_universe(space
);
3080 dom_context
= isl_set_intersect_params(dom_context
, context
);
3081 return isl_qpolynomial_gist(qp
, dom_context
);
3084 /* Return a zero isl_qpolynomial in the given space.
3086 * This is a helper function for isl_pw_*_as_* that ensures a uniform
3087 * interface over all piecewise types.
3089 static __isl_give isl_qpolynomial
*isl_qpolynomial_zero_in_space(
3090 __isl_take isl_space
*space
)
3092 return isl_qpolynomial_zero_on_domain(isl_space_domain(space
));
3095 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
3098 #define PW isl_pw_qpolynomial
3100 #define BASE qpolynomial
3102 #define EL_IS_ZERO is_zero
3106 #define IS_ZERO is_zero
3109 #undef DEFAULT_IS_ZERO
3110 #define DEFAULT_IS_ZERO 1
3112 #include <isl_pw_templ.c>
3113 #include <isl_pw_un_op_templ.c>
3114 #include <isl_pw_add_disjoint_templ.c>
3115 #include <isl_pw_eval.c>
3116 #include <isl_pw_fix_templ.c>
3117 #include <isl_pw_from_range_templ.c>
3118 #include <isl_pw_insert_dims_templ.c>
3119 #include <isl_pw_lift_templ.c>
3120 #include <isl_pw_morph_templ.c>
3121 #include <isl_pw_move_dims_templ.c>
3122 #include <isl_pw_neg_templ.c>
3123 #include <isl_pw_opt_templ.c>
3124 #include <isl_pw_split_dims_templ.c>
3125 #include <isl_pw_sub_templ.c>
3128 #define BASE pw_qpolynomial
3130 #include <isl_union_single.c>
3131 #include <isl_union_eval.c>
3132 #include <isl_union_neg.c>
3133 #include <isl_union_sub_templ.c>
3135 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
3143 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
3146 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
3149 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
3150 __isl_take isl_pw_qpolynomial
*pwqp1
,
3151 __isl_take isl_pw_qpolynomial
*pwqp2
)
3153 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
3156 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
3157 __isl_take isl_pw_qpolynomial
*pwqp1
,
3158 __isl_take isl_pw_qpolynomial
*pwqp2
)
3161 struct isl_pw_qpolynomial
*res
;
3163 if (!pwqp1
|| !pwqp2
)
3166 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
3169 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
3170 isl_pw_qpolynomial_free(pwqp2
);
3174 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
3175 isl_pw_qpolynomial_free(pwqp1
);
3179 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
3180 isl_pw_qpolynomial_free(pwqp1
);
3184 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
3185 isl_pw_qpolynomial_free(pwqp2
);
3189 n
= pwqp1
->n
* pwqp2
->n
;
3190 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
3192 for (i
= 0; i
< pwqp1
->n
; ++i
) {
3193 for (j
= 0; j
< pwqp2
->n
; ++j
) {
3194 struct isl_set
*common
;
3195 struct isl_qpolynomial
*prod
;
3196 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
3197 isl_set_copy(pwqp2
->p
[j
].set
));
3198 if (isl_set_plain_is_empty(common
)) {
3199 isl_set_free(common
);
3203 prod
= isl_qpolynomial_mul(
3204 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
3205 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
3207 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
3211 isl_pw_qpolynomial_free(pwqp1
);
3212 isl_pw_qpolynomial_free(pwqp2
);
3216 isl_pw_qpolynomial_free(pwqp1
);
3217 isl_pw_qpolynomial_free(pwqp2
);
3221 __isl_give isl_val
*isl_poly_eval(__isl_take isl_poly
*poly
,
3222 __isl_take isl_vec
*vec
)
3230 is_cst
= isl_poly_is_cst(poly
);
3235 res
= isl_poly_get_constant_val(poly
);
3236 isl_poly_free(poly
);
3240 rec
= isl_poly_as_rec(poly
);
3244 isl_assert(poly
->ctx
, rec
->n
>= 1, goto error
);
3246 base
= isl_val_rat_from_isl_int(poly
->ctx
,
3247 vec
->el
[1 + poly
->var
], vec
->el
[0]);
3249 res
= isl_poly_eval(isl_poly_copy(rec
->p
[rec
->n
- 1]),
3252 for (i
= rec
->n
- 2; i
>= 0; --i
) {
3253 res
= isl_val_mul(res
, isl_val_copy(base
));
3254 res
= isl_val_add(res
, isl_poly_eval(isl_poly_copy(rec
->p
[i
]),
3255 isl_vec_copy(vec
)));
3259 isl_poly_free(poly
);
3263 isl_poly_free(poly
);
3268 /* Evaluate "qp" in the void point "pnt".
3269 * In particular, return the value NaN.
3271 static __isl_give isl_val
*eval_void(__isl_take isl_qpolynomial
*qp
,
3272 __isl_take isl_point
*pnt
)
3276 ctx
= isl_point_get_ctx(pnt
);
3277 isl_qpolynomial_free(qp
);
3278 isl_point_free(pnt
);
3279 return isl_val_nan(ctx
);
3282 __isl_give isl_val
*isl_qpolynomial_eval(__isl_take isl_qpolynomial
*qp
,
3283 __isl_take isl_point
*pnt
)
3291 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
3292 is_void
= isl_point_is_void(pnt
);
3296 return eval_void(qp
, pnt
);
3298 ext
= isl_local_extend_point_vec(qp
->div
, isl_vec_copy(pnt
->vec
));
3300 v
= isl_poly_eval(isl_poly_copy(qp
->poly
), ext
);
3302 isl_qpolynomial_free(qp
);
3303 isl_point_free(pnt
);
3307 isl_qpolynomial_free(qp
);
3308 isl_point_free(pnt
);
3312 int isl_poly_cmp(__isl_keep isl_poly_cst
*cst1
, __isl_keep isl_poly_cst
*cst2
)
3317 isl_int_mul(t
, cst1
->n
, cst2
->d
);
3318 isl_int_submul(t
, cst2
->n
, cst1
->d
);
3319 cmp
= isl_int_sgn(t
);
3324 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
3325 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
3326 unsigned first
, unsigned n
)
3334 if (type
== isl_dim_out
)
3335 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3336 "cannot insert output/set dimensions",
3338 if (isl_qpolynomial_check_range(qp
, type
, first
, 0) < 0)
3339 return isl_qpolynomial_free(qp
);
3340 type
= domain_type(type
);
3341 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
3344 qp
= isl_qpolynomial_cow(qp
);
3348 g_pos
= pos(qp
->dim
, type
) + first
;
3350 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
3354 total
= qp
->div
->n_col
- 2;
3355 if (total
> g_pos
) {
3357 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
3360 for (i
= 0; i
< total
- g_pos
; ++i
)
3362 qp
->poly
= expand(qp
->poly
, exp
, g_pos
);
3368 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
3374 isl_qpolynomial_free(qp
);
3378 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
3379 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
3383 pos
= isl_qpolynomial_dim(qp
, type
);
3385 return isl_qpolynomial_free(qp
);
3387 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
3390 static int *reordering_move(isl_ctx
*ctx
,
3391 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
3396 reordering
= isl_alloc_array(ctx
, int, len
);
3401 for (i
= 0; i
< dst
; ++i
)
3403 for (i
= 0; i
< n
; ++i
)
3404 reordering
[src
+ i
] = dst
+ i
;
3405 for (i
= 0; i
< src
- dst
; ++i
)
3406 reordering
[dst
+ i
] = dst
+ n
+ i
;
3407 for (i
= 0; i
< len
- src
- n
; ++i
)
3408 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
3410 for (i
= 0; i
< src
; ++i
)
3412 for (i
= 0; i
< n
; ++i
)
3413 reordering
[src
+ i
] = dst
+ i
;
3414 for (i
= 0; i
< dst
- src
; ++i
)
3415 reordering
[src
+ n
+ i
] = src
+ i
;
3416 for (i
= 0; i
< len
- dst
- n
; ++i
)
3417 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
3423 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
3424 __isl_take isl_qpolynomial
*qp
,
3425 enum isl_dim_type dst_type
, unsigned dst_pos
,
3426 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
3437 ctx
= isl_qpolynomial_get_ctx(qp
);
3438 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
3439 isl_die(ctx
, isl_error_invalid
,
3440 "cannot move output/set dimension",
3442 if (isl_qpolynomial_check_range(qp
, src_type
, src_pos
, n
) < 0)
3443 return isl_qpolynomial_free(qp
);
3444 if (dst_type
== isl_dim_in
)
3445 dst_type
= isl_dim_set
;
3446 if (src_type
== isl_dim_in
)
3447 src_type
= isl_dim_set
;
3450 !isl_space_is_named_or_nested(qp
->dim
, src_type
) &&
3451 !isl_space_is_named_or_nested(qp
->dim
, dst_type
))
3454 qp
= isl_qpolynomial_cow(qp
);
3458 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3459 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3460 if (dst_type
> src_type
)
3463 qp
->div
= isl_local_move_vars(qp
->div
, g_dst_pos
, g_src_pos
, n
);
3468 total
= isl_qpolynomial_domain_dim(qp
, isl_dim_all
);
3470 return isl_qpolynomial_free(qp
);
3471 reordering
= reordering_move(ctx
, total
, g_dst_pos
, g_src_pos
, n
);
3475 qp
->poly
= reorder(qp
->poly
, reordering
);
3480 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3486 isl_qpolynomial_free(qp
);
3490 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(
3491 __isl_take isl_space
*space
, isl_int
*f
, isl_int denom
)
3496 space
= isl_space_domain(space
);
3500 d
= isl_space_dim(space
, isl_dim_all
);
3501 poly
= d
< 0 ? NULL
: isl_poly_from_affine(space
->ctx
, f
, denom
, 1 + d
);
3503 return isl_qpolynomial_alloc(space
, 0, poly
);
3506 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3510 isl_qpolynomial
*qp
;
3515 ctx
= isl_aff_get_ctx(aff
);
3516 poly
= isl_poly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3519 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3520 aff
->ls
->div
->n_row
, poly
);
3524 isl_mat_free(qp
->div
);
3525 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3526 qp
->div
= isl_mat_cow(qp
->div
);
3531 qp
= reduce_divs(qp
);
3532 qp
= remove_redundant_divs(qp
);
3536 return isl_qpolynomial_free(qp
);
3539 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3540 __isl_take isl_pw_aff
*pwaff
)
3543 isl_pw_qpolynomial
*pwqp
;
3548 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3551 for (i
= 0; i
< pwaff
->n
; ++i
) {
3553 isl_qpolynomial
*qp
;
3555 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3556 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3557 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3560 isl_pw_aff_free(pwaff
);
3564 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3565 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3569 aff
= isl_constraint_get_bound(c
, type
, pos
);
3570 isl_constraint_free(c
);
3571 return isl_qpolynomial_from_aff(aff
);
3574 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3575 * in "qp" by subs[i].
3577 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3578 __isl_take isl_qpolynomial
*qp
,
3579 enum isl_dim_type type
, unsigned first
, unsigned n
,
3580 __isl_keep isl_qpolynomial
**subs
)
3588 qp
= isl_qpolynomial_cow(qp
);
3592 if (type
== isl_dim_out
)
3593 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3594 "cannot substitute output/set dimension",
3596 if (isl_qpolynomial_check_range(qp
, type
, first
, n
) < 0)
3597 return isl_qpolynomial_free(qp
);
3598 type
= domain_type(type
);
3600 for (i
= 0; i
< n
; ++i
)
3604 for (i
= 0; i
< n
; ++i
)
3605 if (isl_qpolynomial_check_equal_space(qp
, subs
[i
]) < 0)
3608 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3609 for (i
= 0; i
< n
; ++i
)
3610 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3612 first
+= pos(qp
->dim
, type
);
3614 polys
= isl_alloc_array(qp
->dim
->ctx
, struct isl_poly
*, n
);
3617 for (i
= 0; i
< n
; ++i
)
3618 polys
[i
] = subs
[i
]->poly
;
3620 qp
->poly
= isl_poly_subs(qp
->poly
, first
, n
, polys
);
3629 isl_qpolynomial_free(qp
);
3633 /* Extend "bset" with extra set dimensions for each integer division
3634 * in "qp" and then call "fn" with the extended bset and the polynomial
3635 * that results from replacing each of the integer divisions by the
3636 * corresponding extra set dimension.
3638 isl_stat
isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3639 __isl_keep isl_basic_set
*bset
,
3640 isl_stat (*fn
)(__isl_take isl_basic_set
*bset
,
3641 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3644 isl_local_space
*ls
;
3645 isl_qpolynomial
*poly
;
3648 return isl_stat_error
;
3649 if (qp
->div
->n_row
== 0)
3650 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3653 space
= isl_space_copy(qp
->dim
);
3654 space
= isl_space_add_dims(space
, isl_dim_set
, qp
->div
->n_row
);
3655 poly
= isl_qpolynomial_alloc(space
, 0, isl_poly_copy(qp
->poly
));
3656 bset
= isl_basic_set_copy(bset
);
3657 ls
= isl_qpolynomial_get_domain_local_space(qp
);
3658 bset
= isl_local_space_lift_basic_set(ls
, bset
);
3660 return fn(bset
, poly
, user
);
3663 /* Return total degree in variables first (inclusive) up to last (exclusive).
3665 int isl_poly_degree(__isl_keep isl_poly
*poly
, int first
, int last
)
3669 isl_bool is_zero
, is_cst
;
3672 is_zero
= isl_poly_is_zero(poly
);
3677 is_cst
= isl_poly_is_cst(poly
);
3680 if (is_cst
|| poly
->var
< first
)
3683 rec
= isl_poly_as_rec(poly
);
3687 for (i
= 0; i
< rec
->n
; ++i
) {
3690 is_zero
= isl_poly_is_zero(rec
->p
[i
]);
3695 d
= isl_poly_degree(rec
->p
[i
], first
, last
);
3696 if (poly
->var
< last
)
3705 /* Return total degree in set variables.
3707 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3715 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3716 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3717 if (ovar
< 0 || nvar
< 0)
3719 return isl_poly_degree(poly
->poly
, ovar
, ovar
+ nvar
);
3722 __isl_give isl_poly
*isl_poly_coeff(__isl_keep isl_poly
*poly
,
3723 unsigned pos
, int deg
)
3729 is_cst
= isl_poly_is_cst(poly
);
3732 if (is_cst
|| poly
->var
< pos
) {
3734 return isl_poly_copy(poly
);
3736 return isl_poly_zero(poly
->ctx
);
3739 rec
= isl_poly_as_rec(poly
);
3743 if (poly
->var
== pos
) {
3745 return isl_poly_copy(rec
->p
[deg
]);
3747 return isl_poly_zero(poly
->ctx
);
3750 poly
= isl_poly_copy(poly
);
3751 poly
= isl_poly_cow(poly
);
3752 rec
= isl_poly_as_rec(poly
);
3756 for (i
= 0; i
< rec
->n
; ++i
) {
3758 t
= isl_poly_coeff(rec
->p
[i
], pos
, deg
);
3761 isl_poly_free(rec
->p
[i
]);
3767 isl_poly_free(poly
);
3771 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3773 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3774 __isl_keep isl_qpolynomial
*qp
,
3775 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3784 if (type
== isl_dim_out
)
3785 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3786 "output/set dimension does not have a coefficient",
3788 if (isl_qpolynomial_check_range(qp
, type
, t_pos
, 1) < 0)
3790 type
= domain_type(type
);
3792 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3793 poly
= isl_poly_coeff(qp
->poly
, g_pos
, deg
);
3795 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
),
3796 qp
->div
->n_row
, poly
);
3799 isl_mat_free(c
->div
);
3800 c
->div
= isl_mat_copy(qp
->div
);
3805 isl_qpolynomial_free(c
);
3809 /* Homogenize the polynomial in the variables first (inclusive) up to
3810 * last (exclusive) by inserting powers of variable first.
3811 * Variable first is assumed not to appear in the input.
3813 __isl_give isl_poly
*isl_poly_homogenize(__isl_take isl_poly
*poly
, int deg
,
3814 int target
, int first
, int last
)
3817 isl_bool is_zero
, is_cst
;
3820 is_zero
= isl_poly_is_zero(poly
);
3822 return isl_poly_free(poly
);
3827 is_cst
= isl_poly_is_cst(poly
);
3829 return isl_poly_free(poly
);
3830 if (is_cst
|| poly
->var
< first
) {
3833 hom
= isl_poly_var_pow(poly
->ctx
, first
, target
- deg
);
3836 rec
= isl_poly_as_rec(hom
);
3837 rec
->p
[target
- deg
] = isl_poly_mul(rec
->p
[target
- deg
], poly
);
3842 poly
= isl_poly_cow(poly
);
3843 rec
= isl_poly_as_rec(poly
);
3847 for (i
= 0; i
< rec
->n
; ++i
) {
3848 is_zero
= isl_poly_is_zero(rec
->p
[i
]);
3850 return isl_poly_free(poly
);
3853 rec
->p
[i
] = isl_poly_homogenize(rec
->p
[i
],
3854 poly
->var
< last
? deg
+ i
: i
, target
,
3862 isl_poly_free(poly
);
3866 /* Homogenize the polynomial in the set variables by introducing
3867 * powers of an extra set variable at position 0.
3869 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3870 __isl_take isl_qpolynomial
*poly
)
3874 int deg
= isl_qpolynomial_degree(poly
);
3879 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3880 poly
= isl_qpolynomial_cow(poly
);
3884 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3885 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3886 if (ovar
< 0 || nvar
< 0)
3887 return isl_qpolynomial_free(poly
);
3888 poly
->poly
= isl_poly_homogenize(poly
->poly
, 0, deg
, ovar
, ovar
+ nvar
);
3894 isl_qpolynomial_free(poly
);
3898 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*space
,
3899 __isl_take isl_mat
*div
)
3905 d
= isl_space_dim(space
, isl_dim_all
);
3911 term
= isl_calloc(space
->ctx
, struct isl_term
,
3912 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3919 isl_int_init(term
->n
);
3920 isl_int_init(term
->d
);
3924 isl_space_free(space
);
3929 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3938 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3944 total
= isl_term_dim(term
, isl_dim_all
);
3948 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3952 isl_int_set(dup
->n
, term
->n
);
3953 isl_int_set(dup
->d
, term
->d
);
3955 for (i
= 0; i
< total
; ++i
)
3956 dup
->pow
[i
] = term
->pow
[i
];
3961 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3969 return isl_term_dup(term
);
3972 __isl_null isl_term
*isl_term_free(__isl_take isl_term
*term
)
3977 if (--term
->ref
> 0)
3980 isl_space_free(term
->dim
);
3981 isl_mat_free(term
->div
);
3982 isl_int_clear(term
->n
);
3983 isl_int_clear(term
->d
);
3989 isl_size
isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3994 return isl_size_error
;
3999 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
4000 case isl_dim_div
: return term
->div
->n_row
;
4001 case isl_dim_all
: dim
= isl_space_dim(term
->dim
, isl_dim_all
);
4003 return isl_size_error
;
4004 return dim
+ term
->div
->n_row
;
4005 default: return isl_size_error
;
4009 /* Return the space of "term".
4011 static __isl_keep isl_space
*isl_term_peek_space(__isl_keep isl_term
*term
)
4013 return term
? term
->dim
: NULL
;
4016 /* Return the offset of the first variable of type "type" within
4017 * the variables of "term".
4019 static isl_size
isl_term_offset(__isl_keep isl_term
*term
,
4020 enum isl_dim_type type
)
4024 space
= isl_term_peek_space(term
);
4026 return isl_size_error
;
4030 case isl_dim_set
: return isl_space_offset(space
, type
);
4031 case isl_dim_div
: return isl_space_dim(space
, isl_dim_all
);
4033 isl_die(isl_term_get_ctx(term
), isl_error_invalid
,
4034 "invalid dimension type", return isl_size_error
);
4038 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
4040 return term
? term
->dim
->ctx
: NULL
;
4043 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
4047 isl_int_set(*n
, term
->n
);
4050 /* Return the coefficient of the term "term".
4052 __isl_give isl_val
*isl_term_get_coefficient_val(__isl_keep isl_term
*term
)
4057 return isl_val_rat_from_isl_int(isl_term_get_ctx(term
),
4062 #define TYPE isl_term
4064 #include "check_type_range_templ.c"
4066 isl_size
isl_term_get_exp(__isl_keep isl_term
*term
,
4067 enum isl_dim_type type
, unsigned pos
)
4071 if (isl_term_check_range(term
, type
, pos
, 1) < 0)
4072 return isl_size_error
;
4073 offset
= isl_term_offset(term
, type
);
4075 return isl_size_error
;
4077 return term
->pow
[offset
+ pos
];
4080 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
4082 isl_local_space
*ls
;
4085 if (isl_term_check_range(term
, isl_dim_div
, pos
, 1) < 0)
4088 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
4089 isl_mat_copy(term
->div
));
4090 aff
= isl_aff_alloc(ls
);
4094 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
4096 aff
= isl_aff_normalize(aff
);
4101 __isl_give isl_term
*isl_poly_foreach_term(__isl_keep isl_poly
*poly
,
4102 isl_stat (*fn
)(__isl_take isl_term
*term
, void *user
),
4103 __isl_take isl_term
*term
, void *user
)
4106 isl_bool is_zero
, is_bad
, is_cst
;
4109 is_zero
= isl_poly_is_zero(poly
);
4110 if (is_zero
< 0 || !term
)
4116 is_cst
= isl_poly_is_cst(poly
);
4117 is_bad
= isl_poly_is_nan(poly
);
4118 if (is_bad
>= 0 && !is_bad
)
4119 is_bad
= isl_poly_is_infty(poly
);
4120 if (is_bad
>= 0 && !is_bad
)
4121 is_bad
= isl_poly_is_neginfty(poly
);
4122 if (is_cst
< 0 || is_bad
< 0)
4123 return isl_term_free(term
);
4125 isl_die(isl_term_get_ctx(term
), isl_error_invalid
,
4126 "cannot handle NaN/infty polynomial",
4127 return isl_term_free(term
));
4131 cst
= isl_poly_as_cst(poly
);
4134 term
= isl_term_cow(term
);
4137 isl_int_set(term
->n
, cst
->n
);
4138 isl_int_set(term
->d
, cst
->d
);
4139 if (fn(isl_term_copy(term
), user
) < 0)
4144 rec
= isl_poly_as_rec(poly
);
4148 for (i
= 0; i
< rec
->n
; ++i
) {
4149 term
= isl_term_cow(term
);
4152 term
->pow
[poly
->var
] = i
;
4153 term
= isl_poly_foreach_term(rec
->p
[i
], fn
, term
, user
);
4157 term
= isl_term_cow(term
);
4160 term
->pow
[poly
->var
] = 0;
4164 isl_term_free(term
);
4168 isl_stat
isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
4169 isl_stat (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
4174 return isl_stat_error
;
4176 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
4178 return isl_stat_error
;
4180 term
= isl_poly_foreach_term(qp
->poly
, fn
, term
, user
);
4182 isl_term_free(term
);
4184 return term
? isl_stat_ok
: isl_stat_error
;
4187 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
4190 isl_qpolynomial
*qp
;
4194 n
= isl_term_dim(term
, isl_dim_all
);
4196 term
= isl_term_free(term
);
4200 poly
= isl_poly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
4201 for (i
= 0; i
< n
; ++i
) {
4204 poly
= isl_poly_mul(poly
,
4205 isl_poly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
4208 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
),
4209 term
->div
->n_row
, poly
);
4212 isl_mat_free(qp
->div
);
4213 qp
->div
= isl_mat_copy(term
->div
);
4217 isl_term_free(term
);
4220 isl_qpolynomial_free(qp
);
4221 isl_term_free(term
);
4225 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
4226 __isl_take isl_space
*space
)
4230 isl_size total
, d_set
, d_qp
;
4235 if (isl_space_is_equal(qp
->dim
, space
)) {
4236 isl_space_free(space
);
4240 qp
= isl_qpolynomial_cow(qp
);
4244 d_set
= isl_space_dim(space
, isl_dim_set
);
4245 d_qp
= isl_qpolynomial_domain_dim(qp
, isl_dim_set
);
4246 extra
= d_set
- d_qp
;
4247 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4248 if (d_set
< 0 || d_qp
< 0 || total
< 0)
4250 if (qp
->div
->n_row
) {
4253 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
4256 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4258 qp
->poly
= expand(qp
->poly
, exp
, total
);
4263 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
4266 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4267 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
4269 isl_space_free(qp
->dim
);
4274 isl_space_free(space
);
4275 isl_qpolynomial_free(qp
);
4279 /* For each parameter or variable that does not appear in qp,
4280 * first eliminate the variable from all constraints and then set it to zero.
4282 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
4283 __isl_keep isl_qpolynomial
*qp
)
4291 d
= isl_set_dim(set
, isl_dim_all
);
4295 active
= isl_calloc_array(set
->ctx
, int, d
);
4296 if (set_active(qp
, active
) < 0)
4299 for (i
= 0; i
< d
; ++i
)
4308 nparam
= isl_set_dim(set
, isl_dim_param
);
4309 nvar
= isl_set_dim(set
, isl_dim_set
);
4310 if (nparam
< 0 || nvar
< 0)
4312 for (i
= 0; i
< nparam
; ++i
) {
4315 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
4316 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
4318 for (i
= 0; i
< nvar
; ++i
) {
4319 if (active
[nparam
+ i
])
4321 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
4322 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
4334 struct isl_opt_data
{
4335 isl_qpolynomial
*qp
;
4341 static isl_stat
opt_fn(__isl_take isl_point
*pnt
, void *user
)
4343 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
4346 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
4350 } else if (data
->max
) {
4351 data
->opt
= isl_val_max(data
->opt
, val
);
4353 data
->opt
= isl_val_min(data
->opt
, val
);
4359 __isl_give isl_val
*isl_qpolynomial_opt_on_domain(
4360 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
4362 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
4368 is_cst
= isl_poly_is_cst(qp
->poly
);
4373 data
.opt
= isl_qpolynomial_get_constant_val(qp
);
4374 isl_qpolynomial_free(qp
);
4378 set
= fix_inactive(set
, qp
);
4381 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
4385 data
.opt
= isl_val_zero(isl_set_get_ctx(set
));
4388 isl_qpolynomial_free(qp
);
4392 isl_qpolynomial_free(qp
);
4393 isl_val_free(data
.opt
);
4397 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
4398 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
4405 isl_mat
*mat
, *diag
;
4407 qp
= isl_qpolynomial_cow(qp
);
4409 space
= isl_qpolynomial_peek_domain_space(qp
);
4410 if (isl_morph_check_applies(morph
, space
) < 0)
4413 ctx
= isl_qpolynomial_get_ctx(qp
);
4414 n_sub
= morph
->inv
->n_row
- 1;
4415 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4416 n_sub
+= qp
->div
->n_row
;
4417 subs
= isl_calloc_array(ctx
, struct isl_poly
*, n_sub
);
4421 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
4422 subs
[i
] = isl_poly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
4423 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
4424 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4425 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4426 subs
[morph
->inv
->n_row
- 1 + i
] =
4427 isl_poly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
4429 qp
->poly
= isl_poly_subs(qp
->poly
, 0, n_sub
, subs
);
4431 for (i
= 0; i
< n_sub
; ++i
)
4432 isl_poly_free(subs
[i
]);
4435 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
4436 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
4437 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
4438 mat
= isl_mat_diagonal(mat
, diag
);
4439 qp
->div
= isl_mat_product(qp
->div
, mat
);
4440 isl_space_free(qp
->dim
);
4441 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
4443 if (!qp
->poly
|| !qp
->div
|| !qp
->dim
)
4446 isl_morph_free(morph
);
4450 isl_qpolynomial_free(qp
);
4451 isl_morph_free(morph
);
4455 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
4456 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
4457 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
4459 return isl_union_pw_qpolynomial_match_bin_op(upwqp1
, upwqp2
,
4460 &isl_pw_qpolynomial_mul
);
4463 /* Reorder the dimension of "qp" according to the given reordering.
4465 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4466 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4470 qp
= isl_qpolynomial_cow(qp
);
4474 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4478 qp
->div
= isl_local_reorder(qp
->div
, isl_reordering_copy(r
));
4482 qp
->poly
= reorder(qp
->poly
, r
->pos
);
4486 space
= isl_reordering_get_space(r
);
4487 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
4489 isl_reordering_free(r
);
4492 isl_qpolynomial_free(qp
);
4493 isl_reordering_free(r
);
4497 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4498 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4500 isl_space
*domain_space
;
4501 isl_bool equal_params
;
4503 domain_space
= isl_qpolynomial_peek_domain_space(qp
);
4504 equal_params
= isl_space_has_equal_params(domain_space
, model
);
4505 if (equal_params
< 0)
4507 if (!equal_params
) {
4508 isl_reordering
*exp
;
4510 exp
= isl_parameter_alignment_reordering(domain_space
, model
);
4511 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4514 isl_space_free(model
);
4517 isl_space_free(model
);
4518 isl_qpolynomial_free(qp
);
4522 struct isl_split_periods_data
{
4524 isl_pw_qpolynomial
*res
;
4527 /* Create a slice where the integer division "div" has the fixed value "v".
4528 * In particular, if "div" refers to floor(f/m), then create a slice
4530 * m v <= f <= m v + (m - 1)
4535 * -f + m v + (m - 1) >= 0
4537 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*space
,
4538 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4541 isl_basic_set
*bset
= NULL
;
4544 total
= isl_space_dim(space
, isl_dim_all
);
4545 if (total
< 0 || !qp
)
4548 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0, 0, 2);
4550 k
= isl_basic_set_alloc_inequality(bset
);
4553 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4554 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4556 k
= isl_basic_set_alloc_inequality(bset
);
4559 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4560 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4561 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4562 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4564 isl_space_free(space
);
4565 return isl_set_from_basic_set(bset
);
4567 isl_basic_set_free(bset
);
4568 isl_space_free(space
);
4572 static isl_stat
split_periods(__isl_take isl_set
*set
,
4573 __isl_take isl_qpolynomial
*qp
, void *user
);
4575 /* Create a slice of the domain "set" such that integer division "div"
4576 * has the fixed value "v" and add the results to data->res,
4577 * replacing the integer division by "v" in "qp".
4579 static isl_stat
set_div(__isl_take isl_set
*set
,
4580 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4581 struct isl_split_periods_data
*data
)
4588 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4589 set
= isl_set_intersect(set
, slice
);
4591 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
4595 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4596 if (isl_int_is_zero(qp
->div
->row
[i
][2 + div_pos
+ div
]))
4598 isl_int_addmul(qp
->div
->row
[i
][1],
4599 qp
->div
->row
[i
][2 + div_pos
+ div
], v
);
4600 isl_int_set_si(qp
->div
->row
[i
][2 + div_pos
+ div
], 0);
4603 cst
= isl_poly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4604 qp
= substitute_div(qp
, div
, cst
);
4606 return split_periods(set
, qp
, data
);
4609 isl_qpolynomial_free(qp
);
4610 return isl_stat_error
;
4613 /* Split the domain "set" such that integer division "div"
4614 * has a fixed value (ranging from "min" to "max") on each slice
4615 * and add the results to data->res.
4617 static isl_stat
split_div(__isl_take isl_set
*set
,
4618 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4619 struct isl_split_periods_data
*data
)
4621 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4622 isl_set
*set_i
= isl_set_copy(set
);
4623 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4625 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4629 isl_qpolynomial_free(qp
);
4633 isl_qpolynomial_free(qp
);
4634 return isl_stat_error
;
4637 /* If "qp" refers to any integer division
4638 * that can only attain "max_periods" distinct values on "set"
4639 * then split the domain along those distinct values.
4640 * Add the results (or the original if no splitting occurs)
4643 static isl_stat
split_periods(__isl_take isl_set
*set
,
4644 __isl_take isl_qpolynomial
*qp
, void *user
)
4647 isl_pw_qpolynomial
*pwqp
;
4648 struct isl_split_periods_data
*data
;
4651 isl_stat r
= isl_stat_ok
;
4653 data
= (struct isl_split_periods_data
*)user
;
4658 if (qp
->div
->n_row
== 0) {
4659 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4660 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4664 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
4670 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4671 enum isl_lp_result lp_res
;
4673 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + div_pos
,
4674 qp
->div
->n_row
) != -1)
4677 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4678 set
->ctx
->one
, &min
, NULL
, NULL
);
4679 if (lp_res
== isl_lp_error
)
4681 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4683 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4685 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4686 set
->ctx
->one
, &max
, NULL
, NULL
);
4687 if (lp_res
== isl_lp_error
)
4689 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4691 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4693 isl_int_sub(max
, max
, min
);
4694 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4695 isl_int_add(max
, max
, min
);
4700 if (i
< qp
->div
->n_row
) {
4701 r
= split_div(set
, qp
, i
, min
, max
, data
);
4703 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4704 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4716 isl_qpolynomial_free(qp
);
4717 return isl_stat_error
;
4720 /* If any quasi-polynomial in pwqp refers to any integer division
4721 * that can only attain "max_periods" distinct values on its domain
4722 * then split the domain along those distinct values.
4724 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4725 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4727 struct isl_split_periods_data data
;
4729 data
.max_periods
= max_periods
;
4730 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4732 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4735 isl_pw_qpolynomial_free(pwqp
);
4739 isl_pw_qpolynomial_free(data
.res
);
4740 isl_pw_qpolynomial_free(pwqp
);
4744 /* Construct a piecewise quasipolynomial that is constant on the given
4745 * domain. In particular, it is
4748 * infinity if cst == -1
4750 * If cst == -1, then explicitly check whether the domain is empty and,
4751 * if so, return 0 instead.
4753 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4754 __isl_take isl_basic_set
*bset
, int cst
)
4757 isl_qpolynomial
*qp
;
4759 if (cst
< 0 && isl_basic_set_is_empty(bset
) == isl_bool_true
)
4764 bset
= isl_basic_set_params(bset
);
4765 space
= isl_basic_set_get_space(bset
);
4767 qp
= isl_qpolynomial_infty_on_domain(space
);
4769 qp
= isl_qpolynomial_zero_on_domain(space
);
4771 qp
= isl_qpolynomial_one_on_domain(space
);
4772 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4775 /* Internal data structure for multiplicative_call_factor_pw_qpolynomial.
4776 * "fn" is the function that is called on each factor.
4777 * "pwpq" collects the results.
4779 struct isl_multiplicative_call_data_pw_qpolynomial
{
4780 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
);
4781 isl_pw_qpolynomial
*pwqp
;
4784 /* Call "fn" on "bset" and return the result,
4785 * but first check if "bset" has any redundant constraints or
4786 * implicit equality constraints.
4787 * If so, there may be further opportunities for detecting factors or
4788 * removing equality constraints, so recursively call
4789 * the top-level isl_basic_set_multiplicative_call.
4791 static __isl_give isl_pw_qpolynomial
*multiplicative_call_base(
4792 __isl_take isl_basic_set
*bset
,
4793 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4795 isl_size n1
, n2
, n_eq
;
4797 n1
= isl_basic_set_n_constraint(bset
);
4799 bset
= isl_basic_set_free(bset
);
4800 bset
= isl_basic_set_remove_redundancies(bset
);
4801 bset
= isl_basic_set_detect_equalities(bset
);
4802 n2
= isl_basic_set_n_constraint(bset
);
4803 n_eq
= isl_basic_set_n_equality(bset
);
4804 if (n2
< 0 || n_eq
< 0)
4805 bset
= isl_basic_set_free(bset
);
4806 else if (n2
< n1
|| n_eq
> 0)
4807 return isl_basic_set_multiplicative_call(bset
, fn
);
4811 /* isl_factorizer_every_factor_basic_set callback that applies
4812 * data->fn to the factor "bset" and multiplies in the result
4815 static isl_bool
multiplicative_call_factor_pw_qpolynomial(
4816 __isl_keep isl_basic_set
*bset
, void *user
)
4818 struct isl_multiplicative_call_data_pw_qpolynomial
*data
= user
;
4819 isl_pw_qpolynomial
*res
;
4821 bset
= isl_basic_set_copy(bset
);
4822 res
= multiplicative_call_base(bset
, data
->fn
);
4823 data
->pwqp
= isl_pw_qpolynomial_mul(data
->pwqp
, res
);
4825 return isl_bool_error
;
4827 return isl_bool_true
;
4830 /* Factor bset, call fn on each of the factors and return the product.
4832 * If no factors can be found, simply call fn on the input.
4833 * Otherwise, construct the factors based on the factorizer,
4834 * call fn on each factor and compute the product.
4836 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4837 __isl_take isl_basic_set
*bset
,
4838 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4840 struct isl_multiplicative_call_data_pw_qpolynomial data
= { fn
};
4844 isl_qpolynomial
*qp
;
4847 f
= isl_basic_set_factorizer(bset
);
4850 if (f
->n_group
== 0) {
4851 isl_factorizer_free(f
);
4852 return multiplicative_call_base(bset
, fn
);
4855 space
= isl_basic_set_get_space(bset
);
4856 space
= isl_space_params(space
);
4857 set
= isl_set_universe(isl_space_copy(space
));
4858 qp
= isl_qpolynomial_one_on_domain(space
);
4859 data
.pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4861 every
= isl_factorizer_every_factor_basic_set(f
,
4862 &multiplicative_call_factor_pw_qpolynomial
, &data
);
4864 data
.pwqp
= isl_pw_qpolynomial_free(data
.pwqp
);
4866 isl_basic_set_free(bset
);
4867 isl_factorizer_free(f
);
4871 isl_basic_set_free(bset
);
4875 /* Factor bset, call fn on each of the factors and return the product.
4876 * The function is assumed to evaluate to zero on empty domains,
4877 * to one on zero-dimensional domains and to infinity on unbounded domains
4878 * and will not be called explicitly on zero-dimensional or unbounded domains.
4880 * We first check for some special cases and remove all equalities.
4881 * Then we hand over control to compressed_multiplicative_call.
4883 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4884 __isl_take isl_basic_set
*bset
,
4885 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4890 isl_pw_qpolynomial
*pwqp
;
4895 if (isl_basic_set_plain_is_empty(bset
))
4896 return constant_on_domain(bset
, 0);
4898 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
4902 return constant_on_domain(bset
, 1);
4904 bounded
= isl_basic_set_is_bounded(bset
);
4908 return constant_on_domain(bset
, -1);
4910 if (bset
->n_eq
== 0)
4911 return compressed_multiplicative_call(bset
, fn
);
4913 morph
= isl_basic_set_full_compression(bset
);
4914 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4916 pwqp
= compressed_multiplicative_call(bset
, fn
);
4918 morph
= isl_morph_dom_params(morph
);
4919 morph
= isl_morph_ran_params(morph
);
4920 morph
= isl_morph_inverse(morph
);
4922 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4926 isl_basic_set_free(bset
);
4930 /* Drop all floors in "qp", turning each integer division [a/m] into
4931 * a rational division a/m. If "down" is set, then the integer division
4932 * is replaced by (a-(m-1))/m instead.
4934 static __isl_give isl_qpolynomial
*qp_drop_floors(
4935 __isl_take isl_qpolynomial
*qp
, int down
)
4942 if (qp
->div
->n_row
== 0)
4945 qp
= isl_qpolynomial_cow(qp
);
4949 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4951 isl_int_sub(qp
->div
->row
[i
][1],
4952 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4953 isl_int_add_ui(qp
->div
->row
[i
][1],
4954 qp
->div
->row
[i
][1], 1);
4956 s
= isl_poly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4957 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4958 qp
= substitute_div(qp
, i
, s
);
4966 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4967 * a rational division a/m.
4969 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4970 __isl_take isl_pw_qpolynomial
*pwqp
)
4977 if (isl_pw_qpolynomial_is_zero(pwqp
))
4980 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4984 for (i
= 0; i
< pwqp
->n
; ++i
) {
4985 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4992 isl_pw_qpolynomial_free(pwqp
);
4996 /* Adjust all the integer divisions in "qp" such that they are at least
4997 * one over the given orthant (identified by "signs"). This ensures
4998 * that they will still be non-negative even after subtracting (m-1)/m.
5000 * In particular, f is replaced by f' + v, changing f = [a/m]
5001 * to f' = [(a - m v)/m].
5002 * If the constant term k in a is smaller than m,
5003 * the constant term of v is set to floor(k/m) - 1.
5004 * For any other term, if the coefficient c and the variable x have
5005 * the same sign, then no changes are needed.
5006 * Otherwise, if the variable is positive (and c is negative),
5007 * then the coefficient of x in v is set to floor(c/m).
5008 * If the variable is negative (and c is positive),
5009 * then the coefficient of x in v is set to ceil(c/m).
5011 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
5019 qp
= isl_qpolynomial_cow(qp
);
5020 div_pos
= isl_qpolynomial_domain_var_offset(qp
, isl_dim_div
);
5022 return isl_qpolynomial_free(qp
);
5023 qp
->div
= isl_mat_cow(qp
->div
);
5027 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
5029 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
5030 isl_int
*row
= qp
->div
->row
[i
];
5034 if (isl_int_lt(row
[1], row
[0])) {
5035 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
5036 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
5037 isl_int_submul(row
[1], row
[0], v
->el
[0]);
5039 for (j
= 0; j
< div_pos
; ++j
) {
5040 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
5043 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
5045 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
5046 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
5048 for (j
= 0; j
< i
; ++j
) {
5049 if (isl_int_sgn(row
[2 + div_pos
+ j
]) >= 0)
5051 isl_int_fdiv_q(v
->el
[1 + div_pos
+ j
],
5052 row
[2 + div_pos
+ j
], row
[0]);
5053 isl_int_submul(row
[2 + div_pos
+ j
],
5054 row
[0], v
->el
[1 + div_pos
+ j
]);
5056 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
5057 if (isl_int_is_zero(qp
->div
->row
[j
][2 + div_pos
+ i
]))
5059 isl_seq_combine(qp
->div
->row
[j
] + 1,
5060 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
5061 qp
->div
->row
[j
][2 + div_pos
+ i
], v
->el
,
5064 isl_int_set_si(v
->el
[1 + div_pos
+ i
], 1);
5065 s
= isl_poly_from_affine(qp
->dim
->ctx
, v
->el
,
5066 qp
->div
->ctx
->one
, v
->size
);
5067 qp
->poly
= isl_poly_subs(qp
->poly
, div_pos
+ i
, 1, &s
);
5077 isl_qpolynomial_free(qp
);
5081 struct isl_to_poly_data
{
5083 isl_pw_qpolynomial
*res
;
5084 isl_qpolynomial
*qp
;
5087 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
5088 * We first make all integer divisions positive and then split the
5089 * quasipolynomials into terms with sign data->sign (the direction
5090 * of the requested approximation) and terms with the opposite sign.
5091 * In the first set of terms, each integer division [a/m] is
5092 * overapproximated by a/m, while in the second it is underapproximated
5095 static isl_stat
to_polynomial_on_orthant(__isl_take isl_set
*orthant
,
5096 int *signs
, void *user
)
5098 struct isl_to_poly_data
*data
= user
;
5099 isl_pw_qpolynomial
*t
;
5100 isl_qpolynomial
*qp
, *up
, *down
;
5102 qp
= isl_qpolynomial_copy(data
->qp
);
5103 qp
= make_divs_pos(qp
, signs
);
5105 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
5106 up
= qp_drop_floors(up
, 0);
5107 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
5108 down
= qp_drop_floors(down
, 1);
5110 isl_qpolynomial_free(qp
);
5111 qp
= isl_qpolynomial_add(up
, down
);
5113 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
5114 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
5119 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
5120 * the polynomial will be an overapproximation. If "sign" is negative,
5121 * it will be an underapproximation. If "sign" is zero, the approximation
5122 * will lie somewhere in between.
5124 * In particular, is sign == 0, we simply drop the floors, turning
5125 * the integer divisions into rational divisions.
5126 * Otherwise, we split the domains into orthants, make all integer divisions
5127 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
5128 * depending on the requested sign and the sign of the term in which
5129 * the integer division appears.
5131 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
5132 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
5135 struct isl_to_poly_data data
;
5138 return pwqp_drop_floors(pwqp
);
5144 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
5146 for (i
= 0; i
< pwqp
->n
; ++i
) {
5147 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
5148 isl_pw_qpolynomial
*t
;
5149 t
= isl_pw_qpolynomial_alloc(
5150 isl_set_copy(pwqp
->p
[i
].set
),
5151 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
5152 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
5155 data
.qp
= pwqp
->p
[i
].qp
;
5156 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
5157 &to_polynomial_on_orthant
, &data
) < 0)
5161 isl_pw_qpolynomial_free(pwqp
);
5165 isl_pw_qpolynomial_free(pwqp
);
5166 isl_pw_qpolynomial_free(data
.res
);
5170 static __isl_give isl_pw_qpolynomial
*poly_entry(
5171 __isl_take isl_pw_qpolynomial
*pwqp
, void *user
)
5175 return isl_pw_qpolynomial_to_polynomial(pwqp
, *sign
);
5178 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
5179 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
5181 return isl_union_pw_qpolynomial_transform_inplace(upwqp
,
5182 &poly_entry
, &sign
);
5185 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
5186 __isl_take isl_qpolynomial
*qp
)
5188 isl_local_space
*ls
;
5191 isl_basic_map
*bmap
;
5196 is_affine
= isl_poly_is_affine(qp
->poly
);
5200 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
5201 "input quasi-polynomial not affine", goto error
);
5202 ls
= isl_qpolynomial_get_domain_local_space(qp
);
5203 vec
= isl_qpolynomial_extract_affine(qp
);
5204 aff
= isl_aff_alloc_vec(ls
, vec
);
5205 bmap
= isl_basic_map_from_aff(aff
);
5206 isl_qpolynomial_free(qp
);
5209 isl_qpolynomial_free(qp
);