2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_factorization.h>
16 #include <isl_lp_private.h>
18 #include <isl_union_map_private.h>
19 #include <isl_constraint_private.h>
20 #include <isl_polynomial_private.h>
21 #include <isl_point_private.h>
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
25 #include <isl_range.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
30 #include <isl/deprecated/polynomial_int.h>
32 static unsigned pos(__isl_keep isl_space
*dim
, enum isl_dim_type type
)
35 case isl_dim_param
: return 0;
36 case isl_dim_in
: return dim
->nparam
;
37 case isl_dim_out
: return dim
->nparam
+ dim
->n_in
;
42 int isl_upoly_is_cst(__isl_keep
struct isl_upoly
*up
)
50 __isl_keep
struct isl_upoly_cst
*isl_upoly_as_cst(__isl_keep
struct isl_upoly
*up
)
55 isl_assert(up
->ctx
, up
->var
< 0, return NULL
);
57 return (struct isl_upoly_cst
*)up
;
60 __isl_keep
struct isl_upoly_rec
*isl_upoly_as_rec(__isl_keep
struct isl_upoly
*up
)
65 isl_assert(up
->ctx
, up
->var
>= 0, return NULL
);
67 return (struct isl_upoly_rec
*)up
;
70 int isl_upoly_is_equal(__isl_keep
struct isl_upoly
*up1
,
71 __isl_keep
struct isl_upoly
*up2
)
74 struct isl_upoly_rec
*rec1
, *rec2
;
80 if (up1
->var
!= up2
->var
)
82 if (isl_upoly_is_cst(up1
)) {
83 struct isl_upoly_cst
*cst1
, *cst2
;
84 cst1
= isl_upoly_as_cst(up1
);
85 cst2
= isl_upoly_as_cst(up2
);
88 return isl_int_eq(cst1
->n
, cst2
->n
) &&
89 isl_int_eq(cst1
->d
, cst2
->d
);
92 rec1
= isl_upoly_as_rec(up1
);
93 rec2
= isl_upoly_as_rec(up2
);
97 if (rec1
->n
!= rec2
->n
)
100 for (i
= 0; i
< rec1
->n
; ++i
) {
101 int eq
= isl_upoly_is_equal(rec1
->p
[i
], rec2
->p
[i
]);
109 int isl_upoly_is_zero(__isl_keep
struct isl_upoly
*up
)
111 struct isl_upoly_cst
*cst
;
115 if (!isl_upoly_is_cst(up
))
118 cst
= isl_upoly_as_cst(up
);
122 return isl_int_is_zero(cst
->n
) && isl_int_is_pos(cst
->d
);
125 int isl_upoly_sgn(__isl_keep
struct isl_upoly
*up
)
127 struct isl_upoly_cst
*cst
;
131 if (!isl_upoly_is_cst(up
))
134 cst
= isl_upoly_as_cst(up
);
138 return isl_int_sgn(cst
->n
);
141 int isl_upoly_is_nan(__isl_keep
struct isl_upoly
*up
)
143 struct isl_upoly_cst
*cst
;
147 if (!isl_upoly_is_cst(up
))
150 cst
= isl_upoly_as_cst(up
);
154 return isl_int_is_zero(cst
->n
) && isl_int_is_zero(cst
->d
);
157 int isl_upoly_is_infty(__isl_keep
struct isl_upoly
*up
)
159 struct isl_upoly_cst
*cst
;
163 if (!isl_upoly_is_cst(up
))
166 cst
= isl_upoly_as_cst(up
);
170 return isl_int_is_pos(cst
->n
) && isl_int_is_zero(cst
->d
);
173 int isl_upoly_is_neginfty(__isl_keep
struct isl_upoly
*up
)
175 struct isl_upoly_cst
*cst
;
179 if (!isl_upoly_is_cst(up
))
182 cst
= isl_upoly_as_cst(up
);
186 return isl_int_is_neg(cst
->n
) && isl_int_is_zero(cst
->d
);
189 int isl_upoly_is_one(__isl_keep
struct isl_upoly
*up
)
191 struct isl_upoly_cst
*cst
;
195 if (!isl_upoly_is_cst(up
))
198 cst
= isl_upoly_as_cst(up
);
202 return isl_int_eq(cst
->n
, cst
->d
) && isl_int_is_pos(cst
->d
);
205 int isl_upoly_is_negone(__isl_keep
struct isl_upoly
*up
)
207 struct isl_upoly_cst
*cst
;
211 if (!isl_upoly_is_cst(up
))
214 cst
= isl_upoly_as_cst(up
);
218 return isl_int_is_negone(cst
->n
) && isl_int_is_one(cst
->d
);
221 __isl_give
struct isl_upoly_cst
*isl_upoly_cst_alloc(struct isl_ctx
*ctx
)
223 struct isl_upoly_cst
*cst
;
225 cst
= isl_alloc_type(ctx
, struct isl_upoly_cst
);
234 isl_int_init(cst
->n
);
235 isl_int_init(cst
->d
);
240 __isl_give
struct isl_upoly
*isl_upoly_zero(struct isl_ctx
*ctx
)
242 struct isl_upoly_cst
*cst
;
244 cst
= isl_upoly_cst_alloc(ctx
);
248 isl_int_set_si(cst
->n
, 0);
249 isl_int_set_si(cst
->d
, 1);
254 __isl_give
struct isl_upoly
*isl_upoly_one(struct isl_ctx
*ctx
)
256 struct isl_upoly_cst
*cst
;
258 cst
= isl_upoly_cst_alloc(ctx
);
262 isl_int_set_si(cst
->n
, 1);
263 isl_int_set_si(cst
->d
, 1);
268 __isl_give
struct isl_upoly
*isl_upoly_infty(struct isl_ctx
*ctx
)
270 struct isl_upoly_cst
*cst
;
272 cst
= isl_upoly_cst_alloc(ctx
);
276 isl_int_set_si(cst
->n
, 1);
277 isl_int_set_si(cst
->d
, 0);
282 __isl_give
struct isl_upoly
*isl_upoly_neginfty(struct isl_ctx
*ctx
)
284 struct isl_upoly_cst
*cst
;
286 cst
= isl_upoly_cst_alloc(ctx
);
290 isl_int_set_si(cst
->n
, -1);
291 isl_int_set_si(cst
->d
, 0);
296 __isl_give
struct isl_upoly
*isl_upoly_nan(struct isl_ctx
*ctx
)
298 struct isl_upoly_cst
*cst
;
300 cst
= isl_upoly_cst_alloc(ctx
);
304 isl_int_set_si(cst
->n
, 0);
305 isl_int_set_si(cst
->d
, 0);
310 __isl_give
struct isl_upoly
*isl_upoly_rat_cst(struct isl_ctx
*ctx
,
311 isl_int n
, isl_int d
)
313 struct isl_upoly_cst
*cst
;
315 cst
= isl_upoly_cst_alloc(ctx
);
319 isl_int_set(cst
->n
, n
);
320 isl_int_set(cst
->d
, d
);
325 __isl_give
struct isl_upoly_rec
*isl_upoly_alloc_rec(struct isl_ctx
*ctx
,
328 struct isl_upoly_rec
*rec
;
330 isl_assert(ctx
, var
>= 0, return NULL
);
331 isl_assert(ctx
, size
>= 0, return NULL
);
332 rec
= isl_calloc(ctx
, struct isl_upoly_rec
,
333 sizeof(struct isl_upoly_rec
) +
334 size
* sizeof(struct isl_upoly
*));
349 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_domain_space(
350 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*dim
)
352 qp
= isl_qpolynomial_cow(qp
);
356 isl_space_free(qp
->dim
);
361 isl_qpolynomial_free(qp
);
366 /* Reset the space of "qp". This function is called from isl_pw_templ.c
367 * and doesn't know if the space of an element object is represented
368 * directly or through its domain. It therefore passes along both.
370 __isl_give isl_qpolynomial
*isl_qpolynomial_reset_space_and_domain(
371 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*space
,
372 __isl_take isl_space
*domain
)
374 isl_space_free(space
);
375 return isl_qpolynomial_reset_domain_space(qp
, domain
);
378 isl_ctx
*isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial
*qp
)
380 return qp
? qp
->dim
->ctx
: NULL
;
383 __isl_give isl_space
*isl_qpolynomial_get_domain_space(
384 __isl_keep isl_qpolynomial
*qp
)
386 return qp
? isl_space_copy(qp
->dim
) : NULL
;
389 __isl_give isl_space
*isl_qpolynomial_get_space(__isl_keep isl_qpolynomial
*qp
)
394 space
= isl_space_copy(qp
->dim
);
395 space
= isl_space_from_domain(space
);
396 space
= isl_space_add_dims(space
, isl_dim_out
, 1);
400 /* Externally, an isl_qpolynomial has a map space, but internally, the
401 * ls field corresponds to the domain of that space.
403 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial
*qp
,
404 enum isl_dim_type type
)
408 if (type
== isl_dim_out
)
410 if (type
== isl_dim_in
)
412 return isl_space_dim(qp
->dim
, type
);
415 int isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial
*qp
)
417 return qp
? isl_upoly_is_zero(qp
->upoly
) : -1;
420 int isl_qpolynomial_is_one(__isl_keep isl_qpolynomial
*qp
)
422 return qp
? isl_upoly_is_one(qp
->upoly
) : -1;
425 int isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial
*qp
)
427 return qp
? isl_upoly_is_nan(qp
->upoly
) : -1;
430 int isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial
*qp
)
432 return qp
? isl_upoly_is_infty(qp
->upoly
) : -1;
435 int isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial
*qp
)
437 return qp
? isl_upoly_is_neginfty(qp
->upoly
) : -1;
440 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial
*qp
)
442 return qp
? isl_upoly_sgn(qp
->upoly
) : 0;
445 static void upoly_free_cst(__isl_take
struct isl_upoly_cst
*cst
)
447 isl_int_clear(cst
->n
);
448 isl_int_clear(cst
->d
);
451 static void upoly_free_rec(__isl_take
struct isl_upoly_rec
*rec
)
455 for (i
= 0; i
< rec
->n
; ++i
)
456 isl_upoly_free(rec
->p
[i
]);
459 __isl_give
struct isl_upoly
*isl_upoly_copy(__isl_keep
struct isl_upoly
*up
)
468 __isl_give
struct isl_upoly
*isl_upoly_dup_cst(__isl_keep
struct isl_upoly
*up
)
470 struct isl_upoly_cst
*cst
;
471 struct isl_upoly_cst
*dup
;
473 cst
= isl_upoly_as_cst(up
);
477 dup
= isl_upoly_as_cst(isl_upoly_zero(up
->ctx
));
480 isl_int_set(dup
->n
, cst
->n
);
481 isl_int_set(dup
->d
, cst
->d
);
486 __isl_give
struct isl_upoly
*isl_upoly_dup_rec(__isl_keep
struct isl_upoly
*up
)
489 struct isl_upoly_rec
*rec
;
490 struct isl_upoly_rec
*dup
;
492 rec
= isl_upoly_as_rec(up
);
496 dup
= isl_upoly_alloc_rec(up
->ctx
, up
->var
, rec
->n
);
500 for (i
= 0; i
< rec
->n
; ++i
) {
501 dup
->p
[i
] = isl_upoly_copy(rec
->p
[i
]);
509 isl_upoly_free(&dup
->up
);
513 __isl_give
struct isl_upoly
*isl_upoly_dup(__isl_keep
struct isl_upoly
*up
)
518 if (isl_upoly_is_cst(up
))
519 return isl_upoly_dup_cst(up
);
521 return isl_upoly_dup_rec(up
);
524 __isl_give
struct isl_upoly
*isl_upoly_cow(__isl_take
struct isl_upoly
*up
)
532 return isl_upoly_dup(up
);
535 void isl_upoly_free(__isl_take
struct isl_upoly
*up
)
544 upoly_free_cst((struct isl_upoly_cst
*)up
);
546 upoly_free_rec((struct isl_upoly_rec
*)up
);
548 isl_ctx_deref(up
->ctx
);
552 static void isl_upoly_cst_reduce(__isl_keep
struct isl_upoly_cst
*cst
)
557 isl_int_gcd(gcd
, cst
->n
, cst
->d
);
558 if (!isl_int_is_zero(gcd
) && !isl_int_is_one(gcd
)) {
559 isl_int_divexact(cst
->n
, cst
->n
, gcd
);
560 isl_int_divexact(cst
->d
, cst
->d
, gcd
);
565 __isl_give
struct isl_upoly
*isl_upoly_sum_cst(__isl_take
struct isl_upoly
*up1
,
566 __isl_take
struct isl_upoly
*up2
)
568 struct isl_upoly_cst
*cst1
;
569 struct isl_upoly_cst
*cst2
;
571 up1
= isl_upoly_cow(up1
);
575 cst1
= isl_upoly_as_cst(up1
);
576 cst2
= isl_upoly_as_cst(up2
);
578 if (isl_int_eq(cst1
->d
, cst2
->d
))
579 isl_int_add(cst1
->n
, cst1
->n
, cst2
->n
);
581 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->d
);
582 isl_int_addmul(cst1
->n
, cst2
->n
, cst1
->d
);
583 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
586 isl_upoly_cst_reduce(cst1
);
596 static __isl_give
struct isl_upoly
*replace_by_zero(
597 __isl_take
struct isl_upoly
*up
)
605 return isl_upoly_zero(ctx
);
608 static __isl_give
struct isl_upoly
*replace_by_constant_term(
609 __isl_take
struct isl_upoly
*up
)
611 struct isl_upoly_rec
*rec
;
612 struct isl_upoly
*cst
;
617 rec
= isl_upoly_as_rec(up
);
620 cst
= isl_upoly_copy(rec
->p
[0]);
628 __isl_give
struct isl_upoly
*isl_upoly_sum(__isl_take
struct isl_upoly
*up1
,
629 __isl_take
struct isl_upoly
*up2
)
632 struct isl_upoly_rec
*rec1
, *rec2
;
637 if (isl_upoly_is_nan(up1
)) {
642 if (isl_upoly_is_nan(up2
)) {
647 if (isl_upoly_is_zero(up1
)) {
652 if (isl_upoly_is_zero(up2
)) {
657 if (up1
->var
< up2
->var
)
658 return isl_upoly_sum(up2
, up1
);
660 if (up2
->var
< up1
->var
) {
661 struct isl_upoly_rec
*rec
;
662 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
666 up1
= isl_upoly_cow(up1
);
667 rec
= isl_upoly_as_rec(up1
);
670 rec
->p
[0] = isl_upoly_sum(rec
->p
[0], up2
);
672 up1
= replace_by_constant_term(up1
);
676 if (isl_upoly_is_cst(up1
))
677 return isl_upoly_sum_cst(up1
, up2
);
679 rec1
= isl_upoly_as_rec(up1
);
680 rec2
= isl_upoly_as_rec(up2
);
684 if (rec1
->n
< rec2
->n
)
685 return isl_upoly_sum(up2
, up1
);
687 up1
= isl_upoly_cow(up1
);
688 rec1
= isl_upoly_as_rec(up1
);
692 for (i
= rec2
->n
- 1; i
>= 0; --i
) {
693 rec1
->p
[i
] = isl_upoly_sum(rec1
->p
[i
],
694 isl_upoly_copy(rec2
->p
[i
]));
697 if (i
== rec1
->n
- 1 && isl_upoly_is_zero(rec1
->p
[i
])) {
698 isl_upoly_free(rec1
->p
[i
]);
704 up1
= replace_by_zero(up1
);
705 else if (rec1
->n
== 1)
706 up1
= replace_by_constant_term(up1
);
717 __isl_give
struct isl_upoly
*isl_upoly_cst_add_isl_int(
718 __isl_take
struct isl_upoly
*up
, isl_int v
)
720 struct isl_upoly_cst
*cst
;
722 up
= isl_upoly_cow(up
);
726 cst
= isl_upoly_as_cst(up
);
728 isl_int_addmul(cst
->n
, cst
->d
, v
);
733 __isl_give
struct isl_upoly
*isl_upoly_add_isl_int(
734 __isl_take
struct isl_upoly
*up
, isl_int v
)
736 struct isl_upoly_rec
*rec
;
741 if (isl_upoly_is_cst(up
))
742 return isl_upoly_cst_add_isl_int(up
, v
);
744 up
= isl_upoly_cow(up
);
745 rec
= isl_upoly_as_rec(up
);
749 rec
->p
[0] = isl_upoly_add_isl_int(rec
->p
[0], v
);
759 __isl_give
struct isl_upoly
*isl_upoly_cst_mul_isl_int(
760 __isl_take
struct isl_upoly
*up
, isl_int v
)
762 struct isl_upoly_cst
*cst
;
764 if (isl_upoly_is_zero(up
))
767 up
= isl_upoly_cow(up
);
771 cst
= isl_upoly_as_cst(up
);
773 isl_int_mul(cst
->n
, cst
->n
, v
);
778 __isl_give
struct isl_upoly
*isl_upoly_mul_isl_int(
779 __isl_take
struct isl_upoly
*up
, isl_int v
)
782 struct isl_upoly_rec
*rec
;
787 if (isl_upoly_is_cst(up
))
788 return isl_upoly_cst_mul_isl_int(up
, v
);
790 up
= isl_upoly_cow(up
);
791 rec
= isl_upoly_as_rec(up
);
795 for (i
= 0; i
< rec
->n
; ++i
) {
796 rec
->p
[i
] = isl_upoly_mul_isl_int(rec
->p
[i
], v
);
807 /* Multiply the constant polynomial "up" by "v".
809 static __isl_give
struct isl_upoly
*isl_upoly_cst_scale_val(
810 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
812 struct isl_upoly_cst
*cst
;
814 if (isl_upoly_is_zero(up
))
817 up
= isl_upoly_cow(up
);
821 cst
= isl_upoly_as_cst(up
);
823 isl_int_mul(cst
->n
, cst
->n
, v
->n
);
824 isl_int_mul(cst
->d
, cst
->d
, v
->d
);
825 isl_upoly_cst_reduce(cst
);
830 /* Multiply the polynomial "up" by "v".
832 static __isl_give
struct isl_upoly
*isl_upoly_scale_val(
833 __isl_take
struct isl_upoly
*up
, __isl_keep isl_val
*v
)
836 struct isl_upoly_rec
*rec
;
841 if (isl_upoly_is_cst(up
))
842 return isl_upoly_cst_scale_val(up
, v
);
844 up
= isl_upoly_cow(up
);
845 rec
= isl_upoly_as_rec(up
);
849 for (i
= 0; i
< rec
->n
; ++i
) {
850 rec
->p
[i
] = isl_upoly_scale_val(rec
->p
[i
], v
);
861 __isl_give
struct isl_upoly
*isl_upoly_mul_cst(__isl_take
struct isl_upoly
*up1
,
862 __isl_take
struct isl_upoly
*up2
)
864 struct isl_upoly_cst
*cst1
;
865 struct isl_upoly_cst
*cst2
;
867 up1
= isl_upoly_cow(up1
);
871 cst1
= isl_upoly_as_cst(up1
);
872 cst2
= isl_upoly_as_cst(up2
);
874 isl_int_mul(cst1
->n
, cst1
->n
, cst2
->n
);
875 isl_int_mul(cst1
->d
, cst1
->d
, cst2
->d
);
877 isl_upoly_cst_reduce(cst1
);
887 __isl_give
struct isl_upoly
*isl_upoly_mul_rec(__isl_take
struct isl_upoly
*up1
,
888 __isl_take
struct isl_upoly
*up2
)
890 struct isl_upoly_rec
*rec1
;
891 struct isl_upoly_rec
*rec2
;
892 struct isl_upoly_rec
*res
= NULL
;
896 rec1
= isl_upoly_as_rec(up1
);
897 rec2
= isl_upoly_as_rec(up2
);
900 size
= rec1
->n
+ rec2
->n
- 1;
901 res
= isl_upoly_alloc_rec(up1
->ctx
, up1
->var
, size
);
905 for (i
= 0; i
< rec1
->n
; ++i
) {
906 res
->p
[i
] = isl_upoly_mul(isl_upoly_copy(rec2
->p
[0]),
907 isl_upoly_copy(rec1
->p
[i
]));
912 for (; i
< size
; ++i
) {
913 res
->p
[i
] = isl_upoly_zero(up1
->ctx
);
918 for (i
= 0; i
< rec1
->n
; ++i
) {
919 for (j
= 1; j
< rec2
->n
; ++j
) {
920 struct isl_upoly
*up
;
921 up
= isl_upoly_mul(isl_upoly_copy(rec2
->p
[j
]),
922 isl_upoly_copy(rec1
->p
[i
]));
923 res
->p
[i
+ j
] = isl_upoly_sum(res
->p
[i
+ j
], up
);
936 isl_upoly_free(&res
->up
);
940 __isl_give
struct isl_upoly
*isl_upoly_mul(__isl_take
struct isl_upoly
*up1
,
941 __isl_take
struct isl_upoly
*up2
)
946 if (isl_upoly_is_nan(up1
)) {
951 if (isl_upoly_is_nan(up2
)) {
956 if (isl_upoly_is_zero(up1
)) {
961 if (isl_upoly_is_zero(up2
)) {
966 if (isl_upoly_is_one(up1
)) {
971 if (isl_upoly_is_one(up2
)) {
976 if (up1
->var
< up2
->var
)
977 return isl_upoly_mul(up2
, up1
);
979 if (up2
->var
< up1
->var
) {
981 struct isl_upoly_rec
*rec
;
982 if (isl_upoly_is_infty(up2
) || isl_upoly_is_neginfty(up2
)) {
983 isl_ctx
*ctx
= up1
->ctx
;
986 return isl_upoly_nan(ctx
);
988 up1
= isl_upoly_cow(up1
);
989 rec
= isl_upoly_as_rec(up1
);
993 for (i
= 0; i
< rec
->n
; ++i
) {
994 rec
->p
[i
] = isl_upoly_mul(rec
->p
[i
],
995 isl_upoly_copy(up2
));
1003 if (isl_upoly_is_cst(up1
))
1004 return isl_upoly_mul_cst(up1
, up2
);
1006 return isl_upoly_mul_rec(up1
, up2
);
1008 isl_upoly_free(up1
);
1009 isl_upoly_free(up2
);
1013 __isl_give
struct isl_upoly
*isl_upoly_pow(__isl_take
struct isl_upoly
*up
,
1016 struct isl_upoly
*res
;
1024 res
= isl_upoly_copy(up
);
1026 res
= isl_upoly_one(up
->ctx
);
1028 while (power
>>= 1) {
1029 up
= isl_upoly_mul(up
, isl_upoly_copy(up
));
1031 res
= isl_upoly_mul(res
, isl_upoly_copy(up
));
1038 __isl_give isl_qpolynomial
*isl_qpolynomial_alloc(__isl_take isl_space
*dim
,
1039 unsigned n_div
, __isl_take
struct isl_upoly
*up
)
1041 struct isl_qpolynomial
*qp
= NULL
;
1047 if (!isl_space_is_set(dim
))
1048 isl_die(isl_space_get_ctx(dim
), isl_error_invalid
,
1049 "domain of polynomial should be a set", goto error
);
1051 total
= isl_space_dim(dim
, isl_dim_all
);
1053 qp
= isl_calloc_type(dim
->ctx
, struct isl_qpolynomial
);
1058 qp
->div
= isl_mat_alloc(dim
->ctx
, n_div
, 1 + 1 + total
+ n_div
);
1067 isl_space_free(dim
);
1069 isl_qpolynomial_free(qp
);
1073 __isl_give isl_qpolynomial
*isl_qpolynomial_copy(__isl_keep isl_qpolynomial
*qp
)
1082 __isl_give isl_qpolynomial
*isl_qpolynomial_dup(__isl_keep isl_qpolynomial
*qp
)
1084 struct isl_qpolynomial
*dup
;
1089 dup
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
,
1090 isl_upoly_copy(qp
->upoly
));
1093 isl_mat_free(dup
->div
);
1094 dup
->div
= isl_mat_copy(qp
->div
);
1100 isl_qpolynomial_free(dup
);
1104 __isl_give isl_qpolynomial
*isl_qpolynomial_cow(__isl_take isl_qpolynomial
*qp
)
1112 return isl_qpolynomial_dup(qp
);
1115 __isl_null isl_qpolynomial
*isl_qpolynomial_free(
1116 __isl_take isl_qpolynomial
*qp
)
1124 isl_space_free(qp
->dim
);
1125 isl_mat_free(qp
->div
);
1126 isl_upoly_free(qp
->upoly
);
1132 __isl_give
struct isl_upoly
*isl_upoly_var_pow(isl_ctx
*ctx
, int pos
, int power
)
1135 struct isl_upoly_rec
*rec
;
1136 struct isl_upoly_cst
*cst
;
1138 rec
= isl_upoly_alloc_rec(ctx
, pos
, 1 + power
);
1141 for (i
= 0; i
< 1 + power
; ++i
) {
1142 rec
->p
[i
] = isl_upoly_zero(ctx
);
1147 cst
= isl_upoly_as_cst(rec
->p
[power
]);
1148 isl_int_set_si(cst
->n
, 1);
1152 isl_upoly_free(&rec
->up
);
1156 /* r array maps original positions to new positions.
1158 static __isl_give
struct isl_upoly
*reorder(__isl_take
struct isl_upoly
*up
,
1162 struct isl_upoly_rec
*rec
;
1163 struct isl_upoly
*base
;
1164 struct isl_upoly
*res
;
1166 if (isl_upoly_is_cst(up
))
1169 rec
= isl_upoly_as_rec(up
);
1173 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1175 base
= isl_upoly_var_pow(up
->ctx
, r
[up
->var
], 1);
1176 res
= reorder(isl_upoly_copy(rec
->p
[rec
->n
- 1]), r
);
1178 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1179 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1180 res
= isl_upoly_sum(res
, reorder(isl_upoly_copy(rec
->p
[i
]), r
));
1183 isl_upoly_free(base
);
1192 static int compatible_divs(__isl_keep isl_mat
*div1
, __isl_keep isl_mat
*div2
)
1197 isl_assert(div1
->ctx
, div1
->n_row
>= div2
->n_row
&&
1198 div1
->n_col
>= div2
->n_col
, return -1);
1200 if (div1
->n_row
== div2
->n_row
)
1201 return isl_mat_is_equal(div1
, div2
);
1203 n_row
= div1
->n_row
;
1204 n_col
= div1
->n_col
;
1205 div1
->n_row
= div2
->n_row
;
1206 div1
->n_col
= div2
->n_col
;
1208 equal
= isl_mat_is_equal(div1
, div2
);
1210 div1
->n_row
= n_row
;
1211 div1
->n_col
= n_col
;
1216 static int cmp_row(__isl_keep isl_mat
*div
, int i
, int j
)
1220 li
= isl_seq_last_non_zero(div
->row
[i
], div
->n_col
);
1221 lj
= isl_seq_last_non_zero(div
->row
[j
], div
->n_col
);
1226 return isl_seq_cmp(div
->row
[i
], div
->row
[j
], div
->n_col
);
1229 struct isl_div_sort_info
{
1234 static int div_sort_cmp(const void *p1
, const void *p2
)
1236 const struct isl_div_sort_info
*i1
, *i2
;
1237 i1
= (const struct isl_div_sort_info
*) p1
;
1238 i2
= (const struct isl_div_sort_info
*) p2
;
1240 return cmp_row(i1
->div
, i1
->row
, i2
->row
);
1243 /* Sort divs and remove duplicates.
1245 static __isl_give isl_qpolynomial
*sort_divs(__isl_take isl_qpolynomial
*qp
)
1250 struct isl_div_sort_info
*array
= NULL
;
1251 int *pos
= NULL
, *at
= NULL
;
1252 int *reordering
= NULL
;
1257 if (qp
->div
->n_row
<= 1)
1260 div_pos
= isl_space_dim(qp
->dim
, isl_dim_all
);
1262 array
= isl_alloc_array(qp
->div
->ctx
, struct isl_div_sort_info
,
1264 pos
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1265 at
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
1266 len
= qp
->div
->n_col
- 2;
1267 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
1268 if (!array
|| !pos
|| !at
|| !reordering
)
1271 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1272 array
[i
].div
= qp
->div
;
1278 qsort(array
, qp
->div
->n_row
, sizeof(struct isl_div_sort_info
),
1281 for (i
= 0; i
< div_pos
; ++i
)
1284 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
1285 if (pos
[array
[i
].row
] == i
)
1287 qp
->div
= isl_mat_swap_rows(qp
->div
, i
, pos
[array
[i
].row
]);
1288 pos
[at
[i
]] = pos
[array
[i
].row
];
1289 at
[pos
[array
[i
].row
]] = at
[i
];
1290 at
[i
] = array
[i
].row
;
1291 pos
[array
[i
].row
] = i
;
1295 for (i
= 0; i
< len
- div_pos
; ++i
) {
1297 isl_seq_eq(qp
->div
->row
[i
- skip
- 1],
1298 qp
->div
->row
[i
- skip
], qp
->div
->n_col
)) {
1299 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
1300 isl_mat_col_add(qp
->div
, 2 + div_pos
+ i
- skip
- 1,
1301 2 + div_pos
+ i
- skip
);
1302 qp
->div
= isl_mat_drop_cols(qp
->div
,
1303 2 + div_pos
+ i
- skip
, 1);
1306 reordering
[div_pos
+ array
[i
].row
] = div_pos
+ i
- skip
;
1309 qp
->upoly
= reorder(qp
->upoly
, reordering
);
1311 if (!qp
->upoly
|| !qp
->div
)
1325 isl_qpolynomial_free(qp
);
1329 static __isl_give
struct isl_upoly
*expand(__isl_take
struct isl_upoly
*up
,
1330 int *exp
, int first
)
1333 struct isl_upoly_rec
*rec
;
1335 if (isl_upoly_is_cst(up
))
1338 if (up
->var
< first
)
1341 if (exp
[up
->var
- first
] == up
->var
- first
)
1344 up
= isl_upoly_cow(up
);
1348 up
->var
= exp
[up
->var
- first
] + first
;
1350 rec
= isl_upoly_as_rec(up
);
1354 for (i
= 0; i
< rec
->n
; ++i
) {
1355 rec
->p
[i
] = expand(rec
->p
[i
], exp
, first
);
1366 static __isl_give isl_qpolynomial
*with_merged_divs(
1367 __isl_give isl_qpolynomial
*(*fn
)(__isl_take isl_qpolynomial
*qp1
,
1368 __isl_take isl_qpolynomial
*qp2
),
1369 __isl_take isl_qpolynomial
*qp1
, __isl_take isl_qpolynomial
*qp2
)
1373 isl_mat
*div
= NULL
;
1376 qp1
= isl_qpolynomial_cow(qp1
);
1377 qp2
= isl_qpolynomial_cow(qp2
);
1382 isl_assert(qp1
->div
->ctx
, qp1
->div
->n_row
>= qp2
->div
->n_row
&&
1383 qp1
->div
->n_col
>= qp2
->div
->n_col
, goto error
);
1385 n_div1
= qp1
->div
->n_row
;
1386 n_div2
= qp2
->div
->n_row
;
1387 exp1
= isl_alloc_array(qp1
->div
->ctx
, int, n_div1
);
1388 exp2
= isl_alloc_array(qp2
->div
->ctx
, int, n_div2
);
1389 if ((n_div1
&& !exp1
) || (n_div2
&& !exp2
))
1392 div
= isl_merge_divs(qp1
->div
, qp2
->div
, exp1
, exp2
);
1396 isl_mat_free(qp1
->div
);
1397 qp1
->div
= isl_mat_copy(div
);
1398 isl_mat_free(qp2
->div
);
1399 qp2
->div
= isl_mat_copy(div
);
1401 qp1
->upoly
= expand(qp1
->upoly
, exp1
, div
->n_col
- div
->n_row
- 2);
1402 qp2
->upoly
= expand(qp2
->upoly
, exp2
, div
->n_col
- div
->n_row
- 2);
1404 if (!qp1
->upoly
|| !qp2
->upoly
)
1411 return fn(qp1
, qp2
);
1416 isl_qpolynomial_free(qp1
);
1417 isl_qpolynomial_free(qp2
);
1421 __isl_give isl_qpolynomial
*isl_qpolynomial_add(__isl_take isl_qpolynomial
*qp1
,
1422 __isl_take isl_qpolynomial
*qp2
)
1424 qp1
= isl_qpolynomial_cow(qp1
);
1429 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1430 return isl_qpolynomial_add(qp2
, qp1
);
1432 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1433 if (!compatible_divs(qp1
->div
, qp2
->div
))
1434 return with_merged_divs(isl_qpolynomial_add
, qp1
, qp2
);
1436 qp1
->upoly
= isl_upoly_sum(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1440 isl_qpolynomial_free(qp2
);
1444 isl_qpolynomial_free(qp1
);
1445 isl_qpolynomial_free(qp2
);
1449 __isl_give isl_qpolynomial
*isl_qpolynomial_add_on_domain(
1450 __isl_keep isl_set
*dom
,
1451 __isl_take isl_qpolynomial
*qp1
,
1452 __isl_take isl_qpolynomial
*qp2
)
1454 qp1
= isl_qpolynomial_add(qp1
, qp2
);
1455 qp1
= isl_qpolynomial_gist(qp1
, isl_set_copy(dom
));
1459 __isl_give isl_qpolynomial
*isl_qpolynomial_sub(__isl_take isl_qpolynomial
*qp1
,
1460 __isl_take isl_qpolynomial
*qp2
)
1462 return isl_qpolynomial_add(qp1
, isl_qpolynomial_neg(qp2
));
1465 __isl_give isl_qpolynomial
*isl_qpolynomial_add_isl_int(
1466 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1468 if (isl_int_is_zero(v
))
1471 qp
= isl_qpolynomial_cow(qp
);
1475 qp
->upoly
= isl_upoly_add_isl_int(qp
->upoly
, v
);
1481 isl_qpolynomial_free(qp
);
1486 __isl_give isl_qpolynomial
*isl_qpolynomial_neg(__isl_take isl_qpolynomial
*qp
)
1491 return isl_qpolynomial_mul_isl_int(qp
, qp
->dim
->ctx
->negone
);
1494 __isl_give isl_qpolynomial
*isl_qpolynomial_mul_isl_int(
1495 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1497 if (isl_int_is_one(v
))
1500 if (qp
&& isl_int_is_zero(v
)) {
1501 isl_qpolynomial
*zero
;
1502 zero
= isl_qpolynomial_zero_on_domain(isl_space_copy(qp
->dim
));
1503 isl_qpolynomial_free(qp
);
1507 qp
= isl_qpolynomial_cow(qp
);
1511 qp
->upoly
= isl_upoly_mul_isl_int(qp
->upoly
, v
);
1517 isl_qpolynomial_free(qp
);
1521 __isl_give isl_qpolynomial
*isl_qpolynomial_scale(
1522 __isl_take isl_qpolynomial
*qp
, isl_int v
)
1524 return isl_qpolynomial_mul_isl_int(qp
, v
);
1527 /* Multiply "qp" by "v".
1529 __isl_give isl_qpolynomial
*isl_qpolynomial_scale_val(
1530 __isl_take isl_qpolynomial
*qp
, __isl_take isl_val
*v
)
1535 if (!isl_val_is_rat(v
))
1536 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
1537 "expecting rational factor", goto error
);
1539 if (isl_val_is_one(v
)) {
1544 if (isl_val_is_zero(v
)) {
1547 space
= isl_qpolynomial_get_domain_space(qp
);
1548 isl_qpolynomial_free(qp
);
1550 return isl_qpolynomial_zero_on_domain(space
);
1553 qp
= isl_qpolynomial_cow(qp
);
1557 qp
->upoly
= isl_upoly_scale_val(qp
->upoly
, v
);
1559 qp
= isl_qpolynomial_free(qp
);
1565 isl_qpolynomial_free(qp
);
1569 __isl_give isl_qpolynomial
*isl_qpolynomial_mul(__isl_take isl_qpolynomial
*qp1
,
1570 __isl_take isl_qpolynomial
*qp2
)
1572 qp1
= isl_qpolynomial_cow(qp1
);
1577 if (qp1
->div
->n_row
< qp2
->div
->n_row
)
1578 return isl_qpolynomial_mul(qp2
, qp1
);
1580 isl_assert(qp1
->dim
->ctx
, isl_space_is_equal(qp1
->dim
, qp2
->dim
), goto error
);
1581 if (!compatible_divs(qp1
->div
, qp2
->div
))
1582 return with_merged_divs(isl_qpolynomial_mul
, qp1
, qp2
);
1584 qp1
->upoly
= isl_upoly_mul(qp1
->upoly
, isl_upoly_copy(qp2
->upoly
));
1588 isl_qpolynomial_free(qp2
);
1592 isl_qpolynomial_free(qp1
);
1593 isl_qpolynomial_free(qp2
);
1597 __isl_give isl_qpolynomial
*isl_qpolynomial_pow(__isl_take isl_qpolynomial
*qp
,
1600 qp
= isl_qpolynomial_cow(qp
);
1605 qp
->upoly
= isl_upoly_pow(qp
->upoly
, power
);
1611 isl_qpolynomial_free(qp
);
1615 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_pow(
1616 __isl_take isl_pw_qpolynomial
*pwqp
, unsigned power
)
1623 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
1627 for (i
= 0; i
< pwqp
->n
; ++i
) {
1628 pwqp
->p
[i
].qp
= isl_qpolynomial_pow(pwqp
->p
[i
].qp
, power
);
1630 return isl_pw_qpolynomial_free(pwqp
);
1636 __isl_give isl_qpolynomial
*isl_qpolynomial_zero_on_domain(
1637 __isl_take isl_space
*dim
)
1641 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1644 __isl_give isl_qpolynomial
*isl_qpolynomial_one_on_domain(
1645 __isl_take isl_space
*dim
)
1649 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_one(dim
->ctx
));
1652 __isl_give isl_qpolynomial
*isl_qpolynomial_infty_on_domain(
1653 __isl_take isl_space
*dim
)
1657 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_infty(dim
->ctx
));
1660 __isl_give isl_qpolynomial
*isl_qpolynomial_neginfty_on_domain(
1661 __isl_take isl_space
*dim
)
1665 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_neginfty(dim
->ctx
));
1668 __isl_give isl_qpolynomial
*isl_qpolynomial_nan_on_domain(
1669 __isl_take isl_space
*dim
)
1673 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_nan(dim
->ctx
));
1676 __isl_give isl_qpolynomial
*isl_qpolynomial_cst_on_domain(
1677 __isl_take isl_space
*dim
,
1680 struct isl_qpolynomial
*qp
;
1681 struct isl_upoly_cst
*cst
;
1686 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
1690 cst
= isl_upoly_as_cst(qp
->upoly
);
1691 isl_int_set(cst
->n
, v
);
1696 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial
*qp
,
1697 isl_int
*n
, isl_int
*d
)
1699 struct isl_upoly_cst
*cst
;
1704 if (!isl_upoly_is_cst(qp
->upoly
))
1707 cst
= isl_upoly_as_cst(qp
->upoly
);
1712 isl_int_set(*n
, cst
->n
);
1714 isl_int_set(*d
, cst
->d
);
1719 /* Return the constant term of "up".
1721 static __isl_give isl_val
*isl_upoly_get_constant_val(
1722 __isl_keep
struct isl_upoly
*up
)
1724 struct isl_upoly_cst
*cst
;
1729 while (!isl_upoly_is_cst(up
)) {
1730 struct isl_upoly_rec
*rec
;
1732 rec
= isl_upoly_as_rec(up
);
1738 cst
= isl_upoly_as_cst(up
);
1741 return isl_val_rat_from_isl_int(cst
->up
.ctx
, cst
->n
, cst
->d
);
1744 /* Return the constant term of "qp".
1746 __isl_give isl_val
*isl_qpolynomial_get_constant_val(
1747 __isl_keep isl_qpolynomial
*qp
)
1752 return isl_upoly_get_constant_val(qp
->upoly
);
1755 int isl_upoly_is_affine(__isl_keep
struct isl_upoly
*up
)
1758 struct isl_upoly_rec
*rec
;
1766 rec
= isl_upoly_as_rec(up
);
1773 isl_assert(up
->ctx
, rec
->n
> 1, return -1);
1775 is_cst
= isl_upoly_is_cst(rec
->p
[1]);
1781 return isl_upoly_is_affine(rec
->p
[0]);
1784 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial
*qp
)
1789 if (qp
->div
->n_row
> 0)
1792 return isl_upoly_is_affine(qp
->upoly
);
1795 static void update_coeff(__isl_keep isl_vec
*aff
,
1796 __isl_keep
struct isl_upoly_cst
*cst
, int pos
)
1801 if (isl_int_is_zero(cst
->n
))
1806 isl_int_gcd(gcd
, cst
->d
, aff
->el
[0]);
1807 isl_int_divexact(f
, cst
->d
, gcd
);
1808 isl_int_divexact(gcd
, aff
->el
[0], gcd
);
1809 isl_seq_scale(aff
->el
, aff
->el
, f
, aff
->size
);
1810 isl_int_mul(aff
->el
[1 + pos
], gcd
, cst
->n
);
1815 int isl_upoly_update_affine(__isl_keep
struct isl_upoly
*up
,
1816 __isl_keep isl_vec
*aff
)
1818 struct isl_upoly_cst
*cst
;
1819 struct isl_upoly_rec
*rec
;
1825 struct isl_upoly_cst
*cst
;
1827 cst
= isl_upoly_as_cst(up
);
1830 update_coeff(aff
, cst
, 0);
1834 rec
= isl_upoly_as_rec(up
);
1837 isl_assert(up
->ctx
, rec
->n
== 2, return -1);
1839 cst
= isl_upoly_as_cst(rec
->p
[1]);
1842 update_coeff(aff
, cst
, 1 + up
->var
);
1844 return isl_upoly_update_affine(rec
->p
[0], aff
);
1847 __isl_give isl_vec
*isl_qpolynomial_extract_affine(
1848 __isl_keep isl_qpolynomial
*qp
)
1856 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
1857 aff
= isl_vec_alloc(qp
->div
->ctx
, 2 + d
+ qp
->div
->n_row
);
1861 isl_seq_clr(aff
->el
+ 1, 1 + d
+ qp
->div
->n_row
);
1862 isl_int_set_si(aff
->el
[0], 1);
1864 if (isl_upoly_update_affine(qp
->upoly
, aff
) < 0)
1873 int isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial
*qp1
,
1874 __isl_keep isl_qpolynomial
*qp2
)
1881 equal
= isl_space_is_equal(qp1
->dim
, qp2
->dim
);
1882 if (equal
< 0 || !equal
)
1885 equal
= isl_mat_is_equal(qp1
->div
, qp2
->div
);
1886 if (equal
< 0 || !equal
)
1889 return isl_upoly_is_equal(qp1
->upoly
, qp2
->upoly
);
1892 static void upoly_update_den(__isl_keep
struct isl_upoly
*up
, isl_int
*d
)
1895 struct isl_upoly_rec
*rec
;
1897 if (isl_upoly_is_cst(up
)) {
1898 struct isl_upoly_cst
*cst
;
1899 cst
= isl_upoly_as_cst(up
);
1902 isl_int_lcm(*d
, *d
, cst
->d
);
1906 rec
= isl_upoly_as_rec(up
);
1910 for (i
= 0; i
< rec
->n
; ++i
)
1911 upoly_update_den(rec
->p
[i
], d
);
1914 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial
*qp
, isl_int
*d
)
1916 isl_int_set_si(*d
, 1);
1919 upoly_update_den(qp
->upoly
, d
);
1922 __isl_give isl_qpolynomial
*isl_qpolynomial_var_pow_on_domain(
1923 __isl_take isl_space
*dim
, int pos
, int power
)
1925 struct isl_ctx
*ctx
;
1932 return isl_qpolynomial_alloc(dim
, 0, isl_upoly_var_pow(ctx
, pos
, power
));
1935 __isl_give isl_qpolynomial
*isl_qpolynomial_var_on_domain(__isl_take isl_space
*dim
,
1936 enum isl_dim_type type
, unsigned pos
)
1941 isl_assert(dim
->ctx
, isl_space_dim(dim
, isl_dim_in
) == 0, goto error
);
1942 isl_assert(dim
->ctx
, pos
< isl_space_dim(dim
, type
), goto error
);
1944 if (type
== isl_dim_set
)
1945 pos
+= isl_space_dim(dim
, isl_dim_param
);
1947 return isl_qpolynomial_var_pow_on_domain(dim
, pos
, 1);
1949 isl_space_free(dim
);
1953 __isl_give
struct isl_upoly
*isl_upoly_subs(__isl_take
struct isl_upoly
*up
,
1954 unsigned first
, unsigned n
, __isl_keep
struct isl_upoly
**subs
)
1957 struct isl_upoly_rec
*rec
;
1958 struct isl_upoly
*base
, *res
;
1963 if (isl_upoly_is_cst(up
))
1966 if (up
->var
< first
)
1969 rec
= isl_upoly_as_rec(up
);
1973 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
1975 if (up
->var
>= first
+ n
)
1976 base
= isl_upoly_var_pow(up
->ctx
, up
->var
, 1);
1978 base
= isl_upoly_copy(subs
[up
->var
- first
]);
1980 res
= isl_upoly_subs(isl_upoly_copy(rec
->p
[rec
->n
- 1]), first
, n
, subs
);
1981 for (i
= rec
->n
- 2; i
>= 0; --i
) {
1982 struct isl_upoly
*t
;
1983 t
= isl_upoly_subs(isl_upoly_copy(rec
->p
[i
]), first
, n
, subs
);
1984 res
= isl_upoly_mul(res
, isl_upoly_copy(base
));
1985 res
= isl_upoly_sum(res
, t
);
1988 isl_upoly_free(base
);
1997 __isl_give
struct isl_upoly
*isl_upoly_from_affine(isl_ctx
*ctx
, isl_int
*f
,
1998 isl_int denom
, unsigned len
)
2001 struct isl_upoly
*up
;
2003 isl_assert(ctx
, len
>= 1, return NULL
);
2005 up
= isl_upoly_rat_cst(ctx
, f
[0], denom
);
2006 for (i
= 0; i
< len
- 1; ++i
) {
2007 struct isl_upoly
*t
;
2008 struct isl_upoly
*c
;
2010 if (isl_int_is_zero(f
[1 + i
]))
2013 c
= isl_upoly_rat_cst(ctx
, f
[1 + i
], denom
);
2014 t
= isl_upoly_var_pow(ctx
, i
, 1);
2015 t
= isl_upoly_mul(c
, t
);
2016 up
= isl_upoly_sum(up
, t
);
2022 /* Remove common factor of non-constant terms and denominator.
2024 static void normalize_div(__isl_keep isl_qpolynomial
*qp
, int div
)
2026 isl_ctx
*ctx
= qp
->div
->ctx
;
2027 unsigned total
= qp
->div
->n_col
- 2;
2029 isl_seq_gcd(qp
->div
->row
[div
] + 2, total
, &ctx
->normalize_gcd
);
2030 isl_int_gcd(ctx
->normalize_gcd
,
2031 ctx
->normalize_gcd
, qp
->div
->row
[div
][0]);
2032 if (isl_int_is_one(ctx
->normalize_gcd
))
2035 isl_seq_scale_down(qp
->div
->row
[div
] + 2, qp
->div
->row
[div
] + 2,
2036 ctx
->normalize_gcd
, total
);
2037 isl_int_divexact(qp
->div
->row
[div
][0], qp
->div
->row
[div
][0],
2038 ctx
->normalize_gcd
);
2039 isl_int_fdiv_q(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1],
2040 ctx
->normalize_gcd
);
2043 /* Replace the integer division identified by "div" by the polynomial "s".
2044 * The integer division is assumed not to appear in the definition
2045 * of any other integer divisions.
2047 static __isl_give isl_qpolynomial
*substitute_div(
2048 __isl_take isl_qpolynomial
*qp
,
2049 int div
, __isl_take
struct isl_upoly
*s
)
2058 qp
= isl_qpolynomial_cow(qp
);
2062 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2063 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ div
, 1, &s
);
2067 reordering
= isl_alloc_array(qp
->dim
->ctx
, int, total
+ qp
->div
->n_row
);
2070 for (i
= 0; i
< total
+ div
; ++i
)
2072 for (i
= total
+ div
+ 1; i
< total
+ qp
->div
->n_row
; ++i
)
2073 reordering
[i
] = i
- 1;
2074 qp
->div
= isl_mat_drop_rows(qp
->div
, div
, 1);
2075 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + total
+ div
, 1);
2076 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2079 if (!qp
->upoly
|| !qp
->div
)
2085 isl_qpolynomial_free(qp
);
2090 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2091 * divisions because d is equal to 1 by their definition, i.e., e.
2093 static __isl_give isl_qpolynomial
*substitute_non_divs(
2094 __isl_take isl_qpolynomial
*qp
)
2098 struct isl_upoly
*s
;
2103 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
2104 for (i
= 0; qp
&& i
< qp
->div
->n_row
; ++i
) {
2105 if (!isl_int_is_one(qp
->div
->row
[i
][0]))
2107 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
2108 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
2110 isl_seq_combine(qp
->div
->row
[j
] + 1,
2111 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
2112 qp
->div
->row
[j
][2 + total
+ i
],
2113 qp
->div
->row
[i
] + 1, 1 + total
+ i
);
2114 isl_int_set_si(qp
->div
->row
[j
][2 + total
+ i
], 0);
2115 normalize_div(qp
, j
);
2117 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
2118 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
2119 qp
= substitute_div(qp
, i
, s
);
2126 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2127 * with d the denominator. When replacing the coefficient e of x by
2128 * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2129 * inside the division, so we need to add floor(e/d) * x outside.
2130 * That is, we replace q by q' + floor(e/d) * x and we therefore need
2131 * to adjust the coefficient of x in each later div that depends on the
2132 * current div "div" and also in the affine expression "aff"
2133 * (if it too depends on "div").
2135 static void reduce_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2136 __isl_keep isl_vec
*aff
)
2140 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2143 for (i
= 0; i
< 1 + total
+ div
; ++i
) {
2144 if (isl_int_is_nonneg(qp
->div
->row
[div
][1 + i
]) &&
2145 isl_int_lt(qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]))
2147 isl_int_fdiv_q(v
, qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2148 isl_int_fdiv_r(qp
->div
->row
[div
][1 + i
],
2149 qp
->div
->row
[div
][1 + i
], qp
->div
->row
[div
][0]);
2150 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2151 isl_int_addmul(aff
->el
[i
], v
, aff
->el
[1 + total
+ div
]);
2152 for (j
= div
+ 1; j
< qp
->div
->n_row
; ++j
) {
2153 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ div
]))
2155 isl_int_addmul(qp
->div
->row
[j
][1 + i
],
2156 v
, qp
->div
->row
[j
][2 + total
+ div
]);
2162 /* Check if the last non-zero coefficient is bigger that half of the
2163 * denominator. If so, we will invert the div to further reduce the number
2164 * of distinct divs that may appear.
2165 * If the last non-zero coefficient is exactly half the denominator,
2166 * then we continue looking for earlier coefficients that are bigger
2167 * than half the denominator.
2169 static int needs_invert(__isl_keep isl_mat
*div
, int row
)
2174 for (i
= div
->n_col
- 1; i
>= 1; --i
) {
2175 if (isl_int_is_zero(div
->row
[row
][i
]))
2177 isl_int_mul_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2178 cmp
= isl_int_cmp(div
->row
[row
][i
], div
->row
[row
][0]);
2179 isl_int_divexact_ui(div
->row
[row
][i
], div
->row
[row
][i
], 2);
2189 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2190 * We only invert the coefficients of e (and the coefficient of q in
2191 * later divs and in "aff"). After calling this function, the
2192 * coefficients of e should be reduced again.
2194 static void invert_div(__isl_keep isl_qpolynomial
*qp
, int div
,
2195 __isl_keep isl_vec
*aff
)
2197 unsigned total
= qp
->div
->n_col
- qp
->div
->n_row
- 2;
2199 isl_seq_neg(qp
->div
->row
[div
] + 1,
2200 qp
->div
->row
[div
] + 1, qp
->div
->n_col
- 1);
2201 isl_int_sub_ui(qp
->div
->row
[div
][1], qp
->div
->row
[div
][1], 1);
2202 isl_int_add(qp
->div
->row
[div
][1],
2203 qp
->div
->row
[div
][1], qp
->div
->row
[div
][0]);
2204 if (!isl_int_is_zero(aff
->el
[1 + total
+ div
]))
2205 isl_int_neg(aff
->el
[1 + total
+ div
], aff
->el
[1 + total
+ div
]);
2206 isl_mat_col_mul(qp
->div
, 2 + total
+ div
,
2207 qp
->div
->ctx
->negone
, 2 + total
+ div
);
2210 /* Assuming "qp" is a monomial, reduce all its divs to have coefficients
2211 * in the interval [0, d-1], with d the denominator and such that the
2212 * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2214 * After the reduction, some divs may have become redundant or identical,
2215 * so we call substitute_non_divs and sort_divs. If these functions
2216 * eliminate divs or merge two or more divs into one, the coefficients
2217 * of the enclosing divs may have to be reduced again, so we call
2218 * ourselves recursively if the number of divs decreases.
2220 static __isl_give isl_qpolynomial
*reduce_divs(__isl_take isl_qpolynomial
*qp
)
2223 isl_vec
*aff
= NULL
;
2224 struct isl_upoly
*s
;
2230 aff
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
2231 aff
= isl_vec_clr(aff
);
2235 isl_int_set_si(aff
->el
[1 + qp
->upoly
->var
], 1);
2237 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2238 normalize_div(qp
, i
);
2239 reduce_div(qp
, i
, aff
);
2240 if (needs_invert(qp
->div
, i
)) {
2241 invert_div(qp
, i
, aff
);
2242 reduce_div(qp
, i
, aff
);
2246 s
= isl_upoly_from_affine(qp
->div
->ctx
, aff
->el
,
2247 qp
->div
->ctx
->one
, aff
->size
);
2248 qp
->upoly
= isl_upoly_subs(qp
->upoly
, qp
->upoly
->var
, 1, &s
);
2255 n_div
= qp
->div
->n_row
;
2256 qp
= substitute_non_divs(qp
);
2258 if (qp
&& qp
->div
->n_row
< n_div
)
2259 return reduce_divs(qp
);
2263 isl_qpolynomial_free(qp
);
2268 __isl_give isl_qpolynomial
*isl_qpolynomial_rat_cst_on_domain(
2269 __isl_take isl_space
*dim
, const isl_int n
, const isl_int d
)
2271 struct isl_qpolynomial
*qp
;
2272 struct isl_upoly_cst
*cst
;
2277 qp
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_zero(dim
->ctx
));
2281 cst
= isl_upoly_as_cst(qp
->upoly
);
2282 isl_int_set(cst
->n
, n
);
2283 isl_int_set(cst
->d
, d
);
2288 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2290 __isl_give isl_qpolynomial
*isl_qpolynomial_val_on_domain(
2291 __isl_take isl_space
*domain
, __isl_take isl_val
*val
)
2293 isl_qpolynomial
*qp
;
2294 struct isl_upoly_cst
*cst
;
2296 if (!domain
|| !val
)
2299 qp
= isl_qpolynomial_alloc(isl_space_copy(domain
), 0,
2300 isl_upoly_zero(domain
->ctx
));
2304 cst
= isl_upoly_as_cst(qp
->upoly
);
2305 isl_int_set(cst
->n
, val
->n
);
2306 isl_int_set(cst
->d
, val
->d
);
2308 isl_space_free(domain
);
2312 isl_space_free(domain
);
2317 static int up_set_active(__isl_keep
struct isl_upoly
*up
, int *active
, int d
)
2319 struct isl_upoly_rec
*rec
;
2325 if (isl_upoly_is_cst(up
))
2329 active
[up
->var
] = 1;
2331 rec
= isl_upoly_as_rec(up
);
2332 for (i
= 0; i
< rec
->n
; ++i
)
2333 if (up_set_active(rec
->p
[i
], active
, d
) < 0)
2339 static int set_active(__isl_keep isl_qpolynomial
*qp
, int *active
)
2342 int d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2347 for (i
= 0; i
< d
; ++i
)
2348 for (j
= 0; j
< qp
->div
->n_row
; ++j
) {
2349 if (isl_int_is_zero(qp
->div
->row
[j
][2 + i
]))
2355 return up_set_active(qp
->upoly
, active
, d
);
2358 int isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial
*qp
,
2359 enum isl_dim_type type
, unsigned first
, unsigned n
)
2370 isl_assert(qp
->dim
->ctx
,
2371 first
+ n
<= isl_qpolynomial_dim(qp
, type
), return -1);
2372 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2373 type
== isl_dim_in
, return -1);
2375 active
= isl_calloc_array(qp
->dim
->ctx
, int,
2376 isl_space_dim(qp
->dim
, isl_dim_all
));
2377 if (set_active(qp
, active
) < 0)
2380 if (type
== isl_dim_in
)
2381 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2382 for (i
= 0; i
< n
; ++i
)
2383 if (active
[first
+ i
]) {
2396 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2397 * of the divs that do appear in the quasi-polynomial.
2399 static __isl_give isl_qpolynomial
*remove_redundant_divs(
2400 __isl_take isl_qpolynomial
*qp
)
2407 int *reordering
= NULL
;
2414 if (qp
->div
->n_row
== 0)
2417 d
= isl_space_dim(qp
->dim
, isl_dim_all
);
2418 len
= qp
->div
->n_col
- 2;
2419 ctx
= isl_qpolynomial_get_ctx(qp
);
2420 active
= isl_calloc_array(ctx
, int, len
);
2424 if (up_set_active(qp
->upoly
, active
, len
) < 0)
2427 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
2428 if (!active
[d
+ i
]) {
2432 for (j
= 0; j
< i
; ++j
) {
2433 if (isl_int_is_zero(qp
->div
->row
[i
][2 + d
+ j
]))
2445 reordering
= isl_alloc_array(qp
->div
->ctx
, int, len
);
2449 for (i
= 0; i
< d
; ++i
)
2453 n_div
= qp
->div
->n_row
;
2454 for (i
= 0; i
< n_div
; ++i
) {
2455 if (!active
[d
+ i
]) {
2456 qp
->div
= isl_mat_drop_rows(qp
->div
, i
- skip
, 1);
2457 qp
->div
= isl_mat_drop_cols(qp
->div
,
2458 2 + d
+ i
- skip
, 1);
2461 reordering
[d
+ i
] = d
+ i
- skip
;
2464 qp
->upoly
= reorder(qp
->upoly
, reordering
);
2466 if (!qp
->upoly
|| !qp
->div
)
2476 isl_qpolynomial_free(qp
);
2480 __isl_give
struct isl_upoly
*isl_upoly_drop(__isl_take
struct isl_upoly
*up
,
2481 unsigned first
, unsigned n
)
2484 struct isl_upoly_rec
*rec
;
2488 if (n
== 0 || up
->var
< 0 || up
->var
< first
)
2490 if (up
->var
< first
+ n
) {
2491 up
= replace_by_constant_term(up
);
2492 return isl_upoly_drop(up
, first
, n
);
2494 up
= isl_upoly_cow(up
);
2498 rec
= isl_upoly_as_rec(up
);
2502 for (i
= 0; i
< rec
->n
; ++i
) {
2503 rec
->p
[i
] = isl_upoly_drop(rec
->p
[i
], first
, n
);
2514 __isl_give isl_qpolynomial
*isl_qpolynomial_set_dim_name(
2515 __isl_take isl_qpolynomial
*qp
,
2516 enum isl_dim_type type
, unsigned pos
, const char *s
)
2518 qp
= isl_qpolynomial_cow(qp
);
2521 qp
->dim
= isl_space_set_dim_name(qp
->dim
, type
, pos
, s
);
2526 isl_qpolynomial_free(qp
);
2530 __isl_give isl_qpolynomial
*isl_qpolynomial_drop_dims(
2531 __isl_take isl_qpolynomial
*qp
,
2532 enum isl_dim_type type
, unsigned first
, unsigned n
)
2536 if (type
== isl_dim_out
)
2537 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
2538 "cannot drop output/set dimension",
2540 if (type
== isl_dim_in
)
2542 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2545 qp
= isl_qpolynomial_cow(qp
);
2549 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
2551 isl_assert(qp
->dim
->ctx
, type
== isl_dim_param
||
2552 type
== isl_dim_set
, goto error
);
2554 qp
->dim
= isl_space_drop_dims(qp
->dim
, type
, first
, n
);
2558 if (type
== isl_dim_set
)
2559 first
+= isl_space_dim(qp
->dim
, isl_dim_param
);
2561 qp
->div
= isl_mat_drop_cols(qp
->div
, 2 + first
, n
);
2565 qp
->upoly
= isl_upoly_drop(qp
->upoly
, first
, n
);
2571 isl_qpolynomial_free(qp
);
2575 /* Project the domain of the quasi-polynomial onto its parameter space.
2576 * The quasi-polynomial may not involve any of the domain dimensions.
2578 __isl_give isl_qpolynomial
*isl_qpolynomial_project_domain_on_params(
2579 __isl_take isl_qpolynomial
*qp
)
2585 n
= isl_qpolynomial_dim(qp
, isl_dim_in
);
2586 involves
= isl_qpolynomial_involves_dims(qp
, isl_dim_in
, 0, n
);
2588 return isl_qpolynomial_free(qp
);
2590 isl_die(isl_qpolynomial_get_ctx(qp
), isl_error_invalid
,
2591 "polynomial involves some of the domain dimensions",
2592 return isl_qpolynomial_free(qp
));
2593 qp
= isl_qpolynomial_drop_dims(qp
, isl_dim_in
, 0, n
);
2594 space
= isl_qpolynomial_get_domain_space(qp
);
2595 space
= isl_space_params(space
);
2596 qp
= isl_qpolynomial_reset_domain_space(qp
, space
);
2600 static __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities_lifted(
2601 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2607 struct isl_upoly
*up
;
2611 if (eq
->n_eq
== 0) {
2612 isl_basic_set_free(eq
);
2616 qp
= isl_qpolynomial_cow(qp
);
2619 qp
->div
= isl_mat_cow(qp
->div
);
2623 total
= 1 + isl_space_dim(eq
->dim
, isl_dim_all
);
2625 isl_int_init(denom
);
2626 for (i
= 0; i
< eq
->n_eq
; ++i
) {
2627 j
= isl_seq_last_non_zero(eq
->eq
[i
], total
+ n_div
);
2628 if (j
< 0 || j
== 0 || j
>= total
)
2631 for (k
= 0; k
< qp
->div
->n_row
; ++k
) {
2632 if (isl_int_is_zero(qp
->div
->row
[k
][1 + j
]))
2634 isl_seq_elim(qp
->div
->row
[k
] + 1, eq
->eq
[i
], j
, total
,
2635 &qp
->div
->row
[k
][0]);
2636 normalize_div(qp
, k
);
2639 if (isl_int_is_pos(eq
->eq
[i
][j
]))
2640 isl_seq_neg(eq
->eq
[i
], eq
->eq
[i
], total
);
2641 isl_int_abs(denom
, eq
->eq
[i
][j
]);
2642 isl_int_set_si(eq
->eq
[i
][j
], 0);
2644 up
= isl_upoly_from_affine(qp
->dim
->ctx
,
2645 eq
->eq
[i
], denom
, total
);
2646 qp
->upoly
= isl_upoly_subs(qp
->upoly
, j
- 1, 1, &up
);
2649 isl_int_clear(denom
);
2654 isl_basic_set_free(eq
);
2656 qp
= substitute_non_divs(qp
);
2661 isl_basic_set_free(eq
);
2662 isl_qpolynomial_free(qp
);
2666 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2668 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute_equalities(
2669 __isl_take isl_qpolynomial
*qp
, __isl_take isl_basic_set
*eq
)
2673 if (qp
->div
->n_row
> 0)
2674 eq
= isl_basic_set_add_dims(eq
, isl_dim_set
, qp
->div
->n_row
);
2675 return isl_qpolynomial_substitute_equalities_lifted(qp
, eq
);
2677 isl_basic_set_free(eq
);
2678 isl_qpolynomial_free(qp
);
2682 static __isl_give isl_basic_set
*add_div_constraints(
2683 __isl_take isl_basic_set
*bset
, __isl_take isl_mat
*div
)
2691 bset
= isl_basic_set_extend_constraints(bset
, 0, 2 * div
->n_row
);
2694 total
= isl_basic_set_total_dim(bset
);
2695 for (i
= 0; i
< div
->n_row
; ++i
)
2696 if (isl_basic_set_add_div_constraints_var(bset
,
2697 total
- div
->n_row
+ i
, div
->row
[i
]) < 0)
2704 isl_basic_set_free(bset
);
2708 /* Look for equalities among the variables shared by context and qp
2709 * and the integer divisions of qp, if any.
2710 * The equalities are then used to eliminate variables and/or integer
2711 * divisions from qp.
2713 __isl_give isl_qpolynomial
*isl_qpolynomial_gist(
2714 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2720 if (qp
->div
->n_row
> 0) {
2721 isl_basic_set
*bset
;
2722 context
= isl_set_add_dims(context
, isl_dim_set
,
2724 bset
= isl_basic_set_universe(isl_set_get_space(context
));
2725 bset
= add_div_constraints(bset
, isl_mat_copy(qp
->div
));
2726 context
= isl_set_intersect(context
,
2727 isl_set_from_basic_set(bset
));
2730 aff
= isl_set_affine_hull(context
);
2731 return isl_qpolynomial_substitute_equalities_lifted(qp
, aff
);
2733 isl_qpolynomial_free(qp
);
2734 isl_set_free(context
);
2738 __isl_give isl_qpolynomial
*isl_qpolynomial_gist_params(
2739 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*context
)
2741 isl_space
*space
= isl_qpolynomial_get_domain_space(qp
);
2742 isl_set
*dom_context
= isl_set_universe(space
);
2743 dom_context
= isl_set_intersect_params(dom_context
, context
);
2744 return isl_qpolynomial_gist(qp
, dom_context
);
2747 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_qpolynomial(
2748 __isl_take isl_qpolynomial
*qp
)
2754 if (isl_qpolynomial_is_zero(qp
)) {
2755 isl_space
*dim
= isl_qpolynomial_get_space(qp
);
2756 isl_qpolynomial_free(qp
);
2757 return isl_pw_qpolynomial_zero(dim
);
2760 dom
= isl_set_universe(isl_qpolynomial_get_domain_space(qp
));
2761 return isl_pw_qpolynomial_alloc(dom
, qp
);
2765 #define PW isl_pw_qpolynomial
2767 #define EL isl_qpolynomial
2769 #define EL_IS_ZERO is_zero
2773 #define IS_ZERO is_zero
2776 #undef DEFAULT_IS_ZERO
2777 #define DEFAULT_IS_ZERO 1
2781 #include <isl_pw_templ.c>
2784 #define UNION isl_union_pw_qpolynomial
2786 #define PART isl_pw_qpolynomial
2788 #define PARTS pw_qpolynomial
2789 #define ALIGN_DOMAIN
2791 #include <isl_union_templ.c>
2793 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial
*pwqp
)
2801 if (!isl_set_plain_is_universe(pwqp
->p
[0].set
))
2804 return isl_qpolynomial_is_one(pwqp
->p
[0].qp
);
2807 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add(
2808 __isl_take isl_pw_qpolynomial
*pwqp1
,
2809 __isl_take isl_pw_qpolynomial
*pwqp2
)
2811 return isl_pw_qpolynomial_union_add_(pwqp1
, pwqp2
);
2814 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_mul(
2815 __isl_take isl_pw_qpolynomial
*pwqp1
,
2816 __isl_take isl_pw_qpolynomial
*pwqp2
)
2819 struct isl_pw_qpolynomial
*res
;
2821 if (!pwqp1
|| !pwqp2
)
2824 isl_assert(pwqp1
->dim
->ctx
, isl_space_is_equal(pwqp1
->dim
, pwqp2
->dim
),
2827 if (isl_pw_qpolynomial_is_zero(pwqp1
)) {
2828 isl_pw_qpolynomial_free(pwqp2
);
2832 if (isl_pw_qpolynomial_is_zero(pwqp2
)) {
2833 isl_pw_qpolynomial_free(pwqp1
);
2837 if (isl_pw_qpolynomial_is_one(pwqp1
)) {
2838 isl_pw_qpolynomial_free(pwqp1
);
2842 if (isl_pw_qpolynomial_is_one(pwqp2
)) {
2843 isl_pw_qpolynomial_free(pwqp2
);
2847 n
= pwqp1
->n
* pwqp2
->n
;
2848 res
= isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1
->dim
), n
);
2850 for (i
= 0; i
< pwqp1
->n
; ++i
) {
2851 for (j
= 0; j
< pwqp2
->n
; ++j
) {
2852 struct isl_set
*common
;
2853 struct isl_qpolynomial
*prod
;
2854 common
= isl_set_intersect(isl_set_copy(pwqp1
->p
[i
].set
),
2855 isl_set_copy(pwqp2
->p
[j
].set
));
2856 if (isl_set_plain_is_empty(common
)) {
2857 isl_set_free(common
);
2861 prod
= isl_qpolynomial_mul(
2862 isl_qpolynomial_copy(pwqp1
->p
[i
].qp
),
2863 isl_qpolynomial_copy(pwqp2
->p
[j
].qp
));
2865 res
= isl_pw_qpolynomial_add_piece(res
, common
, prod
);
2869 isl_pw_qpolynomial_free(pwqp1
);
2870 isl_pw_qpolynomial_free(pwqp2
);
2874 isl_pw_qpolynomial_free(pwqp1
);
2875 isl_pw_qpolynomial_free(pwqp2
);
2879 __isl_give isl_val
*isl_upoly_eval(__isl_take
struct isl_upoly
*up
,
2880 __isl_take isl_vec
*vec
)
2883 struct isl_upoly_rec
*rec
;
2887 if (isl_upoly_is_cst(up
)) {
2889 res
= isl_upoly_get_constant_val(up
);
2894 rec
= isl_upoly_as_rec(up
);
2898 isl_assert(up
->ctx
, rec
->n
>= 1, goto error
);
2900 base
= isl_val_rat_from_isl_int(up
->ctx
,
2901 vec
->el
[1 + up
->var
], vec
->el
[0]);
2903 res
= isl_upoly_eval(isl_upoly_copy(rec
->p
[rec
->n
- 1]),
2906 for (i
= rec
->n
- 2; i
>= 0; --i
) {
2907 res
= isl_val_mul(res
, isl_val_copy(base
));
2908 res
= isl_val_add(res
,
2909 isl_upoly_eval(isl_upoly_copy(rec
->p
[i
]),
2910 isl_vec_copy(vec
)));
2923 __isl_give isl_val
*isl_qpolynomial_eval(__isl_take isl_qpolynomial
*qp
,
2924 __isl_take isl_point
*pnt
)
2931 isl_assert(pnt
->dim
->ctx
, isl_space_is_equal(pnt
->dim
, qp
->dim
), goto error
);
2933 if (qp
->div
->n_row
== 0)
2934 ext
= isl_vec_copy(pnt
->vec
);
2937 unsigned dim
= isl_space_dim(qp
->dim
, isl_dim_all
);
2938 ext
= isl_vec_alloc(qp
->dim
->ctx
, 1 + dim
+ qp
->div
->n_row
);
2942 isl_seq_cpy(ext
->el
, pnt
->vec
->el
, pnt
->vec
->size
);
2943 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
2944 isl_seq_inner_product(qp
->div
->row
[i
] + 1, ext
->el
,
2945 1 + dim
+ i
, &ext
->el
[1+dim
+i
]);
2946 isl_int_fdiv_q(ext
->el
[1+dim
+i
], ext
->el
[1+dim
+i
],
2947 qp
->div
->row
[i
][0]);
2951 v
= isl_upoly_eval(isl_upoly_copy(qp
->upoly
), ext
);
2953 isl_qpolynomial_free(qp
);
2954 isl_point_free(pnt
);
2958 isl_qpolynomial_free(qp
);
2959 isl_point_free(pnt
);
2963 int isl_upoly_cmp(__isl_keep
struct isl_upoly_cst
*cst1
,
2964 __isl_keep
struct isl_upoly_cst
*cst2
)
2969 isl_int_mul(t
, cst1
->n
, cst2
->d
);
2970 isl_int_submul(t
, cst2
->n
, cst1
->d
);
2971 cmp
= isl_int_sgn(t
);
2976 __isl_give isl_qpolynomial
*isl_qpolynomial_insert_dims(
2977 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
,
2978 unsigned first
, unsigned n
)
2986 if (type
== isl_dim_out
)
2987 isl_die(qp
->div
->ctx
, isl_error_invalid
,
2988 "cannot insert output/set dimensions",
2990 if (type
== isl_dim_in
)
2992 if (n
== 0 && !isl_space_is_named_or_nested(qp
->dim
, type
))
2995 qp
= isl_qpolynomial_cow(qp
);
2999 isl_assert(qp
->div
->ctx
, first
<= isl_space_dim(qp
->dim
, type
),
3002 g_pos
= pos(qp
->dim
, type
) + first
;
3004 qp
->div
= isl_mat_insert_zero_cols(qp
->div
, 2 + g_pos
, n
);
3008 total
= qp
->div
->n_col
- 2;
3009 if (total
> g_pos
) {
3011 exp
= isl_alloc_array(qp
->div
->ctx
, int, total
- g_pos
);
3014 for (i
= 0; i
< total
- g_pos
; ++i
)
3016 qp
->upoly
= expand(qp
->upoly
, exp
, g_pos
);
3022 qp
->dim
= isl_space_insert_dims(qp
->dim
, type
, first
, n
);
3028 isl_qpolynomial_free(qp
);
3032 __isl_give isl_qpolynomial
*isl_qpolynomial_add_dims(
3033 __isl_take isl_qpolynomial
*qp
, enum isl_dim_type type
, unsigned n
)
3037 pos
= isl_qpolynomial_dim(qp
, type
);
3039 return isl_qpolynomial_insert_dims(qp
, type
, pos
, n
);
3042 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_add_dims(
3043 __isl_take isl_pw_qpolynomial
*pwqp
,
3044 enum isl_dim_type type
, unsigned n
)
3048 pos
= isl_pw_qpolynomial_dim(pwqp
, type
);
3050 return isl_pw_qpolynomial_insert_dims(pwqp
, type
, pos
, n
);
3053 static int *reordering_move(isl_ctx
*ctx
,
3054 unsigned len
, unsigned dst
, unsigned src
, unsigned n
)
3059 reordering
= isl_alloc_array(ctx
, int, len
);
3064 for (i
= 0; i
< dst
; ++i
)
3066 for (i
= 0; i
< n
; ++i
)
3067 reordering
[src
+ i
] = dst
+ i
;
3068 for (i
= 0; i
< src
- dst
; ++i
)
3069 reordering
[dst
+ i
] = dst
+ n
+ i
;
3070 for (i
= 0; i
< len
- src
- n
; ++i
)
3071 reordering
[src
+ n
+ i
] = src
+ n
+ i
;
3073 for (i
= 0; i
< src
; ++i
)
3075 for (i
= 0; i
< n
; ++i
)
3076 reordering
[src
+ i
] = dst
+ i
;
3077 for (i
= 0; i
< dst
- src
; ++i
)
3078 reordering
[src
+ n
+ i
] = src
+ i
;
3079 for (i
= 0; i
< len
- dst
- n
; ++i
)
3080 reordering
[dst
+ n
+ i
] = dst
+ n
+ i
;
3086 __isl_give isl_qpolynomial
*isl_qpolynomial_move_dims(
3087 __isl_take isl_qpolynomial
*qp
,
3088 enum isl_dim_type dst_type
, unsigned dst_pos
,
3089 enum isl_dim_type src_type
, unsigned src_pos
, unsigned n
)
3098 qp
= isl_qpolynomial_cow(qp
);
3102 if (dst_type
== isl_dim_out
|| src_type
== isl_dim_out
)
3103 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3104 "cannot move output/set dimension",
3106 if (dst_type
== isl_dim_in
)
3107 dst_type
= isl_dim_set
;
3108 if (src_type
== isl_dim_in
)
3109 src_type
= isl_dim_set
;
3111 isl_assert(qp
->dim
->ctx
, src_pos
+ n
<= isl_space_dim(qp
->dim
, src_type
),
3114 g_dst_pos
= pos(qp
->dim
, dst_type
) + dst_pos
;
3115 g_src_pos
= pos(qp
->dim
, src_type
) + src_pos
;
3116 if (dst_type
> src_type
)
3119 qp
->div
= isl_mat_move_cols(qp
->div
, 2 + g_dst_pos
, 2 + g_src_pos
, n
);
3126 reordering
= reordering_move(qp
->dim
->ctx
,
3127 qp
->div
->n_col
- 2, g_dst_pos
, g_src_pos
, n
);
3131 qp
->upoly
= reorder(qp
->upoly
, reordering
);
3136 qp
->dim
= isl_space_move_dims(qp
->dim
, dst_type
, dst_pos
, src_type
, src_pos
, n
);
3142 isl_qpolynomial_free(qp
);
3146 __isl_give isl_qpolynomial
*isl_qpolynomial_from_affine(__isl_take isl_space
*dim
,
3147 isl_int
*f
, isl_int denom
)
3149 struct isl_upoly
*up
;
3151 dim
= isl_space_domain(dim
);
3155 up
= isl_upoly_from_affine(dim
->ctx
, f
, denom
,
3156 1 + isl_space_dim(dim
, isl_dim_all
));
3158 return isl_qpolynomial_alloc(dim
, 0, up
);
3161 __isl_give isl_qpolynomial
*isl_qpolynomial_from_aff(__isl_take isl_aff
*aff
)
3164 struct isl_upoly
*up
;
3165 isl_qpolynomial
*qp
;
3170 ctx
= isl_aff_get_ctx(aff
);
3171 up
= isl_upoly_from_affine(ctx
, aff
->v
->el
+ 1, aff
->v
->el
[0],
3174 qp
= isl_qpolynomial_alloc(isl_aff_get_domain_space(aff
),
3175 aff
->ls
->div
->n_row
, up
);
3179 isl_mat_free(qp
->div
);
3180 qp
->div
= isl_mat_copy(aff
->ls
->div
);
3181 qp
->div
= isl_mat_cow(qp
->div
);
3186 qp
= reduce_divs(qp
);
3187 qp
= remove_redundant_divs(qp
);
3191 return isl_qpolynomial_free(qp
);
3194 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_from_pw_aff(
3195 __isl_take isl_pw_aff
*pwaff
)
3198 isl_pw_qpolynomial
*pwqp
;
3203 pwqp
= isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff
),
3206 for (i
= 0; i
< pwaff
->n
; ++i
) {
3208 isl_qpolynomial
*qp
;
3210 dom
= isl_set_copy(pwaff
->p
[i
].set
);
3211 qp
= isl_qpolynomial_from_aff(isl_aff_copy(pwaff
->p
[i
].aff
));
3212 pwqp
= isl_pw_qpolynomial_add_piece(pwqp
, dom
, qp
);
3215 isl_pw_aff_free(pwaff
);
3219 __isl_give isl_qpolynomial
*isl_qpolynomial_from_constraint(
3220 __isl_take isl_constraint
*c
, enum isl_dim_type type
, unsigned pos
)
3224 aff
= isl_constraint_get_bound(c
, type
, pos
);
3225 isl_constraint_free(c
);
3226 return isl_qpolynomial_from_aff(aff
);
3229 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3230 * in "qp" by subs[i].
3232 __isl_give isl_qpolynomial
*isl_qpolynomial_substitute(
3233 __isl_take isl_qpolynomial
*qp
,
3234 enum isl_dim_type type
, unsigned first
, unsigned n
,
3235 __isl_keep isl_qpolynomial
**subs
)
3238 struct isl_upoly
**ups
;
3243 qp
= isl_qpolynomial_cow(qp
);
3247 if (type
== isl_dim_out
)
3248 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
3249 "cannot substitute output/set dimension",
3251 if (type
== isl_dim_in
)
3254 for (i
= 0; i
< n
; ++i
)
3258 isl_assert(qp
->dim
->ctx
, first
+ n
<= isl_space_dim(qp
->dim
, type
),
3261 for (i
= 0; i
< n
; ++i
)
3262 isl_assert(qp
->dim
->ctx
, isl_space_is_equal(qp
->dim
, subs
[i
]->dim
),
3265 isl_assert(qp
->dim
->ctx
, qp
->div
->n_row
== 0, goto error
);
3266 for (i
= 0; i
< n
; ++i
)
3267 isl_assert(qp
->dim
->ctx
, subs
[i
]->div
->n_row
== 0, goto error
);
3269 first
+= pos(qp
->dim
, type
);
3271 ups
= isl_alloc_array(qp
->dim
->ctx
, struct isl_upoly
*, n
);
3274 for (i
= 0; i
< n
; ++i
)
3275 ups
[i
] = subs
[i
]->upoly
;
3277 qp
->upoly
= isl_upoly_subs(qp
->upoly
, first
, n
, ups
);
3286 isl_qpolynomial_free(qp
);
3290 /* Extend "bset" with extra set dimensions for each integer division
3291 * in "qp" and then call "fn" with the extended bset and the polynomial
3292 * that results from replacing each of the integer divisions by the
3293 * corresponding extra set dimension.
3295 int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial
*qp
,
3296 __isl_keep isl_basic_set
*bset
,
3297 int (*fn
)(__isl_take isl_basic_set
*bset
,
3298 __isl_take isl_qpolynomial
*poly
, void *user
), void *user
)
3302 isl_qpolynomial
*poly
;
3306 if (qp
->div
->n_row
== 0)
3307 return fn(isl_basic_set_copy(bset
), isl_qpolynomial_copy(qp
),
3310 div
= isl_mat_copy(qp
->div
);
3311 dim
= isl_space_copy(qp
->dim
);
3312 dim
= isl_space_add_dims(dim
, isl_dim_set
, qp
->div
->n_row
);
3313 poly
= isl_qpolynomial_alloc(dim
, 0, isl_upoly_copy(qp
->upoly
));
3314 bset
= isl_basic_set_copy(bset
);
3315 bset
= isl_basic_set_add_dims(bset
, isl_dim_set
, qp
->div
->n_row
);
3316 bset
= add_div_constraints(bset
, div
);
3318 return fn(bset
, poly
, user
);
3323 /* Return total degree in variables first (inclusive) up to last (exclusive).
3325 int isl_upoly_degree(__isl_keep
struct isl_upoly
*up
, int first
, int last
)
3329 struct isl_upoly_rec
*rec
;
3333 if (isl_upoly_is_zero(up
))
3335 if (isl_upoly_is_cst(up
) || up
->var
< first
)
3338 rec
= isl_upoly_as_rec(up
);
3342 for (i
= 0; i
< rec
->n
; ++i
) {
3345 if (isl_upoly_is_zero(rec
->p
[i
]))
3347 d
= isl_upoly_degree(rec
->p
[i
], first
, last
);
3357 /* Return total degree in set variables.
3359 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial
*poly
)
3367 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3368 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3369 return isl_upoly_degree(poly
->upoly
, ovar
, ovar
+ nvar
);
3372 __isl_give
struct isl_upoly
*isl_upoly_coeff(__isl_keep
struct isl_upoly
*up
,
3373 unsigned pos
, int deg
)
3376 struct isl_upoly_rec
*rec
;
3381 if (isl_upoly_is_cst(up
) || up
->var
< pos
) {
3383 return isl_upoly_copy(up
);
3385 return isl_upoly_zero(up
->ctx
);
3388 rec
= isl_upoly_as_rec(up
);
3392 if (up
->var
== pos
) {
3394 return isl_upoly_copy(rec
->p
[deg
]);
3396 return isl_upoly_zero(up
->ctx
);
3399 up
= isl_upoly_copy(up
);
3400 up
= isl_upoly_cow(up
);
3401 rec
= isl_upoly_as_rec(up
);
3405 for (i
= 0; i
< rec
->n
; ++i
) {
3406 struct isl_upoly
*t
;
3407 t
= isl_upoly_coeff(rec
->p
[i
], pos
, deg
);
3410 isl_upoly_free(rec
->p
[i
]);
3420 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3422 __isl_give isl_qpolynomial
*isl_qpolynomial_coeff(
3423 __isl_keep isl_qpolynomial
*qp
,
3424 enum isl_dim_type type
, unsigned t_pos
, int deg
)
3427 struct isl_upoly
*up
;
3433 if (type
== isl_dim_out
)
3434 isl_die(qp
->div
->ctx
, isl_error_invalid
,
3435 "output/set dimension does not have a coefficient",
3437 if (type
== isl_dim_in
)
3440 isl_assert(qp
->div
->ctx
, t_pos
< isl_space_dim(qp
->dim
, type
),
3443 g_pos
= pos(qp
->dim
, type
) + t_pos
;
3444 up
= isl_upoly_coeff(qp
->upoly
, g_pos
, deg
);
3446 c
= isl_qpolynomial_alloc(isl_space_copy(qp
->dim
), qp
->div
->n_row
, up
);
3449 isl_mat_free(c
->div
);
3450 c
->div
= isl_mat_copy(qp
->div
);
3455 isl_qpolynomial_free(c
);
3459 /* Homogenize the polynomial in the variables first (inclusive) up to
3460 * last (exclusive) by inserting powers of variable first.
3461 * Variable first is assumed not to appear in the input.
3463 __isl_give
struct isl_upoly
*isl_upoly_homogenize(
3464 __isl_take
struct isl_upoly
*up
, int deg
, int target
,
3465 int first
, int last
)
3468 struct isl_upoly_rec
*rec
;
3472 if (isl_upoly_is_zero(up
))
3476 if (isl_upoly_is_cst(up
) || up
->var
< first
) {
3477 struct isl_upoly
*hom
;
3479 hom
= isl_upoly_var_pow(up
->ctx
, first
, target
- deg
);
3482 rec
= isl_upoly_as_rec(hom
);
3483 rec
->p
[target
- deg
] = isl_upoly_mul(rec
->p
[target
- deg
], up
);
3488 up
= isl_upoly_cow(up
);
3489 rec
= isl_upoly_as_rec(up
);
3493 for (i
= 0; i
< rec
->n
; ++i
) {
3494 if (isl_upoly_is_zero(rec
->p
[i
]))
3496 rec
->p
[i
] = isl_upoly_homogenize(rec
->p
[i
],
3497 up
->var
< last
? deg
+ i
: i
, target
,
3509 /* Homogenize the polynomial in the set variables by introducing
3510 * powers of an extra set variable at position 0.
3512 __isl_give isl_qpolynomial
*isl_qpolynomial_homogenize(
3513 __isl_take isl_qpolynomial
*poly
)
3517 int deg
= isl_qpolynomial_degree(poly
);
3522 poly
= isl_qpolynomial_insert_dims(poly
, isl_dim_in
, 0, 1);
3523 poly
= isl_qpolynomial_cow(poly
);
3527 ovar
= isl_space_offset(poly
->dim
, isl_dim_set
);
3528 nvar
= isl_space_dim(poly
->dim
, isl_dim_set
);
3529 poly
->upoly
= isl_upoly_homogenize(poly
->upoly
, 0, deg
,
3536 isl_qpolynomial_free(poly
);
3540 __isl_give isl_term
*isl_term_alloc(__isl_take isl_space
*dim
,
3541 __isl_take isl_mat
*div
)
3549 n
= isl_space_dim(dim
, isl_dim_all
) + div
->n_row
;
3551 term
= isl_calloc(dim
->ctx
, struct isl_term
,
3552 sizeof(struct isl_term
) + (n
- 1) * sizeof(int));
3559 isl_int_init(term
->n
);
3560 isl_int_init(term
->d
);
3564 isl_space_free(dim
);
3569 __isl_give isl_term
*isl_term_copy(__isl_keep isl_term
*term
)
3578 __isl_give isl_term
*isl_term_dup(__isl_keep isl_term
*term
)
3587 total
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3589 dup
= isl_term_alloc(isl_space_copy(term
->dim
), isl_mat_copy(term
->div
));
3593 isl_int_set(dup
->n
, term
->n
);
3594 isl_int_set(dup
->d
, term
->d
);
3596 for (i
= 0; i
< total
; ++i
)
3597 dup
->pow
[i
] = term
->pow
[i
];
3602 __isl_give isl_term
*isl_term_cow(__isl_take isl_term
*term
)
3610 return isl_term_dup(term
);
3613 void isl_term_free(__isl_take isl_term
*term
)
3618 if (--term
->ref
> 0)
3621 isl_space_free(term
->dim
);
3622 isl_mat_free(term
->div
);
3623 isl_int_clear(term
->n
);
3624 isl_int_clear(term
->d
);
3628 unsigned isl_term_dim(__isl_keep isl_term
*term
, enum isl_dim_type type
)
3636 case isl_dim_out
: return isl_space_dim(term
->dim
, type
);
3637 case isl_dim_div
: return term
->div
->n_row
;
3638 case isl_dim_all
: return isl_space_dim(term
->dim
, isl_dim_all
) +
3644 isl_ctx
*isl_term_get_ctx(__isl_keep isl_term
*term
)
3646 return term
? term
->dim
->ctx
: NULL
;
3649 void isl_term_get_num(__isl_keep isl_term
*term
, isl_int
*n
)
3653 isl_int_set(*n
, term
->n
);
3656 void isl_term_get_den(__isl_keep isl_term
*term
, isl_int
*d
)
3660 isl_int_set(*d
, term
->d
);
3663 /* Return the coefficient of the term "term".
3665 __isl_give isl_val
*isl_term_get_coefficient_val(__isl_keep isl_term
*term
)
3670 return isl_val_rat_from_isl_int(isl_term_get_ctx(term
),
3674 int isl_term_get_exp(__isl_keep isl_term
*term
,
3675 enum isl_dim_type type
, unsigned pos
)
3680 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, type
), return -1);
3682 if (type
>= isl_dim_set
)
3683 pos
+= isl_space_dim(term
->dim
, isl_dim_param
);
3684 if (type
>= isl_dim_div
)
3685 pos
+= isl_space_dim(term
->dim
, isl_dim_set
);
3687 return term
->pow
[pos
];
3690 __isl_give isl_aff
*isl_term_get_div(__isl_keep isl_term
*term
, unsigned pos
)
3692 isl_local_space
*ls
;
3698 isl_assert(term
->dim
->ctx
, pos
< isl_term_dim(term
, isl_dim_div
),
3701 ls
= isl_local_space_alloc_div(isl_space_copy(term
->dim
),
3702 isl_mat_copy(term
->div
));
3703 aff
= isl_aff_alloc(ls
);
3707 isl_seq_cpy(aff
->v
->el
, term
->div
->row
[pos
], aff
->v
->size
);
3709 aff
= isl_aff_normalize(aff
);
3714 __isl_give isl_term
*isl_upoly_foreach_term(__isl_keep
struct isl_upoly
*up
,
3715 int (*fn
)(__isl_take isl_term
*term
, void *user
),
3716 __isl_take isl_term
*term
, void *user
)
3719 struct isl_upoly_rec
*rec
;
3724 if (isl_upoly_is_zero(up
))
3727 isl_assert(up
->ctx
, !isl_upoly_is_nan(up
), goto error
);
3728 isl_assert(up
->ctx
, !isl_upoly_is_infty(up
), goto error
);
3729 isl_assert(up
->ctx
, !isl_upoly_is_neginfty(up
), goto error
);
3731 if (isl_upoly_is_cst(up
)) {
3732 struct isl_upoly_cst
*cst
;
3733 cst
= isl_upoly_as_cst(up
);
3736 term
= isl_term_cow(term
);
3739 isl_int_set(term
->n
, cst
->n
);
3740 isl_int_set(term
->d
, cst
->d
);
3741 if (fn(isl_term_copy(term
), user
) < 0)
3746 rec
= isl_upoly_as_rec(up
);
3750 for (i
= 0; i
< rec
->n
; ++i
) {
3751 term
= isl_term_cow(term
);
3754 term
->pow
[up
->var
] = i
;
3755 term
= isl_upoly_foreach_term(rec
->p
[i
], fn
, term
, user
);
3759 term
->pow
[up
->var
] = 0;
3763 isl_term_free(term
);
3767 int isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial
*qp
,
3768 int (*fn
)(__isl_take isl_term
*term
, void *user
), void *user
)
3775 term
= isl_term_alloc(isl_space_copy(qp
->dim
), isl_mat_copy(qp
->div
));
3779 term
= isl_upoly_foreach_term(qp
->upoly
, fn
, term
, user
);
3781 isl_term_free(term
);
3783 return term
? 0 : -1;
3786 __isl_give isl_qpolynomial
*isl_qpolynomial_from_term(__isl_take isl_term
*term
)
3788 struct isl_upoly
*up
;
3789 isl_qpolynomial
*qp
;
3795 n
= isl_space_dim(term
->dim
, isl_dim_all
) + term
->div
->n_row
;
3797 up
= isl_upoly_rat_cst(term
->dim
->ctx
, term
->n
, term
->d
);
3798 for (i
= 0; i
< n
; ++i
) {
3801 up
= isl_upoly_mul(up
,
3802 isl_upoly_var_pow(term
->dim
->ctx
, i
, term
->pow
[i
]));
3805 qp
= isl_qpolynomial_alloc(isl_space_copy(term
->dim
), term
->div
->n_row
, up
);
3808 isl_mat_free(qp
->div
);
3809 qp
->div
= isl_mat_copy(term
->div
);
3813 isl_term_free(term
);
3816 isl_qpolynomial_free(qp
);
3817 isl_term_free(term
);
3821 __isl_give isl_qpolynomial
*isl_qpolynomial_lift(__isl_take isl_qpolynomial
*qp
,
3822 __isl_take isl_space
*dim
)
3831 if (isl_space_is_equal(qp
->dim
, dim
)) {
3832 isl_space_free(dim
);
3836 qp
= isl_qpolynomial_cow(qp
);
3840 extra
= isl_space_dim(dim
, isl_dim_set
) -
3841 isl_space_dim(qp
->dim
, isl_dim_set
);
3842 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
3843 if (qp
->div
->n_row
) {
3846 exp
= isl_alloc_array(qp
->div
->ctx
, int, qp
->div
->n_row
);
3849 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3851 qp
->upoly
= expand(qp
->upoly
, exp
, total
);
3856 qp
->div
= isl_mat_insert_cols(qp
->div
, 2 + total
, extra
);
3859 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
3860 isl_seq_clr(qp
->div
->row
[i
] + 2 + total
, extra
);
3862 isl_space_free(qp
->dim
);
3867 isl_space_free(dim
);
3868 isl_qpolynomial_free(qp
);
3872 /* For each parameter or variable that does not appear in qp,
3873 * first eliminate the variable from all constraints and then set it to zero.
3875 static __isl_give isl_set
*fix_inactive(__isl_take isl_set
*set
,
3876 __isl_keep isl_qpolynomial
*qp
)
3887 d
= isl_space_dim(set
->dim
, isl_dim_all
);
3888 active
= isl_calloc_array(set
->ctx
, int, d
);
3889 if (set_active(qp
, active
) < 0)
3892 for (i
= 0; i
< d
; ++i
)
3901 nparam
= isl_space_dim(set
->dim
, isl_dim_param
);
3902 nvar
= isl_space_dim(set
->dim
, isl_dim_set
);
3903 for (i
= 0; i
< nparam
; ++i
) {
3906 set
= isl_set_eliminate(set
, isl_dim_param
, i
, 1);
3907 set
= isl_set_fix_si(set
, isl_dim_param
, i
, 0);
3909 for (i
= 0; i
< nvar
; ++i
) {
3910 if (active
[nparam
+ i
])
3912 set
= isl_set_eliminate(set
, isl_dim_set
, i
, 1);
3913 set
= isl_set_fix_si(set
, isl_dim_set
, i
, 0);
3925 struct isl_opt_data
{
3926 isl_qpolynomial
*qp
;
3932 static int opt_fn(__isl_take isl_point
*pnt
, void *user
)
3934 struct isl_opt_data
*data
= (struct isl_opt_data
*)user
;
3937 val
= isl_qpolynomial_eval(isl_qpolynomial_copy(data
->qp
), pnt
);
3941 } else if (data
->max
) {
3942 data
->opt
= isl_val_max(data
->opt
, val
);
3944 data
->opt
= isl_val_min(data
->opt
, val
);
3950 __isl_give isl_val
*isl_qpolynomial_opt_on_domain(
3951 __isl_take isl_qpolynomial
*qp
, __isl_take isl_set
*set
, int max
)
3953 struct isl_opt_data data
= { NULL
, 1, NULL
, max
};
3958 if (isl_upoly_is_cst(qp
->upoly
)) {
3960 data
.opt
= isl_qpolynomial_get_constant_val(qp
);
3961 isl_qpolynomial_free(qp
);
3965 set
= fix_inactive(set
, qp
);
3968 if (isl_set_foreach_point(set
, opt_fn
, &data
) < 0)
3972 data
.opt
= isl_val_zero(isl_set_get_ctx(set
));
3975 isl_qpolynomial_free(qp
);
3979 isl_qpolynomial_free(qp
);
3980 isl_val_free(data
.opt
);
3984 __isl_give isl_qpolynomial
*isl_qpolynomial_morph_domain(
3985 __isl_take isl_qpolynomial
*qp
, __isl_take isl_morph
*morph
)
3990 struct isl_upoly
**subs
;
3991 isl_mat
*mat
, *diag
;
3993 qp
= isl_qpolynomial_cow(qp
);
3998 isl_assert(ctx
, isl_space_is_equal(qp
->dim
, morph
->dom
->dim
), goto error
);
4000 n_sub
= morph
->inv
->n_row
- 1;
4001 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4002 n_sub
+= qp
->div
->n_row
;
4003 subs
= isl_calloc_array(ctx
, struct isl_upoly
*, n_sub
);
4007 for (i
= 0; 1 + i
< morph
->inv
->n_row
; ++i
)
4008 subs
[i
] = isl_upoly_from_affine(ctx
, morph
->inv
->row
[1 + i
],
4009 morph
->inv
->row
[0][0], morph
->inv
->n_col
);
4010 if (morph
->inv
->n_row
!= morph
->inv
->n_col
)
4011 for (i
= 0; i
< qp
->div
->n_row
; ++i
)
4012 subs
[morph
->inv
->n_row
- 1 + i
] =
4013 isl_upoly_var_pow(ctx
, morph
->inv
->n_col
- 1 + i
, 1);
4015 qp
->upoly
= isl_upoly_subs(qp
->upoly
, 0, n_sub
, subs
);
4017 for (i
= 0; i
< n_sub
; ++i
)
4018 isl_upoly_free(subs
[i
]);
4021 diag
= isl_mat_diag(ctx
, 1, morph
->inv
->row
[0][0]);
4022 mat
= isl_mat_diagonal(diag
, isl_mat_copy(morph
->inv
));
4023 diag
= isl_mat_diag(ctx
, qp
->div
->n_row
, morph
->inv
->row
[0][0]);
4024 mat
= isl_mat_diagonal(mat
, diag
);
4025 qp
->div
= isl_mat_product(qp
->div
, mat
);
4026 isl_space_free(qp
->dim
);
4027 qp
->dim
= isl_space_copy(morph
->ran
->dim
);
4029 if (!qp
->upoly
|| !qp
->div
|| !qp
->dim
)
4032 isl_morph_free(morph
);
4036 isl_qpolynomial_free(qp
);
4037 isl_morph_free(morph
);
4041 static int neg_entry(void **entry
, void *user
)
4043 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4045 *pwqp
= isl_pw_qpolynomial_neg(*pwqp
);
4047 return *pwqp
? 0 : -1;
4050 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_neg(
4051 __isl_take isl_union_pw_qpolynomial
*upwqp
)
4053 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4057 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4058 &neg_entry
, NULL
) < 0)
4063 isl_union_pw_qpolynomial_free(upwqp
);
4067 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_mul(
4068 __isl_take isl_union_pw_qpolynomial
*upwqp1
,
4069 __isl_take isl_union_pw_qpolynomial
*upwqp2
)
4071 return match_bin_op(upwqp1
, upwqp2
, &isl_pw_qpolynomial_mul
);
4074 /* Reorder the columns of the given div definitions according to the
4077 static __isl_give isl_mat
*reorder_divs(__isl_take isl_mat
*div
,
4078 __isl_take isl_reordering
*r
)
4087 extra
= isl_space_dim(r
->dim
, isl_dim_all
) + div
->n_row
- r
->len
;
4088 mat
= isl_mat_alloc(div
->ctx
, div
->n_row
, div
->n_col
+ extra
);
4092 for (i
= 0; i
< div
->n_row
; ++i
) {
4093 isl_seq_cpy(mat
->row
[i
], div
->row
[i
], 2);
4094 isl_seq_clr(mat
->row
[i
] + 2, mat
->n_col
- 2);
4095 for (j
= 0; j
< r
->len
; ++j
)
4096 isl_int_set(mat
->row
[i
][2 + r
->pos
[j
]],
4097 div
->row
[i
][2 + j
]);
4100 isl_reordering_free(r
);
4104 isl_reordering_free(r
);
4109 /* Reorder the dimension of "qp" according to the given reordering.
4111 __isl_give isl_qpolynomial
*isl_qpolynomial_realign_domain(
4112 __isl_take isl_qpolynomial
*qp
, __isl_take isl_reordering
*r
)
4114 qp
= isl_qpolynomial_cow(qp
);
4118 r
= isl_reordering_extend(r
, qp
->div
->n_row
);
4122 qp
->div
= reorder_divs(qp
->div
, isl_reordering_copy(r
));
4126 qp
->upoly
= reorder(qp
->upoly
, r
->pos
);
4130 qp
= isl_qpolynomial_reset_domain_space(qp
, isl_space_copy(r
->dim
));
4132 isl_reordering_free(r
);
4135 isl_qpolynomial_free(qp
);
4136 isl_reordering_free(r
);
4140 __isl_give isl_qpolynomial
*isl_qpolynomial_align_params(
4141 __isl_take isl_qpolynomial
*qp
, __isl_take isl_space
*model
)
4146 if (!isl_space_match(qp
->dim
, isl_dim_param
, model
, isl_dim_param
)) {
4147 isl_reordering
*exp
;
4149 model
= isl_space_drop_dims(model
, isl_dim_in
,
4150 0, isl_space_dim(model
, isl_dim_in
));
4151 model
= isl_space_drop_dims(model
, isl_dim_out
,
4152 0, isl_space_dim(model
, isl_dim_out
));
4153 exp
= isl_parameter_alignment_reordering(qp
->dim
, model
);
4154 exp
= isl_reordering_extend_space(exp
,
4155 isl_qpolynomial_get_domain_space(qp
));
4156 qp
= isl_qpolynomial_realign_domain(qp
, exp
);
4159 isl_space_free(model
);
4162 isl_space_free(model
);
4163 isl_qpolynomial_free(qp
);
4167 struct isl_split_periods_data
{
4169 isl_pw_qpolynomial
*res
;
4172 /* Create a slice where the integer division "div" has the fixed value "v".
4173 * In particular, if "div" refers to floor(f/m), then create a slice
4175 * m v <= f <= m v + (m - 1)
4180 * -f + m v + (m - 1) >= 0
4182 static __isl_give isl_set
*set_div_slice(__isl_take isl_space
*dim
,
4183 __isl_keep isl_qpolynomial
*qp
, int div
, isl_int v
)
4186 isl_basic_set
*bset
= NULL
;
4192 total
= isl_space_dim(dim
, isl_dim_all
);
4193 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0, 0, 2);
4195 k
= isl_basic_set_alloc_inequality(bset
);
4198 isl_seq_cpy(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4199 isl_int_submul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4201 k
= isl_basic_set_alloc_inequality(bset
);
4204 isl_seq_neg(bset
->ineq
[k
], qp
->div
->row
[div
] + 1, 1 + total
);
4205 isl_int_addmul(bset
->ineq
[k
][0], v
, qp
->div
->row
[div
][0]);
4206 isl_int_add(bset
->ineq
[k
][0], bset
->ineq
[k
][0], qp
->div
->row
[div
][0]);
4207 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4209 isl_space_free(dim
);
4210 return isl_set_from_basic_set(bset
);
4212 isl_basic_set_free(bset
);
4213 isl_space_free(dim
);
4217 static int split_periods(__isl_take isl_set
*set
,
4218 __isl_take isl_qpolynomial
*qp
, void *user
);
4220 /* Create a slice of the domain "set" such that integer division "div"
4221 * has the fixed value "v" and add the results to data->res,
4222 * replacing the integer division by "v" in "qp".
4224 static int set_div(__isl_take isl_set
*set
,
4225 __isl_take isl_qpolynomial
*qp
, int div
, isl_int v
,
4226 struct isl_split_periods_data
*data
)
4231 struct isl_upoly
*cst
;
4233 slice
= set_div_slice(isl_set_get_space(set
), qp
, div
, v
);
4234 set
= isl_set_intersect(set
, slice
);
4239 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4241 for (i
= div
+ 1; i
< qp
->div
->n_row
; ++i
) {
4242 if (isl_int_is_zero(qp
->div
->row
[i
][2 + total
+ div
]))
4244 isl_int_addmul(qp
->div
->row
[i
][1],
4245 qp
->div
->row
[i
][2 + total
+ div
], v
);
4246 isl_int_set_si(qp
->div
->row
[i
][2 + total
+ div
], 0);
4249 cst
= isl_upoly_rat_cst(qp
->dim
->ctx
, v
, qp
->dim
->ctx
->one
);
4250 qp
= substitute_div(qp
, div
, cst
);
4252 return split_periods(set
, qp
, data
);
4255 isl_qpolynomial_free(qp
);
4259 /* Split the domain "set" such that integer division "div"
4260 * has a fixed value (ranging from "min" to "max") on each slice
4261 * and add the results to data->res.
4263 static int split_div(__isl_take isl_set
*set
,
4264 __isl_take isl_qpolynomial
*qp
, int div
, isl_int min
, isl_int max
,
4265 struct isl_split_periods_data
*data
)
4267 for (; isl_int_le(min
, max
); isl_int_add_ui(min
, min
, 1)) {
4268 isl_set
*set_i
= isl_set_copy(set
);
4269 isl_qpolynomial
*qp_i
= isl_qpolynomial_copy(qp
);
4271 if (set_div(set_i
, qp_i
, div
, min
, data
) < 0)
4275 isl_qpolynomial_free(qp
);
4279 isl_qpolynomial_free(qp
);
4283 /* If "qp" refers to any integer division
4284 * that can only attain "max_periods" distinct values on "set"
4285 * then split the domain along those distinct values.
4286 * Add the results (or the original if no splitting occurs)
4289 static int split_periods(__isl_take isl_set
*set
,
4290 __isl_take isl_qpolynomial
*qp
, void *user
)
4293 isl_pw_qpolynomial
*pwqp
;
4294 struct isl_split_periods_data
*data
;
4299 data
= (struct isl_split_periods_data
*)user
;
4304 if (qp
->div
->n_row
== 0) {
4305 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4306 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4312 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4313 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4314 enum isl_lp_result lp_res
;
4316 if (isl_seq_first_non_zero(qp
->div
->row
[i
] + 2 + total
,
4317 qp
->div
->n_row
) != -1)
4320 lp_res
= isl_set_solve_lp(set
, 0, qp
->div
->row
[i
] + 1,
4321 set
->ctx
->one
, &min
, NULL
, NULL
);
4322 if (lp_res
== isl_lp_error
)
4324 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4326 isl_int_fdiv_q(min
, min
, qp
->div
->row
[i
][0]);
4328 lp_res
= isl_set_solve_lp(set
, 1, qp
->div
->row
[i
] + 1,
4329 set
->ctx
->one
, &max
, NULL
, NULL
);
4330 if (lp_res
== isl_lp_error
)
4332 if (lp_res
== isl_lp_unbounded
|| lp_res
== isl_lp_empty
)
4334 isl_int_fdiv_q(max
, max
, qp
->div
->row
[i
][0]);
4336 isl_int_sub(max
, max
, min
);
4337 if (isl_int_cmp_si(max
, data
->max_periods
) < 0) {
4338 isl_int_add(max
, max
, min
);
4343 if (i
< qp
->div
->n_row
) {
4344 r
= split_div(set
, qp
, i
, min
, max
, data
);
4346 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4347 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, pwqp
);
4359 isl_qpolynomial_free(qp
);
4363 /* If any quasi-polynomial in pwqp refers to any integer division
4364 * that can only attain "max_periods" distinct values on its domain
4365 * then split the domain along those distinct values.
4367 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_split_periods(
4368 __isl_take isl_pw_qpolynomial
*pwqp
, int max_periods
)
4370 struct isl_split_periods_data data
;
4372 data
.max_periods
= max_periods
;
4373 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4375 if (isl_pw_qpolynomial_foreach_piece(pwqp
, &split_periods
, &data
) < 0)
4378 isl_pw_qpolynomial_free(pwqp
);
4382 isl_pw_qpolynomial_free(data
.res
);
4383 isl_pw_qpolynomial_free(pwqp
);
4387 /* Construct a piecewise quasipolynomial that is constant on the given
4388 * domain. In particular, it is
4391 * infinity if cst == -1
4393 static __isl_give isl_pw_qpolynomial
*constant_on_domain(
4394 __isl_take isl_basic_set
*bset
, int cst
)
4397 isl_qpolynomial
*qp
;
4402 bset
= isl_basic_set_params(bset
);
4403 dim
= isl_basic_set_get_space(bset
);
4405 qp
= isl_qpolynomial_infty_on_domain(dim
);
4407 qp
= isl_qpolynomial_zero_on_domain(dim
);
4409 qp
= isl_qpolynomial_one_on_domain(dim
);
4410 return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset
), qp
);
4413 /* Factor bset, call fn on each of the factors and return the product.
4415 * If no factors can be found, simply call fn on the input.
4416 * Otherwise, construct the factors based on the factorizer,
4417 * call fn on each factor and compute the product.
4419 static __isl_give isl_pw_qpolynomial
*compressed_multiplicative_call(
4420 __isl_take isl_basic_set
*bset
,
4421 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4427 isl_qpolynomial
*qp
;
4428 isl_pw_qpolynomial
*pwqp
;
4432 f
= isl_basic_set_factorizer(bset
);
4435 if (f
->n_group
== 0) {
4436 isl_factorizer_free(f
);
4440 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
4441 nvar
= isl_basic_set_dim(bset
, isl_dim_set
);
4443 dim
= isl_basic_set_get_space(bset
);
4444 dim
= isl_space_domain(dim
);
4445 set
= isl_set_universe(isl_space_copy(dim
));
4446 qp
= isl_qpolynomial_one_on_domain(dim
);
4447 pwqp
= isl_pw_qpolynomial_alloc(set
, qp
);
4449 bset
= isl_morph_basic_set(isl_morph_copy(f
->morph
), bset
);
4451 for (i
= 0, n
= 0; i
< f
->n_group
; ++i
) {
4452 isl_basic_set
*bset_i
;
4453 isl_pw_qpolynomial
*pwqp_i
;
4455 bset_i
= isl_basic_set_copy(bset
);
4456 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4457 nparam
+ n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4458 bset_i
= isl_basic_set_drop_constraints_involving(bset_i
,
4460 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
,
4461 n
+ f
->len
[i
], nvar
- n
- f
->len
[i
]);
4462 bset_i
= isl_basic_set_drop(bset_i
, isl_dim_set
, 0, n
);
4464 pwqp_i
= fn(bset_i
);
4465 pwqp
= isl_pw_qpolynomial_mul(pwqp
, pwqp_i
);
4470 isl_basic_set_free(bset
);
4471 isl_factorizer_free(f
);
4475 isl_basic_set_free(bset
);
4479 /* Factor bset, call fn on each of the factors and return the product.
4480 * The function is assumed to evaluate to zero on empty domains,
4481 * to one on zero-dimensional domains and to infinity on unbounded domains
4482 * and will not be called explicitly on zero-dimensional or unbounded domains.
4484 * We first check for some special cases and remove all equalities.
4485 * Then we hand over control to compressed_multiplicative_call.
4487 __isl_give isl_pw_qpolynomial
*isl_basic_set_multiplicative_call(
4488 __isl_take isl_basic_set
*bset
,
4489 __isl_give isl_pw_qpolynomial
*(*fn
)(__isl_take isl_basic_set
*bset
))
4493 isl_pw_qpolynomial
*pwqp
;
4498 if (isl_basic_set_plain_is_empty(bset
))
4499 return constant_on_domain(bset
, 0);
4501 if (isl_basic_set_dim(bset
, isl_dim_set
) == 0)
4502 return constant_on_domain(bset
, 1);
4504 bounded
= isl_basic_set_is_bounded(bset
);
4508 return constant_on_domain(bset
, -1);
4510 if (bset
->n_eq
== 0)
4511 return compressed_multiplicative_call(bset
, fn
);
4513 morph
= isl_basic_set_full_compression(bset
);
4514 bset
= isl_morph_basic_set(isl_morph_copy(morph
), bset
);
4516 pwqp
= compressed_multiplicative_call(bset
, fn
);
4518 morph
= isl_morph_dom_params(morph
);
4519 morph
= isl_morph_ran_params(morph
);
4520 morph
= isl_morph_inverse(morph
);
4522 pwqp
= isl_pw_qpolynomial_morph_domain(pwqp
, morph
);
4526 isl_basic_set_free(bset
);
4530 /* Drop all floors in "qp", turning each integer division [a/m] into
4531 * a rational division a/m. If "down" is set, then the integer division
4532 * is replaced by (a-(m-1))/m instead.
4534 static __isl_give isl_qpolynomial
*qp_drop_floors(
4535 __isl_take isl_qpolynomial
*qp
, int down
)
4538 struct isl_upoly
*s
;
4542 if (qp
->div
->n_row
== 0)
4545 qp
= isl_qpolynomial_cow(qp
);
4549 for (i
= qp
->div
->n_row
- 1; i
>= 0; --i
) {
4551 isl_int_sub(qp
->div
->row
[i
][1],
4552 qp
->div
->row
[i
][1], qp
->div
->row
[i
][0]);
4553 isl_int_add_ui(qp
->div
->row
[i
][1],
4554 qp
->div
->row
[i
][1], 1);
4556 s
= isl_upoly_from_affine(qp
->dim
->ctx
, qp
->div
->row
[i
] + 1,
4557 qp
->div
->row
[i
][0], qp
->div
->n_col
- 1);
4558 qp
= substitute_div(qp
, i
, s
);
4566 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4567 * a rational division a/m.
4569 static __isl_give isl_pw_qpolynomial
*pwqp_drop_floors(
4570 __isl_take isl_pw_qpolynomial
*pwqp
)
4577 if (isl_pw_qpolynomial_is_zero(pwqp
))
4580 pwqp
= isl_pw_qpolynomial_cow(pwqp
);
4584 for (i
= 0; i
< pwqp
->n
; ++i
) {
4585 pwqp
->p
[i
].qp
= qp_drop_floors(pwqp
->p
[i
].qp
, 0);
4592 isl_pw_qpolynomial_free(pwqp
);
4596 /* Adjust all the integer divisions in "qp" such that they are at least
4597 * one over the given orthant (identified by "signs"). This ensures
4598 * that they will still be non-negative even after subtracting (m-1)/m.
4600 * In particular, f is replaced by f' + v, changing f = [a/m]
4601 * to f' = [(a - m v)/m].
4602 * If the constant term k in a is smaller than m,
4603 * the constant term of v is set to floor(k/m) - 1.
4604 * For any other term, if the coefficient c and the variable x have
4605 * the same sign, then no changes are needed.
4606 * Otherwise, if the variable is positive (and c is negative),
4607 * then the coefficient of x in v is set to floor(c/m).
4608 * If the variable is negative (and c is positive),
4609 * then the coefficient of x in v is set to ceil(c/m).
4611 static __isl_give isl_qpolynomial
*make_divs_pos(__isl_take isl_qpolynomial
*qp
,
4617 struct isl_upoly
*s
;
4619 qp
= isl_qpolynomial_cow(qp
);
4622 qp
->div
= isl_mat_cow(qp
->div
);
4626 total
= isl_space_dim(qp
->dim
, isl_dim_all
);
4627 v
= isl_vec_alloc(qp
->div
->ctx
, qp
->div
->n_col
- 1);
4629 for (i
= 0; i
< qp
->div
->n_row
; ++i
) {
4630 isl_int
*row
= qp
->div
->row
[i
];
4634 if (isl_int_lt(row
[1], row
[0])) {
4635 isl_int_fdiv_q(v
->el
[0], row
[1], row
[0]);
4636 isl_int_sub_ui(v
->el
[0], v
->el
[0], 1);
4637 isl_int_submul(row
[1], row
[0], v
->el
[0]);
4639 for (j
= 0; j
< total
; ++j
) {
4640 if (isl_int_sgn(row
[2 + j
]) * signs
[j
] >= 0)
4643 isl_int_cdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4645 isl_int_fdiv_q(v
->el
[1 + j
], row
[2 + j
], row
[0]);
4646 isl_int_submul(row
[2 + j
], row
[0], v
->el
[1 + j
]);
4648 for (j
= 0; j
< i
; ++j
) {
4649 if (isl_int_sgn(row
[2 + total
+ j
]) >= 0)
4651 isl_int_fdiv_q(v
->el
[1 + total
+ j
],
4652 row
[2 + total
+ j
], row
[0]);
4653 isl_int_submul(row
[2 + total
+ j
],
4654 row
[0], v
->el
[1 + total
+ j
]);
4656 for (j
= i
+ 1; j
< qp
->div
->n_row
; ++j
) {
4657 if (isl_int_is_zero(qp
->div
->row
[j
][2 + total
+ i
]))
4659 isl_seq_combine(qp
->div
->row
[j
] + 1,
4660 qp
->div
->ctx
->one
, qp
->div
->row
[j
] + 1,
4661 qp
->div
->row
[j
][2 + total
+ i
], v
->el
, v
->size
);
4663 isl_int_set_si(v
->el
[1 + total
+ i
], 1);
4664 s
= isl_upoly_from_affine(qp
->dim
->ctx
, v
->el
,
4665 qp
->div
->ctx
->one
, v
->size
);
4666 qp
->upoly
= isl_upoly_subs(qp
->upoly
, total
+ i
, 1, &s
);
4676 isl_qpolynomial_free(qp
);
4680 struct isl_to_poly_data
{
4682 isl_pw_qpolynomial
*res
;
4683 isl_qpolynomial
*qp
;
4686 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4687 * We first make all integer divisions positive and then split the
4688 * quasipolynomials into terms with sign data->sign (the direction
4689 * of the requested approximation) and terms with the opposite sign.
4690 * In the first set of terms, each integer division [a/m] is
4691 * overapproximated by a/m, while in the second it is underapproximated
4694 static int to_polynomial_on_orthant(__isl_take isl_set
*orthant
, int *signs
,
4697 struct isl_to_poly_data
*data
= user
;
4698 isl_pw_qpolynomial
*t
;
4699 isl_qpolynomial
*qp
, *up
, *down
;
4701 qp
= isl_qpolynomial_copy(data
->qp
);
4702 qp
= make_divs_pos(qp
, signs
);
4704 up
= isl_qpolynomial_terms_of_sign(qp
, signs
, data
->sign
);
4705 up
= qp_drop_floors(up
, 0);
4706 down
= isl_qpolynomial_terms_of_sign(qp
, signs
, -data
->sign
);
4707 down
= qp_drop_floors(down
, 1);
4709 isl_qpolynomial_free(qp
);
4710 qp
= isl_qpolynomial_add(up
, down
);
4712 t
= isl_pw_qpolynomial_alloc(orthant
, qp
);
4713 data
->res
= isl_pw_qpolynomial_add_disjoint(data
->res
, t
);
4718 /* Approximate each quasipolynomial by a polynomial. If "sign" is positive,
4719 * the polynomial will be an overapproximation. If "sign" is negative,
4720 * it will be an underapproximation. If "sign" is zero, the approximation
4721 * will lie somewhere in between.
4723 * In particular, is sign == 0, we simply drop the floors, turning
4724 * the integer divisions into rational divisions.
4725 * Otherwise, we split the domains into orthants, make all integer divisions
4726 * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4727 * depending on the requested sign and the sign of the term in which
4728 * the integer division appears.
4730 __isl_give isl_pw_qpolynomial
*isl_pw_qpolynomial_to_polynomial(
4731 __isl_take isl_pw_qpolynomial
*pwqp
, int sign
)
4734 struct isl_to_poly_data data
;
4737 return pwqp_drop_floors(pwqp
);
4743 data
.res
= isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp
));
4745 for (i
= 0; i
< pwqp
->n
; ++i
) {
4746 if (pwqp
->p
[i
].qp
->div
->n_row
== 0) {
4747 isl_pw_qpolynomial
*t
;
4748 t
= isl_pw_qpolynomial_alloc(
4749 isl_set_copy(pwqp
->p
[i
].set
),
4750 isl_qpolynomial_copy(pwqp
->p
[i
].qp
));
4751 data
.res
= isl_pw_qpolynomial_add_disjoint(data
.res
, t
);
4754 data
.qp
= pwqp
->p
[i
].qp
;
4755 if (isl_set_foreach_orthant(pwqp
->p
[i
].set
,
4756 &to_polynomial_on_orthant
, &data
) < 0)
4760 isl_pw_qpolynomial_free(pwqp
);
4764 isl_pw_qpolynomial_free(pwqp
);
4765 isl_pw_qpolynomial_free(data
.res
);
4769 static int poly_entry(void **entry
, void *user
)
4772 isl_pw_qpolynomial
**pwqp
= (isl_pw_qpolynomial
**)entry
;
4774 *pwqp
= isl_pw_qpolynomial_to_polynomial(*pwqp
, *sign
);
4776 return *pwqp
? 0 : -1;
4779 __isl_give isl_union_pw_qpolynomial
*isl_union_pw_qpolynomial_to_polynomial(
4780 __isl_take isl_union_pw_qpolynomial
*upwqp
, int sign
)
4782 upwqp
= isl_union_pw_qpolynomial_cow(upwqp
);
4786 if (isl_hash_table_foreach(upwqp
->dim
->ctx
, &upwqp
->table
,
4787 &poly_entry
, &sign
) < 0)
4792 isl_union_pw_qpolynomial_free(upwqp
);
4796 __isl_give isl_basic_map
*isl_basic_map_from_qpolynomial(
4797 __isl_take isl_qpolynomial
*qp
)
4801 isl_vec
*aff
= NULL
;
4802 isl_basic_map
*bmap
= NULL
;
4808 if (!isl_upoly_is_affine(qp
->upoly
))
4809 isl_die(qp
->dim
->ctx
, isl_error_invalid
,
4810 "input quasi-polynomial not affine", goto error
);
4811 aff
= isl_qpolynomial_extract_affine(qp
);
4814 dim
= isl_qpolynomial_get_space(qp
);
4815 pos
= 1 + isl_space_offset(dim
, isl_dim_out
);
4816 n_div
= qp
->div
->n_row
;
4817 bmap
= isl_basic_map_alloc_space(dim
, n_div
, 1, 2 * n_div
);
4819 for (i
= 0; i
< n_div
; ++i
) {
4820 k
= isl_basic_map_alloc_div(bmap
);
4823 isl_seq_cpy(bmap
->div
[k
], qp
->div
->row
[i
], qp
->div
->n_col
);
4824 isl_int_set_si(bmap
->div
[k
][qp
->div
->n_col
], 0);
4825 if (isl_basic_map_add_div_constraints(bmap
, k
) < 0)
4828 k
= isl_basic_map_alloc_equality(bmap
);
4831 isl_int_neg(bmap
->eq
[k
][pos
], aff
->el
[0]);
4832 isl_seq_cpy(bmap
->eq
[k
], aff
->el
+ 1, pos
);
4833 isl_seq_cpy(bmap
->eq
[k
] + pos
+ 1, aff
->el
+ 1 + pos
, n_div
);
4836 isl_qpolynomial_free(qp
);
4837 bmap
= isl_basic_map_finalize(bmap
);
4841 isl_qpolynomial_free(qp
);
4842 isl_basic_map_free(bmap
);