2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_lp_private.h>
17 #include <isl/union_map.h>
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_options_private.h>
21 #include <isl_tarjan.h>
23 int isl_map_is_transitively_closed(__isl_keep isl_map
*map
)
28 map2
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(map
));
29 closed
= isl_map_is_subset(map2
, map
);
35 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map
*umap
)
40 umap2
= isl_union_map_apply_range(isl_union_map_copy(umap
),
41 isl_union_map_copy(umap
));
42 closed
= isl_union_map_is_subset(umap2
, umap
);
43 isl_union_map_free(umap2
);
48 /* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
54 static __isl_give isl_map
*set_path_length(__isl_take isl_map
*map
,
55 int exactly
, int length
)
58 struct isl_basic_map
*bmap
;
67 dim
= isl_map_get_space(map
);
68 d
= isl_space_dim(dim
, isl_dim_in
);
69 nparam
= isl_space_dim(dim
, isl_dim_param
);
70 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
72 k
= isl_basic_map_alloc_equality(bmap
);
77 k
= isl_basic_map_alloc_inequality(bmap
);
82 isl_seq_clr(c
, 1 + isl_basic_map_total_dim(bmap
));
83 isl_int_set_si(c
[0], -length
);
84 isl_int_set_si(c
[1 + nparam
+ d
- 1], -1);
85 isl_int_set_si(c
[1 + nparam
+ d
+ d
- 1], 1);
87 bmap
= isl_basic_map_finalize(bmap
);
88 map
= isl_map_intersect(map
, isl_map_from_basic_map(bmap
));
92 isl_basic_map_free(bmap
);
97 /* Check whether the overapproximation of the power of "map" is exactly
98 * the power of "map". Let R be "map" and A_k the overapproximation.
99 * The approximation is exact if
102 * A_k = A_{k-1} \circ R k >= 2
104 * Since A_k is known to be an overapproximation, we only need to check
107 * A_k \subset A_{k-1} \circ R k >= 2
109 * In practice, "app" has an extra input and output coordinate
110 * to encode the length of the path. So, we first need to add
111 * this coordinate to "map" and set the length of the path to
114 static int check_power_exactness(__isl_take isl_map
*map
,
115 __isl_take isl_map
*app
)
121 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
122 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
123 map
= set_path_length(map
, 1, 1);
125 app_1
= set_path_length(isl_map_copy(app
), 1, 1);
127 exact
= isl_map_is_subset(app_1
, map
);
130 if (!exact
|| exact
< 0) {
136 app_1
= set_path_length(isl_map_copy(app
), 0, 1);
137 app_2
= set_path_length(app
, 0, 2);
138 app_1
= isl_map_apply_range(map
, app_1
);
140 exact
= isl_map_is_subset(app_2
, app_1
);
148 /* Check whether the overapproximation of the power of "map" is exactly
149 * the power of "map", possibly after projecting out the power (if "project"
152 * If "project" is set and if "steps" can only result in acyclic paths,
155 * A = R \cup (A \circ R)
157 * where A is the overapproximation with the power projected out, i.e.,
158 * an overapproximation of the transitive closure.
159 * More specifically, since A is known to be an overapproximation, we check
161 * A \subset R \cup (A \circ R)
163 * Otherwise, we check if the power is exact.
165 * Note that "app" has an extra input and output coordinate to encode
166 * the length of the part. If we are only interested in the transitive
167 * closure, then we can simply project out these coordinates first.
169 static int check_exactness(__isl_take isl_map
*map
, __isl_take isl_map
*app
,
177 return check_power_exactness(map
, app
);
179 d
= isl_map_dim(map
, isl_dim_in
);
180 app
= set_path_length(app
, 0, 1);
181 app
= isl_map_project_out(app
, isl_dim_in
, d
, 1);
182 app
= isl_map_project_out(app
, isl_dim_out
, d
, 1);
184 app
= isl_map_reset_space(app
, isl_map_get_space(map
));
186 test
= isl_map_apply_range(isl_map_copy(map
), isl_map_copy(app
));
187 test
= isl_map_union(test
, isl_map_copy(map
));
189 exact
= isl_map_is_subset(app
, test
);
200 * The transitive closure implementation is based on the paper
201 * "Computing the Transitive Closure of a Union of Affine Integer
202 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
206 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
207 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
208 * that maps an element x to any element that can be reached
209 * by taking a non-negative number of steps along any of
210 * the extended offsets v'_i = [v_i 1].
213 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
215 * For any element in this relation, the number of steps taken
216 * is equal to the difference in the final coordinates.
218 static __isl_give isl_map
*path_along_steps(__isl_take isl_space
*dim
,
219 __isl_keep isl_mat
*steps
)
222 struct isl_basic_map
*path
= NULL
;
230 d
= isl_space_dim(dim
, isl_dim_in
);
232 nparam
= isl_space_dim(dim
, isl_dim_param
);
234 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n
, d
, n
);
236 for (i
= 0; i
< n
; ++i
) {
237 k
= isl_basic_map_alloc_div(path
);
240 isl_assert(steps
->ctx
, i
== k
, goto error
);
241 isl_int_set_si(path
->div
[k
][0], 0);
244 for (i
= 0; i
< d
; ++i
) {
245 k
= isl_basic_map_alloc_equality(path
);
248 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
249 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
250 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ i
], -1);
252 for (j
= 0; j
< n
; ++j
)
253 isl_int_set_si(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
], 1);
255 for (j
= 0; j
< n
; ++j
)
256 isl_int_set(path
->eq
[k
][1 + nparam
+ 2 * d
+ j
],
260 for (i
= 0; i
< n
; ++i
) {
261 k
= isl_basic_map_alloc_inequality(path
);
264 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
265 isl_int_set_si(path
->ineq
[k
][1 + nparam
+ 2 * d
+ i
], 1);
270 path
= isl_basic_map_simplify(path
);
271 path
= isl_basic_map_finalize(path
);
272 return isl_map_from_basic_map(path
);
275 isl_basic_map_free(path
);
284 /* Check whether the parametric constant term of constraint c is never
285 * positive in "bset".
287 static int parametric_constant_never_positive(__isl_keep isl_basic_set
*bset
,
288 isl_int
*c
, int *div_purity
)
297 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
298 d
= isl_basic_set_dim(bset
, isl_dim_set
);
299 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
301 bset
= isl_basic_set_copy(bset
);
302 bset
= isl_basic_set_cow(bset
);
303 bset
= isl_basic_set_extend_constraints(bset
, 0, 1);
304 k
= isl_basic_set_alloc_inequality(bset
);
307 isl_seq_clr(bset
->ineq
[k
], 1 + isl_basic_set_total_dim(bset
));
308 isl_seq_cpy(bset
->ineq
[k
], c
, 1 + nparam
);
309 for (i
= 0; i
< n_div
; ++i
) {
310 if (div_purity
[i
] != PURE_PARAM
)
312 isl_int_set(bset
->ineq
[k
][1 + nparam
+ d
+ i
],
313 c
[1 + nparam
+ d
+ i
]);
315 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
316 empty
= isl_basic_set_is_empty(bset
);
317 isl_basic_set_free(bset
);
321 isl_basic_set_free(bset
);
325 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
326 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
327 * Return MIXED if only the coefficients of the parameters and the set
328 * variables are non-zero and if moreover the parametric constant
329 * can never attain positive values.
330 * Return IMPURE otherwise.
332 static int purity(__isl_keep isl_basic_set
*bset
, isl_int
*c
, int *div_purity
,
342 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
343 d
= isl_basic_set_dim(bset
, isl_dim_set
);
344 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
346 for (i
= 0; i
< n_div
; ++i
) {
347 if (isl_int_is_zero(c
[1 + nparam
+ d
+ i
]))
349 switch (div_purity
[i
]) {
350 case PURE_PARAM
: p
= 1; break;
351 case PURE_VAR
: v
= 1; break;
352 default: return IMPURE
;
355 if (!p
&& isl_seq_first_non_zero(c
+ 1, nparam
) == -1)
357 if (!v
&& isl_seq_first_non_zero(c
+ 1 + nparam
, d
) == -1)
360 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
361 if (eq
&& empty
>= 0 && !empty
) {
362 isl_seq_neg(c
, c
, 1 + nparam
+ d
+ n_div
);
363 empty
= parametric_constant_never_positive(bset
, c
, div_purity
);
366 return empty
< 0 ? -1 : empty
? MIXED
: IMPURE
;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give
int *get_div_purity(__isl_keep isl_basic_set
*bset
)
387 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
388 d
= isl_basic_set_dim(bset
, isl_dim_set
);
389 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
391 div_purity
= isl_alloc_array(bset
->ctx
, int, n_div
);
392 if (n_div
&& !div_purity
)
395 for (i
= 0; i
< bset
->n_div
; ++i
) {
397 if (isl_int_is_zero(bset
->div
[i
][0])) {
398 div_purity
[i
] = IMPURE
;
401 if (isl_seq_first_non_zero(bset
->div
[i
] + 2, nparam
) != -1)
403 if (isl_seq_first_non_zero(bset
->div
[i
] + 2 + nparam
, d
) != -1)
405 for (j
= 0; j
< i
; ++j
) {
406 if (isl_int_is_zero(bset
->div
[i
][2 + nparam
+ d
+ j
]))
408 switch (div_purity
[j
]) {
409 case PURE_PARAM
: p
= 1; break;
410 case PURE_VAR
: v
= 1; break;
411 default: p
= v
= 1; break;
414 div_purity
[i
] = v
? p
? IMPURE
: PURE_VAR
: PURE_PARAM
;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
424 static int empty_path_is_identity(__isl_keep isl_basic_map
*path
, unsigned pos
)
426 isl_basic_map
*test
= NULL
;
427 isl_basic_map
*id
= NULL
;
431 test
= isl_basic_map_copy(path
);
432 test
= isl_basic_map_extend_constraints(test
, 1, 0);
433 k
= isl_basic_map_alloc_equality(test
);
436 isl_seq_clr(test
->eq
[k
], 1 + isl_basic_map_total_dim(test
));
437 isl_int_set_si(test
->eq
[k
][pos
], 1);
438 id
= isl_basic_map_identity(isl_basic_map_get_space(path
));
439 is_id
= isl_basic_map_is_equal(test
, id
);
440 isl_basic_map_free(test
);
441 isl_basic_map_free(id
);
444 isl_basic_map_free(test
);
448 /* If any of the constraints is found to be impure then this function
449 * sets *impurity to 1.
451 * If impurity is NULL then we are dealing with a non-parametric set
452 * and so the constraints are obviously PURE_VAR.
454 static __isl_give isl_basic_map
*add_delta_constraints(
455 __isl_take isl_basic_map
*path
,
456 __isl_keep isl_basic_set
*delta
, unsigned off
, unsigned nparam
,
457 unsigned d
, int *div_purity
, int eq
, int *impurity
)
460 int n
= eq
? delta
->n_eq
: delta
->n_ineq
;
461 isl_int
**delta_c
= eq
? delta
->eq
: delta
->ineq
;
464 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
466 for (i
= 0; i
< n
; ++i
) {
470 p
= purity(delta
, delta_c
[i
], div_purity
, eq
);
473 if (p
!= PURE_VAR
&& p
!= PURE_PARAM
&& !*impurity
)
477 if (eq
&& p
!= MIXED
) {
478 k
= isl_basic_map_alloc_equality(path
);
481 path_c
= path
->eq
[k
];
483 k
= isl_basic_map_alloc_inequality(path
);
486 path_c
= path
->ineq
[k
];
488 isl_seq_clr(path_c
, 1 + isl_basic_map_total_dim(path
));
490 isl_seq_cpy(path_c
+ off
,
491 delta_c
[i
] + 1 + nparam
, d
);
492 isl_int_set(path_c
[off
+ d
], delta_c
[i
][0]);
493 } else if (p
== PURE_PARAM
) {
494 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
496 isl_seq_cpy(path_c
+ off
,
497 delta_c
[i
] + 1 + nparam
, d
);
498 isl_seq_cpy(path_c
, delta_c
[i
], 1 + nparam
);
500 isl_seq_cpy(path_c
+ off
- n_div
,
501 delta_c
[i
] + 1 + nparam
+ d
, n_div
);
506 isl_basic_map_free(path
);
510 /* Given a set of offsets "delta", construct a relation of the
511 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
512 * is an overapproximation of the relations that
513 * maps an element x to any element that can be reached
514 * by taking a non-negative number of steps along any of
515 * the elements in "delta".
516 * That is, construct an approximation of
518 * { [x] -> [y] : exists f \in \delta, k \in Z :
519 * y = x + k [f, 1] and k >= 0 }
521 * For any element in this relation, the number of steps taken
522 * is equal to the difference in the final coordinates.
524 * In particular, let delta be defined as
526 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
527 * C x + C'p + c >= 0 and
528 * D x + D'p + d >= 0 }
530 * where the constraints C x + C'p + c >= 0 are such that the parametric
531 * constant term of each constraint j, "C_j x + C'_j p + c_j",
532 * can never attain positive values, then the relation is constructed as
534 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
535 * A f + k a >= 0 and B p + b >= 0 and
536 * C f + C'p + c >= 0 and k >= 1 }
537 * union { [x] -> [x] }
539 * If the zero-length paths happen to correspond exactly to the identity
540 * mapping, then we return
542 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
543 * A f + k a >= 0 and B p + b >= 0 and
544 * C f + C'p + c >= 0 and k >= 0 }
548 * Existentially quantified variables in \delta are handled by
549 * classifying them as independent of the parameters, purely
550 * parameter dependent and others. Constraints containing
551 * any of the other existentially quantified variables are removed.
552 * This is safe, but leads to an additional overapproximation.
554 * If there are any impure constraints, then we also eliminate
555 * the parameters from \delta, resulting in a set
557 * \delta' = { [x] : E x + e >= 0 }
559 * and add the constraints
563 * to the constructed relation.
565 static __isl_give isl_map
*path_along_delta(__isl_take isl_space
*dim
,
566 __isl_take isl_basic_set
*delta
)
568 isl_basic_map
*path
= NULL
;
575 int *div_purity
= NULL
;
580 n_div
= isl_basic_set_dim(delta
, isl_dim_div
);
581 d
= isl_basic_set_dim(delta
, isl_dim_set
);
582 nparam
= isl_basic_set_dim(delta
, isl_dim_param
);
583 path
= isl_basic_map_alloc_space(isl_space_copy(dim
), n_div
+ d
+ 1,
584 d
+ 1 + delta
->n_eq
, delta
->n_eq
+ delta
->n_ineq
+ 1);
585 off
= 1 + nparam
+ 2 * (d
+ 1) + n_div
;
587 for (i
= 0; i
< n_div
+ d
+ 1; ++i
) {
588 k
= isl_basic_map_alloc_div(path
);
591 isl_int_set_si(path
->div
[k
][0], 0);
594 for (i
= 0; i
< d
+ 1; ++i
) {
595 k
= isl_basic_map_alloc_equality(path
);
598 isl_seq_clr(path
->eq
[k
], 1 + isl_basic_map_total_dim(path
));
599 isl_int_set_si(path
->eq
[k
][1 + nparam
+ i
], 1);
600 isl_int_set_si(path
->eq
[k
][1 + nparam
+ d
+ 1 + i
], -1);
601 isl_int_set_si(path
->eq
[k
][off
+ i
], 1);
604 div_purity
= get_div_purity(delta
);
605 if (n_div
&& !div_purity
)
608 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
609 div_purity
, 1, &impurity
);
610 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
611 div_purity
, 0, &impurity
);
613 isl_space
*dim
= isl_basic_set_get_space(delta
);
614 delta
= isl_basic_set_project_out(delta
,
615 isl_dim_param
, 0, nparam
);
616 delta
= isl_basic_set_add_dims(delta
, isl_dim_param
, nparam
);
617 delta
= isl_basic_set_reset_space(delta
, dim
);
620 path
= isl_basic_map_extend_constraints(path
, delta
->n_eq
,
622 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
624 path
= add_delta_constraints(path
, delta
, off
, nparam
, d
,
626 path
= isl_basic_map_gauss(path
, NULL
);
629 is_id
= empty_path_is_identity(path
, off
+ d
);
633 k
= isl_basic_map_alloc_inequality(path
);
636 isl_seq_clr(path
->ineq
[k
], 1 + isl_basic_map_total_dim(path
));
638 isl_int_set_si(path
->ineq
[k
][0], -1);
639 isl_int_set_si(path
->ineq
[k
][off
+ d
], 1);
642 isl_basic_set_free(delta
);
643 path
= isl_basic_map_finalize(path
);
646 return isl_map_from_basic_map(path
);
648 return isl_basic_map_union(path
, isl_basic_map_identity(dim
));
652 isl_basic_set_free(delta
);
653 isl_basic_map_free(path
);
657 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
658 * construct a map that equates the parameter to the difference
659 * in the final coordinates and imposes that this difference is positive.
662 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
664 static __isl_give isl_map
*equate_parameter_to_length(__isl_take isl_space
*dim
,
667 struct isl_basic_map
*bmap
;
672 d
= isl_space_dim(dim
, isl_dim_in
);
673 nparam
= isl_space_dim(dim
, isl_dim_param
);
674 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 1);
675 k
= isl_basic_map_alloc_equality(bmap
);
678 isl_seq_clr(bmap
->eq
[k
], 1 + isl_basic_map_total_dim(bmap
));
679 isl_int_set_si(bmap
->eq
[k
][1 + param
], -1);
680 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
- 1], -1);
681 isl_int_set_si(bmap
->eq
[k
][1 + nparam
+ d
+ d
- 1], 1);
683 k
= isl_basic_map_alloc_inequality(bmap
);
686 isl_seq_clr(bmap
->ineq
[k
], 1 + isl_basic_map_total_dim(bmap
));
687 isl_int_set_si(bmap
->ineq
[k
][1 + param
], 1);
688 isl_int_set_si(bmap
->ineq
[k
][0], -1);
690 bmap
= isl_basic_map_finalize(bmap
);
691 return isl_map_from_basic_map(bmap
);
693 isl_basic_map_free(bmap
);
697 /* Check whether "path" is acyclic, where the last coordinates of domain
698 * and range of path encode the number of steps taken.
699 * That is, check whether
701 * { d | d = y - x and (x,y) in path }
703 * does not contain any element with positive last coordinate (positive length)
704 * and zero remaining coordinates (cycle).
706 static int is_acyclic(__isl_take isl_map
*path
)
711 struct isl_set
*delta
;
713 delta
= isl_map_deltas(path
);
714 dim
= isl_set_dim(delta
, isl_dim_set
);
715 for (i
= 0; i
< dim
; ++i
) {
717 delta
= isl_set_lower_bound_si(delta
, isl_dim_set
, i
, 1);
719 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
722 acyclic
= isl_set_is_empty(delta
);
728 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
729 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
730 * construct a map that is an overapproximation of the map
731 * that takes an element from the space D \times Z to another
732 * element from the same space, such that the first n coordinates of the
733 * difference between them is a sum of differences between images
734 * and pre-images in one of the R_i and such that the last coordinate
735 * is equal to the number of steps taken.
738 * \Delta_i = { y - x | (x, y) in R_i }
740 * then the constructed map is an overapproximation of
742 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
743 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
745 * The elements of the singleton \Delta_i's are collected as the
746 * rows of the steps matrix. For all these \Delta_i's together,
747 * a single path is constructed.
748 * For each of the other \Delta_i's, we compute an overapproximation
749 * of the paths along elements of \Delta_i.
750 * Since each of these paths performs an addition, composition is
751 * symmetric and we can simply compose all resulting paths in any order.
753 static __isl_give isl_map
*construct_extended_path(__isl_take isl_space
*dim
,
754 __isl_keep isl_map
*map
, int *project
)
756 struct isl_mat
*steps
= NULL
;
757 struct isl_map
*path
= NULL
;
764 d
= isl_map_dim(map
, isl_dim_in
);
766 path
= isl_map_identity(isl_space_copy(dim
));
768 steps
= isl_mat_alloc(map
->ctx
, map
->n
, d
);
773 for (i
= 0; i
< map
->n
; ++i
) {
774 struct isl_basic_set
*delta
;
776 delta
= isl_basic_map_deltas(isl_basic_map_copy(map
->p
[i
]));
778 for (j
= 0; j
< d
; ++j
) {
781 fixed
= isl_basic_set_plain_dim_is_fixed(delta
, j
,
784 isl_basic_set_free(delta
);
793 path
= isl_map_apply_range(path
,
794 path_along_delta(isl_space_copy(dim
), delta
));
795 path
= isl_map_coalesce(path
);
797 isl_basic_set_free(delta
);
804 path
= isl_map_apply_range(path
,
805 path_along_steps(isl_space_copy(dim
), steps
));
808 if (project
&& *project
) {
809 *project
= is_acyclic(isl_map_copy(path
));
824 static int isl_set_overlaps(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
832 if (!isl_space_tuple_is_equal(set1
->dim
, isl_dim_set
,
833 set2
->dim
, isl_dim_set
))
836 i
= isl_set_intersect(isl_set_copy(set1
), isl_set_copy(set2
));
837 no_overlap
= isl_set_is_empty(i
);
840 return no_overlap
< 0 ? -1 : !no_overlap
;
843 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
844 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
845 * construct a map that is an overapproximation of the map
846 * that takes an element from the dom R \times Z to an
847 * element from ran R \times Z, such that the first n coordinates of the
848 * difference between them is a sum of differences between images
849 * and pre-images in one of the R_i and such that the last coordinate
850 * is equal to the number of steps taken.
853 * \Delta_i = { y - x | (x, y) in R_i }
855 * then the constructed map is an overapproximation of
857 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
858 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
859 * x in dom R and x + d in ran R and
862 static __isl_give isl_map
*construct_component(__isl_take isl_space
*dim
,
863 __isl_keep isl_map
*map
, int *exact
, int project
)
865 struct isl_set
*domain
= NULL
;
866 struct isl_set
*range
= NULL
;
867 struct isl_map
*app
= NULL
;
868 struct isl_map
*path
= NULL
;
871 domain
= isl_map_domain(isl_map_copy(map
));
872 domain
= isl_set_coalesce(domain
);
873 range
= isl_map_range(isl_map_copy(map
));
874 range
= isl_set_coalesce(range
);
875 overlaps
= isl_set_overlaps(domain
, range
);
876 if (overlaps
< 0 || !overlaps
) {
877 isl_set_free(domain
);
883 map
= isl_map_copy(map
);
884 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
885 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
886 map
= set_path_length(map
, 1, 1);
889 app
= isl_map_from_domain_and_range(domain
, range
);
890 app
= isl_map_add_dims(app
, isl_dim_in
, 1);
891 app
= isl_map_add_dims(app
, isl_dim_out
, 1);
893 path
= construct_extended_path(isl_space_copy(dim
), map
,
894 exact
&& *exact
? &project
: NULL
);
895 app
= isl_map_intersect(app
, path
);
897 if (exact
&& *exact
&&
898 (*exact
= check_exactness(isl_map_copy(map
), isl_map_copy(app
),
903 app
= set_path_length(app
, 0, 1);
911 /* Call construct_component and, if "project" is set, project out
912 * the final coordinates.
914 static __isl_give isl_map
*construct_projected_component(
915 __isl_take isl_space
*dim
,
916 __isl_keep isl_map
*map
, int *exact
, int project
)
923 d
= isl_space_dim(dim
, isl_dim_in
);
925 app
= construct_component(dim
, map
, exact
, project
);
927 app
= isl_map_project_out(app
, isl_dim_in
, d
- 1, 1);
928 app
= isl_map_project_out(app
, isl_dim_out
, d
- 1, 1);
933 /* Compute an extended version, i.e., with path lengths, of
934 * an overapproximation of the transitive closure of "bmap"
935 * with path lengths greater than or equal to zero and with
936 * domain and range equal to "dom".
938 static __isl_give isl_map
*q_closure(__isl_take isl_space
*dim
,
939 __isl_take isl_set
*dom
, __isl_keep isl_basic_map
*bmap
, int *exact
)
946 dom
= isl_set_add_dims(dom
, isl_dim_set
, 1);
947 app
= isl_map_from_domain_and_range(dom
, isl_set_copy(dom
));
948 map
= isl_map_from_basic_map(isl_basic_map_copy(bmap
));
949 path
= construct_extended_path(dim
, map
, &project
);
950 app
= isl_map_intersect(app
, path
);
952 if ((*exact
= check_exactness(map
, isl_map_copy(app
), project
)) < 0)
961 /* Check whether qc has any elements of length at least one
962 * with domain and/or range outside of dom and ran.
964 static int has_spurious_elements(__isl_keep isl_map
*qc
,
965 __isl_keep isl_set
*dom
, __isl_keep isl_set
*ran
)
971 if (!qc
|| !dom
|| !ran
)
974 d
= isl_map_dim(qc
, isl_dim_in
);
976 qc
= isl_map_copy(qc
);
977 qc
= set_path_length(qc
, 0, 1);
978 qc
= isl_map_project_out(qc
, isl_dim_in
, d
- 1, 1);
979 qc
= isl_map_project_out(qc
, isl_dim_out
, d
- 1, 1);
981 s
= isl_map_domain(isl_map_copy(qc
));
982 subset
= isl_set_is_subset(s
, dom
);
991 s
= isl_map_range(qc
);
992 subset
= isl_set_is_subset(s
, ran
);
995 return subset
< 0 ? -1 : !subset
;
1004 /* For each basic map in "map", except i, check whether it combines
1005 * with the transitive closure that is reflexive on C combines
1006 * to the left and to the right.
1010 * dom map_j \subseteq C
1012 * then right[j] is set to 1. Otherwise, if
1014 * ran map_i \cap dom map_j = \emptyset
1016 * then right[j] is set to 0. Otherwise, composing to the right
1019 * Similar, for composing to the left, we have if
1021 * ran map_j \subseteq C
1023 * then left[j] is set to 1. Otherwise, if
1025 * dom map_i \cap ran map_j = \emptyset
1027 * then left[j] is set to 0. Otherwise, composing to the left
1030 * The return value is or'd with LEFT if composing to the left
1031 * is possible and with RIGHT if composing to the right is possible.
1033 static int composability(__isl_keep isl_set
*C
, int i
,
1034 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1035 __isl_keep isl_map
*map
)
1041 for (j
= 0; j
< map
->n
&& ok
; ++j
) {
1042 int overlaps
, subset
;
1048 dom
[j
] = isl_set_from_basic_set(
1049 isl_basic_map_domain(
1050 isl_basic_map_copy(map
->p
[j
])));
1053 overlaps
= isl_set_overlaps(ran
[i
], dom
[j
]);
1059 subset
= isl_set_is_subset(dom
[j
], C
);
1071 ran
[j
] = isl_set_from_basic_set(
1072 isl_basic_map_range(
1073 isl_basic_map_copy(map
->p
[j
])));
1076 overlaps
= isl_set_overlaps(dom
[i
], ran
[j
]);
1082 subset
= isl_set_is_subset(ran
[j
], C
);
1096 static __isl_give isl_map
*anonymize(__isl_take isl_map
*map
)
1098 map
= isl_map_reset(map
, isl_dim_in
);
1099 map
= isl_map_reset(map
, isl_dim_out
);
1103 /* Return a map that is a union of the basic maps in "map", except i,
1104 * composed to left and right with qc based on the entries of "left"
1107 static __isl_give isl_map
*compose(__isl_keep isl_map
*map
, int i
,
1108 __isl_take isl_map
*qc
, int *left
, int *right
)
1113 comp
= isl_map_empty(isl_map_get_space(map
));
1114 for (j
= 0; j
< map
->n
; ++j
) {
1120 map_j
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[j
]));
1121 map_j
= anonymize(map_j
);
1122 if (left
&& left
[j
])
1123 map_j
= isl_map_apply_range(map_j
, isl_map_copy(qc
));
1124 if (right
&& right
[j
])
1125 map_j
= isl_map_apply_range(isl_map_copy(qc
), map_j
);
1126 comp
= isl_map_union(comp
, map_j
);
1129 comp
= isl_map_compute_divs(comp
);
1130 comp
= isl_map_coalesce(comp
);
1137 /* Compute the transitive closure of "map" incrementally by
1144 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1148 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1150 * depending on whether left or right are NULL.
1152 static __isl_give isl_map
*compute_incremental(
1153 __isl_take isl_space
*dim
, __isl_keep isl_map
*map
,
1154 int i
, __isl_take isl_map
*qc
, int *left
, int *right
, int *exact
)
1158 isl_map
*rtc
= NULL
;
1162 isl_assert(map
->ctx
, left
|| right
, goto error
);
1164 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
1165 tc
= construct_projected_component(isl_space_copy(dim
), map_i
,
1167 isl_map_free(map_i
);
1170 qc
= isl_map_transitive_closure(qc
, exact
);
1173 isl_space_free(dim
);
1176 return isl_map_universe(isl_map_get_space(map
));
1179 if (!left
|| !right
)
1180 rtc
= isl_map_union(isl_map_copy(tc
),
1181 isl_map_identity(isl_map_get_space(tc
)));
1183 qc
= isl_map_apply_range(rtc
, qc
);
1185 qc
= isl_map_apply_range(qc
, rtc
);
1186 qc
= isl_map_union(tc
, qc
);
1188 isl_space_free(dim
);
1192 isl_space_free(dim
);
1197 /* Given a map "map", try to find a basic map such that
1198 * map^+ can be computed as
1200 * map^+ = map_i^+ \cup
1201 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1203 * with C the simple hull of the domain and range of the input map.
1204 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1205 * and by intersecting domain and range with C.
1206 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1207 * Also, we only use the incremental computation if all the transitive
1208 * closures are exact and if the number of basic maps in the union,
1209 * after computing the integer divisions, is smaller than the number
1210 * of basic maps in the input map.
1212 static int incemental_on_entire_domain(__isl_keep isl_space
*dim
,
1213 __isl_keep isl_map
*map
,
1214 isl_set
**dom
, isl_set
**ran
, int *left
, int *right
,
1215 __isl_give isl_map
**res
)
1223 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
1224 isl_map_range(isl_map_copy(map
)));
1225 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1233 d
= isl_map_dim(map
, isl_dim_in
);
1235 for (i
= 0; i
< map
->n
; ++i
) {
1237 int exact_i
, spurious
;
1239 dom
[i
] = isl_set_from_basic_set(isl_basic_map_domain(
1240 isl_basic_map_copy(map
->p
[i
])));
1241 ran
[i
] = isl_set_from_basic_set(isl_basic_map_range(
1242 isl_basic_map_copy(map
->p
[i
])));
1243 qc
= q_closure(isl_space_copy(dim
), isl_set_copy(C
),
1244 map
->p
[i
], &exact_i
);
1251 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1258 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1259 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1260 qc
= isl_map_compute_divs(qc
);
1261 for (j
= 0; j
< map
->n
; ++j
)
1262 left
[j
] = right
[j
] = 1;
1263 qc
= compose(map
, i
, qc
, left
, right
);
1266 if (qc
->n
>= map
->n
) {
1270 *res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1271 left
, right
, &exact_i
);
1282 return *res
!= NULL
;
1288 /* Try and compute the transitive closure of "map" as
1290 * map^+ = map_i^+ \cup
1291 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1293 * with C either the simple hull of the domain and range of the entire
1294 * map or the simple hull of domain and range of map_i.
1296 static __isl_give isl_map
*incremental_closure(__isl_take isl_space
*dim
,
1297 __isl_keep isl_map
*map
, int *exact
, int project
)
1300 isl_set
**dom
= NULL
;
1301 isl_set
**ran
= NULL
;
1306 isl_map
*res
= NULL
;
1309 return construct_projected_component(dim
, map
, exact
, project
);
1314 return construct_projected_component(dim
, map
, exact
, project
);
1316 d
= isl_map_dim(map
, isl_dim_in
);
1318 dom
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1319 ran
= isl_calloc_array(map
->ctx
, isl_set
*, map
->n
);
1320 left
= isl_calloc_array(map
->ctx
, int, map
->n
);
1321 right
= isl_calloc_array(map
->ctx
, int, map
->n
);
1322 if (!ran
|| !dom
|| !left
|| !right
)
1325 if (incemental_on_entire_domain(dim
, map
, dom
, ran
, left
, right
, &res
) < 0)
1328 for (i
= 0; !res
&& i
< map
->n
; ++i
) {
1330 int exact_i
, spurious
, comp
;
1332 dom
[i
] = isl_set_from_basic_set(
1333 isl_basic_map_domain(
1334 isl_basic_map_copy(map
->p
[i
])));
1338 ran
[i
] = isl_set_from_basic_set(
1339 isl_basic_map_range(
1340 isl_basic_map_copy(map
->p
[i
])));
1343 C
= isl_set_union(isl_set_copy(dom
[i
]),
1344 isl_set_copy(ran
[i
]));
1345 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
1352 comp
= composability(C
, i
, dom
, ran
, left
, right
, map
);
1353 if (!comp
|| comp
< 0) {
1359 qc
= q_closure(isl_space_copy(dim
), C
, map
->p
[i
], &exact_i
);
1366 spurious
= has_spurious_elements(qc
, dom
[i
], ran
[i
]);
1373 qc
= isl_map_project_out(qc
, isl_dim_in
, d
, 1);
1374 qc
= isl_map_project_out(qc
, isl_dim_out
, d
, 1);
1375 qc
= isl_map_compute_divs(qc
);
1376 qc
= compose(map
, i
, qc
, (comp
& LEFT
) ? left
: NULL
,
1377 (comp
& RIGHT
) ? right
: NULL
);
1380 if (qc
->n
>= map
->n
) {
1384 res
= compute_incremental(isl_space_copy(dim
), map
, i
, qc
,
1385 (comp
& LEFT
) ? left
: NULL
,
1386 (comp
& RIGHT
) ? right
: NULL
, &exact_i
);
1395 for (i
= 0; i
< map
->n
; ++i
) {
1396 isl_set_free(dom
[i
]);
1397 isl_set_free(ran
[i
]);
1405 isl_space_free(dim
);
1409 return construct_projected_component(dim
, map
, exact
, project
);
1412 for (i
= 0; i
< map
->n
; ++i
)
1413 isl_set_free(dom
[i
]);
1416 for (i
= 0; i
< map
->n
; ++i
)
1417 isl_set_free(ran
[i
]);
1421 isl_space_free(dim
);
1425 /* Given an array of sets "set", add "dom" at position "pos"
1426 * and search for elements at earlier positions that overlap with "dom".
1427 * If any can be found, then merge all of them, together with "dom", into
1428 * a single set and assign the union to the first in the array,
1429 * which becomes the new group leader for all groups involved in the merge.
1430 * During the search, we only consider group leaders, i.e., those with
1431 * group[i] = i, as the other sets have already been combined
1432 * with one of the group leaders.
1434 static int merge(isl_set
**set
, int *group
, __isl_take isl_set
*dom
, int pos
)
1439 set
[pos
] = isl_set_copy(dom
);
1441 for (i
= pos
- 1; i
>= 0; --i
) {
1447 o
= isl_set_overlaps(set
[i
], dom
);
1453 set
[i
] = isl_set_union(set
[i
], set
[group
[pos
]]);
1454 set
[group
[pos
]] = NULL
;
1457 group
[group
[pos
]] = i
;
1468 /* Replace each entry in the n by n grid of maps by the cross product
1469 * with the relation { [i] -> [i + 1] }.
1471 static int add_length(__isl_keep isl_map
*map
, isl_map
***grid
, int n
)
1475 isl_basic_map
*bstep
;
1482 dim
= isl_map_get_space(map
);
1483 nparam
= isl_space_dim(dim
, isl_dim_param
);
1484 dim
= isl_space_drop_dims(dim
, isl_dim_in
, 0, isl_space_dim(dim
, isl_dim_in
));
1485 dim
= isl_space_drop_dims(dim
, isl_dim_out
, 0, isl_space_dim(dim
, isl_dim_out
));
1486 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
1487 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
1488 bstep
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
1489 k
= isl_basic_map_alloc_equality(bstep
);
1491 isl_basic_map_free(bstep
);
1494 isl_seq_clr(bstep
->eq
[k
], 1 + isl_basic_map_total_dim(bstep
));
1495 isl_int_set_si(bstep
->eq
[k
][0], 1);
1496 isl_int_set_si(bstep
->eq
[k
][1 + nparam
], 1);
1497 isl_int_set_si(bstep
->eq
[k
][1 + nparam
+ 1], -1);
1498 bstep
= isl_basic_map_finalize(bstep
);
1499 step
= isl_map_from_basic_map(bstep
);
1501 for (i
= 0; i
< n
; ++i
)
1502 for (j
= 0; j
< n
; ++j
)
1503 grid
[i
][j
] = isl_map_product(grid
[i
][j
],
1504 isl_map_copy(step
));
1511 /* The core of the Floyd-Warshall algorithm.
1512 * Updates the given n x x matrix of relations in place.
1514 * The algorithm iterates over all vertices. In each step, the whole
1515 * matrix is updated to include all paths that go to the current vertex,
1516 * possibly stay there a while (including passing through earlier vertices)
1517 * and then come back. At the start of each iteration, the diagonal
1518 * element corresponding to the current vertex is replaced by its
1519 * transitive closure to account for all indirect paths that stay
1520 * in the current vertex.
1522 static void floyd_warshall_iterate(isl_map
***grid
, int n
, int *exact
)
1526 for (r
= 0; r
< n
; ++r
) {
1528 grid
[r
][r
] = isl_map_transitive_closure(grid
[r
][r
],
1529 (exact
&& *exact
) ? &r_exact
: NULL
);
1530 if (exact
&& *exact
&& !r_exact
)
1533 for (p
= 0; p
< n
; ++p
)
1534 for (q
= 0; q
< n
; ++q
) {
1536 if (p
== r
&& q
== r
)
1538 loop
= isl_map_apply_range(
1539 isl_map_copy(grid
[p
][r
]),
1540 isl_map_copy(grid
[r
][q
]));
1541 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1542 loop
= isl_map_apply_range(
1543 isl_map_copy(grid
[p
][r
]),
1544 isl_map_apply_range(
1545 isl_map_copy(grid
[r
][r
]),
1546 isl_map_copy(grid
[r
][q
])));
1547 grid
[p
][q
] = isl_map_union(grid
[p
][q
], loop
);
1548 grid
[p
][q
] = isl_map_coalesce(grid
[p
][q
]);
1553 /* Given a partition of the domains and ranges of the basic maps in "map",
1554 * apply the Floyd-Warshall algorithm with the elements in the partition
1557 * In particular, there are "n" elements in the partition and "group" is
1558 * an array of length 2 * map->n with entries in [0,n-1].
1560 * We first construct a matrix of relations based on the partition information,
1561 * apply Floyd-Warshall on this matrix of relations and then take the
1562 * union of all entries in the matrix as the final result.
1564 * If we are actually computing the power instead of the transitive closure,
1565 * i.e., when "project" is not set, then the result should have the
1566 * path lengths encoded as the difference between an extra pair of
1567 * coordinates. We therefore apply the nested transitive closures
1568 * to relations that include these lengths. In particular, we replace
1569 * the input relation by the cross product with the unit length relation
1570 * { [i] -> [i + 1] }.
1572 static __isl_give isl_map
*floyd_warshall_with_groups(__isl_take isl_space
*dim
,
1573 __isl_keep isl_map
*map
, int *exact
, int project
, int *group
, int n
)
1576 isl_map
***grid
= NULL
;
1584 return incremental_closure(dim
, map
, exact
, project
);
1587 grid
= isl_calloc_array(map
->ctx
, isl_map
**, n
);
1590 for (i
= 0; i
< n
; ++i
) {
1591 grid
[i
] = isl_calloc_array(map
->ctx
, isl_map
*, n
);
1594 for (j
= 0; j
< n
; ++j
)
1595 grid
[i
][j
] = isl_map_empty(isl_map_get_space(map
));
1598 for (k
= 0; k
< map
->n
; ++k
) {
1600 j
= group
[2 * k
+ 1];
1601 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
1602 isl_map_from_basic_map(
1603 isl_basic_map_copy(map
->p
[k
])));
1606 if (!project
&& add_length(map
, grid
, n
) < 0)
1609 floyd_warshall_iterate(grid
, n
, exact
);
1611 app
= isl_map_empty(isl_map_get_space(map
));
1613 for (i
= 0; i
< n
; ++i
) {
1614 for (j
= 0; j
< n
; ++j
)
1615 app
= isl_map_union(app
, grid
[i
][j
]);
1621 isl_space_free(dim
);
1626 for (i
= 0; i
< n
; ++i
) {
1629 for (j
= 0; j
< n
; ++j
)
1630 isl_map_free(grid
[i
][j
]);
1635 isl_space_free(dim
);
1639 /* Partition the domains and ranges of the n basic relations in list
1640 * into disjoint cells.
1642 * To find the partition, we simply consider all of the domains
1643 * and ranges in turn and combine those that overlap.
1644 * "set" contains the partition elements and "group" indicates
1645 * to which partition element a given domain or range belongs.
1646 * The domain of basic map i corresponds to element 2 * i in these arrays,
1647 * while the domain corresponds to element 2 * i + 1.
1648 * During the construction group[k] is either equal to k,
1649 * in which case set[k] contains the union of all the domains and
1650 * ranges in the corresponding group, or is equal to some l < k,
1651 * with l another domain or range in the same group.
1653 static int *setup_groups(isl_ctx
*ctx
, __isl_keep isl_basic_map
**list
, int n
,
1654 isl_set
***set
, int *n_group
)
1660 *set
= isl_calloc_array(ctx
, isl_set
*, 2 * n
);
1661 group
= isl_alloc_array(ctx
, int, 2 * n
);
1663 if (!*set
|| !group
)
1666 for (i
= 0; i
< n
; ++i
) {
1668 dom
= isl_set_from_basic_set(isl_basic_map_domain(
1669 isl_basic_map_copy(list
[i
])));
1670 if (merge(*set
, group
, dom
, 2 * i
) < 0)
1672 dom
= isl_set_from_basic_set(isl_basic_map_range(
1673 isl_basic_map_copy(list
[i
])));
1674 if (merge(*set
, group
, dom
, 2 * i
+ 1) < 0)
1679 for (i
= 0; i
< 2 * n
; ++i
)
1680 if (group
[i
] == i
) {
1682 (*set
)[g
] = (*set
)[i
];
1687 group
[i
] = group
[group
[i
]];
1694 for (i
= 0; i
< 2 * n
; ++i
)
1695 isl_set_free((*set
)[i
]);
1703 /* Check if the domains and ranges of the basic maps in "map" can
1704 * be partitioned, and if so, apply Floyd-Warshall on the elements
1705 * of the partition. Note that we also apply this algorithm
1706 * if we want to compute the power, i.e., when "project" is not set.
1707 * However, the results are unlikely to be exact since the recursive
1708 * calls inside the Floyd-Warshall algorithm typically result in
1709 * non-linear path lengths quite quickly.
1711 static __isl_give isl_map
*floyd_warshall(__isl_take isl_space
*dim
,
1712 __isl_keep isl_map
*map
, int *exact
, int project
)
1715 isl_set
**set
= NULL
;
1722 return incremental_closure(dim
, map
, exact
, project
);
1724 group
= setup_groups(map
->ctx
, map
->p
, map
->n
, &set
, &n
);
1728 for (i
= 0; i
< 2 * map
->n
; ++i
)
1729 isl_set_free(set
[i
]);
1733 return floyd_warshall_with_groups(dim
, map
, exact
, project
, group
, n
);
1735 isl_space_free(dim
);
1739 /* Structure for representing the nodes of the graph of which
1740 * strongly connected components are being computed.
1742 * list contains the actual nodes
1743 * check_closed is set if we may have used the fact that
1744 * a pair of basic maps can be interchanged
1746 struct isl_tc_follows_data
{
1747 isl_basic_map
**list
;
1751 /* Check whether in the computation of the transitive closure
1752 * "list[i]" (R_1) should follow (or be part of the same component as)
1755 * That is check whether
1763 * If so, then there is no reason for R_1 to immediately follow R_2
1766 * *check_closed is set if the subset relation holds while
1767 * R_1 \circ R_2 is not empty.
1769 static int basic_map_follows(int i
, int j
, void *user
)
1771 struct isl_tc_follows_data
*data
= user
;
1772 struct isl_map
*map12
= NULL
;
1773 struct isl_map
*map21
= NULL
;
1776 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1777 data
->list
[j
]->dim
, isl_dim_out
))
1780 map21
= isl_map_from_basic_map(
1781 isl_basic_map_apply_range(
1782 isl_basic_map_copy(data
->list
[j
]),
1783 isl_basic_map_copy(data
->list
[i
])));
1784 subset
= isl_map_is_empty(map21
);
1788 isl_map_free(map21
);
1792 if (!isl_space_tuple_is_equal(data
->list
[i
]->dim
, isl_dim_in
,
1793 data
->list
[i
]->dim
, isl_dim_out
) ||
1794 !isl_space_tuple_is_equal(data
->list
[j
]->dim
, isl_dim_in
,
1795 data
->list
[j
]->dim
, isl_dim_out
)) {
1796 isl_map_free(map21
);
1800 map12
= isl_map_from_basic_map(
1801 isl_basic_map_apply_range(
1802 isl_basic_map_copy(data
->list
[i
]),
1803 isl_basic_map_copy(data
->list
[j
])));
1805 subset
= isl_map_is_subset(map21
, map12
);
1807 isl_map_free(map12
);
1808 isl_map_free(map21
);
1811 data
->check_closed
= 1;
1813 return subset
< 0 ? -1 : !subset
;
1815 isl_map_free(map21
);
1819 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1820 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1821 * construct a map that is an overapproximation of the map
1822 * that takes an element from the dom R \times Z to an
1823 * element from ran R \times Z, such that the first n coordinates of the
1824 * difference between them is a sum of differences between images
1825 * and pre-images in one of the R_i and such that the last coordinate
1826 * is equal to the number of steps taken.
1827 * If "project" is set, then these final coordinates are not included,
1828 * i.e., a relation of type Z^n -> Z^n is returned.
1831 * \Delta_i = { y - x | (x, y) in R_i }
1833 * then the constructed map is an overapproximation of
1835 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1836 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1837 * x in dom R and x + d in ran R }
1841 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1842 * d = (\sum_i k_i \delta_i) and
1843 * x in dom R and x + d in ran R }
1845 * if "project" is set.
1847 * We first split the map into strongly connected components, perform
1848 * the above on each component and then join the results in the correct
1849 * order, at each join also taking in the union of both arguments
1850 * to allow for paths that do not go through one of the two arguments.
1852 static __isl_give isl_map
*construct_power_components(__isl_take isl_space
*dim
,
1853 __isl_keep isl_map
*map
, int *exact
, int project
)
1856 struct isl_map
*path
= NULL
;
1857 struct isl_tc_follows_data data
;
1858 struct isl_tarjan_graph
*g
= NULL
;
1865 return floyd_warshall(dim
, map
, exact
, project
);
1868 data
.check_closed
= 0;
1869 g
= isl_tarjan_graph_init(map
->ctx
, map
->n
, &basic_map_follows
, &data
);
1874 if (data
.check_closed
&& !exact
)
1875 exact
= &local_exact
;
1881 path
= isl_map_empty(isl_map_get_space(map
));
1883 path
= isl_map_empty(isl_space_copy(dim
));
1884 path
= anonymize(path
);
1886 struct isl_map
*comp
;
1887 isl_map
*path_comp
, *path_comb
;
1888 comp
= isl_map_alloc_space(isl_map_get_space(map
), n
, 0);
1889 while (g
->order
[i
] != -1) {
1890 comp
= isl_map_add_basic_map(comp
,
1891 isl_basic_map_copy(map
->p
[g
->order
[i
]]));
1895 path_comp
= floyd_warshall(isl_space_copy(dim
),
1896 comp
, exact
, project
);
1897 path_comp
= anonymize(path_comp
);
1898 path_comb
= isl_map_apply_range(isl_map_copy(path
),
1899 isl_map_copy(path_comp
));
1900 path
= isl_map_union(path
, path_comp
);
1901 path
= isl_map_union(path
, path_comb
);
1907 if (c
> 1 && data
.check_closed
&& !*exact
) {
1910 closed
= isl_map_is_transitively_closed(path
);
1914 isl_tarjan_graph_free(g
);
1916 return floyd_warshall(dim
, map
, orig_exact
, project
);
1920 isl_tarjan_graph_free(g
);
1921 isl_space_free(dim
);
1925 isl_tarjan_graph_free(g
);
1926 isl_space_free(dim
);
1931 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1932 * construct a map that is an overapproximation of the map
1933 * that takes an element from the space D to another
1934 * element from the same space, such that the difference between
1935 * them is a strictly positive sum of differences between images
1936 * and pre-images in one of the R_i.
1937 * The number of differences in the sum is equated to parameter "param".
1940 * \Delta_i = { y - x | (x, y) in R_i }
1942 * then the constructed map is an overapproximation of
1944 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1945 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1948 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1949 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1951 * if "project" is set.
1953 * If "project" is not set, then
1954 * we construct an extended mapping with an extra coordinate
1955 * that indicates the number of steps taken. In particular,
1956 * the difference in the last coordinate is equal to the number
1957 * of steps taken to move from a domain element to the corresponding
1960 static __isl_give isl_map
*construct_power(__isl_keep isl_map
*map
,
1961 int *exact
, int project
)
1963 struct isl_map
*app
= NULL
;
1964 isl_space
*dim
= NULL
;
1969 dim
= isl_map_get_space(map
);
1971 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
1972 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
1974 app
= construct_power_components(isl_space_copy(dim
), map
,
1977 isl_space_free(dim
);
1982 /* Compute the positive powers of "map", or an overapproximation.
1983 * If the result is exact, then *exact is set to 1.
1985 * If project is set, then we are actually interested in the transitive
1986 * closure, so we can use a more relaxed exactness check.
1987 * The lengths of the paths are also projected out instead of being
1988 * encoded as the difference between an extra pair of final coordinates.
1990 static __isl_give isl_map
*map_power(__isl_take isl_map
*map
,
1991 int *exact
, int project
)
1993 struct isl_map
*app
= NULL
;
2001 isl_assert(map
->ctx
,
2002 isl_map_dim(map
, isl_dim_in
) == isl_map_dim(map
, isl_dim_out
),
2005 app
= construct_power(map
, exact
, project
);
2015 /* Compute the positive powers of "map", or an overapproximation.
2016 * The result maps the exponent to a nested copy of the corresponding power.
2017 * If the result is exact, then *exact is set to 1.
2018 * map_power constructs an extended relation with the path lengths
2019 * encoded as the difference between the final coordinates.
2020 * In the final step, this difference is equated to an extra parameter
2021 * and made positive. The extra coordinates are subsequently projected out
2022 * and the parameter is turned into the domain of the result.
2024 __isl_give isl_map
*isl_map_power(__isl_take isl_map
*map
, int *exact
)
2026 isl_space
*target_dim
;
2035 d
= isl_map_dim(map
, isl_dim_in
);
2036 param
= isl_map_dim(map
, isl_dim_param
);
2038 map
= isl_map_compute_divs(map
);
2039 map
= isl_map_coalesce(map
);
2041 if (isl_map_plain_is_empty(map
)) {
2042 map
= isl_map_from_range(isl_map_wrap(map
));
2043 map
= isl_map_add_dims(map
, isl_dim_in
, 1);
2044 map
= isl_map_set_dim_name(map
, isl_dim_in
, 0, "k");
2048 target_dim
= isl_map_get_space(map
);
2049 target_dim
= isl_space_from_range(isl_space_wrap(target_dim
));
2050 target_dim
= isl_space_add_dims(target_dim
, isl_dim_in
, 1);
2051 target_dim
= isl_space_set_dim_name(target_dim
, isl_dim_in
, 0, "k");
2053 map
= map_power(map
, exact
, 0);
2055 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2056 dim
= isl_map_get_space(map
);
2057 diff
= equate_parameter_to_length(dim
, param
);
2058 map
= isl_map_intersect(map
, diff
);
2059 map
= isl_map_project_out(map
, isl_dim_in
, d
, 1);
2060 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2061 map
= isl_map_from_range(isl_map_wrap(map
));
2062 map
= isl_map_move_dims(map
, isl_dim_in
, 0, isl_dim_param
, param
, 1);
2064 map
= isl_map_reset_space(map
, target_dim
);
2069 /* Compute a relation that maps each element in the range of the input
2070 * relation to the lengths of all paths composed of edges in the input
2071 * relation that end up in the given range element.
2072 * The result may be an overapproximation, in which case *exact is set to 0.
2073 * The resulting relation is very similar to the power relation.
2074 * The difference are that the domain has been projected out, the
2075 * range has become the domain and the exponent is the range instead
2078 __isl_give isl_map
*isl_map_reaching_path_lengths(__isl_take isl_map
*map
,
2089 d
= isl_map_dim(map
, isl_dim_in
);
2090 param
= isl_map_dim(map
, isl_dim_param
);
2092 map
= isl_map_compute_divs(map
);
2093 map
= isl_map_coalesce(map
);
2095 if (isl_map_plain_is_empty(map
)) {
2098 map
= isl_map_project_out(map
, isl_dim_out
, 0, d
);
2099 map
= isl_map_add_dims(map
, isl_dim_out
, 1);
2103 map
= map_power(map
, exact
, 0);
2105 map
= isl_map_add_dims(map
, isl_dim_param
, 1);
2106 dim
= isl_map_get_space(map
);
2107 diff
= equate_parameter_to_length(dim
, param
);
2108 map
= isl_map_intersect(map
, diff
);
2109 map
= isl_map_project_out(map
, isl_dim_in
, 0, d
+ 1);
2110 map
= isl_map_project_out(map
, isl_dim_out
, d
, 1);
2111 map
= isl_map_reverse(map
);
2112 map
= isl_map_move_dims(map
, isl_dim_out
, 0, isl_dim_param
, param
, 1);
2117 /* Check whether equality i of bset is a pure stride constraint
2118 * on a single dimensions, i.e., of the form
2122 * with k a constant and e an existentially quantified variable.
2124 static int is_eq_stride(__isl_keep isl_basic_set
*bset
, int i
)
2135 if (!isl_int_is_zero(bset
->eq
[i
][0]))
2138 nparam
= isl_basic_set_dim(bset
, isl_dim_param
);
2139 d
= isl_basic_set_dim(bset
, isl_dim_set
);
2140 n_div
= isl_basic_set_dim(bset
, isl_dim_div
);
2142 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1, nparam
) != -1)
2144 pos1
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
, d
);
2147 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ pos1
+ 1,
2148 d
- pos1
- 1) != -1)
2151 pos2
= isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
, n_div
);
2154 if (isl_seq_first_non_zero(bset
->eq
[i
] + 1 + nparam
+ d
+ pos2
+ 1,
2155 n_div
- pos2
- 1) != -1)
2157 if (!isl_int_is_one(bset
->eq
[i
][1 + nparam
+ pos1
]) &&
2158 !isl_int_is_negone(bset
->eq
[i
][1 + nparam
+ pos1
]))
2164 /* Given a map, compute the smallest superset of this map that is of the form
2166 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2168 * (where p ranges over the (non-parametric) dimensions),
2169 * compute the transitive closure of this map, i.e.,
2171 * { i -> j : exists k > 0:
2172 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2174 * and intersect domain and range of this transitive closure with
2175 * the given domain and range.
2177 * If with_id is set, then try to include as much of the identity mapping
2178 * as possible, by computing
2180 * { i -> j : exists k >= 0:
2181 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2183 * instead (i.e., allow k = 0).
2185 * In practice, we compute the difference set
2187 * delta = { j - i | i -> j in map },
2189 * look for stride constraint on the individual dimensions and compute
2190 * (constant) lower and upper bounds for each individual dimension,
2191 * adding a constraint for each bound not equal to infinity.
2193 static __isl_give isl_map
*box_closure_on_domain(__isl_take isl_map
*map
,
2194 __isl_take isl_set
*dom
, __isl_take isl_set
*ran
, int with_id
)
2203 isl_map
*app
= NULL
;
2204 isl_basic_set
*aff
= NULL
;
2205 isl_basic_map
*bmap
= NULL
;
2206 isl_vec
*obj
= NULL
;
2211 delta
= isl_map_deltas(isl_map_copy(map
));
2213 aff
= isl_set_affine_hull(isl_set_copy(delta
));
2216 dim
= isl_map_get_space(map
);
2217 d
= isl_space_dim(dim
, isl_dim_in
);
2218 nparam
= isl_space_dim(dim
, isl_dim_param
);
2219 total
= isl_space_dim(dim
, isl_dim_all
);
2220 bmap
= isl_basic_map_alloc_space(dim
,
2221 aff
->n_div
+ 1, aff
->n_div
, 2 * d
+ 1);
2222 for (i
= 0; i
< aff
->n_div
+ 1; ++i
) {
2223 k
= isl_basic_map_alloc_div(bmap
);
2226 isl_int_set_si(bmap
->div
[k
][0], 0);
2228 for (i
= 0; i
< aff
->n_eq
; ++i
) {
2229 if (!is_eq_stride(aff
, i
))
2231 k
= isl_basic_map_alloc_equality(bmap
);
2234 isl_seq_clr(bmap
->eq
[k
], 1 + nparam
);
2235 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ d
,
2236 aff
->eq
[i
] + 1 + nparam
, d
);
2237 isl_seq_neg(bmap
->eq
[k
] + 1 + nparam
,
2238 aff
->eq
[i
] + 1 + nparam
, d
);
2239 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ 2 * d
,
2240 aff
->eq
[i
] + 1 + nparam
+ d
, aff
->n_div
);
2241 isl_int_set_si(bmap
->eq
[k
][1 + total
+ aff
->n_div
], 0);
2243 obj
= isl_vec_alloc(map
->ctx
, 1 + nparam
+ d
);
2246 isl_seq_clr(obj
->el
, 1 + nparam
+ d
);
2247 for (i
= 0; i
< d
; ++ i
) {
2248 enum isl_lp_result res
;
2250 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 1);
2252 res
= isl_set_solve_lp(delta
, 0, obj
->el
, map
->ctx
->one
, &opt
,
2254 if (res
== isl_lp_error
)
2256 if (res
== isl_lp_ok
) {
2257 k
= isl_basic_map_alloc_inequality(bmap
);
2260 isl_seq_clr(bmap
->ineq
[k
],
2261 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2262 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], -1);
2263 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], 1);
2264 isl_int_neg(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2267 res
= isl_set_solve_lp(delta
, 1, obj
->el
, map
->ctx
->one
, &opt
,
2269 if (res
== isl_lp_error
)
2271 if (res
== isl_lp_ok
) {
2272 k
= isl_basic_map_alloc_inequality(bmap
);
2275 isl_seq_clr(bmap
->ineq
[k
],
2276 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2277 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ i
], 1);
2278 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ d
+ i
], -1);
2279 isl_int_set(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], opt
);
2282 isl_int_set_si(obj
->el
[1 + nparam
+ i
], 0);
2284 k
= isl_basic_map_alloc_inequality(bmap
);
2287 isl_seq_clr(bmap
->ineq
[k
],
2288 1 + nparam
+ 2 * d
+ bmap
->n_div
);
2290 isl_int_set_si(bmap
->ineq
[k
][0], -1);
2291 isl_int_set_si(bmap
->ineq
[k
][1 + nparam
+ 2 * d
+ aff
->n_div
], 1);
2293 app
= isl_map_from_domain_and_range(dom
, ran
);
2296 isl_basic_set_free(aff
);
2298 bmap
= isl_basic_map_finalize(bmap
);
2299 isl_set_free(delta
);
2302 map
= isl_map_from_basic_map(bmap
);
2303 map
= isl_map_intersect(map
, app
);
2308 isl_basic_map_free(bmap
);
2309 isl_basic_set_free(aff
);
2313 isl_set_free(delta
);
2318 /* Given a map, compute the smallest superset of this map that is of the form
2320 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2322 * (where p ranges over the (non-parametric) dimensions),
2323 * compute the transitive closure of this map, i.e.,
2325 * { i -> j : exists k > 0:
2326 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2328 * and intersect domain and range of this transitive closure with
2329 * domain and range of the original map.
2331 static __isl_give isl_map
*box_closure(__isl_take isl_map
*map
)
2336 domain
= isl_map_domain(isl_map_copy(map
));
2337 domain
= isl_set_coalesce(domain
);
2338 range
= isl_map_range(isl_map_copy(map
));
2339 range
= isl_set_coalesce(range
);
2341 return box_closure_on_domain(map
, domain
, range
, 0);
2344 /* Given a map, compute the smallest superset of this map that is of the form
2346 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2348 * (where p ranges over the (non-parametric) dimensions),
2349 * compute the transitive and partially reflexive closure of this map, i.e.,
2351 * { i -> j : exists k >= 0:
2352 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2354 * and intersect domain and range of this transitive closure with
2357 static __isl_give isl_map
*box_closure_with_identity(__isl_take isl_map
*map
,
2358 __isl_take isl_set
*dom
)
2360 return box_closure_on_domain(map
, dom
, isl_set_copy(dom
), 1);
2363 /* Check whether app is the transitive closure of map.
2364 * In particular, check that app is acyclic and, if so,
2367 * app \subset (map \cup (map \circ app))
2369 static int check_exactness_omega(__isl_keep isl_map
*map
,
2370 __isl_keep isl_map
*app
)
2374 int is_empty
, is_exact
;
2378 delta
= isl_map_deltas(isl_map_copy(app
));
2379 d
= isl_set_dim(delta
, isl_dim_set
);
2380 for (i
= 0; i
< d
; ++i
)
2381 delta
= isl_set_fix_si(delta
, isl_dim_set
, i
, 0);
2382 is_empty
= isl_set_is_empty(delta
);
2383 isl_set_free(delta
);
2389 test
= isl_map_apply_range(isl_map_copy(app
), isl_map_copy(map
));
2390 test
= isl_map_union(test
, isl_map_copy(map
));
2391 is_exact
= isl_map_is_subset(app
, test
);
2397 /* Check if basic map M_i can be combined with all the other
2398 * basic maps such that
2402 * can be computed as
2404 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2406 * In particular, check if we can compute a compact representation
2409 * M_i^* \circ M_j \circ M_i^*
2412 * Let M_i^? be an extension of M_i^+ that allows paths
2413 * of length zero, i.e., the result of box_closure(., 1).
2414 * The criterion, as proposed by Kelly et al., is that
2415 * id = M_i^? - M_i^+ can be represented as a basic map
2418 * id \circ M_j \circ id = M_j
2422 * If this function returns 1, then tc and qc are set to
2423 * M_i^+ and M_i^?, respectively.
2425 static int can_be_split_off(__isl_keep isl_map
*map
, int i
,
2426 __isl_give isl_map
**tc
, __isl_give isl_map
**qc
)
2428 isl_map
*map_i
, *id
= NULL
;
2435 C
= isl_set_union(isl_map_domain(isl_map_copy(map
)),
2436 isl_map_range(isl_map_copy(map
)));
2437 C
= isl_set_from_basic_set(isl_set_simple_hull(C
));
2441 map_i
= isl_map_from_basic_map(isl_basic_map_copy(map
->p
[i
]));
2442 *tc
= box_closure(isl_map_copy(map_i
));
2443 *qc
= box_closure_with_identity(map_i
, C
);
2444 id
= isl_map_subtract(isl_map_copy(*qc
), isl_map_copy(*tc
));
2448 if (id
->n
!= 1 || (*qc
)->n
!= 1)
2451 for (j
= 0; j
< map
->n
; ++j
) {
2452 isl_map
*map_j
, *test
;
2457 map_j
= isl_map_from_basic_map(
2458 isl_basic_map_copy(map
->p
[j
]));
2459 test
= isl_map_apply_range(isl_map_copy(id
),
2460 isl_map_copy(map_j
));
2461 test
= isl_map_apply_range(test
, isl_map_copy(id
));
2462 is_ok
= isl_map_is_equal(test
, map_j
);
2463 isl_map_free(map_j
);
2491 static __isl_give isl_map
*box_closure_with_check(__isl_take isl_map
*map
,
2496 app
= box_closure(isl_map_copy(map
));
2498 *exact
= check_exactness_omega(map
, app
);
2504 /* Compute an overapproximation of the transitive closure of "map"
2505 * using a variation of the algorithm from
2506 * "Transitive Closure of Infinite Graphs and its Applications"
2509 * We first check whether we can can split of any basic map M_i and
2516 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2518 * using a recursive call on the remaining map.
2520 * If not, we simply call box_closure on the whole map.
2522 static __isl_give isl_map
*transitive_closure_omega(__isl_take isl_map
*map
,
2532 return box_closure_with_check(map
, exact
);
2534 for (i
= 0; i
< map
->n
; ++i
) {
2537 ok
= can_be_split_off(map
, i
, &tc
, &qc
);
2543 app
= isl_map_alloc_space(isl_map_get_space(map
), map
->n
- 1, 0);
2545 for (j
= 0; j
< map
->n
; ++j
) {
2548 app
= isl_map_add_basic_map(app
,
2549 isl_basic_map_copy(map
->p
[j
]));
2552 app
= isl_map_apply_range(isl_map_copy(qc
), app
);
2553 app
= isl_map_apply_range(app
, qc
);
2555 app
= isl_map_union(tc
, transitive_closure_omega(app
, NULL
));
2556 exact_i
= check_exactness_omega(map
, app
);
2568 return box_closure_with_check(map
, exact
);
2574 /* Compute the transitive closure of "map", or an overapproximation.
2575 * If the result is exact, then *exact is set to 1.
2576 * Simply use map_power to compute the powers of map, but tell
2577 * it to project out the lengths of the paths instead of equating
2578 * the length to a parameter.
2580 __isl_give isl_map
*isl_map_transitive_closure(__isl_take isl_map
*map
,
2583 isl_space
*target_dim
;
2589 if (map
->ctx
->opt
->closure
== ISL_CLOSURE_BOX
)
2590 return transitive_closure_omega(map
, exact
);
2592 map
= isl_map_compute_divs(map
);
2593 map
= isl_map_coalesce(map
);
2594 closed
= isl_map_is_transitively_closed(map
);
2603 target_dim
= isl_map_get_space(map
);
2604 map
= map_power(map
, exact
, 1);
2605 map
= isl_map_reset_space(map
, target_dim
);
2613 static int inc_count(__isl_take isl_map
*map
, void *user
)
2624 static int collect_basic_map(__isl_take isl_map
*map
, void *user
)
2627 isl_basic_map
***next
= user
;
2629 for (i
= 0; i
< map
->n
; ++i
) {
2630 **next
= isl_basic_map_copy(map
->p
[i
]);
2643 /* Perform Floyd-Warshall on the given list of basic relations.
2644 * The basic relations may live in different dimensions,
2645 * but basic relations that get assigned to the diagonal of the
2646 * grid have domains and ranges of the same dimension and so
2647 * the standard algorithm can be used because the nested transitive
2648 * closures are only applied to diagonal elements and because all
2649 * compositions are peformed on relations with compatible domains and ranges.
2651 static __isl_give isl_union_map
*union_floyd_warshall_on_list(isl_ctx
*ctx
,
2652 __isl_keep isl_basic_map
**list
, int n
, int *exact
)
2657 isl_set
**set
= NULL
;
2658 isl_map
***grid
= NULL
;
2661 group
= setup_groups(ctx
, list
, n
, &set
, &n_group
);
2665 grid
= isl_calloc_array(ctx
, isl_map
**, n_group
);
2668 for (i
= 0; i
< n_group
; ++i
) {
2669 grid
[i
] = isl_calloc_array(ctx
, isl_map
*, n_group
);
2672 for (j
= 0; j
< n_group
; ++j
) {
2673 isl_space
*dim1
, *dim2
, *dim
;
2674 dim1
= isl_space_reverse(isl_set_get_space(set
[i
]));
2675 dim2
= isl_set_get_space(set
[j
]);
2676 dim
= isl_space_join(dim1
, dim2
);
2677 grid
[i
][j
] = isl_map_empty(dim
);
2681 for (k
= 0; k
< n
; ++k
) {
2683 j
= group
[2 * k
+ 1];
2684 grid
[i
][j
] = isl_map_union(grid
[i
][j
],
2685 isl_map_from_basic_map(
2686 isl_basic_map_copy(list
[k
])));
2689 floyd_warshall_iterate(grid
, n_group
, exact
);
2691 app
= isl_union_map_empty(isl_map_get_space(grid
[0][0]));
2693 for (i
= 0; i
< n_group
; ++i
) {
2694 for (j
= 0; j
< n_group
; ++j
)
2695 app
= isl_union_map_add_map(app
, grid
[i
][j
]);
2700 for (i
= 0; i
< 2 * n
; ++i
)
2701 isl_set_free(set
[i
]);
2708 for (i
= 0; i
< n_group
; ++i
) {
2711 for (j
= 0; j
< n_group
; ++j
)
2712 isl_map_free(grid
[i
][j
]);
2717 for (i
= 0; i
< 2 * n
; ++i
)
2718 isl_set_free(set
[i
]);
2725 /* Perform Floyd-Warshall on the given union relation.
2726 * The implementation is very similar to that for non-unions.
2727 * The main difference is that it is applied unconditionally.
2728 * We first extract a list of basic maps from the union map
2729 * and then perform the algorithm on this list.
2731 static __isl_give isl_union_map
*union_floyd_warshall(
2732 __isl_take isl_union_map
*umap
, int *exact
)
2736 isl_basic_map
**list
= NULL
;
2737 isl_basic_map
**next
;
2741 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2744 ctx
= isl_union_map_get_ctx(umap
);
2745 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2750 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2753 res
= union_floyd_warshall_on_list(ctx
, list
, n
, exact
);
2756 for (i
= 0; i
< n
; ++i
)
2757 isl_basic_map_free(list
[i
]);
2761 isl_union_map_free(umap
);
2765 for (i
= 0; i
< n
; ++i
)
2766 isl_basic_map_free(list
[i
]);
2769 isl_union_map_free(umap
);
2773 /* Decompose the give union relation into strongly connected components.
2774 * The implementation is essentially the same as that of
2775 * construct_power_components with the major difference that all
2776 * operations are performed on union maps.
2778 static __isl_give isl_union_map
*union_components(
2779 __isl_take isl_union_map
*umap
, int *exact
)
2784 isl_basic_map
**list
= NULL
;
2785 isl_basic_map
**next
;
2786 isl_union_map
*path
= NULL
;
2787 struct isl_tc_follows_data data
;
2788 struct isl_tarjan_graph
*g
= NULL
;
2793 if (isl_union_map_foreach_map(umap
, inc_count
, &n
) < 0)
2799 return union_floyd_warshall(umap
, exact
);
2801 ctx
= isl_union_map_get_ctx(umap
);
2802 list
= isl_calloc_array(ctx
, isl_basic_map
*, n
);
2807 if (isl_union_map_foreach_map(umap
, collect_basic_map
, &next
) < 0)
2811 data
.check_closed
= 0;
2812 g
= isl_tarjan_graph_init(ctx
, n
, &basic_map_follows
, &data
);
2819 path
= isl_union_map_empty(isl_union_map_get_space(umap
));
2821 isl_union_map
*comp
;
2822 isl_union_map
*path_comp
, *path_comb
;
2823 comp
= isl_union_map_empty(isl_union_map_get_space(umap
));
2824 while (g
->order
[i
] != -1) {
2825 comp
= isl_union_map_add_map(comp
,
2826 isl_map_from_basic_map(
2827 isl_basic_map_copy(list
[g
->order
[i
]])));
2831 path_comp
= union_floyd_warshall(comp
, exact
);
2832 path_comb
= isl_union_map_apply_range(isl_union_map_copy(path
),
2833 isl_union_map_copy(path_comp
));
2834 path
= isl_union_map_union(path
, path_comp
);
2835 path
= isl_union_map_union(path
, path_comb
);
2840 if (c
> 1 && data
.check_closed
&& !*exact
) {
2843 closed
= isl_union_map_is_transitively_closed(path
);
2849 isl_tarjan_graph_free(g
);
2851 for (i
= 0; i
< n
; ++i
)
2852 isl_basic_map_free(list
[i
]);
2856 isl_union_map_free(path
);
2857 return union_floyd_warshall(umap
, exact
);
2860 isl_union_map_free(umap
);
2864 isl_tarjan_graph_free(g
);
2866 for (i
= 0; i
< n
; ++i
)
2867 isl_basic_map_free(list
[i
]);
2870 isl_union_map_free(umap
);
2871 isl_union_map_free(path
);
2875 /* Compute the transitive closure of "umap", or an overapproximation.
2876 * If the result is exact, then *exact is set to 1.
2878 __isl_give isl_union_map
*isl_union_map_transitive_closure(
2879 __isl_take isl_union_map
*umap
, int *exact
)
2889 umap
= isl_union_map_compute_divs(umap
);
2890 umap
= isl_union_map_coalesce(umap
);
2891 closed
= isl_union_map_is_transitively_closed(umap
);
2896 umap
= union_components(umap
, exact
);
2899 isl_union_map_free(umap
);
2903 struct isl_union_power
{
2908 static int power(__isl_take isl_map
*map
, void *user
)
2910 struct isl_union_power
*up
= user
;
2912 map
= isl_map_power(map
, up
->exact
);
2913 up
->pow
= isl_union_map_from_map(map
);
2918 /* Construct a map [x] -> [x+1], with parameters prescribed by "dim".
2920 static __isl_give isl_union_map
*increment(__isl_take isl_space
*dim
)
2923 isl_basic_map
*bmap
;
2925 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2926 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2927 bmap
= isl_basic_map_alloc_space(dim
, 0, 1, 0);
2928 k
= isl_basic_map_alloc_equality(bmap
);
2931 isl_seq_clr(bmap
->eq
[k
], isl_basic_map_total_dim(bmap
));
2932 isl_int_set_si(bmap
->eq
[k
][0], 1);
2933 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_in
)], 1);
2934 isl_int_set_si(bmap
->eq
[k
][isl_basic_map_offset(bmap
, isl_dim_out
)], -1);
2935 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2937 isl_basic_map_free(bmap
);
2941 /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim".
2943 static __isl_give isl_union_map
*deltas_map(__isl_take isl_space
*dim
)
2945 isl_basic_map
*bmap
;
2947 dim
= isl_space_add_dims(dim
, isl_dim_in
, 1);
2948 dim
= isl_space_add_dims(dim
, isl_dim_out
, 1);
2949 bmap
= isl_basic_map_universe(dim
);
2950 bmap
= isl_basic_map_deltas_map(bmap
);
2952 return isl_union_map_from_map(isl_map_from_basic_map(bmap
));
2955 /* Compute the positive powers of "map", or an overapproximation.
2956 * The result maps the exponent to a nested copy of the corresponding power.
2957 * If the result is exact, then *exact is set to 1.
2959 __isl_give isl_union_map
*isl_union_map_power(__isl_take isl_union_map
*umap
,
2968 n
= isl_union_map_n_map(umap
);
2972 struct isl_union_power up
= { NULL
, exact
};
2973 isl_union_map_foreach_map(umap
, &power
, &up
);
2974 isl_union_map_free(umap
);
2977 inc
= increment(isl_union_map_get_space(umap
));
2978 umap
= isl_union_map_product(inc
, umap
);
2979 umap
= isl_union_map_transitive_closure(umap
, exact
);
2980 umap
= isl_union_map_zip(umap
);
2981 dm
= deltas_map(isl_union_map_get_space(umap
));
2982 umap
= isl_union_map_apply_domain(umap
, dm
);
2988 #define TYPE isl_map
2989 #include "isl_power_templ.c"
2992 #define TYPE isl_union_map
2993 #include "isl_power_templ.c"