3 C<isl> is a thread-safe C library for manipulating
4 sets and relations of integer points bounded by affine constraints.
5 The descriptions of the sets and relations may involve
6 both parameters and existentially quantified variables.
7 All computations are performed in exact integer arithmetic
9 The C<isl> library offers functionality that is similar
10 to that offered by the C<Omega> and C<Omega+> libraries,
11 but the underlying algorithms are in most cases completely different.
13 The library is by no means complete and some fairly basic
14 functionality is still missing.
15 Still, even in its current form, the library has been successfully
16 used as a backend polyhedral library for the polyhedral
17 scanner C<CLooG> and as part of an equivalence checker of
18 static affine programs.
22 The source of C<isl> can be obtained either as a tarball
23 or from the git repository. Both are available from
24 L<http://freshmeat.net/projects/isl/>.
25 The installation process depends on how you obtained
28 =head2 Installation from the git repository
32 =item 1 Clone or update the repository
34 The first time the source is obtained, you need to clone
37 git clone git://repo.or.cz/isl.git
39 To obtain updates, you need to pull in the latest changes
43 =item 2 Get submodule (optional)
45 C<isl> can optionally use the C<piplib> library and provides
46 this library as a submodule. If you want to use it, then
47 after you have cloned C<isl>, you need to grab the submodules
52 To obtain updates, you only need
56 Note that C<isl> currently does not use any C<piplib>
57 functionality by default.
59 =item 3 Generate C<configure>
65 After performing the above steps, continue
66 with the L<Common installation instructions>.
68 =head2 Common installation instructions
74 Building C<isl> requires C<GMP>, including its headers files.
75 Your distribution may not provide these header files by default
76 and you may need to install a package called C<gmp-devel> or something
77 similar. Alternatively, C<GMP> can be built from
78 source, available from L<http://gmplib.org/>.
82 C<isl> uses the standard C<autoconf> C<configure> script.
87 optionally followed by some configure options.
88 A complete list of options can be obtained by running
92 Below we discuss some of the more common options.
94 C<isl> can optionally use C<piplib>, but no
95 C<piplib> functionality is currently used by default.
96 The C<--with-piplib> option can
97 be used to specify which C<piplib>
98 library to use, either an installed version (C<system>),
99 an externally built version (C<build>)
100 or no version (C<no>). The option C<build> is mostly useful
101 in C<configure> scripts of larger projects that bundle both C<isl>
108 Installation prefix for C<isl>
110 =item C<--with-gmp-prefix>
112 Installation prefix for C<GMP> (architecture-independent files).
114 =item C<--with-gmp-exec-prefix>
116 Installation prefix for C<GMP> (architecture-dependent files).
118 =item C<--with-piplib>
120 Which copy of C<piplib> to use, either C<no> (default), C<system> or C<build>.
122 =item C<--with-piplib-prefix>
124 Installation prefix for C<system> C<piplib> (architecture-independent files).
126 =item C<--with-piplib-exec-prefix>
128 Installation prefix for C<system> C<piplib> (architecture-dependent files).
130 =item C<--with-piplib-builddir>
132 Location where C<build> C<piplib> was built.
140 =item 4 Install (optional)
148 =head2 Initialization
150 All manipulations of integer sets and relations occur within
151 the context of an C<isl_ctx>.
152 A given C<isl_ctx> can only be used within a single thread.
153 All arguments of a function are required to have been allocated
154 within the same context.
155 There are currently no functions available for moving an object
156 from one C<isl_ctx> to another C<isl_ctx>. This means that
157 there is currently no way of safely moving an object from one
158 thread to another, unless the whole C<isl_ctx> is moved.
160 An C<isl_ctx> can be allocated using C<isl_ctx_alloc> and
161 freed using C<isl_ctx_free>.
162 All objects allocated within an C<isl_ctx> should be freed
163 before the C<isl_ctx> itself is freed.
165 isl_ctx *isl_ctx_alloc();
166 void isl_ctx_free(isl_ctx *ctx);
170 All operations on integers, mainly the coefficients
171 of the constraints describing the sets and relations,
172 are performed in exact integer arithmetic using C<GMP>.
173 However, to allow future versions of C<isl> to optionally
174 support fixed integer arithmetic, all calls to C<GMP>
175 are wrapped inside C<isl> specific macros.
176 The basic type is C<isl_int> and the following operations
177 are available on this type.
178 The meanings of these operations are essentially the same
179 as their C<GMP> C<mpz_> counterparts.
180 As always with C<GMP> types, C<isl_int>s need to be
181 initialized with C<isl_int_init> before they can be used
182 and they need to be released with C<isl_int_clear>
187 =item isl_int_init(i)
189 =item isl_int_clear(i)
191 =item isl_int_set(r,i)
193 =item isl_int_set_si(r,i)
195 =item isl_int_abs(r,i)
197 =item isl_int_neg(r,i)
199 =item isl_int_swap(i,j)
201 =item isl_int_swap_or_set(i,j)
203 =item isl_int_add_ui(r,i,j)
205 =item isl_int_sub_ui(r,i,j)
207 =item isl_int_add(r,i,j)
209 =item isl_int_sub(r,i,j)
211 =item isl_int_mul(r,i,j)
213 =item isl_int_mul_ui(r,i,j)
215 =item isl_int_addmul(r,i,j)
217 =item isl_int_submul(r,i,j)
219 =item isl_int_gcd(r,i,j)
221 =item isl_int_lcm(r,i,j)
223 =item isl_int_divexact(r,i,j)
225 =item isl_int_cdiv_q(r,i,j)
227 =item isl_int_fdiv_q(r,i,j)
229 =item isl_int_fdiv_r(r,i,j)
231 =item isl_int_fdiv_q_ui(r,i,j)
233 =item isl_int_read(r,s)
235 =item isl_int_print(out,i,width)
239 =item isl_int_cmp(i,j)
241 =item isl_int_cmp_si(i,si)
243 =item isl_int_eq(i,j)
245 =item isl_int_ne(i,j)
247 =item isl_int_lt(i,j)
249 =item isl_int_le(i,j)
251 =item isl_int_gt(i,j)
253 =item isl_int_ge(i,j)
255 =item isl_int_abs_eq(i,j)
257 =item isl_int_abs_ne(i,j)
259 =item isl_int_abs_lt(i,j)
261 =item isl_int_abs_gt(i,j)
263 =item isl_int_abs_ge(i,j)
265 =item isl_int_is_zero(i)
267 =item isl_int_is_one(i)
269 =item isl_int_is_negone(i)
271 =item isl_int_is_pos(i)
273 =item isl_int_is_neg(i)
275 =item isl_int_is_nonpos(i)
277 =item isl_int_is_nonneg(i)
279 =item isl_int_is_divisible_by(i,j)
283 =head2 Sets and Relations
285 C<isl> uses four types of objects for representing sets and relations,
286 C<isl_basic_set>, C<isl_basic_map>, C<isl_set> and C<isl_map>.
287 C<isl_basic_set> and C<isl_basic_map> represent sets and relations that
288 can be described as a conjunction of affine constraints, while
289 C<isl_set> and C<isl_map> represent unions of
290 C<isl_basic_set>s and C<isl_basic_map>s, respectively.
291 The difference between sets and relations (maps) is that sets have
292 one set of variables, while relations have two sets of variables,
293 input variables and output variables.
295 =head2 Memory Management
297 Since a high-level operation on sets and/or relations usually involves
298 several substeps and since the user is usually not interested in
299 the intermediate results, most functions that return a new object
300 will also release all the objects passed as arguments.
301 If the user still wants to use one or more of these arguments
302 after the function call, she should pass along a copy of the
303 object rather than the object itself.
304 The user is then responsible for make sure that the original
305 object gets used somewhere else or is explicitly freed.
307 The arguments and return values of all documents functions are
308 annotated to make clear which arguments are released and which
309 arguments are preserved. In particular, the following annotations
316 C<__isl_give> means that a new object is returned.
317 The user should make sure that the returned pointer is
318 used exactly once as a value for an C<__isl_take> argument.
319 In between, it can be used as a value for as many
320 C<__isl_keep> arguments as the user likes.
321 There is one exception, and that is the case where the
322 pointer returned is C<NULL>. Is this case, the user
323 is free to use it as an C<__isl_take> argument or not.
327 C<__isl_take> means that the object the argument points to
328 is taken over by the function and may no longer be used
329 by the user as an argument to any other function.
330 The pointer value must be one returned by a function
331 returning an C<__isl_give> pointer.
332 If the user passes in a C<NULL> value, then this will
333 be treated as an error in the sense that the function will
334 not perform its usual operation. However, it will still
335 make sure that all the the other C<__isl_take> arguments
340 C<__isl_keep> means that the function will only use the object
341 temporarily. After the function has finished, the user
342 can still use it as an argument to other functions.
343 A C<NULL> value will be treated in the same way as
344 a C<NULL> value for an C<__isl_take> argument.
348 =head2 Dimension Specifications
350 Whenever a new set or relation is created from scratch,
351 its dimension needs to be specified using an C<isl_dim>.
354 __isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,
355 unsigned nparam, unsigned n_in, unsigned n_out);
356 __isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,
357 unsigned nparam, unsigned dim);
358 __isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);
359 void isl_dim_free(__isl_take isl_dim *dim);
360 unsigned isl_dim_size(__isl_keep isl_dim *dim,
361 enum isl_dim_type type);
363 The dimension specification used for creating a set
364 needs to be created using C<isl_dim_set_alloc>, while
365 that for creating a relation
366 needs to be created using C<isl_dim_alloc>.
367 C<isl_dim_size> can be used
368 to find out the number of dimensions of each type in
369 a dimension specification, where type may be
370 C<isl_dim_param>, C<isl_dim_in> (only for relations),
371 C<isl_dim_out> (only for relations), C<isl_dim_set>
372 (only for sets) or C<isl_dim_all>.
374 =head2 Input and Output
376 C<isl> supports its own input/output format, which is similar
377 to the C<Omega> format, but also supports the C<PolyLib> format
382 The C<isl> format is similar to that of C<Omega>, but has a different
383 syntax for describing the parameters and allows for the definition
384 of an existentially quantified variable as the integer division
385 of an affine expression.
386 For example, the set of integers C<i> between C<0> and C<n>
387 such that C<i % 10 <= 6> can be described as
389 [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and
392 A set or relation can have several disjuncts, separated
393 by the keyword C<or>. Each disjunct is either a conjunction
394 of constraints or a projection (C<exists>) of a conjunction
395 of constraints. The constraints are separated by the keyword
398 =head3 C<PolyLib> format
400 If the represented set is a union, then the first line
401 contains a single number representing the number of disjuncts.
402 Otherwise, a line containing the number C<1> is optional.
404 Each disjunct is represented by a matrix of constraints.
405 The first line contains two numbers representing
406 the number of rows and columns,
407 where the number of rows is equal to the number of constraints
408 and the number of columns is equal to two plus the number of variables.
409 The following lines contain the actual rows of the constraint matrix.
410 In each row, the first column indicates whether the constraint
411 is an equality (C<0>) or inequality (C<1>). The final column
412 corresponds to the constant term.
414 If the set is parametric, then the coefficients of the parameters
415 appear in the last columns before the constant column.
416 The coefficients of any existentially quantified variables appear
417 between those of the set variables and those of the parameters.
422 __isl_give isl_basic_set *isl_basic_set_read_from_file(
423 isl_ctx *ctx, FILE *input, int nparam);
424 __isl_give isl_basic_set *isl_basic_set_read_from_str(
425 isl_ctx *ctx, const char *str, int nparam);
426 __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,
427 FILE *input, int nparam);
428 __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,
429 const char *str, int nparam);
432 __isl_give isl_basic_map *isl_basic_map_read_from_file(
433 isl_ctx *ctx, FILE *input, int nparam);
434 __isl_give isl_basic_map *isl_basic_map_read_from_str(
435 isl_ctx *ctx, const char *str, int nparam);
436 __isl_give isl_map *isl_map_read_from_file(
437 struct isl_ctx *ctx, FILE *input, int nparam);
438 __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,
439 const char *str, int nparam);
441 The input format is autodetected and may be either the C<PolyLib> format
442 or the C<isl> format.
443 C<nparam> specifies how many of the final columns in
444 the C<PolyLib> format correspond to parameters.
445 If input is given in the C<isl> format, then the number
446 of parameters needs to be equal to C<nparam>.
447 If C<nparam> is negative, then any number of parameters
448 is accepted in the C<isl> format and zero parameters
449 are assumed in the C<PolyLib> format.
454 void isl_basic_set_print(__isl_keep isl_basic_set *bset,
455 FILE *out, int indent,
456 const char *prefix, const char *suffix,
457 unsigned output_format);
458 void isl_set_print(__isl_keep struct isl_set *set,
459 FILE *out, int indent, unsigned output_format);
462 void isl_basic_map_print(__isl_keep isl_basic_map *bmap,
463 FILE *out, int indent,
464 const char *prefix, const char *suffix,
465 unsigned output_format);
466 void isl_map_print(__isl_keep struct isl_map *map,
467 FILE *out, int indent, unsigned output_format);
469 The C<output_format> may be either C<ISL_FORMAT_ISL>, C<ISL_FORMAT_OMEGA>
470 or C<ISL_FORMAT_POLYLIB>.
471 Each line in the output is indented by C<indent> spaces,
472 prefixed by C<prefix> and suffixed by C<suffix>.
473 In the C<PolyLib> format output,
474 the coefficients of the existentially quantified variables
475 appear between those of the set variables and those
478 =head2 Creating New Sets and Relations
480 C<isl> has functions for creating some standard sets and relations.
484 =item * Empty sets and relations
486 __isl_give isl_basic_set *isl_basic_set_empty(
487 __isl_take isl_dim *dim);
488 __isl_give isl_basic_map *isl_basic_map_empty(
489 __isl_take isl_dim *dim);
490 __isl_give isl_set *isl_set_empty(
491 __isl_take isl_dim *dim);
492 __isl_give isl_map *isl_map_empty(
493 __isl_take isl_dim *dim);
495 =item * Universe sets and relations
497 __isl_give isl_basic_set *isl_basic_set_universe(
498 __isl_take isl_dim *dim);
499 __isl_give isl_basic_map *isl_basic_map_universe(
500 __isl_take isl_dim *dim);
501 __isl_give isl_set *isl_set_universe(
502 __isl_take isl_dim *dim);
503 __isl_give isl_map *isl_map_universe(
504 __isl_take isl_dim *dim);
506 =item * Identity relations
508 __isl_give isl_basic_map *isl_basic_map_identity(
509 __isl_take isl_dim *set_dim);
510 __isl_give isl_map *isl_map_identity(
511 __isl_take isl_dim *set_dim);
513 These functions take a dimension specification for a B<set>
514 and return an identity relation between two such sets.
516 =item * Lexicographic order
518 __isl_give isl_map *isl_map_lex_lt(
519 __isl_take isl_dim *set_dim);
520 __isl_give isl_map *isl_map_lex_le(
521 __isl_take isl_dim *set_dim);
522 __isl_give isl_map *isl_map_lex_gt(
523 __isl_take isl_dim *set_dim);
524 __isl_give isl_map *isl_map_lex_ge(
525 __isl_take isl_dim *set_dim);
527 These functions take a dimension specification for a B<set>
528 and return relations that express that the elements in the domain
529 are lexicographically less
530 (C<isl_map_lex_lt>), less or equal (C<isl_map_lex_le>),
531 greater (C<isl_map_lex_gt>) or greater or equal (C<isl_map_lex_ge>)
532 than the elements in the range.
536 A basic set or relation can be converted to a set or relation
537 using the following functions.
539 __isl_give isl_set *isl_set_from_basic_set(
540 __isl_take isl_basic_set *bset);
541 __isl_give isl_map *isl_map_from_basic_map(
542 __isl_take isl_basic_map *bmap);
544 Sets and relations can be copied and freed again using the following
547 __isl_give isl_basic_set *isl_basic_set_copy(
548 __isl_keep isl_basic_set *bset);
549 __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);
550 __isl_give isl_basic_map *isl_basic_map_copy(
551 __isl_keep isl_basic_map *bmap);
552 __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);
553 void isl_basic_set_free(__isl_take isl_basic_set *bset);
554 void isl_set_free(__isl_take isl_set *set);
555 void isl_basic_map_free(__isl_take isl_basic_map *bmap);
556 void isl_map_free(__isl_take isl_map *map);
558 Other sets and relations can be constructed by starting
559 from a universe set or relation, adding equality and/or
560 inequality constraints and then projecting out the
561 existentially quantified variables, if any.
562 Constraints can be constructed, manipulated and
563 added to basic sets and relations using the following functions.
565 #include <isl_constraint.h>
566 __isl_give isl_constraint *isl_equality_alloc(
567 __isl_take isl_dim *dim);
568 __isl_give isl_constraint *isl_inequality_alloc(
569 __isl_take isl_dim *dim);
570 void isl_constraint_set_constant(
571 __isl_keep isl_constraint *constraint, isl_int v);
572 void isl_constraint_set_coefficient(
573 __isl_keep isl_constraint *constraint,
574 enum isl_dim_type type, int pos, isl_int v);
575 __isl_give isl_basic_map *isl_basic_map_add_constraint(
576 __isl_take isl_basic_map *bmap,
577 __isl_take isl_constraint *constraint);
578 __isl_give isl_basic_set *isl_basic_set_add_constraint(
579 __isl_take isl_basic_set *bset,
580 __isl_take isl_constraint *constraint);
582 For example, to create a set containing the even integers
583 between 10 and 42, you would use the following code.
587 struct isl_constraint *c;
588 struct isl_basic_set *bset;
591 dim = isl_dim_set_alloc(ctx, 0, 2);
592 bset = isl_basic_set_universe(isl_dim_copy(dim));
594 c = isl_equality_alloc(isl_dim_copy(dim));
595 isl_int_set_si(v, -1);
596 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
597 isl_int_set_si(v, 2);
598 isl_constraint_set_coefficient(c, isl_dim_set, 1, v);
599 bset = isl_basic_set_add_constraint(bset, c);
601 c = isl_inequality_alloc(isl_dim_copy(dim));
602 isl_int_set_si(v, -10);
603 isl_constraint_set_constant(c, v);
604 isl_int_set_si(v, 1);
605 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
606 bset = isl_basic_set_add_constraint(bset, c);
608 c = isl_inequality_alloc(dim);
609 isl_int_set_si(v, 42);
610 isl_constraint_set_constant(c, v);
611 isl_int_set_si(v, -1);
612 isl_constraint_set_coefficient(c, isl_dim_set, 0, v);
613 bset = isl_basic_set_add_constraint(bset, c);
615 bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);
621 struct isl_basic_set *bset;
622 bset = isl_basic_set_read_from_str(ctx,
623 "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);
625 =head2 Inspecting Sets and Relations
627 Usually, the user should not have to care about the actual constraints
628 of the sets and maps, but should instead apply the abstract operations
629 explained in the following sections.
630 Occasionally, however, it may be required to inspect the individual
631 coefficients of the constraints. This section explains how to do so.
632 In these cases, it may also be useful to have C<isl> compute
633 an explicit representation of the existentially quantified variables.
635 __isl_give isl_set *isl_set_compute_divs(
636 __isl_take isl_set *set);
637 __isl_give isl_map *isl_map_compute_divs(
638 __isl_take isl_map *map);
640 This explicit representation defines the existentially quantified
641 variables as integer divisions of the other variables, possibly
642 including earlier existentially quantified variables.
643 An explicitly represented existentially quantified variable therefore
644 has a unique value when the values of the other variables are known.
645 If, furthermore, the same existentials, i.e., existentials
646 with the same explicit representations, should appear in the
647 same order in each of the disjuncts of a set or map, then the user should call
648 either of the following functions.
650 __isl_give isl_set *isl_set_align_divs(
651 __isl_take isl_set *set);
652 __isl_give isl_map *isl_map_align_divs(
653 __isl_take isl_map *map);
655 To iterate over all the basic sets or maps in a set or map, use
657 int isl_set_foreach_basic_set(__isl_keep isl_set *set,
658 int (*fn)(__isl_take isl_basic_set *bset, void *user),
660 int isl_map_foreach_basic_map(__isl_keep isl_map *map,
661 int (*fn)(__isl_take isl_basic_map *bmap, void *user),
664 The callback function C<fn> should return 0 if successful and
665 -1 if an error occurs. In the latter case, or if any other error
666 occurs, the above functions will return -1.
668 It should be noted that C<isl> does not guarantee that
669 the basic sets or maps passed to C<fn> are disjoint.
670 If this is required, then the user should call one of
671 the following functions first.
673 __isl_give isl_set *isl_set_make_disjoint(
674 __isl_take isl_set *set);
675 __isl_give isl_map *isl_map_make_disjoint(
676 __isl_take isl_map *map);
678 To iterate over the constraints of a basic set or map, use
680 #include <isl_constraint.h>
682 int isl_basic_map_foreach_constraint(
683 __isl_keep isl_basic_map *bmap,
684 int (*fn)(__isl_take isl_constraint *c, void *user),
686 void isl_constraint_free(struct isl_constraint *c);
688 Again, the callback function C<fn> should return 0 if successful and
689 -1 if an error occurs. In the latter case, or if any other error
690 occurs, the above functions will return -1.
692 The coefficients of the constraints can be inspected using
693 the following functions.
695 void isl_constraint_get_constant(
696 __isl_keep isl_constraint *constraint, isl_int *v);
697 void isl_constraint_get_coefficient(
698 __isl_keep isl_constraint *constraint,
699 enum isl_dim_type type, int pos, isl_int *v);
701 The explicit representations of the existentially quantified
702 variables can be inspected using the following functions.
703 Note that the user is only allowed to use these functions
704 if the inspected set or map is the result of a call
705 to C<isl_set_compute_divs> or C<isl_map_compute_divs>.
707 __isl_give isl_div *isl_constraint_div(
708 __isl_keep isl_constraint *constraint, int pos);
709 void isl_div_get_constant(__isl_keep isl_div *div,
711 void isl_div_get_denominator(__isl_keep isl_div *div,
713 void isl_div_get_coefficient(__isl_keep isl_div *div,
714 enum isl_dim_type type, int pos, isl_int *v);
718 =head3 Unary Properties
724 The following functions test whether the given set or relation
725 contains any integer points. The ``fast'' variants do not perform
726 any computations, but simply check if the given set or relation
727 is already known to be empty.
729 int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);
730 int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);
731 int isl_set_is_empty(__isl_keep isl_set *set);
732 int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);
733 int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);
734 int isl_map_fast_is_empty(__isl_keep isl_map *map);
735 int isl_map_is_empty(__isl_keep isl_map *map);
739 int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);
740 int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);
741 int isl_set_fast_is_universe(__isl_keep isl_set *set);
745 =head3 Binary Properties
751 int isl_set_fast_is_equal(__isl_keep isl_set *set1,
752 __isl_keep isl_set *set2);
753 int isl_set_is_equal(__isl_keep isl_set *set1,
754 __isl_keep isl_set *set2);
755 int isl_map_is_equal(__isl_keep isl_map *map1,
756 __isl_keep isl_map *map2);
757 int isl_map_fast_is_equal(__isl_keep isl_map *map1,
758 __isl_keep isl_map *map2);
759 int isl_basic_map_is_equal(
760 __isl_keep isl_basic_map *bmap1,
761 __isl_keep isl_basic_map *bmap2);
765 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,
766 __isl_keep isl_set *set2);
770 int isl_set_is_subset(__isl_keep isl_set *set1,
771 __isl_keep isl_set *set2);
772 int isl_set_is_strict_subset(
773 __isl_keep isl_set *set1,
774 __isl_keep isl_set *set2);
775 int isl_basic_map_is_subset(
776 __isl_keep isl_basic_map *bmap1,
777 __isl_keep isl_basic_map *bmap2);
778 int isl_basic_map_is_strict_subset(
779 __isl_keep isl_basic_map *bmap1,
780 __isl_keep isl_basic_map *bmap2);
781 int isl_map_is_subset(
782 __isl_keep isl_map *map1,
783 __isl_keep isl_map *map2);
784 int isl_map_is_strict_subset(
785 __isl_keep isl_map *map1,
786 __isl_keep isl_map *map2);
790 =head2 Unary Operations
796 __isl_give isl_set *isl_set_complement(
797 __isl_take isl_set *set);
801 __isl_give isl_basic_set *isl_basic_set_project_out(
802 __isl_take isl_basic_set *bset,
803 enum isl_dim_type type, unsigned first, unsigned n);
804 __isl_give isl_basic_map *isl_basic_map_project_out(
805 __isl_take isl_basic_map *bmap,
806 enum isl_dim_type type, unsigned first, unsigned n);
807 __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,
808 enum isl_dim_type type, unsigned first, unsigned n);
809 __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,
810 enum isl_dim_type type, unsigned first, unsigned n);
811 __isl_give isl_basic_set *isl_basic_map_domain(
812 __isl_take isl_basic_map *bmap);
813 __isl_give isl_basic_set *isl_basic_map_range(
814 __isl_take isl_basic_map *bmap);
815 __isl_give isl_set *isl_map_domain(
816 __isl_take isl_map *bmap);
817 __isl_give isl_set *isl_map_range(
818 __isl_take isl_map *map);
822 Simplify the representation of a set or relation by trying
823 to combine pairs of basic sets or relations into a single
824 basic set or relation.
826 __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);
827 __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);
831 __isl_give isl_basic_set *isl_set_convex_hull(
832 __isl_take isl_set *set);
833 __isl_give isl_basic_map *isl_map_convex_hull(
834 __isl_take isl_map *map);
836 If the input set or relation has any existentially quantified
837 variables, then the result of these operations is currently undefined.
841 __isl_give isl_basic_set *isl_basic_set_affine_hull(
842 __isl_take isl_basic_set *bset);
843 __isl_give isl_basic_set *isl_set_affine_hull(
844 __isl_take isl_set *set);
845 __isl_give isl_basic_map *isl_basic_map_affine_hull(
846 __isl_take isl_basic_map *bmap);
847 __isl_give isl_basic_map *isl_map_affine_hull(
848 __isl_take isl_map *map);
852 __isl_give isl_map *isl_map_power(__isl_take isl_map *map,
853 unsigned param, int *exact);
855 Compute a parametric representation for all positive powers I<k> of C<map>.
856 The power I<k> is equated to the parameter at position C<param>.
857 The result may be an overapproximation. If the result is exact,
858 then C<*exact> is set to C<1>.
859 The current implementation only produces exact results for particular
860 cases of piecewise translations (i.e., piecewise uniform dependences).
862 =item * Transitive closure
864 __isl_give isl_map *isl_map_transitive_closure(
865 __isl_take isl_map *map, int *exact);
867 Compute the transitive closure of C<map>.
868 The result may be an overapproximation. If the result is known to be exact,
869 then C<*exact> is set to C<1>.
870 The current implementation only produces exact results for particular
871 cases of piecewise translations (i.e., piecewise uniform dependences).
875 =head2 Binary Operations
877 The two arguments of a binary operation not only need to live
878 in the same C<isl_ctx>, they currently also need to have
879 the same (number of) parameters.
881 =head3 Basic Operations
887 __isl_give isl_basic_set *isl_basic_set_intersect(
888 __isl_take isl_basic_set *bset1,
889 __isl_take isl_basic_set *bset2);
890 __isl_give isl_set *isl_set_intersect(
891 __isl_take isl_set *set1,
892 __isl_take isl_set *set2);
893 __isl_give isl_basic_map *isl_basic_map_intersect_domain(
894 __isl_take isl_basic_map *bmap,
895 __isl_take isl_basic_set *bset);
896 __isl_give isl_basic_map *isl_basic_map_intersect_range(
897 __isl_take isl_basic_map *bmap,
898 __isl_take isl_basic_set *bset);
899 __isl_give isl_basic_map *isl_basic_map_intersect(
900 __isl_take isl_basic_map *bmap1,
901 __isl_take isl_basic_map *bmap2);
902 __isl_give isl_map *isl_map_intersect_domain(
903 __isl_take isl_map *map,
904 __isl_take isl_set *set);
905 __isl_give isl_map *isl_map_intersect_range(
906 __isl_take isl_map *map,
907 __isl_take isl_set *set);
908 __isl_give isl_map *isl_map_intersect(
909 __isl_take isl_map *map1,
910 __isl_take isl_map *map2);
914 __isl_give isl_set *isl_basic_set_union(
915 __isl_take isl_basic_set *bset1,
916 __isl_take isl_basic_set *bset2);
917 __isl_give isl_map *isl_basic_map_union(
918 __isl_take isl_basic_map *bmap1,
919 __isl_take isl_basic_map *bmap2);
920 __isl_give isl_set *isl_set_union(
921 __isl_take isl_set *set1,
922 __isl_take isl_set *set2);
923 __isl_give isl_map *isl_map_union(
924 __isl_take isl_map *map1,
925 __isl_take isl_map *map2);
927 =item * Set difference
929 __isl_give isl_set *isl_set_subtract(
930 __isl_take isl_set *set1,
931 __isl_take isl_set *set2);
932 __isl_give isl_map *isl_map_subtract(
933 __isl_take isl_map *map1,
934 __isl_take isl_map *map2);
938 __isl_give isl_basic_set *isl_basic_set_apply(
939 __isl_take isl_basic_set *bset,
940 __isl_take isl_basic_map *bmap);
941 __isl_give isl_set *isl_set_apply(
942 __isl_take isl_set *set,
943 __isl_take isl_map *map);
944 __isl_give isl_basic_map *isl_basic_map_apply_domain(
945 __isl_take isl_basic_map *bmap1,
946 __isl_take isl_basic_map *bmap2);
947 __isl_give isl_basic_map *isl_basic_map_apply_range(
948 __isl_take isl_basic_map *bmap1,
949 __isl_take isl_basic_map *bmap2);
950 __isl_give isl_map *isl_map_apply_domain(
951 __isl_take isl_map *map1,
952 __isl_take isl_map *map2);
953 __isl_give isl_map *isl_map_apply_range(
954 __isl_take isl_map *map1,
955 __isl_take isl_map *map2);
959 =head3 Lexicographic Optimization
961 Given a (basic) set C<set> (or C<bset>) and a zero-dimensional domain C<dom>,
962 the following functions
963 compute a set that contains the lexicographic minimum or maximum
964 of the elements in C<set> (or C<bset>) for those values of the parameters
966 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
967 that contains the parameter values in C<dom> for which C<set> (or C<bset>)
969 In other words, the union of the parameter values
970 for which the result is non-empty and of C<*empty>
973 __isl_give isl_set *isl_basic_set_partial_lexmin(
974 __isl_take isl_basic_set *bset,
975 __isl_take isl_basic_set *dom,
976 __isl_give isl_set **empty);
977 __isl_give isl_set *isl_basic_set_partial_lexmax(
978 __isl_take isl_basic_set *bset,
979 __isl_take isl_basic_set *dom,
980 __isl_give isl_set **empty);
981 __isl_give isl_set *isl_set_partial_lexmin(
982 __isl_take isl_set *set, __isl_take isl_set *dom,
983 __isl_give isl_set **empty);
984 __isl_give isl_set *isl_set_partial_lexmax(
985 __isl_take isl_set *set, __isl_take isl_set *dom,
986 __isl_give isl_set **empty);
988 Given a (basic) set C<set> (or C<bset>), the following functions simply
989 return a set containing the lexicographic minimum or maximum
990 of the elements in C<set> (or C<bset>).
992 __isl_give isl_set *isl_basic_set_lexmin(
993 __isl_take isl_basic_set *bset);
994 __isl_give isl_set *isl_basic_set_lexmax(
995 __isl_take isl_basic_set *bset);
996 __isl_give isl_set *isl_set_lexmin(
997 __isl_take isl_set *set);
998 __isl_give isl_set *isl_set_lexmax(
999 __isl_take isl_set *set);
1001 Given a (basic) relation C<map> (or C<bmap>) and a domain C<dom>,
1002 the following functions
1003 compute a relation that maps each element of C<dom>
1004 to the single lexicographic minimum or maximum
1005 of the elements that are associated to that same
1006 element in C<map> (or C<bmap>).
1007 If C<empty> is not C<NULL>, then C<*empty> is assigned a set
1008 that contains the elements in C<dom> that do not map
1009 to any elements in C<map> (or C<bmap>).
1010 In other words, the union of the domain of the result and of C<*empty>
1013 __isl_give isl_map *isl_basic_map_partial_lexmax(
1014 __isl_take isl_basic_map *bmap,
1015 __isl_take isl_basic_set *dom,
1016 __isl_give isl_set **empty);
1017 __isl_give isl_map *isl_basic_map_partial_lexmin(
1018 __isl_take isl_basic_map *bmap,
1019 __isl_take isl_basic_set *dom,
1020 __isl_give isl_set **empty);
1021 __isl_give isl_map *isl_map_partial_lexmax(
1022 __isl_take isl_map *map, __isl_take isl_set *dom,
1023 __isl_give isl_set **empty);
1024 __isl_give isl_map *isl_map_partial_lexmin(
1025 __isl_take isl_map *map, __isl_take isl_set *dom,
1026 __isl_give isl_set **empty);
1028 Given a (basic) map C<map> (or C<bmap>), the following functions simply
1029 return a map mapping each element in the domain of
1030 C<map> (or C<bmap>) to the lexicographic minimum or maximum
1031 of all elements associated to that element.
1033 __isl_give isl_map *isl_basic_map_lexmin(
1034 __isl_take isl_basic_map *bmap);
1035 __isl_give isl_map *isl_basic_map_lexmax(
1036 __isl_take isl_basic_map *bmap);
1037 __isl_give isl_map *isl_map_lexmin(
1038 __isl_take isl_map *map);
1039 __isl_give isl_map *isl_map_lexmax(
1040 __isl_take isl_map *map);
1044 Points are elements of a set. They can be used to construct
1045 simple sets (boxes) or they can be used to represent the
1046 individual elements of a set.
1047 The zero point (the origin) can be created using
1049 __isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);
1051 The coordinates of a point can be inspected, set and changed
1054 void isl_point_get_coordinate(__isl_keep isl_point *pnt,
1055 enum isl_dim_type type, int pos, isl_int *v);
1056 __isl_give isl_point *isl_point_set_coordinate(
1057 __isl_take isl_point *pnt,
1058 enum isl_dim_type type, int pos, isl_int v);
1060 __isl_give isl_point *isl_point_add_ui(
1061 __isl_take isl_point *pnt,
1062 enum isl_dim_type type, int pos, unsigned val);
1063 __isl_give isl_point *isl_point_sub_ui(
1064 __isl_take isl_point *pnt,
1065 enum isl_dim_type type, int pos, unsigned val);
1067 Points can be copied or freed using
1069 __isl_give isl_point *isl_point_copy(
1070 __isl_keep isl_point *pnt);
1071 void isl_point_free(__isl_take isl_point *pnt);
1073 A box can be created from two opposite extremal points using
1075 __isl_give isl_set *isl_set_box_from_points(
1076 __isl_take isl_point *pnt1,
1077 __isl_take isl_point *pnt2);
1079 All elements of a B<bounded> set can be enumerated using
1080 the following function.
1082 int isl_set_foreach_point(__isl_keep isl_set *set,
1083 int (*fn)(__isl_take isl_point *pnt, void *user),
1086 The function C<fn> is called for each integer point in
1087 C<set> with as second argument the last argument of
1088 the C<isl_set_foreach_point> call. The function C<fn>
1089 should return C<0> on success and C<-1> on failure.
1090 In the latter case, C<isl_set_foreach_point> will stop
1091 enumerating and return C<-1> as well.
1092 If the enumeration is performed successfully and to completion,
1093 then C<isl_set_foreach_point> returns C<0>.
1095 To obtain a single point of a set, use
1097 __isl_give isl_point *isl_set_sample_point(
1098 __isl_take isl_set *set);
1100 If C<set> does not contain any (integer) points, then the
1101 resulting point will be ``void'', a property that can be
1104 int isl_point_is_void(__isl_keep isl_point *pnt);
1106 =head2 Piecewise Quasipolynomials
1108 A piecewise quasipolynomial is a particular kind of function that maps
1109 a parametric point to a rational value.
1110 More specifically, a quasipolynomial is a polynomial expression in greatest
1111 integer parts of affine expressions of parameters and variables.
1112 A piecewise quasipolynomial is a subdivision of a given parametric
1113 domain into disjoint cells with a quasipolynomial associated to
1114 each cell. The value of the piecewise quasipolynomial at a given
1115 point is the value of the quasipolynomial associated to the cell
1116 that contains the point. Outside of the union of cells,
1117 the value is assumed to be zero.
1118 For example, the piecewise quasipolynomial
1120 [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }
1122 maps C<x> to C<1 + n - x> for values of C<x> between C<0> and C<n>.
1123 Piecewise quasipolynomials are mainly used by the C<barvinok>
1124 library for representing the number of elements in a parametric set or map.
1125 For example, the piecewise quasipolynomial above represents
1126 the number of point in the map
1128 [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }
1130 =head3 Printing (Piecewise) Quasipolynomials
1132 Quasipolynomials and piecewise quasipolynomials can be printed
1133 using the following functions.
1135 void isl_qpolynomial_print(__isl_keep isl_qpolynomial *qp,
1136 FILE *out, unsigned output_format);
1138 void isl_pw_qpolynomial_print(
1139 __isl_keep isl_pw_qpolynomial *pwqp, FILE *out,
1140 unsigned output_format);
1142 =head3 Creating New (Piecewise) Quasipolynomials
1144 Some simple quasipolynomials can be created using the following functions.
1145 More complicated quasipolynomials can be created by applying
1146 operations such as addition and multiplication
1147 on the resulting quasipolynomials
1149 __isl_give isl_qpolynomial *isl_qpolynomial_zero(
1150 __isl_take isl_dim *dim);
1151 __isl_give isl_qpolynomial *isl_qpolynomial_infty(
1152 __isl_take isl_dim *dim);
1153 __isl_give isl_qpolynomial *isl_qpolynomial_nan(
1154 __isl_take isl_dim *dim);
1155 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(
1156 __isl_take isl_dim *dim,
1157 const isl_int n, const isl_int d);
1158 __isl_give isl_qpolynomial *isl_qpolynomial_div(
1159 __isl_take isl_div *div);
1160 __isl_give isl_qpolynomial *isl_qpolynomial_var(
1161 __isl_take isl_dim *dim,
1162 enum isl_dim_type type, unsigned pos);
1164 The zero piecewise quasipolynomial or a piecewise quasipolynomial
1165 with a single cell can be created using the following functions.
1166 Multiple of these single cell piecewise quasipolynomials can
1167 be combined to create more complicated piecewise quasipolynomials.
1169 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(
1170 __isl_take isl_dim *dim);
1171 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(
1172 __isl_take isl_set *set,
1173 __isl_take isl_qpolynomial *qp);
1175 Quasipolynomials can be copied and freed again using the following
1178 __isl_give isl_qpolynomial *isl_qpolynomial_copy(
1179 __isl_keep isl_qpolynomial *qp);
1180 void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);
1182 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(
1183 __isl_keep isl_pw_qpolynomial *pwqp);
1184 void isl_pw_qpolynomial_free(
1185 __isl_take isl_pw_qpolynomial *pwqp);
1187 =head3 Inspecting (Piecewise) Quasipolynomials
1189 To iterate over the cells in a piecewise quasipolynomial,
1190 use the following function
1192 int isl_pw_qpolynomial_foreach_piece(
1193 __isl_keep isl_pw_qpolynomial *pwqp,
1194 int (*fn)(__isl_take isl_set *set,
1195 __isl_take isl_qpolynomial *qp,
1196 void *user), void *user);
1198 As usual, the function C<fn> should return C<0> on success
1199 and C<-1> on failure.
1201 To iterate over all terms in a quasipolynomial,
1204 int isl_qpolynomial_foreach_term(
1205 __isl_keep isl_qpolynomial *qp,
1206 int (*fn)(__isl_take isl_term *term,
1207 void *user), void *user);
1209 The terms themselves can be inspected and freed using
1212 unsigned isl_term_dim(__isl_keep isl_term *term,
1213 enum isl_dim_type type);
1214 void isl_term_get_num(__isl_keep isl_term *term,
1216 void isl_term_get_den(__isl_keep isl_term *term,
1218 int isl_term_get_exp(__isl_keep isl_term *term,
1219 enum isl_dim_type type, unsigned pos);
1220 __isl_give isl_div *isl_term_get_div(
1221 __isl_keep isl_term *term, unsigned pos);
1222 void isl_term_free(__isl_take isl_term *term);
1224 Each term is a product of parameters, set variables and
1225 integer divisions. The function C<isl_term_get_exp>
1226 returns the exponent of a given dimensions in the given term.
1227 The C<isl_int>s in the arguments of C<isl_term_get_num>
1228 and C<isl_term_get_den> need to have been initialized
1229 using C<isl_int_init> before calling these functions.
1231 =head3 Properties of (Piecewise) Quasipolynomials
1233 To check whether a quasipolynomial is actually a constant,
1234 use the following function.
1236 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1237 isl_int *n, isl_int *d);
1239 If C<qp> is a constant and if C<n> and C<d> are not C<NULL>
1240 then the numerator and denominator of the constant
1241 are returned in C<*n> and C<*d>, respectively.
1243 =head3 Operations on (Piecewise) Quasipolynomials
1245 __isl_give isl_qpolynomial *isl_qpolynomial_neg(
1246 __isl_take isl_qpolynomial *qp);
1247 __isl_give isl_qpolynomial *isl_qpolynomial_add(
1248 __isl_take isl_qpolynomial *qp1,
1249 __isl_take isl_qpolynomial *qp2);
1250 __isl_give isl_qpolynomial *isl_qpolynomial_mul(
1251 __isl_take isl_qpolynomial *qp1,
1252 __isl_take isl_qpolynomial *qp2);
1254 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
1255 __isl_take isl_pw_qpolynomial *pwqp1,
1256 __isl_take isl_pw_qpolynomial *pwqp2);
1257 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(
1258 __isl_take isl_pw_qpolynomial *pwqp1,
1259 __isl_take isl_pw_qpolynomial *pwqp2);
1260 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(
1261 __isl_take isl_pw_qpolynomial *pwqp1,
1262 __isl_take isl_pw_qpolynomial *pwqp2);
1263 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(
1264 __isl_take isl_pw_qpolynomial *pwqp);
1265 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
1266 __isl_take isl_pw_qpolynomial *pwqp1,
1267 __isl_take isl_pw_qpolynomial *pwqp2);
1269 __isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(
1270 __isl_take isl_pw_qpolynomial *pwqp,
1271 __isl_take isl_point *pnt);
1273 =head2 Dependence Analysis
1275 C<isl> contains specialized functionality for performing
1276 array dataflow analysis. That is, given a I<sink> access relation
1277 and a collection of possible I<source> access relations,
1278 C<isl> can compute relations that describe
1279 for each iteration of the sink access, which iteration
1280 of which of the source access relations was the last
1281 to access the same data element before the given iteration
1283 To compute standard flow dependences, the sink should be
1284 a read, while the sources should be writes.
1286 #include <isl_flow.h>
1288 __isl_give isl_access_info *isl_access_info_alloc(
1289 __isl_take isl_map *sink,
1290 void *sink_user, isl_access_level_before fn,
1292 __isl_give isl_access_info *isl_access_info_add_source(
1293 __isl_take isl_access_info *acc,
1294 __isl_take isl_map *source, void *source_user);
1296 __isl_give isl_flow *isl_access_info_compute_flow(
1297 __isl_take isl_access_info *acc);
1299 int isl_flow_foreach(__isl_keep isl_flow *deps,
1300 int (*fn)(__isl_take isl_map *dep, void *dep_user,
1303 __isl_give isl_set *isl_flow_get_no_source(
1304 __isl_keep isl_flow *deps);
1305 void isl_flow_free(__isl_take isl_flow *deps);
1307 The function C<isl_access_info_compute_flow> performs the actual
1308 dependence analysis. The other functions are used to construct
1309 the input for this function or to read off the output.
1311 The input is collected in an C<isl_access_info>, which can
1312 be created through a call to C<isl_access_info_alloc>.
1313 The arguments to this functions are the sink access relation
1314 C<sink>, a token C<sink_user> used to identify the sink
1315 access to the user, a callback function for specifying the
1316 relative order of source and sink accesses, and the number
1317 of source access relations that will be added.
1318 The callback function has type C<int (*)(void *first, void *second)>.
1319 The function is called with two user supplied tokens identifying
1320 either a source or the sink and it should return the shared nesting
1321 level and the relative order of the two accesses.
1322 In particular, let I<n> be the number of loops shared by
1323 the two accesses. If C<first> precedes C<second> textually,
1324 then the function should return I<2 * n + 1>; otherwise,
1325 it should return I<2 * n>.
1326 The sources can be added to the C<isl_access_info> by performing
1327 (at most) C<max_source> calls to C<isl_access_info_add_source>.
1328 The C<source_user> token is again used to identify
1329 the source access. The range of the source access relation
1330 C<source> should have the same dimension as the range
1331 of the sink access relation.
1333 The result of the dependence analysis is collected in an
1334 C<isl_flow>. There may be elements in the domain of
1335 the sink access for which no preceding source access could be
1336 find. The set of these elements can be obtained through
1337 a call to C<isl_flow_get_no_source>.
1338 In the case of standard flow dependence analysis,
1339 this set corresponds to the reads from uninitialized
1341 The actual flow dependences can be extracted using
1342 C<isl_flow_foreach>. This function will call the user-specified
1343 callback function C<fn> for each B<non-empty> dependence between
1344 a source and the sink. The callback function is called
1345 with three arguments, the actual flow dependence relation
1346 mapping source iterations to sink iterations, a token
1347 identifying the source and an additional C<void *> with value
1348 equal to the third argument of the C<isl_flow_foreach> call.
1350 After finishing with an C<isl_flow>, the user should call
1351 C<isl_flow_free> to free all associated memory.
1355 Although C<isl> is mainly meant to be used as a library,
1356 it also contains some basic applications that use some
1357 of the functionality of C<isl>.
1358 The input may be specified in either the L<isl format>
1359 or the L<PolyLib format>.
1361 =head2 C<isl_polyhedron_sample>
1363 C<isl_polyhedron_sample> takes a polyhedron as input and prints
1364 an integer element of the polyhedron, if there is any.
1365 The first column in the output is the denominator and is always
1366 equal to 1. If the polyhedron contains no integer points,
1367 then a vector of length zero is printed.
1371 C<isl_pip> takes the same input as the C<example> program
1372 from the C<piplib> distribution, i.e., a set of constraints
1373 on the parameters, a line contains only -1 and finally a set
1374 of constraints on a parametric polyhedron.
1375 The coefficients of the parameters appear in the last columns
1376 (but before the final constant column).
1377 The output is the lexicographic minimum of the parametric polyhedron.
1378 As C<isl> currently does not have its own output format, the output
1379 is just a dump of the internal state.
1381 =head2 C<isl_polyhedron_minimize>
1383 C<isl_polyhedron_minimize> computes the minimum of some linear
1384 or affine objective function over the integer points in a polyhedron.
1385 If an affine objective function
1386 is given, then the constant should appear in the last column.
1388 =head2 C<isl_polytope_scan>
1390 Given a polytope, C<isl_polytope_scan> prints
1391 all integer points in the polytope.
1393 =head1 C<isl-polylib>
1395 The C<isl-polylib> library provides the following functions for converting
1396 between C<isl> objects and C<PolyLib> objects.
1397 The library is distributed separately for licensing reasons.
1399 #include <isl_set_polylib.h>
1400 __isl_give isl_basic_set *isl_basic_set_new_from_polylib(
1401 Polyhedron *P, __isl_take isl_dim *dim);
1402 Polyhedron *isl_basic_set_to_polylib(
1403 __isl_keep isl_basic_set *bset);
1404 __isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,
1405 __isl_take isl_dim *dim);
1406 Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);
1408 #include <isl_map_polylib.h>
1409 __isl_give isl_basic_map *isl_basic_map_new_from_polylib(
1410 Polyhedron *P, __isl_take isl_dim *dim);
1411 __isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,
1412 __isl_take isl_dim *dim);
1413 Polyhedron *isl_basic_map_to_polylib(
1414 __isl_keep isl_basic_map *bmap);
1415 Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);