2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include "isl_equalities.h"
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
25 static void swap_equality(struct isl_basic_map
*bmap
, int a
, int b
)
27 isl_int
*t
= bmap
->eq
[a
];
28 bmap
->eq
[a
] = bmap
->eq
[b
];
32 static void swap_inequality(struct isl_basic_map
*bmap
, int a
, int b
)
35 isl_int
*t
= bmap
->ineq
[a
];
36 bmap
->ineq
[a
] = bmap
->ineq
[b
];
41 static void constraint_drop_vars(isl_int
*c
, unsigned n
, unsigned rem
)
43 isl_seq_cpy(c
, c
+ n
, rem
);
44 isl_seq_clr(c
+ rem
, n
);
47 /* Drop n dimensions starting at first.
49 * In principle, this frees up some extra variables as the number
50 * of columns remains constant, but we would have to extend
51 * the div array too as the number of rows in this array is assumed
52 * to be equal to extra.
54 struct isl_basic_set
*isl_basic_set_drop_dims(
55 struct isl_basic_set
*bset
, unsigned first
, unsigned n
)
62 isl_assert(bset
->ctx
, first
+ n
<= bset
->dim
->n_out
, goto error
);
64 if (n
== 0 && !isl_space_get_tuple_name(bset
->dim
, isl_dim_set
))
67 bset
= isl_basic_set_cow(bset
);
71 for (i
= 0; i
< bset
->n_eq
; ++i
)
72 constraint_drop_vars(bset
->eq
[i
]+1+bset
->dim
->nparam
+first
, n
,
73 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
75 for (i
= 0; i
< bset
->n_ineq
; ++i
)
76 constraint_drop_vars(bset
->ineq
[i
]+1+bset
->dim
->nparam
+first
, n
,
77 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
79 for (i
= 0; i
< bset
->n_div
; ++i
)
80 constraint_drop_vars(bset
->div
[i
]+1+1+bset
->dim
->nparam
+first
, n
,
81 (bset
->dim
->n_out
-first
-n
)+bset
->extra
);
83 bset
->dim
= isl_space_drop_outputs(bset
->dim
, first
, n
);
87 ISL_F_CLR(bset
, ISL_BASIC_SET_NORMALIZED
);
88 bset
= isl_basic_set_simplify(bset
);
89 return isl_basic_set_finalize(bset
);
91 isl_basic_set_free(bset
);
95 struct isl_set
*isl_set_drop_dims(
96 struct isl_set
*set
, unsigned first
, unsigned n
)
103 isl_assert(set
->ctx
, first
+ n
<= set
->dim
->n_out
, goto error
);
105 if (n
== 0 && !isl_space_get_tuple_name(set
->dim
, isl_dim_set
))
107 set
= isl_set_cow(set
);
110 set
->dim
= isl_space_drop_outputs(set
->dim
, first
, n
);
114 for (i
= 0; i
< set
->n
; ++i
) {
115 set
->p
[i
] = isl_basic_set_drop_dims(set
->p
[i
], first
, n
);
120 ISL_F_CLR(set
, ISL_SET_NORMALIZED
);
127 /* Move "n" divs starting at "first" to the end of the list of divs.
129 static struct isl_basic_map
*move_divs_last(struct isl_basic_map
*bmap
,
130 unsigned first
, unsigned n
)
135 if (first
+ n
== bmap
->n_div
)
138 div
= isl_alloc_array(bmap
->ctx
, isl_int
*, n
);
141 for (i
= 0; i
< n
; ++i
)
142 div
[i
] = bmap
->div
[first
+ i
];
143 for (i
= 0; i
< bmap
->n_div
- first
- n
; ++i
)
144 bmap
->div
[first
+ i
] = bmap
->div
[first
+ n
+ i
];
145 for (i
= 0; i
< n
; ++i
)
146 bmap
->div
[bmap
->n_div
- n
+ i
] = div
[i
];
150 isl_basic_map_free(bmap
);
154 /* Drop "n" dimensions of type "type" starting at "first".
156 * In principle, this frees up some extra variables as the number
157 * of columns remains constant, but we would have to extend
158 * the div array too as the number of rows in this array is assumed
159 * to be equal to extra.
161 struct isl_basic_map
*isl_basic_map_drop(struct isl_basic_map
*bmap
,
162 enum isl_dim_type type
, unsigned first
, unsigned n
)
172 dim
= isl_basic_map_dim(bmap
, type
);
173 isl_assert(bmap
->ctx
, first
+ n
<= dim
, goto error
);
175 if (n
== 0 && !isl_space_is_named_or_nested(bmap
->dim
, type
))
178 bmap
= isl_basic_map_cow(bmap
);
182 offset
= isl_basic_map_offset(bmap
, type
) + first
;
183 left
= isl_basic_map_total_dim(bmap
) - (offset
- 1) - n
;
184 for (i
= 0; i
< bmap
->n_eq
; ++i
)
185 constraint_drop_vars(bmap
->eq
[i
]+offset
, n
, left
);
187 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
188 constraint_drop_vars(bmap
->ineq
[i
]+offset
, n
, left
);
190 for (i
= 0; i
< bmap
->n_div
; ++i
)
191 constraint_drop_vars(bmap
->div
[i
]+1+offset
, n
, left
);
193 if (type
== isl_dim_div
) {
194 bmap
= move_divs_last(bmap
, first
, n
);
197 isl_basic_map_free_div(bmap
, n
);
199 bmap
->dim
= isl_space_drop_dims(bmap
->dim
, type
, first
, n
);
203 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
204 bmap
= isl_basic_map_simplify(bmap
);
205 return isl_basic_map_finalize(bmap
);
207 isl_basic_map_free(bmap
);
211 __isl_give isl_basic_set
*isl_basic_set_drop(__isl_take isl_basic_set
*bset
,
212 enum isl_dim_type type
, unsigned first
, unsigned n
)
214 return (isl_basic_set
*)isl_basic_map_drop((isl_basic_map
*)bset
,
218 struct isl_basic_map
*isl_basic_map_drop_inputs(
219 struct isl_basic_map
*bmap
, unsigned first
, unsigned n
)
221 return isl_basic_map_drop(bmap
, isl_dim_in
, first
, n
);
224 struct isl_map
*isl_map_drop(struct isl_map
*map
,
225 enum isl_dim_type type
, unsigned first
, unsigned n
)
232 isl_assert(map
->ctx
, first
+ n
<= isl_map_dim(map
, type
), goto error
);
234 if (n
== 0 && !isl_space_get_tuple_name(map
->dim
, type
))
236 map
= isl_map_cow(map
);
239 map
->dim
= isl_space_drop_dims(map
->dim
, type
, first
, n
);
243 for (i
= 0; i
< map
->n
; ++i
) {
244 map
->p
[i
] = isl_basic_map_drop(map
->p
[i
], type
, first
, n
);
248 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
256 struct isl_set
*isl_set_drop(struct isl_set
*set
,
257 enum isl_dim_type type
, unsigned first
, unsigned n
)
259 return (isl_set
*)isl_map_drop((isl_map
*)set
, type
, first
, n
);
262 struct isl_map
*isl_map_drop_inputs(
263 struct isl_map
*map
, unsigned first
, unsigned n
)
265 return isl_map_drop(map
, isl_dim_in
, first
, n
);
269 * We don't cow, as the div is assumed to be redundant.
271 static struct isl_basic_map
*isl_basic_map_drop_div(
272 struct isl_basic_map
*bmap
, unsigned div
)
280 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
282 isl_assert(bmap
->ctx
, div
< bmap
->n_div
, goto error
);
284 for (i
= 0; i
< bmap
->n_eq
; ++i
)
285 constraint_drop_vars(bmap
->eq
[i
]+pos
, 1, bmap
->extra
-div
-1);
287 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
288 if (!isl_int_is_zero(bmap
->ineq
[i
][pos
])) {
289 isl_basic_map_drop_inequality(bmap
, i
);
293 constraint_drop_vars(bmap
->ineq
[i
]+pos
, 1, bmap
->extra
-div
-1);
296 for (i
= 0; i
< bmap
->n_div
; ++i
)
297 constraint_drop_vars(bmap
->div
[i
]+1+pos
, 1, bmap
->extra
-div
-1);
299 if (div
!= bmap
->n_div
- 1) {
301 isl_int
*t
= bmap
->div
[div
];
303 for (j
= div
; j
< bmap
->n_div
- 1; ++j
)
304 bmap
->div
[j
] = bmap
->div
[j
+1];
306 bmap
->div
[bmap
->n_div
- 1] = t
;
308 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
309 isl_basic_map_free_div(bmap
, 1);
313 isl_basic_map_free(bmap
);
317 struct isl_basic_map
*isl_basic_map_normalize_constraints(
318 struct isl_basic_map
*bmap
)
322 unsigned total
= isl_basic_map_total_dim(bmap
);
328 for (i
= bmap
->n_eq
- 1; i
>= 0; --i
) {
329 isl_seq_gcd(bmap
->eq
[i
]+1, total
, &gcd
);
330 if (isl_int_is_zero(gcd
)) {
331 if (!isl_int_is_zero(bmap
->eq
[i
][0])) {
332 bmap
= isl_basic_map_set_to_empty(bmap
);
335 isl_basic_map_drop_equality(bmap
, i
);
338 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
339 isl_int_gcd(gcd
, gcd
, bmap
->eq
[i
][0]);
340 if (isl_int_is_one(gcd
))
342 if (!isl_int_is_divisible_by(bmap
->eq
[i
][0], gcd
)) {
343 bmap
= isl_basic_map_set_to_empty(bmap
);
346 isl_seq_scale_down(bmap
->eq
[i
], bmap
->eq
[i
], gcd
, 1+total
);
349 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
350 isl_seq_gcd(bmap
->ineq
[i
]+1, total
, &gcd
);
351 if (isl_int_is_zero(gcd
)) {
352 if (isl_int_is_neg(bmap
->ineq
[i
][0])) {
353 bmap
= isl_basic_map_set_to_empty(bmap
);
356 isl_basic_map_drop_inequality(bmap
, i
);
359 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
))
360 isl_int_gcd(gcd
, gcd
, bmap
->ineq
[i
][0]);
361 if (isl_int_is_one(gcd
))
363 isl_int_fdiv_q(bmap
->ineq
[i
][0], bmap
->ineq
[i
][0], gcd
);
364 isl_seq_scale_down(bmap
->ineq
[i
]+1, bmap
->ineq
[i
]+1, gcd
, total
);
371 struct isl_basic_set
*isl_basic_set_normalize_constraints(
372 struct isl_basic_set
*bset
)
374 return (struct isl_basic_set
*)isl_basic_map_normalize_constraints(
375 (struct isl_basic_map
*)bset
);
378 /* Assuming the variable at position "pos" has an integer coefficient
379 * in integer division "div", extract it from this integer division.
380 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
381 * corresponds to the constant term.
383 * That is, the integer division is of the form
385 * floor((... + c * d * x_pos + ...)/d)
389 * floor((... + 0 * x_pos + ...)/d) + c * x_pos
391 static __isl_give isl_basic_map
*remove_var_from_div(
392 __isl_take isl_basic_map
*bmap
, int div
, int pos
)
397 isl_int_divexact(shift
, bmap
->div
[div
][1 + pos
], bmap
->div
[div
][0]);
398 isl_int_neg(shift
, shift
);
399 bmap
= isl_basic_map_shift_div(bmap
, div
, pos
, shift
);
400 isl_int_clear(shift
);
405 /* Check if integer division "div" has any integral coefficient
406 * (or constant term). If so, extract them from the integer division.
408 static __isl_give isl_basic_map
*remove_independent_vars_from_div(
409 __isl_take isl_basic_map
*bmap
, int div
)
412 unsigned total
= 1 + isl_basic_map_total_dim(bmap
);
414 for (i
= 0; i
< total
; ++i
) {
415 if (isl_int_is_zero(bmap
->div
[div
][1 + i
]))
417 if (!isl_int_is_divisible_by(bmap
->div
[div
][1 + i
],
420 bmap
= remove_var_from_div(bmap
, div
, i
);
428 /* Check if any known integer division has any integral coefficient
429 * (or constant term). If so, extract them from the integer division.
431 static __isl_give isl_basic_map
*remove_independent_vars_from_divs(
432 __isl_take isl_basic_map
*bmap
)
438 if (bmap
->n_div
== 0)
441 for (i
= 0; i
< bmap
->n_div
; ++i
) {
442 if (isl_int_is_zero(bmap
->div
[i
][0]))
444 bmap
= remove_independent_vars_from_div(bmap
, i
);
452 /* Remove any common factor in numerator and denominator of the div expression,
453 * not taking into account the constant term.
454 * That is, if the div is of the form
456 * floor((a + m f(x))/(m d))
460 * floor((floor(a/m) + f(x))/d)
462 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
463 * and can therefore not influence the result of the floor.
465 static void normalize_div_expression(__isl_keep isl_basic_map
*bmap
, int div
)
467 unsigned total
= isl_basic_map_total_dim(bmap
);
468 isl_ctx
*ctx
= bmap
->ctx
;
470 if (isl_int_is_zero(bmap
->div
[div
][0]))
472 isl_seq_gcd(bmap
->div
[div
] + 2, total
, &ctx
->normalize_gcd
);
473 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, bmap
->div
[div
][0]);
474 if (isl_int_is_one(ctx
->normalize_gcd
))
476 isl_int_fdiv_q(bmap
->div
[div
][1], bmap
->div
[div
][1],
478 isl_int_divexact(bmap
->div
[div
][0], bmap
->div
[div
][0],
480 isl_seq_scale_down(bmap
->div
[div
] + 2, bmap
->div
[div
] + 2,
481 ctx
->normalize_gcd
, total
);
484 /* Remove any common factor in numerator and denominator of a div expression,
485 * not taking into account the constant term.
486 * That is, look for any div of the form
488 * floor((a + m f(x))/(m d))
492 * floor((floor(a/m) + f(x))/d)
494 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
495 * and can therefore not influence the result of the floor.
497 static __isl_give isl_basic_map
*normalize_div_expressions(
498 __isl_take isl_basic_map
*bmap
)
504 if (bmap
->n_div
== 0)
507 for (i
= 0; i
< bmap
->n_div
; ++i
)
508 normalize_div_expression(bmap
, i
);
513 /* Assumes divs have been ordered if keep_divs is set.
515 static void eliminate_var_using_equality(struct isl_basic_map
*bmap
,
516 unsigned pos
, isl_int
*eq
, int keep_divs
, int *progress
)
519 unsigned space_total
;
523 total
= isl_basic_map_total_dim(bmap
);
524 space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
525 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
526 for (k
= 0; k
< bmap
->n_eq
; ++k
) {
527 if (bmap
->eq
[k
] == eq
)
529 if (isl_int_is_zero(bmap
->eq
[k
][1+pos
]))
533 isl_seq_elim(bmap
->eq
[k
], eq
, 1+pos
, 1+total
, NULL
);
534 isl_seq_normalize(bmap
->ctx
, bmap
->eq
[k
], 1 + total
);
537 for (k
= 0; k
< bmap
->n_ineq
; ++k
) {
538 if (isl_int_is_zero(bmap
->ineq
[k
][1+pos
]))
542 isl_seq_elim(bmap
->ineq
[k
], eq
, 1+pos
, 1+total
, NULL
);
543 isl_seq_normalize(bmap
->ctx
, bmap
->ineq
[k
], 1 + total
);
544 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
547 for (k
= 0; k
< bmap
->n_div
; ++k
) {
548 if (isl_int_is_zero(bmap
->div
[k
][0]))
550 if (isl_int_is_zero(bmap
->div
[k
][1+1+pos
]))
554 /* We need to be careful about circular definitions,
555 * so for now we just remove the definition of div k
556 * if the equality contains any divs.
557 * If keep_divs is set, then the divs have been ordered
558 * and we can keep the definition as long as the result
561 if (last_div
== -1 || (keep_divs
&& last_div
< k
)) {
562 isl_seq_elim(bmap
->div
[k
]+1, eq
,
563 1+pos
, 1+total
, &bmap
->div
[k
][0]);
564 normalize_div_expression(bmap
, k
);
566 isl_seq_clr(bmap
->div
[k
], 1 + total
);
567 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
571 /* Assumes divs have been ordered if keep_divs is set.
573 static __isl_give isl_basic_map
*eliminate_div(__isl_take isl_basic_map
*bmap
,
574 isl_int
*eq
, unsigned div
, int keep_divs
)
576 unsigned pos
= isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
578 eliminate_var_using_equality(bmap
, pos
, eq
, keep_divs
, NULL
);
580 bmap
= isl_basic_map_drop_div(bmap
, div
);
585 /* Check if elimination of div "div" using equality "eq" would not
586 * result in a div depending on a later div.
588 static int ok_to_eliminate_div(struct isl_basic_map
*bmap
, isl_int
*eq
,
593 unsigned space_total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
594 unsigned pos
= space_total
+ div
;
596 last_div
= isl_seq_last_non_zero(eq
+ 1 + space_total
, bmap
->n_div
);
597 if (last_div
< 0 || last_div
<= div
)
600 for (k
= 0; k
<= last_div
; ++k
) {
601 if (isl_int_is_zero(bmap
->div
[k
][0]))
603 if (!isl_int_is_zero(bmap
->div
[k
][1 + 1 + pos
]))
610 /* Elimininate divs based on equalities
612 static struct isl_basic_map
*eliminate_divs_eq(
613 struct isl_basic_map
*bmap
, int *progress
)
620 bmap
= isl_basic_map_order_divs(bmap
);
625 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
627 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
628 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
629 if (!isl_int_is_one(bmap
->eq
[i
][off
+ d
]) &&
630 !isl_int_is_negone(bmap
->eq
[i
][off
+ d
]))
632 if (!ok_to_eliminate_div(bmap
, bmap
->eq
[i
], d
))
636 bmap
= eliminate_div(bmap
, bmap
->eq
[i
], d
, 1);
637 if (isl_basic_map_drop_equality(bmap
, i
) < 0)
638 return isl_basic_map_free(bmap
);
643 return eliminate_divs_eq(bmap
, progress
);
647 /* Elimininate divs based on inequalities
649 static struct isl_basic_map
*eliminate_divs_ineq(
650 struct isl_basic_map
*bmap
, int *progress
)
661 off
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
663 for (d
= bmap
->n_div
- 1; d
>= 0 ; --d
) {
664 for (i
= 0; i
< bmap
->n_eq
; ++i
)
665 if (!isl_int_is_zero(bmap
->eq
[i
][off
+ d
]))
669 for (i
= 0; i
< bmap
->n_ineq
; ++i
)
670 if (isl_int_abs_gt(bmap
->ineq
[i
][off
+ d
], ctx
->one
))
672 if (i
< bmap
->n_ineq
)
675 bmap
= isl_basic_map_eliminate_vars(bmap
, (off
-1)+d
, 1);
676 if (!bmap
|| ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
678 bmap
= isl_basic_map_drop_div(bmap
, d
);
685 struct isl_basic_map
*isl_basic_map_gauss(
686 struct isl_basic_map
*bmap
, int *progress
)
694 bmap
= isl_basic_map_order_divs(bmap
);
699 total
= isl_basic_map_total_dim(bmap
);
700 total_var
= total
- bmap
->n_div
;
702 last_var
= total
- 1;
703 for (done
= 0; done
< bmap
->n_eq
; ++done
) {
704 for (; last_var
>= 0; --last_var
) {
705 for (k
= done
; k
< bmap
->n_eq
; ++k
)
706 if (!isl_int_is_zero(bmap
->eq
[k
][1+last_var
]))
714 swap_equality(bmap
, k
, done
);
715 if (isl_int_is_neg(bmap
->eq
[done
][1+last_var
]))
716 isl_seq_neg(bmap
->eq
[done
], bmap
->eq
[done
], 1+total
);
718 eliminate_var_using_equality(bmap
, last_var
, bmap
->eq
[done
], 1,
721 if (last_var
>= total_var
&&
722 isl_int_is_zero(bmap
->div
[last_var
- total_var
][0])) {
723 unsigned div
= last_var
- total_var
;
724 isl_seq_neg(bmap
->div
[div
]+1, bmap
->eq
[done
], 1+total
);
725 isl_int_set_si(bmap
->div
[div
][1+1+last_var
], 0);
726 isl_int_set(bmap
->div
[div
][0],
727 bmap
->eq
[done
][1+last_var
]);
730 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
733 if (done
== bmap
->n_eq
)
735 for (k
= done
; k
< bmap
->n_eq
; ++k
) {
736 if (isl_int_is_zero(bmap
->eq
[k
][0]))
738 return isl_basic_map_set_to_empty(bmap
);
740 isl_basic_map_free_equality(bmap
, bmap
->n_eq
-done
);
744 struct isl_basic_set
*isl_basic_set_gauss(
745 struct isl_basic_set
*bset
, int *progress
)
747 return (struct isl_basic_set
*)isl_basic_map_gauss(
748 (struct isl_basic_map
*)bset
, progress
);
752 static unsigned int round_up(unsigned int v
)
763 /* Hash table of inequalities in a basic map.
764 * "index" is an array of addresses of inequalities in the basic map, some
765 * of which are NULL. The inequalities are hashed on the coefficients
766 * except the constant term.
767 * "size" is the number of elements in the array and is always a power of two
768 * "bits" is the number of bits need to represent an index into the array.
769 * "total" is the total dimension of the basic map.
771 struct isl_constraint_index
{
778 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
780 static isl_stat
create_constraint_index(struct isl_constraint_index
*ci
,
781 __isl_keep isl_basic_map
*bmap
)
787 return isl_stat_error
;
788 ci
->total
= isl_basic_set_total_dim(bmap
);
789 if (bmap
->n_ineq
== 0)
791 ci
->size
= round_up(4 * (bmap
->n_ineq
+ 1) / 3 - 1);
792 ci
->bits
= ffs(ci
->size
) - 1;
793 ctx
= isl_basic_map_get_ctx(bmap
);
794 ci
->index
= isl_calloc_array(ctx
, isl_int
**, ci
->size
);
796 return isl_stat_error
;
801 /* Free the memory allocated by create_constraint_index.
803 static void constraint_index_free(struct isl_constraint_index
*ci
)
808 /* Return the position in ci->index that contains the address of
809 * an inequality that is equal to *ineq up to the constant term,
810 * provided this address is not identical to "ineq".
811 * If there is no such inequality, then return the position where
812 * such an inequality should be inserted.
814 static int hash_index_ineq(struct isl_constraint_index
*ci
, isl_int
**ineq
)
817 uint32_t hash
= isl_seq_get_hash_bits((*ineq
) + 1, ci
->total
, ci
->bits
);
818 for (h
= hash
; ci
->index
[h
]; h
= (h
+1) % ci
->size
)
819 if (ineq
!= ci
->index
[h
] &&
820 isl_seq_eq((*ineq
) + 1, ci
->index
[h
][0]+1, ci
->total
))
825 /* Return the position in ci->index that contains the address of
826 * an inequality that is equal to the k'th inequality of "bmap"
827 * up to the constant term, provided it does not point to the very
829 * If there is no such inequality, then return the position where
830 * such an inequality should be inserted.
832 static int hash_index(struct isl_constraint_index
*ci
,
833 __isl_keep isl_basic_map
*bmap
, int k
)
835 return hash_index_ineq(ci
, &bmap
->ineq
[k
]);
838 static int set_hash_index(struct isl_constraint_index
*ci
,
839 struct isl_basic_set
*bset
, int k
)
841 return hash_index(ci
, bset
, k
);
844 /* Fill in the "ci" data structure with the inequalities of "bset".
846 static isl_stat
setup_constraint_index(struct isl_constraint_index
*ci
,
847 __isl_keep isl_basic_set
*bset
)
851 if (create_constraint_index(ci
, bset
) < 0)
852 return isl_stat_error
;
854 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
855 h
= set_hash_index(ci
, bset
, k
);
856 ci
->index
[h
] = &bset
->ineq
[k
];
862 /* If we can eliminate more than one div, then we need to make
863 * sure we do it from last div to first div, in order not to
864 * change the position of the other divs that still need to
867 static struct isl_basic_map
*remove_duplicate_divs(
868 struct isl_basic_map
*bmap
, int *progress
)
880 bmap
= isl_basic_map_order_divs(bmap
);
881 if (!bmap
|| bmap
->n_div
<= 1)
884 total_var
= isl_space_dim(bmap
->dim
, isl_dim_all
);
885 total
= total_var
+ bmap
->n_div
;
888 for (k
= bmap
->n_div
- 1; k
>= 0; --k
)
889 if (!isl_int_is_zero(bmap
->div
[k
][0]))
894 size
= round_up(4 * bmap
->n_div
/ 3 - 1);
897 elim_for
= isl_calloc_array(ctx
, int, bmap
->n_div
);
898 bits
= ffs(size
) - 1;
899 index
= isl_calloc_array(ctx
, int, size
);
900 if (!elim_for
|| !index
)
902 eq
= isl_blk_alloc(ctx
, 1+total
);
903 if (isl_blk_is_error(eq
))
906 isl_seq_clr(eq
.data
, 1+total
);
907 index
[isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
)] = k
+ 1;
908 for (--k
; k
>= 0; --k
) {
911 if (isl_int_is_zero(bmap
->div
[k
][0]))
914 hash
= isl_seq_get_hash_bits(bmap
->div
[k
], 2+total
, bits
);
915 for (h
= hash
; index
[h
]; h
= (h
+1) % size
)
916 if (isl_seq_eq(bmap
->div
[k
],
917 bmap
->div
[index
[h
]-1], 2+total
))
926 for (l
= bmap
->n_div
- 1; l
>= 0; --l
) {
930 isl_int_set_si(eq
.data
[1+total_var
+k
], -1);
931 isl_int_set_si(eq
.data
[1+total_var
+l
], 1);
932 bmap
= eliminate_div(bmap
, eq
.data
, l
, 1);
935 isl_int_set_si(eq
.data
[1+total_var
+k
], 0);
936 isl_int_set_si(eq
.data
[1+total_var
+l
], 0);
939 isl_blk_free(ctx
, eq
);
946 static int n_pure_div_eq(struct isl_basic_map
*bmap
)
951 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
952 for (i
= 0, j
= bmap
->n_div
-1; i
< bmap
->n_eq
; ++i
) {
953 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
957 if (isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + total
, j
) != -1)
963 /* Normalize divs that appear in equalities.
965 * In particular, we assume that bmap contains some equalities
970 * and we want to replace the set of e_i by a minimal set and
971 * such that the new e_i have a canonical representation in terms
973 * If any of the equalities involves more than one divs, then
974 * we currently simply bail out.
976 * Let us first additionally assume that all equalities involve
977 * a div. The equalities then express modulo constraints on the
978 * remaining variables and we can use "parameter compression"
979 * to find a minimal set of constraints. The result is a transformation
981 * x = T(x') = x_0 + G x'
983 * with G a lower-triangular matrix with all elements below the diagonal
984 * non-negative and smaller than the diagonal element on the same row.
985 * We first normalize x_0 by making the same property hold in the affine
987 * The rows i of G with a 1 on the diagonal do not impose any modulo
988 * constraint and simply express x_i = x'_i.
989 * For each of the remaining rows i, we introduce a div and a corresponding
990 * equality. In particular
992 * g_ii e_j = x_i - g_i(x')
994 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
995 * corresponding div (if g_kk != 1).
997 * If there are any equalities not involving any div, then we
998 * first apply a variable compression on the variables x:
1000 * x = C x'' x'' = C_2 x
1002 * and perform the above parameter compression on A C instead of on A.
1003 * The resulting compression is then of the form
1005 * x'' = T(x') = x_0 + G x'
1007 * and in constructing the new divs and the corresponding equalities,
1008 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1009 * by the corresponding row from C_2.
1011 static struct isl_basic_map
*normalize_divs(
1012 struct isl_basic_map
*bmap
, int *progress
)
1019 struct isl_mat
*T
= NULL
;
1020 struct isl_mat
*C
= NULL
;
1021 struct isl_mat
*C2
= NULL
;
1024 int dropped
, needed
;
1029 if (bmap
->n_div
== 0)
1032 if (bmap
->n_eq
== 0)
1035 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
))
1038 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1039 div_eq
= n_pure_div_eq(bmap
);
1043 if (div_eq
< bmap
->n_eq
) {
1044 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, div_eq
,
1045 bmap
->n_eq
- div_eq
, 0, 1 + total
);
1046 C
= isl_mat_variable_compression(B
, &C2
);
1049 if (C
->n_col
== 0) {
1050 bmap
= isl_basic_map_set_to_empty(bmap
);
1057 d
= isl_vec_alloc(bmap
->ctx
, div_eq
);
1060 for (i
= 0, j
= bmap
->n_div
-1; i
< div_eq
; ++i
) {
1061 while (j
>= 0 && isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1063 isl_int_set(d
->block
.data
[i
], bmap
->eq
[i
][1 + total
+ j
]);
1065 B
= isl_mat_sub_alloc6(bmap
->ctx
, bmap
->eq
, 0, div_eq
, 0, 1 + total
);
1068 B
= isl_mat_product(B
, C
);
1072 T
= isl_mat_parameter_compression(B
, d
);
1075 if (T
->n_col
== 0) {
1076 bmap
= isl_basic_map_set_to_empty(bmap
);
1082 for (i
= 0; i
< T
->n_row
- 1; ++i
) {
1083 isl_int_fdiv_q(v
, T
->row
[1 + i
][0], T
->row
[1 + i
][1 + i
]);
1084 if (isl_int_is_zero(v
))
1086 isl_mat_col_submul(T
, 0, v
, 1 + i
);
1089 pos
= isl_alloc_array(bmap
->ctx
, int, T
->n_row
);
1092 /* We have to be careful because dropping equalities may reorder them */
1094 for (j
= bmap
->n_div
- 1; j
>= 0; --j
) {
1095 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1096 if (!isl_int_is_zero(bmap
->eq
[i
][1 + total
+ j
]))
1098 if (i
< bmap
->n_eq
) {
1099 bmap
= isl_basic_map_drop_div(bmap
, j
);
1100 isl_basic_map_drop_equality(bmap
, i
);
1106 for (i
= 1; i
< T
->n_row
; ++i
) {
1107 if (isl_int_is_one(T
->row
[i
][i
]))
1112 if (needed
> dropped
) {
1113 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
1118 for (i
= 1; i
< T
->n_row
; ++i
) {
1119 if (isl_int_is_one(T
->row
[i
][i
]))
1121 k
= isl_basic_map_alloc_div(bmap
);
1122 pos
[i
] = 1 + total
+ k
;
1123 isl_seq_clr(bmap
->div
[k
] + 1, 1 + total
+ bmap
->n_div
);
1124 isl_int_set(bmap
->div
[k
][0], T
->row
[i
][i
]);
1126 isl_seq_cpy(bmap
->div
[k
] + 1, C2
->row
[i
], 1 + total
);
1128 isl_int_set_si(bmap
->div
[k
][1 + i
], 1);
1129 for (j
= 0; j
< i
; ++j
) {
1130 if (isl_int_is_zero(T
->row
[i
][j
]))
1132 if (pos
[j
] < T
->n_row
&& C2
)
1133 isl_seq_submul(bmap
->div
[k
] + 1, T
->row
[i
][j
],
1134 C2
->row
[pos
[j
]], 1 + total
);
1136 isl_int_neg(bmap
->div
[k
][1 + pos
[j
]],
1139 j
= isl_basic_map_alloc_equality(bmap
);
1140 isl_seq_neg(bmap
->eq
[j
], bmap
->div
[k
]+1, 1+total
+bmap
->n_div
);
1141 isl_int_set(bmap
->eq
[j
][pos
[i
]], bmap
->div
[k
][0]);
1150 ISL_F_SET(bmap
, ISL_BASIC_MAP_NORMALIZED_DIVS
);
1160 static struct isl_basic_map
*set_div_from_lower_bound(
1161 struct isl_basic_map
*bmap
, int div
, int ineq
)
1163 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1165 isl_seq_neg(bmap
->div
[div
] + 1, bmap
->ineq
[ineq
], total
+ bmap
->n_div
);
1166 isl_int_set(bmap
->div
[div
][0], bmap
->ineq
[ineq
][total
+ div
]);
1167 isl_int_add(bmap
->div
[div
][1], bmap
->div
[div
][1], bmap
->div
[div
][0]);
1168 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1169 isl_int_set_si(bmap
->div
[div
][1 + total
+ div
], 0);
1174 /* Check whether it is ok to define a div based on an inequality.
1175 * To avoid the introduction of circular definitions of divs, we
1176 * do not allow such a definition if the resulting expression would refer to
1177 * any other undefined divs or if any known div is defined in
1178 * terms of the unknown div.
1180 static int ok_to_set_div_from_bound(struct isl_basic_map
*bmap
,
1184 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1186 /* Not defined in terms of unknown divs */
1187 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1190 if (isl_int_is_zero(bmap
->ineq
[ineq
][total
+ j
]))
1192 if (isl_int_is_zero(bmap
->div
[j
][0]))
1196 /* No other div defined in terms of this one => avoid loops */
1197 for (j
= 0; j
< bmap
->n_div
; ++j
) {
1200 if (isl_int_is_zero(bmap
->div
[j
][0]))
1202 if (!isl_int_is_zero(bmap
->div
[j
][1 + total
+ div
]))
1209 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1210 * be a better expression than the current one?
1212 * If we do not have any expression yet, then any expression would be better.
1213 * Otherwise we check if the last variable involved in the inequality
1214 * (disregarding the div that it would define) is in an earlier position
1215 * than the last variable involved in the current div expression.
1217 static int better_div_constraint(__isl_keep isl_basic_map
*bmap
,
1220 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1224 if (isl_int_is_zero(bmap
->div
[div
][0]))
1227 if (isl_seq_last_non_zero(bmap
->ineq
[ineq
] + total
+ div
+ 1,
1228 bmap
->n_div
- (div
+ 1)) >= 0)
1231 last_ineq
= isl_seq_last_non_zero(bmap
->ineq
[ineq
], total
+ div
);
1232 last_div
= isl_seq_last_non_zero(bmap
->div
[div
] + 1,
1233 total
+ bmap
->n_div
);
1235 return last_ineq
< last_div
;
1238 /* Given two constraints "k" and "l" that are opposite to each other,
1239 * except for the constant term, check if we can use them
1240 * to obtain an expression for one of the hitherto unknown divs or
1241 * a "better" expression for a div for which we already have an expression.
1242 * "sum" is the sum of the constant terms of the constraints.
1243 * If this sum is strictly smaller than the coefficient of one
1244 * of the divs, then this pair can be used define the div.
1245 * To avoid the introduction of circular definitions of divs, we
1246 * do not use the pair if the resulting expression would refer to
1247 * any other undefined divs or if any known div is defined in
1248 * terms of the unknown div.
1250 static struct isl_basic_map
*check_for_div_constraints(
1251 struct isl_basic_map
*bmap
, int k
, int l
, isl_int sum
, int *progress
)
1254 unsigned total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1256 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1257 if (isl_int_is_zero(bmap
->ineq
[k
][total
+ i
]))
1259 if (isl_int_abs_ge(sum
, bmap
->ineq
[k
][total
+ i
]))
1261 if (!better_div_constraint(bmap
, i
, k
))
1263 if (!ok_to_set_div_from_bound(bmap
, i
, k
))
1265 if (isl_int_is_pos(bmap
->ineq
[k
][total
+ i
]))
1266 bmap
= set_div_from_lower_bound(bmap
, i
, k
);
1268 bmap
= set_div_from_lower_bound(bmap
, i
, l
);
1276 __isl_give isl_basic_map
*isl_basic_map_remove_duplicate_constraints(
1277 __isl_take isl_basic_map
*bmap
, int *progress
, int detect_divs
)
1279 struct isl_constraint_index ci
;
1281 unsigned total
= isl_basic_map_total_dim(bmap
);
1284 if (!bmap
|| bmap
->n_ineq
<= 1)
1287 if (create_constraint_index(&ci
, bmap
) < 0)
1290 h
= isl_seq_get_hash_bits(bmap
->ineq
[0] + 1, total
, ci
.bits
);
1291 ci
.index
[h
] = &bmap
->ineq
[0];
1292 for (k
= 1; k
< bmap
->n_ineq
; ++k
) {
1293 h
= hash_index(&ci
, bmap
, k
);
1295 ci
.index
[h
] = &bmap
->ineq
[k
];
1300 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1301 if (isl_int_lt(bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]))
1302 swap_inequality(bmap
, k
, l
);
1303 isl_basic_map_drop_inequality(bmap
, k
);
1307 for (k
= 0; k
< bmap
->n_ineq
-1; ++k
) {
1308 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1309 h
= hash_index(&ci
, bmap
, k
);
1310 isl_seq_neg(bmap
->ineq
[k
]+1, bmap
->ineq
[k
]+1, total
);
1313 l
= ci
.index
[h
] - &bmap
->ineq
[0];
1314 isl_int_add(sum
, bmap
->ineq
[k
][0], bmap
->ineq
[l
][0]);
1315 if (isl_int_is_pos(sum
)) {
1317 bmap
= check_for_div_constraints(bmap
, k
, l
,
1321 if (isl_int_is_zero(sum
)) {
1322 /* We need to break out of the loop after these
1323 * changes since the contents of the hash
1324 * will no longer be valid.
1325 * Plus, we probably we want to regauss first.
1329 isl_basic_map_drop_inequality(bmap
, l
);
1330 isl_basic_map_inequality_to_equality(bmap
, k
);
1332 bmap
= isl_basic_map_set_to_empty(bmap
);
1337 constraint_index_free(&ci
);
1341 /* Detect all pairs of inequalities that form an equality.
1343 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1344 * Call it repeatedly while it is making progress.
1346 __isl_give isl_basic_map
*isl_basic_map_detect_inequality_pairs(
1347 __isl_take isl_basic_map
*bmap
, int *progress
)
1353 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1355 if (progress
&& duplicate
)
1357 } while (duplicate
);
1362 /* Eliminate knowns divs from constraints where they appear with
1363 * a (positive or negative) unit coefficient.
1367 * floor(e/m) + f >= 0
1375 * -floor(e/m) + f >= 0
1379 * -e + m f + m - 1 >= 0
1381 * The first conversion is valid because floor(e/m) >= -f is equivalent
1382 * to e/m >= -f because -f is an integral expression.
1383 * The second conversion follows from the fact that
1385 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1388 * Note that one of the div constraints may have been eliminated
1389 * due to being redundant with respect to the constraint that is
1390 * being modified by this function. The modified constraint may
1391 * no longer imply this div constraint, so we add it back to make
1392 * sure we do not lose any information.
1394 * We skip integral divs, i.e., those with denominator 1, as we would
1395 * risk eliminating the div from the div constraints. We do not need
1396 * to handle those divs here anyway since the div constraints will turn
1397 * out to form an equality and this equality can then be use to eliminate
1398 * the div from all constraints.
1400 static __isl_give isl_basic_map
*eliminate_unit_divs(
1401 __isl_take isl_basic_map
*bmap
, int *progress
)
1410 ctx
= isl_basic_map_get_ctx(bmap
);
1411 total
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
);
1413 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1414 if (isl_int_is_zero(bmap
->div
[i
][0]))
1416 if (isl_int_is_one(bmap
->div
[i
][0]))
1418 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
1421 if (!isl_int_is_one(bmap
->ineq
[j
][total
+ i
]) &&
1422 !isl_int_is_negone(bmap
->ineq
[j
][total
+ i
]))
1427 s
= isl_int_sgn(bmap
->ineq
[j
][total
+ i
]);
1428 isl_int_set_si(bmap
->ineq
[j
][total
+ i
], 0);
1430 isl_seq_combine(bmap
->ineq
[j
],
1431 ctx
->negone
, bmap
->div
[i
] + 1,
1432 bmap
->div
[i
][0], bmap
->ineq
[j
],
1433 total
+ bmap
->n_div
);
1435 isl_seq_combine(bmap
->ineq
[j
],
1436 ctx
->one
, bmap
->div
[i
] + 1,
1437 bmap
->div
[i
][0], bmap
->ineq
[j
],
1438 total
+ bmap
->n_div
);
1440 isl_int_add(bmap
->ineq
[j
][0],
1441 bmap
->ineq
[j
][0], bmap
->div
[i
][0]);
1442 isl_int_sub_ui(bmap
->ineq
[j
][0],
1443 bmap
->ineq
[j
][0], 1);
1446 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
1447 if (isl_basic_map_add_div_constraint(bmap
, i
, s
) < 0)
1448 return isl_basic_map_free(bmap
);
1455 struct isl_basic_map
*isl_basic_map_simplify(struct isl_basic_map
*bmap
)
1464 if (isl_basic_map_plain_is_empty(bmap
))
1466 bmap
= isl_basic_map_normalize_constraints(bmap
);
1467 bmap
= remove_independent_vars_from_divs(bmap
);
1468 bmap
= normalize_div_expressions(bmap
);
1469 bmap
= remove_duplicate_divs(bmap
, &progress
);
1470 bmap
= eliminate_unit_divs(bmap
, &progress
);
1471 bmap
= eliminate_divs_eq(bmap
, &progress
);
1472 bmap
= eliminate_divs_ineq(bmap
, &progress
);
1473 bmap
= isl_basic_map_gauss(bmap
, &progress
);
1474 /* requires equalities in normal form */
1475 bmap
= normalize_divs(bmap
, &progress
);
1476 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1478 if (bmap
&& progress
)
1479 ISL_F_CLR(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
1484 struct isl_basic_set
*isl_basic_set_simplify(struct isl_basic_set
*bset
)
1486 return (struct isl_basic_set
*)
1487 isl_basic_map_simplify((struct isl_basic_map
*)bset
);
1491 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map
*bmap
,
1492 isl_int
*constraint
, unsigned div
)
1499 pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1501 if (isl_int_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1503 isl_int_sub(bmap
->div
[div
][1],
1504 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1505 isl_int_add_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1506 neg
= isl_seq_is_neg(constraint
, bmap
->div
[div
]+1, pos
);
1507 isl_int_sub_ui(bmap
->div
[div
][1], bmap
->div
[div
][1], 1);
1508 isl_int_add(bmap
->div
[div
][1],
1509 bmap
->div
[div
][1], bmap
->div
[div
][0]);
1512 if (isl_seq_first_non_zero(constraint
+pos
+1,
1513 bmap
->n_div
-div
-1) != -1)
1515 } else if (isl_int_abs_eq(constraint
[pos
], bmap
->div
[div
][0])) {
1516 if (!isl_seq_eq(constraint
, bmap
->div
[div
]+1, pos
))
1518 if (isl_seq_first_non_zero(constraint
+pos
+1,
1519 bmap
->n_div
-div
-1) != -1)
1527 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set
*bset
,
1528 isl_int
*constraint
, unsigned div
)
1530 return isl_basic_map_is_div_constraint(bset
, constraint
, div
);
1534 /* If the only constraints a div d=floor(f/m)
1535 * appears in are its two defining constraints
1538 * -(f - (m - 1)) + m d >= 0
1540 * then it can safely be removed.
1542 static int div_is_redundant(struct isl_basic_map
*bmap
, int div
)
1545 unsigned pos
= 1 + isl_space_dim(bmap
->dim
, isl_dim_all
) + div
;
1547 for (i
= 0; i
< bmap
->n_eq
; ++i
)
1548 if (!isl_int_is_zero(bmap
->eq
[i
][pos
]))
1551 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1552 if (isl_int_is_zero(bmap
->ineq
[i
][pos
]))
1554 if (!isl_basic_map_is_div_constraint(bmap
, bmap
->ineq
[i
], div
))
1558 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1559 if (isl_int_is_zero(bmap
->div
[i
][0]))
1561 if (!isl_int_is_zero(bmap
->div
[i
][1+pos
]))
1569 * Remove divs that don't occur in any of the constraints or other divs.
1570 * These can arise when dropping constraints from a basic map or
1571 * when the divs of a basic map have been temporarily aligned
1572 * with the divs of another basic map.
1574 static struct isl_basic_map
*remove_redundant_divs(struct isl_basic_map
*bmap
)
1581 for (i
= bmap
->n_div
-1; i
>= 0; --i
) {
1582 if (!div_is_redundant(bmap
, i
))
1584 bmap
= isl_basic_map_drop_div(bmap
, i
);
1589 struct isl_basic_map
*isl_basic_map_finalize(struct isl_basic_map
*bmap
)
1591 bmap
= remove_redundant_divs(bmap
);
1594 ISL_F_SET(bmap
, ISL_BASIC_SET_FINAL
);
1598 struct isl_basic_set
*isl_basic_set_finalize(struct isl_basic_set
*bset
)
1600 return (struct isl_basic_set
*)
1601 isl_basic_map_finalize((struct isl_basic_map
*)bset
);
1604 struct isl_set
*isl_set_finalize(struct isl_set
*set
)
1610 for (i
= 0; i
< set
->n
; ++i
) {
1611 set
->p
[i
] = isl_basic_set_finalize(set
->p
[i
]);
1621 struct isl_map
*isl_map_finalize(struct isl_map
*map
)
1627 for (i
= 0; i
< map
->n
; ++i
) {
1628 map
->p
[i
] = isl_basic_map_finalize(map
->p
[i
]);
1632 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
1640 /* Remove definition of any div that is defined in terms of the given variable.
1641 * The div itself is not removed. Functions such as
1642 * eliminate_divs_ineq depend on the other divs remaining in place.
1644 static struct isl_basic_map
*remove_dependent_vars(struct isl_basic_map
*bmap
,
1652 for (i
= 0; i
< bmap
->n_div
; ++i
) {
1653 if (isl_int_is_zero(bmap
->div
[i
][0]))
1655 if (isl_int_is_zero(bmap
->div
[i
][1+1+pos
]))
1657 isl_int_set_si(bmap
->div
[i
][0], 0);
1662 /* Eliminate the specified variables from the constraints using
1663 * Fourier-Motzkin. The variables themselves are not removed.
1665 struct isl_basic_map
*isl_basic_map_eliminate_vars(
1666 struct isl_basic_map
*bmap
, unsigned pos
, unsigned n
)
1677 total
= isl_basic_map_total_dim(bmap
);
1679 bmap
= isl_basic_map_cow(bmap
);
1680 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
)
1681 bmap
= remove_dependent_vars(bmap
, d
);
1685 for (d
= pos
+ n
- 1;
1686 d
>= 0 && d
>= total
- bmap
->n_div
&& d
>= pos
; --d
)
1687 isl_seq_clr(bmap
->div
[d
-(total
-bmap
->n_div
)], 2+total
);
1688 for (d
= pos
+ n
- 1; d
>= 0 && d
>= pos
; --d
) {
1689 int n_lower
, n_upper
;
1692 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1693 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1695 eliminate_var_using_equality(bmap
, d
, bmap
->eq
[i
], 0, NULL
);
1696 isl_basic_map_drop_equality(bmap
, i
);
1704 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
1705 if (isl_int_is_pos(bmap
->ineq
[i
][1+d
]))
1707 else if (isl_int_is_neg(bmap
->ineq
[i
][1+d
]))
1710 bmap
= isl_basic_map_extend_constraints(bmap
,
1711 0, n_lower
* n_upper
);
1714 for (i
= bmap
->n_ineq
- 1; i
>= 0; --i
) {
1716 if (isl_int_is_zero(bmap
->ineq
[i
][1+d
]))
1719 for (j
= 0; j
< i
; ++j
) {
1720 if (isl_int_is_zero(bmap
->ineq
[j
][1+d
]))
1723 if (isl_int_sgn(bmap
->ineq
[i
][1+d
]) ==
1724 isl_int_sgn(bmap
->ineq
[j
][1+d
]))
1726 k
= isl_basic_map_alloc_inequality(bmap
);
1729 isl_seq_cpy(bmap
->ineq
[k
], bmap
->ineq
[i
],
1731 isl_seq_elim(bmap
->ineq
[k
], bmap
->ineq
[j
],
1732 1+d
, 1+total
, NULL
);
1734 isl_basic_map_drop_inequality(bmap
, i
);
1737 if (n_lower
> 0 && n_upper
> 0) {
1738 bmap
= isl_basic_map_normalize_constraints(bmap
);
1739 bmap
= isl_basic_map_remove_duplicate_constraints(bmap
,
1741 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1742 bmap
= isl_basic_map_remove_redundancies(bmap
);
1746 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
1750 ISL_F_CLR(bmap
, ISL_BASIC_MAP_NORMALIZED
);
1752 bmap
= isl_basic_map_gauss(bmap
, NULL
);
1755 isl_basic_map_free(bmap
);
1759 struct isl_basic_set
*isl_basic_set_eliminate_vars(
1760 struct isl_basic_set
*bset
, unsigned pos
, unsigned n
)
1762 return (struct isl_basic_set
*)isl_basic_map_eliminate_vars(
1763 (struct isl_basic_map
*)bset
, pos
, n
);
1766 /* Eliminate the specified n dimensions starting at first from the
1767 * constraints, without removing the dimensions from the space.
1768 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1769 * Otherwise, they are projected out and the original space is restored.
1771 __isl_give isl_basic_map
*isl_basic_map_eliminate(
1772 __isl_take isl_basic_map
*bmap
,
1773 enum isl_dim_type type
, unsigned first
, unsigned n
)
1782 if (first
+ n
> isl_basic_map_dim(bmap
, type
) || first
+ n
< first
)
1783 isl_die(bmap
->ctx
, isl_error_invalid
,
1784 "index out of bounds", goto error
);
1786 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
)) {
1787 first
+= isl_basic_map_offset(bmap
, type
) - 1;
1788 bmap
= isl_basic_map_eliminate_vars(bmap
, first
, n
);
1789 return isl_basic_map_finalize(bmap
);
1792 space
= isl_basic_map_get_space(bmap
);
1793 bmap
= isl_basic_map_project_out(bmap
, type
, first
, n
);
1794 bmap
= isl_basic_map_insert_dims(bmap
, type
, first
, n
);
1795 bmap
= isl_basic_map_reset_space(bmap
, space
);
1798 isl_basic_map_free(bmap
);
1802 __isl_give isl_basic_set
*isl_basic_set_eliminate(
1803 __isl_take isl_basic_set
*bset
,
1804 enum isl_dim_type type
, unsigned first
, unsigned n
)
1806 return isl_basic_map_eliminate(bset
, type
, first
, n
);
1809 /* Don't assume equalities are in order, because align_divs
1810 * may have changed the order of the divs.
1812 static void compute_elimination_index(struct isl_basic_map
*bmap
, int *elim
)
1817 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1818 for (d
= 0; d
< total
; ++d
)
1820 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
1821 for (d
= total
- 1; d
>= 0; --d
) {
1822 if (isl_int_is_zero(bmap
->eq
[i
][1+d
]))
1830 static void set_compute_elimination_index(struct isl_basic_set
*bset
, int *elim
)
1832 compute_elimination_index((struct isl_basic_map
*)bset
, elim
);
1835 static int reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1836 struct isl_basic_map
*bmap
, int *elim
)
1842 total
= isl_space_dim(bmap
->dim
, isl_dim_all
);
1843 for (d
= total
- 1; d
>= 0; --d
) {
1844 if (isl_int_is_zero(src
[1+d
]))
1849 isl_seq_cpy(dst
, src
, 1 + total
);
1852 isl_seq_elim(dst
, bmap
->eq
[elim
[d
]], 1 + d
, 1 + total
, NULL
);
1857 static int set_reduced_using_equalities(isl_int
*dst
, isl_int
*src
,
1858 struct isl_basic_set
*bset
, int *elim
)
1860 return reduced_using_equalities(dst
, src
,
1861 (struct isl_basic_map
*)bset
, elim
);
1864 static struct isl_basic_set
*isl_basic_set_reduce_using_equalities(
1865 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1870 if (!bset
|| !context
)
1873 if (context
->n_eq
== 0) {
1874 isl_basic_set_free(context
);
1878 bset
= isl_basic_set_cow(bset
);
1882 elim
= isl_alloc_array(bset
->ctx
, int, isl_basic_set_n_dim(bset
));
1885 set_compute_elimination_index(context
, elim
);
1886 for (i
= 0; i
< bset
->n_eq
; ++i
)
1887 set_reduced_using_equalities(bset
->eq
[i
], bset
->eq
[i
],
1889 for (i
= 0; i
< bset
->n_ineq
; ++i
)
1890 set_reduced_using_equalities(bset
->ineq
[i
], bset
->ineq
[i
],
1892 isl_basic_set_free(context
);
1894 bset
= isl_basic_set_simplify(bset
);
1895 bset
= isl_basic_set_finalize(bset
);
1898 isl_basic_set_free(bset
);
1899 isl_basic_set_free(context
);
1903 static struct isl_basic_set
*remove_shifted_constraints(
1904 struct isl_basic_set
*bset
, struct isl_basic_set
*context
)
1906 struct isl_constraint_index ci
;
1909 if (!bset
|| !context
)
1912 if (context
->n_ineq
== 0)
1914 if (setup_constraint_index(&ci
, context
) < 0)
1917 for (k
= 0; k
< bset
->n_ineq
; ++k
) {
1918 h
= set_hash_index(&ci
, bset
, k
);
1921 l
= ci
.index
[h
] - &context
->ineq
[0];
1922 if (isl_int_lt(bset
->ineq
[k
][0], context
->ineq
[l
][0]))
1924 bset
= isl_basic_set_cow(bset
);
1927 isl_basic_set_drop_inequality(bset
, k
);
1930 constraint_index_free(&ci
);
1933 constraint_index_free(&ci
);
1937 /* Remove constraints from "bmap" that are identical to constraints
1938 * in "context" or that are more relaxed (greater constant term).
1940 * We perform the test for shifted copies on the pure constraints
1941 * in remove_shifted_constraints.
1943 static __isl_give isl_basic_map
*isl_basic_map_remove_shifted_constraints(
1944 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_map
*context
)
1946 isl_basic_set
*bset
, *bset_context
;
1948 if (!bmap
|| !context
)
1951 if (bmap
->n_ineq
== 0 || context
->n_ineq
== 0) {
1952 isl_basic_map_free(context
);
1956 context
= isl_basic_map_align_divs(context
, bmap
);
1957 bmap
= isl_basic_map_align_divs(bmap
, context
);
1959 bset
= isl_basic_map_underlying_set(isl_basic_map_copy(bmap
));
1960 bset_context
= isl_basic_map_underlying_set(context
);
1961 bset
= remove_shifted_constraints(bset
, bset_context
);
1962 isl_basic_set_free(bset_context
);
1964 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
1968 isl_basic_map_free(bmap
);
1969 isl_basic_map_free(context
);
1973 /* Does the (linear part of a) constraint "c" involve any of the "len"
1974 * "relevant" dimensions?
1976 static int is_related(isl_int
*c
, int len
, int *relevant
)
1980 for (i
= 0; i
< len
; ++i
) {
1983 if (!isl_int_is_zero(c
[i
]))
1990 /* Drop constraints from "bset" that do not involve any of
1991 * the dimensions marked "relevant".
1993 static __isl_give isl_basic_set
*drop_unrelated_constraints(
1994 __isl_take isl_basic_set
*bset
, int *relevant
)
1998 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
1999 for (i
= 0; i
< dim
; ++i
)
2005 for (i
= bset
->n_eq
- 1; i
>= 0; --i
)
2006 if (!is_related(bset
->eq
[i
] + 1, dim
, relevant
))
2007 isl_basic_set_drop_equality(bset
, i
);
2009 for (i
= bset
->n_ineq
- 1; i
>= 0; --i
)
2010 if (!is_related(bset
->ineq
[i
] + 1, dim
, relevant
))
2011 isl_basic_set_drop_inequality(bset
, i
);
2016 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2018 * In particular, for any variable involved in the constraint,
2019 * find the actual group id from before and replace the group
2020 * of the corresponding variable by the minimal group of all
2021 * the variables involved in the constraint considered so far
2022 * (if this minimum is smaller) or replace the minimum by this group
2023 * (if the minimum is larger).
2025 * At the end, all the variables in "c" will (indirectly) point
2026 * to the minimal of the groups that they referred to originally.
2028 static void update_groups(int dim
, int *group
, isl_int
*c
)
2033 for (j
= 0; j
< dim
; ++j
) {
2034 if (isl_int_is_zero(c
[j
]))
2036 while (group
[j
] >= 0 && group
[group
[j
]] != group
[j
])
2037 group
[j
] = group
[group
[j
]];
2038 if (group
[j
] == min
)
2040 if (group
[j
] < min
) {
2041 if (min
>= 0 && min
< dim
)
2042 group
[min
] = group
[j
];
2045 group
[group
[j
]] = min
;
2049 /* Drop constraints from "context" that are irrelevant for computing
2050 * the gist of "bset".
2052 * In particular, drop constraints in variables that are not related
2053 * to any of the variables involved in the constraints of "bset"
2054 * in the sense that there is no sequence of constraints that connects them.
2056 * We construct groups of variables that collect variables that
2057 * (indirectly) appear in some common constraint of "context".
2058 * Each group is identified by the first variable in the group,
2059 * except for the special group of variables that appear in "bset"
2060 * (or are related to those variables), which is identified by -1.
2061 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2062 * otherwise the group of i is the group of group[i].
2064 * We first initialize the -1 group with the variables that appear in "bset".
2065 * Then we initialize groups for the remaining variables.
2066 * Then we iterate over the constraints of "context" and update the
2067 * group of the variables in the constraint by the smallest group.
2068 * Finally, we resolve indirect references to groups by running over
2071 * After computing the groups, we drop constraints that do not involve
2072 * any variables in the -1 group.
2074 static __isl_give isl_basic_set
*drop_irrelevant_constraints(
2075 __isl_take isl_basic_set
*context
, __isl_keep isl_basic_set
*bset
)
2083 if (!context
|| !bset
)
2084 return isl_basic_set_free(context
);
2086 dim
= isl_basic_set_dim(bset
, isl_dim_set
);
2087 ctx
= isl_basic_set_get_ctx(bset
);
2088 group
= isl_calloc_array(ctx
, int, dim
);
2093 for (i
= 0; i
< dim
; ++i
) {
2094 for (j
= 0; j
< bset
->n_eq
; ++j
)
2095 if (!isl_int_is_zero(bset
->eq
[j
][1 + i
]))
2097 if (j
< bset
->n_eq
) {
2101 for (j
= 0; j
< bset
->n_ineq
; ++j
)
2102 if (!isl_int_is_zero(bset
->ineq
[j
][1 + i
]))
2104 if (j
< bset
->n_ineq
)
2109 for (i
= 0; i
< dim
; ++i
)
2111 last
= group
[i
] = i
;
2117 for (i
= 0; i
< context
->n_eq
; ++i
)
2118 update_groups(dim
, group
, context
->eq
[i
] + 1);
2119 for (i
= 0; i
< context
->n_ineq
; ++i
)
2120 update_groups(dim
, group
, context
->ineq
[i
] + 1);
2122 for (i
= 0; i
< dim
; ++i
)
2124 group
[i
] = group
[group
[i
]];
2126 for (i
= 0; i
< dim
; ++i
)
2127 group
[i
] = group
[i
] == -1;
2129 context
= drop_unrelated_constraints(context
, group
);
2135 return isl_basic_set_free(context
);
2138 /* Remove all information from bset that is redundant in the context
2139 * of context. Both bset and context are assumed to be full-dimensional.
2141 * We first remove the inequalities from "bset"
2142 * that are obviously redundant with respect to some inequality in "context".
2143 * Then we remove those constraints from "context" that have become
2144 * irrelevant for computing the gist of "bset".
2145 * Note that this removal of constraints cannot be replaced by
2146 * a factorization because factors in "bset" may still be connected
2147 * to each other through constraints in "context".
2149 * If there are any inequalities left, we construct a tableau for
2150 * the context and then add the inequalities of "bset".
2151 * Before adding these inequalities, we freeze all constraints such that
2152 * they won't be considered redundant in terms of the constraints of "bset".
2153 * Then we detect all redundant constraints (among the
2154 * constraints that weren't frozen), first by checking for redundancy in the
2155 * the tableau and then by checking if replacing a constraint by its negation
2156 * would lead to an empty set. This last step is fairly expensive
2157 * and could be optimized by more reuse of the tableau.
2158 * Finally, we update bset according to the results.
2160 static __isl_give isl_basic_set
*uset_gist_full(__isl_take isl_basic_set
*bset
,
2161 __isl_take isl_basic_set
*context
)
2164 isl_basic_set
*combined
= NULL
;
2165 struct isl_tab
*tab
= NULL
;
2166 unsigned context_ineq
;
2169 if (!bset
|| !context
)
2172 if (isl_basic_set_is_universe(bset
)) {
2173 isl_basic_set_free(context
);
2177 if (isl_basic_set_is_universe(context
)) {
2178 isl_basic_set_free(context
);
2182 bset
= remove_shifted_constraints(bset
, context
);
2185 if (bset
->n_ineq
== 0)
2188 context
= drop_irrelevant_constraints(context
, bset
);
2191 if (isl_basic_set_is_universe(context
)) {
2192 isl_basic_set_free(context
);
2196 context_ineq
= context
->n_ineq
;
2197 combined
= isl_basic_set_cow(isl_basic_set_copy(context
));
2198 combined
= isl_basic_set_extend_constraints(combined
, 0, bset
->n_ineq
);
2199 tab
= isl_tab_from_basic_set(combined
, 0);
2200 for (i
= 0; i
< context_ineq
; ++i
)
2201 if (isl_tab_freeze_constraint(tab
, i
) < 0)
2203 if (isl_tab_extend_cons(tab
, bset
->n_ineq
) < 0)
2205 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2206 if (isl_tab_add_ineq(tab
, bset
->ineq
[i
]) < 0)
2208 bset
= isl_basic_set_add_constraints(combined
, bset
, 0);
2212 if (isl_tab_detect_redundant(tab
) < 0)
2214 total
= isl_basic_set_total_dim(bset
);
2215 for (i
= context_ineq
; i
< bset
->n_ineq
; ++i
) {
2217 if (tab
->con
[i
].is_redundant
)
2219 tab
->con
[i
].is_redundant
= 1;
2220 combined
= isl_basic_set_dup(bset
);
2221 combined
= isl_basic_set_update_from_tab(combined
, tab
);
2222 combined
= isl_basic_set_extend_constraints(combined
, 0, 1);
2223 k
= isl_basic_set_alloc_inequality(combined
);
2226 isl_seq_neg(combined
->ineq
[k
], bset
->ineq
[i
], 1 + total
);
2227 isl_int_sub_ui(combined
->ineq
[k
][0], combined
->ineq
[k
][0], 1);
2228 is_empty
= isl_basic_set_is_empty(combined
);
2231 isl_basic_set_free(combined
);
2234 tab
->con
[i
].is_redundant
= 0;
2236 for (i
= 0; i
< context_ineq
; ++i
)
2237 tab
->con
[i
].is_redundant
= 1;
2238 bset
= isl_basic_set_update_from_tab(bset
, tab
);
2240 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2241 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2246 bset
= isl_basic_set_finalize(bset
);
2247 isl_basic_set_free(context
);
2251 isl_basic_set_free(combined
);
2252 isl_basic_set_free(context
);
2253 isl_basic_set_free(bset
);
2257 /* Remove all information from bset that is redundant in the context
2258 * of context. In particular, equalities that are linear combinations
2259 * of those in context are removed. Then the inequalities that are
2260 * redundant in the context of the equalities and inequalities of
2261 * context are removed.
2263 * First of all, we drop those constraints from "context"
2264 * that are irrelevant for computing the gist of "bset".
2265 * Alternatively, we could factorize the intersection of "context" and "bset".
2267 * We first compute the integer affine hull of the intersection,
2268 * compute the gist inside this affine hull and then add back
2269 * those equalities that are not implied by the context.
2271 * If two constraints are mutually redundant, then uset_gist_full
2272 * will remove the second of those constraints. We therefore first
2273 * sort the constraints so that constraints not involving existentially
2274 * quantified variables are given precedence over those that do.
2275 * We have to perform this sorting before the variable compression,
2276 * because that may effect the order of the variables.
2278 static __isl_give isl_basic_set
*uset_gist(__isl_take isl_basic_set
*bset
,
2279 __isl_take isl_basic_set
*context
)
2284 isl_basic_set
*aff_context
;
2287 if (!bset
|| !context
)
2290 context
= drop_irrelevant_constraints(context
, bset
);
2292 aff
= isl_basic_set_copy(bset
);
2293 aff
= isl_basic_set_intersect(aff
, isl_basic_set_copy(context
));
2294 aff
= isl_basic_set_affine_hull(aff
);
2297 if (isl_basic_set_plain_is_empty(aff
)) {
2298 isl_basic_set_free(bset
);
2299 isl_basic_set_free(context
);
2302 bset
= isl_basic_set_sort_constraints(bset
);
2303 if (aff
->n_eq
== 0) {
2304 isl_basic_set_free(aff
);
2305 return uset_gist_full(bset
, context
);
2307 total
= isl_basic_set_total_dim(bset
);
2308 eq
= isl_mat_sub_alloc6(bset
->ctx
, aff
->eq
, 0, aff
->n_eq
, 0, 1 + total
);
2309 eq
= isl_mat_cow(eq
);
2310 T
= isl_mat_variable_compression(eq
, &T2
);
2311 if (T
&& T
->n_col
== 0) {
2314 isl_basic_set_free(context
);
2315 isl_basic_set_free(aff
);
2316 return isl_basic_set_set_to_empty(bset
);
2319 aff_context
= isl_basic_set_affine_hull(isl_basic_set_copy(context
));
2321 bset
= isl_basic_set_preimage(bset
, isl_mat_copy(T
));
2322 context
= isl_basic_set_preimage(context
, T
);
2324 bset
= uset_gist_full(bset
, context
);
2325 bset
= isl_basic_set_preimage(bset
, T2
);
2326 bset
= isl_basic_set_intersect(bset
, aff
);
2327 bset
= isl_basic_set_reduce_using_equalities(bset
, aff_context
);
2330 ISL_F_SET(bset
, ISL_BASIC_SET_NO_IMPLICIT
);
2331 ISL_F_SET(bset
, ISL_BASIC_SET_NO_REDUNDANT
);
2336 isl_basic_set_free(bset
);
2337 isl_basic_set_free(context
);
2341 /* Return a basic map that has the same intersection with "context" as "bmap"
2342 * and that is as "simple" as possible.
2344 * The core computation is performed on the pure constraints.
2345 * When we add back the meaning of the integer divisions, we need
2346 * to (re)introduce the div constraints. If we happen to have
2347 * discovered that some of these integer divisions are equal to
2348 * some affine combination of other variables, then these div
2349 * constraints may end up getting simplified in terms of the equalities,
2350 * resulting in extra inequalities on the other variables that
2351 * may have been removed already or that may not even have been
2352 * part of the input. We try and remove those constraints of
2353 * this form that are most obviously redundant with respect to
2354 * the context. We also remove those div constraints that are
2355 * redundant with respect to the other constraints in the result.
2357 struct isl_basic_map
*isl_basic_map_gist(struct isl_basic_map
*bmap
,
2358 struct isl_basic_map
*context
)
2360 isl_basic_set
*bset
, *eq
;
2361 isl_basic_map
*eq_bmap
;
2362 unsigned n_div
, n_eq
, n_ineq
;
2364 if (!bmap
|| !context
)
2367 if (isl_basic_map_is_universe(bmap
)) {
2368 isl_basic_map_free(context
);
2371 if (isl_basic_map_plain_is_empty(context
)) {
2372 isl_space
*space
= isl_basic_map_get_space(bmap
);
2373 isl_basic_map_free(bmap
);
2374 isl_basic_map_free(context
);
2375 return isl_basic_map_universe(space
);
2377 if (isl_basic_map_plain_is_empty(bmap
)) {
2378 isl_basic_map_free(context
);
2382 bmap
= isl_basic_map_remove_redundancies(bmap
);
2383 context
= isl_basic_map_remove_redundancies(context
);
2387 context
= isl_basic_map_align_divs(context
, bmap
);
2388 bmap
= isl_basic_map_align_divs(bmap
, context
);
2389 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
2391 bset
= uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap
)),
2392 isl_basic_map_underlying_set(isl_basic_map_copy(context
)));
2394 if (!bset
|| bset
->n_eq
== 0 || n_div
== 0 ||
2395 isl_basic_set_plain_is_empty(bset
)) {
2396 isl_basic_map_free(context
);
2397 return isl_basic_map_overlying_set(bset
, bmap
);
2401 n_ineq
= bset
->n_ineq
;
2402 eq
= isl_basic_set_copy(bset
);
2403 eq
= isl_basic_set_cow(eq
);
2404 if (isl_basic_set_free_inequality(eq
, n_ineq
) < 0)
2405 eq
= isl_basic_set_free(eq
);
2406 if (isl_basic_set_free_equality(bset
, n_eq
) < 0)
2407 bset
= isl_basic_set_free(bset
);
2409 eq_bmap
= isl_basic_map_overlying_set(eq
, isl_basic_map_copy(bmap
));
2410 eq_bmap
= isl_basic_map_remove_shifted_constraints(eq_bmap
, context
);
2411 bmap
= isl_basic_map_overlying_set(bset
, bmap
);
2412 bmap
= isl_basic_map_intersect(bmap
, eq_bmap
);
2413 bmap
= isl_basic_map_remove_redundancies(bmap
);
2417 isl_basic_map_free(bmap
);
2418 isl_basic_map_free(context
);
2423 * Assumes context has no implicit divs.
2425 __isl_give isl_map
*isl_map_gist_basic_map(__isl_take isl_map
*map
,
2426 __isl_take isl_basic_map
*context
)
2430 if (!map
|| !context
)
2433 if (isl_basic_map_plain_is_empty(context
)) {
2434 isl_space
*space
= isl_map_get_space(map
);
2436 isl_basic_map_free(context
);
2437 return isl_map_universe(space
);
2440 context
= isl_basic_map_remove_redundancies(context
);
2441 map
= isl_map_cow(map
);
2442 if (!map
|| !context
)
2444 isl_assert(map
->ctx
, isl_space_is_equal(map
->dim
, context
->dim
), goto error
);
2445 map
= isl_map_compute_divs(map
);
2448 for (i
= map
->n
- 1; i
>= 0; --i
) {
2449 map
->p
[i
] = isl_basic_map_gist(map
->p
[i
],
2450 isl_basic_map_copy(context
));
2453 if (isl_basic_map_plain_is_empty(map
->p
[i
])) {
2454 isl_basic_map_free(map
->p
[i
]);
2455 if (i
!= map
->n
- 1)
2456 map
->p
[i
] = map
->p
[map
->n
- 1];
2460 isl_basic_map_free(context
);
2461 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
2465 isl_basic_map_free(context
);
2469 /* Return a map that has the same intersection with "context" as "map"
2470 * and that is as "simple" as possible.
2472 * If "map" is already the universe, then we cannot make it any simpler.
2473 * Similarly, if "context" is the universe, then we cannot exploit it
2475 * If "map" and "context" are identical to each other, then we can
2476 * return the corresponding universe.
2478 * If none of these cases apply, we have to work a bit harder.
2479 * During this computation, we make use of a single disjunct context,
2480 * so if the original context consists of more than one disjunct
2481 * then we need to approximate the context by a single disjunct set.
2482 * Simply taking the simple hull may drop constraints that are
2483 * only implicitly available in each disjunct. We therefore also
2484 * look for constraints among those defining "map" that are valid
2485 * for the context. These can then be used to simplify away
2486 * the corresponding constraints in "map".
2488 static __isl_give isl_map
*map_gist(__isl_take isl_map
*map
,
2489 __isl_take isl_map
*context
)
2493 isl_basic_map
*hull
;
2495 is_universe
= isl_map_plain_is_universe(map
);
2496 if (is_universe
>= 0 && !is_universe
)
2497 is_universe
= isl_map_plain_is_universe(context
);
2498 if (is_universe
< 0)
2501 isl_map_free(context
);
2505 equal
= isl_map_plain_is_equal(map
, context
);
2509 isl_map
*res
= isl_map_universe(isl_map_get_space(map
));
2511 isl_map_free(context
);
2515 context
= isl_map_compute_divs(context
);
2518 if (isl_map_n_basic_map(context
) == 1) {
2519 hull
= isl_map_simple_hull(context
);
2524 ctx
= isl_map_get_ctx(map
);
2525 list
= isl_map_list_alloc(ctx
, 2);
2526 list
= isl_map_list_add(list
, isl_map_copy(context
));
2527 list
= isl_map_list_add(list
, isl_map_copy(map
));
2528 hull
= isl_map_unshifted_simple_hull_from_map_list(context
,
2531 return isl_map_gist_basic_map(map
, hull
);
2534 isl_map_free(context
);
2538 __isl_give isl_map
*isl_map_gist(__isl_take isl_map
*map
,
2539 __isl_take isl_map
*context
)
2541 return isl_map_align_params_map_map_and(map
, context
, &map_gist
);
2544 struct isl_basic_set
*isl_basic_set_gist(struct isl_basic_set
*bset
,
2545 struct isl_basic_set
*context
)
2547 return (struct isl_basic_set
*)isl_basic_map_gist(
2548 (struct isl_basic_map
*)bset
, (struct isl_basic_map
*)context
);
2551 __isl_give isl_set
*isl_set_gist_basic_set(__isl_take isl_set
*set
,
2552 __isl_take isl_basic_set
*context
)
2554 return (struct isl_set
*)isl_map_gist_basic_map((struct isl_map
*)set
,
2555 (struct isl_basic_map
*)context
);
2558 __isl_give isl_set
*isl_set_gist_params_basic_set(__isl_take isl_set
*set
,
2559 __isl_take isl_basic_set
*context
)
2561 isl_space
*space
= isl_set_get_space(set
);
2562 isl_basic_set
*dom_context
= isl_basic_set_universe(space
);
2563 dom_context
= isl_basic_set_intersect_params(dom_context
, context
);
2564 return isl_set_gist_basic_set(set
, dom_context
);
2567 __isl_give isl_set
*isl_set_gist(__isl_take isl_set
*set
,
2568 __isl_take isl_set
*context
)
2570 return (struct isl_set
*)isl_map_gist((struct isl_map
*)set
,
2571 (struct isl_map
*)context
);
2574 /* Compute the gist of "bmap" with respect to the constraints "context"
2577 __isl_give isl_basic_map
*isl_basic_map_gist_domain(
2578 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*context
)
2580 isl_space
*space
= isl_basic_map_get_space(bmap
);
2581 isl_basic_map
*bmap_context
= isl_basic_map_universe(space
);
2583 bmap_context
= isl_basic_map_intersect_domain(bmap_context
, context
);
2584 return isl_basic_map_gist(bmap
, bmap_context
);
2587 __isl_give isl_map
*isl_map_gist_domain(__isl_take isl_map
*map
,
2588 __isl_take isl_set
*context
)
2590 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2591 map_context
= isl_map_intersect_domain(map_context
, context
);
2592 return isl_map_gist(map
, map_context
);
2595 __isl_give isl_map
*isl_map_gist_range(__isl_take isl_map
*map
,
2596 __isl_take isl_set
*context
)
2598 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2599 map_context
= isl_map_intersect_range(map_context
, context
);
2600 return isl_map_gist(map
, map_context
);
2603 __isl_give isl_map
*isl_map_gist_params(__isl_take isl_map
*map
,
2604 __isl_take isl_set
*context
)
2606 isl_map
*map_context
= isl_map_universe(isl_map_get_space(map
));
2607 map_context
= isl_map_intersect_params(map_context
, context
);
2608 return isl_map_gist(map
, map_context
);
2611 __isl_give isl_set
*isl_set_gist_params(__isl_take isl_set
*set
,
2612 __isl_take isl_set
*context
)
2614 return isl_map_gist_params(set
, context
);
2617 /* Quick check to see if two basic maps are disjoint.
2618 * In particular, we reduce the equalities and inequalities of
2619 * one basic map in the context of the equalities of the other
2620 * basic map and check if we get a contradiction.
2622 isl_bool
isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2623 __isl_keep isl_basic_map
*bmap2
)
2625 struct isl_vec
*v
= NULL
;
2630 if (!bmap1
|| !bmap2
)
2631 return isl_bool_error
;
2632 isl_assert(bmap1
->ctx
, isl_space_is_equal(bmap1
->dim
, bmap2
->dim
),
2633 return isl_bool_error
);
2634 if (bmap1
->n_div
|| bmap2
->n_div
)
2635 return isl_bool_false
;
2636 if (!bmap1
->n_eq
&& !bmap2
->n_eq
)
2637 return isl_bool_false
;
2639 total
= isl_space_dim(bmap1
->dim
, isl_dim_all
);
2641 return isl_bool_false
;
2642 v
= isl_vec_alloc(bmap1
->ctx
, 1 + total
);
2645 elim
= isl_alloc_array(bmap1
->ctx
, int, total
);
2648 compute_elimination_index(bmap1
, elim
);
2649 for (i
= 0; i
< bmap2
->n_eq
; ++i
) {
2651 reduced
= reduced_using_equalities(v
->block
.data
, bmap2
->eq
[i
],
2653 if (reduced
&& !isl_int_is_zero(v
->block
.data
[0]) &&
2654 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2657 for (i
= 0; i
< bmap2
->n_ineq
; ++i
) {
2659 reduced
= reduced_using_equalities(v
->block
.data
,
2660 bmap2
->ineq
[i
], bmap1
, elim
);
2661 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2662 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2665 compute_elimination_index(bmap2
, elim
);
2666 for (i
= 0; i
< bmap1
->n_ineq
; ++i
) {
2668 reduced
= reduced_using_equalities(v
->block
.data
,
2669 bmap1
->ineq
[i
], bmap2
, elim
);
2670 if (reduced
&& isl_int_is_neg(v
->block
.data
[0]) &&
2671 isl_seq_first_non_zero(v
->block
.data
+ 1, total
) == -1)
2676 return isl_bool_false
;
2680 return isl_bool_true
;
2684 return isl_bool_error
;
2687 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2688 __isl_keep isl_basic_set
*bset2
)
2690 return isl_basic_map_plain_is_disjoint((struct isl_basic_map
*)bset1
,
2691 (struct isl_basic_map
*)bset2
);
2694 /* Are "map1" and "map2" obviously disjoint?
2696 * If one of them is empty or if they live in different spaces (ignoring
2697 * parameters), then they are clearly disjoint.
2699 * If they have different parameters, then we skip any further tests.
2701 * If they are obviously equal, but not obviously empty, then we will
2702 * not be able to detect if they are disjoint.
2704 * Otherwise we check if each basic map in "map1" is obviously disjoint
2705 * from each basic map in "map2".
2707 isl_bool
isl_map_plain_is_disjoint(__isl_keep isl_map
*map1
,
2708 __isl_keep isl_map
*map2
)
2716 return isl_bool_error
;
2718 disjoint
= isl_map_plain_is_empty(map1
);
2719 if (disjoint
< 0 || disjoint
)
2722 disjoint
= isl_map_plain_is_empty(map2
);
2723 if (disjoint
< 0 || disjoint
)
2726 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_in
,
2727 map2
->dim
, isl_dim_in
);
2728 if (match
< 0 || !match
)
2729 return match
< 0 ? isl_bool_error
: isl_bool_true
;
2731 match
= isl_space_tuple_is_equal(map1
->dim
, isl_dim_out
,
2732 map2
->dim
, isl_dim_out
);
2733 if (match
< 0 || !match
)
2734 return match
< 0 ? isl_bool_error
: isl_bool_true
;
2736 match
= isl_space_match(map1
->dim
, isl_dim_param
,
2737 map2
->dim
, isl_dim_param
);
2738 if (match
< 0 || !match
)
2739 return match
< 0 ? isl_bool_error
: isl_bool_false
;
2741 intersect
= isl_map_plain_is_equal(map1
, map2
);
2742 if (intersect
< 0 || intersect
)
2743 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2745 for (i
= 0; i
< map1
->n
; ++i
) {
2746 for (j
= 0; j
< map2
->n
; ++j
) {
2747 isl_bool d
= isl_basic_map_plain_is_disjoint(map1
->p
[i
],
2749 if (d
!= isl_bool_true
)
2753 return isl_bool_true
;
2756 /* Are "map1" and "map2" disjoint?
2758 * They are disjoint if they are "obviously disjoint" or if one of them
2759 * is empty. Otherwise, they are not disjoint if one of them is universal.
2760 * If none of these cases apply, we compute the intersection and see if
2761 * the result is empty.
2763 isl_bool
isl_map_is_disjoint(__isl_keep isl_map
*map1
, __isl_keep isl_map
*map2
)
2769 disjoint
= isl_map_plain_is_disjoint(map1
, map2
);
2770 if (disjoint
< 0 || disjoint
)
2773 disjoint
= isl_map_is_empty(map1
);
2774 if (disjoint
< 0 || disjoint
)
2777 disjoint
= isl_map_is_empty(map2
);
2778 if (disjoint
< 0 || disjoint
)
2781 intersect
= isl_map_plain_is_universe(map1
);
2782 if (intersect
< 0 || intersect
)
2783 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2785 intersect
= isl_map_plain_is_universe(map2
);
2786 if (intersect
< 0 || intersect
)
2787 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2789 test
= isl_map_intersect(isl_map_copy(map1
), isl_map_copy(map2
));
2790 disjoint
= isl_map_is_empty(test
);
2796 /* Are "bmap1" and "bmap2" disjoint?
2798 * They are disjoint if they are "obviously disjoint" or if one of them
2799 * is empty. Otherwise, they are not disjoint if one of them is universal.
2800 * If none of these cases apply, we compute the intersection and see if
2801 * the result is empty.
2803 isl_bool
isl_basic_map_is_disjoint(__isl_keep isl_basic_map
*bmap1
,
2804 __isl_keep isl_basic_map
*bmap2
)
2808 isl_basic_map
*test
;
2810 disjoint
= isl_basic_map_plain_is_disjoint(bmap1
, bmap2
);
2811 if (disjoint
< 0 || disjoint
)
2814 disjoint
= isl_basic_map_is_empty(bmap1
);
2815 if (disjoint
< 0 || disjoint
)
2818 disjoint
= isl_basic_map_is_empty(bmap2
);
2819 if (disjoint
< 0 || disjoint
)
2822 intersect
= isl_basic_map_is_universe(bmap1
);
2823 if (intersect
< 0 || intersect
)
2824 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2826 intersect
= isl_basic_map_is_universe(bmap2
);
2827 if (intersect
< 0 || intersect
)
2828 return intersect
< 0 ? isl_bool_error
: isl_bool_false
;
2830 test
= isl_basic_map_intersect(isl_basic_map_copy(bmap1
),
2831 isl_basic_map_copy(bmap2
));
2832 disjoint
= isl_basic_map_is_empty(test
);
2833 isl_basic_map_free(test
);
2838 /* Are "bset1" and "bset2" disjoint?
2840 isl_bool
isl_basic_set_is_disjoint(__isl_keep isl_basic_set
*bset1
,
2841 __isl_keep isl_basic_set
*bset2
)
2843 return isl_basic_map_is_disjoint(bset1
, bset2
);
2846 isl_bool
isl_set_plain_is_disjoint(__isl_keep isl_set
*set1
,
2847 __isl_keep isl_set
*set2
)
2849 return isl_map_plain_is_disjoint((struct isl_map
*)set1
,
2850 (struct isl_map
*)set2
);
2853 /* Are "set1" and "set2" disjoint?
2855 isl_bool
isl_set_is_disjoint(__isl_keep isl_set
*set1
, __isl_keep isl_set
*set2
)
2857 return isl_map_is_disjoint(set1
, set2
);
2860 /* Check if we can combine a given div with lower bound l and upper
2861 * bound u with some other div and if so return that other div.
2862 * Otherwise return -1.
2864 * We first check that
2865 * - the bounds are opposites of each other (except for the constant
2867 * - the bounds do not reference any other div
2868 * - no div is defined in terms of this div
2870 * Let m be the size of the range allowed on the div by the bounds.
2871 * That is, the bounds are of the form
2873 * e <= a <= e + m - 1
2875 * with e some expression in the other variables.
2876 * We look for another div b such that no third div is defined in terms
2877 * of this second div b and such that in any constraint that contains
2878 * a (except for the given lower and upper bound), also contains b
2879 * with a coefficient that is m times that of b.
2880 * That is, all constraints (execpt for the lower and upper bound)
2883 * e + f (a + m b) >= 0
2885 * If so, we return b so that "a + m b" can be replaced by
2886 * a single div "c = a + m b".
2888 static int div_find_coalesce(struct isl_basic_map
*bmap
, int *pairs
,
2889 unsigned div
, unsigned l
, unsigned u
)
2895 if (bmap
->n_div
<= 1)
2897 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
2898 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
, div
) != -1)
2900 if (isl_seq_first_non_zero(bmap
->ineq
[l
] + 1 + dim
+ div
+ 1,
2901 bmap
->n_div
- div
- 1) != -1)
2903 if (!isl_seq_is_neg(bmap
->ineq
[l
] + 1, bmap
->ineq
[u
] + 1,
2907 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2908 if (isl_int_is_zero(bmap
->div
[i
][0]))
2910 if (!isl_int_is_zero(bmap
->div
[i
][1 + 1 + dim
+ div
]))
2914 isl_int_add(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2915 if (isl_int_is_neg(bmap
->ineq
[l
][0])) {
2916 isl_int_sub(bmap
->ineq
[l
][0],
2917 bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2918 bmap
= isl_basic_map_copy(bmap
);
2919 bmap
= isl_basic_map_set_to_empty(bmap
);
2920 isl_basic_map_free(bmap
);
2923 isl_int_add_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2924 for (i
= 0; i
< bmap
->n_div
; ++i
) {
2929 for (j
= 0; j
< bmap
->n_div
; ++j
) {
2930 if (isl_int_is_zero(bmap
->div
[j
][0]))
2932 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + dim
+ i
]))
2935 if (j
< bmap
->n_div
)
2937 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
2939 if (j
== l
|| j
== u
)
2941 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ div
]))
2943 if (isl_int_is_zero(bmap
->ineq
[j
][1 + dim
+ i
]))
2945 isl_int_mul(bmap
->ineq
[j
][1 + dim
+ div
],
2946 bmap
->ineq
[j
][1 + dim
+ div
],
2948 valid
= isl_int_eq(bmap
->ineq
[j
][1 + dim
+ div
],
2949 bmap
->ineq
[j
][1 + dim
+ i
]);
2950 isl_int_divexact(bmap
->ineq
[j
][1 + dim
+ div
],
2951 bmap
->ineq
[j
][1 + dim
+ div
],
2956 if (j
< bmap
->n_ineq
)
2961 isl_int_sub_ui(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], 1);
2962 isl_int_sub(bmap
->ineq
[l
][0], bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
2966 /* Given a lower and an upper bound on div i, construct an inequality
2967 * that when nonnegative ensures that this pair of bounds always allows
2968 * for an integer value of the given div.
2969 * The lower bound is inequality l, while the upper bound is inequality u.
2970 * The constructed inequality is stored in ineq.
2971 * g, fl, fu are temporary scalars.
2973 * Let the upper bound be
2977 * and the lower bound
2981 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2984 * - f_u e_l <= f_u f_l g a <= f_l e_u
2986 * Since all variables are integer valued, this is equivalent to
2988 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2990 * If this interval is at least f_u f_l g, then it contains at least
2991 * one integer value for a.
2992 * That is, the test constraint is
2994 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2996 static void construct_test_ineq(struct isl_basic_map
*bmap
, int i
,
2997 int l
, int u
, isl_int
*ineq
, isl_int g
, isl_int fl
, isl_int fu
)
3000 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3002 isl_int_gcd(g
, bmap
->ineq
[l
][1 + dim
+ i
], bmap
->ineq
[u
][1 + dim
+ i
]);
3003 isl_int_divexact(fl
, bmap
->ineq
[l
][1 + dim
+ i
], g
);
3004 isl_int_divexact(fu
, bmap
->ineq
[u
][1 + dim
+ i
], g
);
3005 isl_int_neg(fu
, fu
);
3006 isl_seq_combine(ineq
, fl
, bmap
->ineq
[u
], fu
, bmap
->ineq
[l
],
3007 1 + dim
+ bmap
->n_div
);
3008 isl_int_add(ineq
[0], ineq
[0], fl
);
3009 isl_int_add(ineq
[0], ineq
[0], fu
);
3010 isl_int_sub_ui(ineq
[0], ineq
[0], 1);
3011 isl_int_mul(g
, g
, fl
);
3012 isl_int_mul(g
, g
, fu
);
3013 isl_int_sub(ineq
[0], ineq
[0], g
);
3016 /* Remove more kinds of divs that are not strictly needed.
3017 * In particular, if all pairs of lower and upper bounds on a div
3018 * are such that they allow at least one integer value of the div,
3019 * the we can eliminate the div using Fourier-Motzkin without
3020 * introducing any spurious solutions.
3022 static struct isl_basic_map
*drop_more_redundant_divs(
3023 struct isl_basic_map
*bmap
, int *pairs
, int n
)
3025 struct isl_tab
*tab
= NULL
;
3026 struct isl_vec
*vec
= NULL
;
3038 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3039 vec
= isl_vec_alloc(bmap
->ctx
, 1 + dim
+ bmap
->n_div
);
3043 tab
= isl_tab_from_basic_map(bmap
, 0);
3048 enum isl_lp_result res
;
3050 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3053 if (best
>= 0 && pairs
[best
] <= pairs
[i
])
3059 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
3060 if (!isl_int_is_pos(bmap
->ineq
[l
][1 + dim
+ i
]))
3062 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
3063 if (!isl_int_is_neg(bmap
->ineq
[u
][1 + dim
+ i
]))
3065 construct_test_ineq(bmap
, i
, l
, u
,
3066 vec
->el
, g
, fl
, fu
);
3067 res
= isl_tab_min(tab
, vec
->el
,
3068 bmap
->ctx
->one
, &g
, NULL
, 0);
3069 if (res
== isl_lp_error
)
3071 if (res
== isl_lp_empty
) {
3072 bmap
= isl_basic_map_set_to_empty(bmap
);
3075 if (res
!= isl_lp_ok
|| isl_int_is_neg(g
))
3078 if (u
< bmap
->n_ineq
)
3081 if (l
== bmap
->n_ineq
) {
3101 bmap
= isl_basic_map_remove_dims(bmap
, isl_dim_div
, remove
, 1);
3102 return isl_basic_map_drop_redundant_divs(bmap
);
3105 isl_basic_map_free(bmap
);
3114 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3115 * and the upper bound u, div1 always occurs together with div2 in the form
3116 * (div1 + m div2), where m is the constant range on the variable div1
3117 * allowed by l and u, replace the pair div1 and div2 by a single
3118 * div that is equal to div1 + m div2.
3120 * The new div will appear in the location that contains div2.
3121 * We need to modify all constraints that contain
3122 * div2 = (div - div1) / m
3123 * (If a constraint does not contain div2, it will also not contain div1.)
3124 * If the constraint also contains div1, then we know they appear
3125 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3126 * i.e., the coefficient of div is f.
3128 * Otherwise, we first need to introduce div1 into the constraint.
3137 * A lower bound on div2
3141 * can be replaced by
3143 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3145 * with g = gcd(m,n).
3150 * can be replaced by
3152 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3154 * These constraint are those that we would obtain from eliminating
3155 * div1 using Fourier-Motzkin.
3157 * After all constraints have been modified, we drop the lower and upper
3158 * bound and then drop div1.
3160 static struct isl_basic_map
*coalesce_divs(struct isl_basic_map
*bmap
,
3161 unsigned div1
, unsigned div2
, unsigned l
, unsigned u
)
3166 unsigned dim
, total
;
3169 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3170 total
= 1 + dim
+ bmap
->n_div
;
3175 isl_int_add(m
, bmap
->ineq
[l
][0], bmap
->ineq
[u
][0]);
3176 isl_int_add_ui(m
, m
, 1);
3178 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3179 if (i
== l
|| i
== u
)
3181 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div2
]))
3183 if (isl_int_is_zero(bmap
->ineq
[i
][1 + dim
+ div1
])) {
3184 isl_int_gcd(b
, m
, bmap
->ineq
[i
][1 + dim
+ div2
]);
3185 isl_int_divexact(a
, m
, b
);
3186 isl_int_divexact(b
, bmap
->ineq
[i
][1 + dim
+ div2
], b
);
3187 if (isl_int_is_pos(b
)) {
3188 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3189 b
, bmap
->ineq
[l
], total
);
3192 isl_seq_combine(bmap
->ineq
[i
], a
, bmap
->ineq
[i
],
3193 b
, bmap
->ineq
[u
], total
);
3196 isl_int_set(bmap
->ineq
[i
][1 + dim
+ div2
],
3197 bmap
->ineq
[i
][1 + dim
+ div1
]);
3198 isl_int_set_si(bmap
->ineq
[i
][1 + dim
+ div1
], 0);
3205 isl_basic_map_drop_inequality(bmap
, l
);
3206 isl_basic_map_drop_inequality(bmap
, u
);
3208 isl_basic_map_drop_inequality(bmap
, u
);
3209 isl_basic_map_drop_inequality(bmap
, l
);
3211 bmap
= isl_basic_map_drop_div(bmap
, div1
);
3215 /* First check if we can coalesce any pair of divs and
3216 * then continue with dropping more redundant divs.
3218 * We loop over all pairs of lower and upper bounds on a div
3219 * with coefficient 1 and -1, respectively, check if there
3220 * is any other div "c" with which we can coalesce the div
3221 * and if so, perform the coalescing.
3223 static struct isl_basic_map
*coalesce_or_drop_more_redundant_divs(
3224 struct isl_basic_map
*bmap
, int *pairs
, int n
)
3229 dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3231 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3234 for (l
= 0; l
< bmap
->n_ineq
; ++l
) {
3235 if (!isl_int_is_one(bmap
->ineq
[l
][1 + dim
+ i
]))
3237 for (u
= 0; u
< bmap
->n_ineq
; ++u
) {
3240 if (!isl_int_is_negone(bmap
->ineq
[u
][1+dim
+i
]))
3242 c
= div_find_coalesce(bmap
, pairs
, i
, l
, u
);
3246 bmap
= coalesce_divs(bmap
, i
, c
, l
, u
);
3247 return isl_basic_map_drop_redundant_divs(bmap
);
3252 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
))
3255 return drop_more_redundant_divs(bmap
, pairs
, n
);
3258 /* Remove divs that are not strictly needed.
3259 * In particular, if a div only occurs positively (or negatively)
3260 * in constraints, then it can simply be dropped.
3261 * Also, if a div occurs in only two constraints and if moreover
3262 * those two constraints are opposite to each other, except for the constant
3263 * term and if the sum of the constant terms is such that for any value
3264 * of the other values, there is always at least one integer value of the
3265 * div, i.e., if one plus this sum is greater than or equal to
3266 * the (absolute value) of the coefficent of the div in the constraints,
3267 * then we can also simply drop the div.
3269 * We skip divs that appear in equalities or in the definition of other divs.
3270 * Divs that appear in the definition of other divs usually occur in at least
3271 * 4 constraints, but the constraints may have been simplified.
3273 * If any divs are left after these simple checks then we move on
3274 * to more complicated cases in drop_more_redundant_divs.
3276 struct isl_basic_map
*isl_basic_map_drop_redundant_divs(
3277 struct isl_basic_map
*bmap
)
3286 if (bmap
->n_div
== 0)
3289 off
= isl_space_dim(bmap
->dim
, isl_dim_all
);
3290 pairs
= isl_calloc_array(bmap
->ctx
, int, bmap
->n_div
);
3294 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3296 int last_pos
, last_neg
;
3300 defined
= !isl_int_is_zero(bmap
->div
[i
][0]);
3301 for (j
= i
; j
< bmap
->n_div
; ++j
)
3302 if (!isl_int_is_zero(bmap
->div
[j
][1 + 1 + off
+ i
]))
3304 if (j
< bmap
->n_div
)
3306 for (j
= 0; j
< bmap
->n_eq
; ++j
)
3307 if (!isl_int_is_zero(bmap
->eq
[j
][1 + off
+ i
]))
3313 for (j
= 0; j
< bmap
->n_ineq
; ++j
) {
3314 if (isl_int_is_pos(bmap
->ineq
[j
][1 + off
+ i
])) {
3318 if (isl_int_is_neg(bmap
->ineq
[j
][1 + off
+ i
])) {
3323 pairs
[i
] = pos
* neg
;
3324 if (pairs
[i
] == 0) {
3325 for (j
= bmap
->n_ineq
- 1; j
>= 0; --j
)
3326 if (!isl_int_is_zero(bmap
->ineq
[j
][1+off
+i
]))
3327 isl_basic_map_drop_inequality(bmap
, j
);
3328 bmap
= isl_basic_map_drop_div(bmap
, i
);
3330 return isl_basic_map_drop_redundant_divs(bmap
);
3334 if (!isl_seq_is_neg(bmap
->ineq
[last_pos
] + 1,
3335 bmap
->ineq
[last_neg
] + 1,
3339 isl_int_add(bmap
->ineq
[last_pos
][0],
3340 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3341 isl_int_add_ui(bmap
->ineq
[last_pos
][0],
3342 bmap
->ineq
[last_pos
][0], 1);
3343 redundant
= isl_int_ge(bmap
->ineq
[last_pos
][0],
3344 bmap
->ineq
[last_pos
][1+off
+i
]);
3345 isl_int_sub_ui(bmap
->ineq
[last_pos
][0],
3346 bmap
->ineq
[last_pos
][0], 1);
3347 isl_int_sub(bmap
->ineq
[last_pos
][0],
3348 bmap
->ineq
[last_pos
][0], bmap
->ineq
[last_neg
][0]);
3351 !ok_to_set_div_from_bound(bmap
, i
, last_pos
)) {
3356 bmap
= set_div_from_lower_bound(bmap
, i
, last_pos
);
3357 bmap
= isl_basic_map_simplify(bmap
);
3359 return isl_basic_map_drop_redundant_divs(bmap
);
3361 if (last_pos
> last_neg
) {
3362 isl_basic_map_drop_inequality(bmap
, last_pos
);
3363 isl_basic_map_drop_inequality(bmap
, last_neg
);
3365 isl_basic_map_drop_inequality(bmap
, last_neg
);
3366 isl_basic_map_drop_inequality(bmap
, last_pos
);
3368 bmap
= isl_basic_map_drop_div(bmap
, i
);
3370 return isl_basic_map_drop_redundant_divs(bmap
);
3374 return coalesce_or_drop_more_redundant_divs(bmap
, pairs
, n
);
3380 isl_basic_map_free(bmap
);
3384 struct isl_basic_set
*isl_basic_set_drop_redundant_divs(
3385 struct isl_basic_set
*bset
)
3387 return (struct isl_basic_set
*)
3388 isl_basic_map_drop_redundant_divs((struct isl_basic_map
*)bset
);
3391 struct isl_map
*isl_map_drop_redundant_divs(struct isl_map
*map
)
3397 for (i
= 0; i
< map
->n
; ++i
) {
3398 map
->p
[i
] = isl_basic_map_drop_redundant_divs(map
->p
[i
]);
3402 ISL_F_CLR(map
, ISL_MAP_NORMALIZED
);
3409 struct isl_set
*isl_set_drop_redundant_divs(struct isl_set
*set
)
3411 return (struct isl_set
*)
3412 isl_map_drop_redundant_divs((struct isl_map
*)set
);
3415 /* Does "bmap" satisfy any equality that involves more than 2 variables
3416 * and/or has coefficients different from -1 and 1?
3418 static int has_multiple_var_equality(__isl_keep isl_basic_map
*bmap
)
3423 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3425 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3428 j
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1, total
);
3431 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3432 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3436 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3440 if (!isl_int_is_one(bmap
->eq
[i
][1 + j
]) &&
3441 !isl_int_is_negone(bmap
->eq
[i
][1 + j
]))
3445 k
= isl_seq_first_non_zero(bmap
->eq
[i
] + 1 + j
, total
- j
);
3453 /* Remove any common factor g from the constraint coefficients in "v".
3454 * The constant term is stored in the first position and is replaced
3455 * by floor(c/g). If any common factor is removed and if this results
3456 * in a tightening of the constraint, then set *tightened.
3458 static __isl_give isl_vec
*normalize_constraint(__isl_take isl_vec
*v
,
3465 ctx
= isl_vec_get_ctx(v
);
3466 isl_seq_gcd(v
->el
+ 1, v
->size
- 1, &ctx
->normalize_gcd
);
3467 if (isl_int_is_zero(ctx
->normalize_gcd
))
3469 if (isl_int_is_one(ctx
->normalize_gcd
))
3474 if (tightened
&& !isl_int_is_divisible_by(v
->el
[0], ctx
->normalize_gcd
))
3476 isl_int_fdiv_q(v
->el
[0], v
->el
[0], ctx
->normalize_gcd
);
3477 isl_seq_scale_down(v
->el
+ 1, v
->el
+ 1, ctx
->normalize_gcd
,
3482 /* If "bmap" is an integer set that satisfies any equality involving
3483 * more than 2 variables and/or has coefficients different from -1 and 1,
3484 * then use variable compression to reduce the coefficients by removing
3485 * any (hidden) common factor.
3486 * In particular, apply the variable compression to each constraint,
3487 * factor out any common factor in the non-constant coefficients and
3488 * then apply the inverse of the compression.
3489 * At the end, we mark the basic map as having reduced constants.
3490 * If this flag is still set on the next invocation of this function,
3491 * then we skip the computation.
3493 * Removing a common factor may result in a tightening of some of
3494 * the constraints. If this happens, then we may end up with two
3495 * opposite inequalities that can be replaced by an equality.
3496 * We therefore call isl_basic_map_detect_inequality_pairs,
3497 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3498 * and isl_basic_map_gauss if such a pair was found.
3500 __isl_give isl_basic_map
*isl_basic_map_reduce_coefficients(
3501 __isl_take isl_basic_map
*bmap
)
3506 isl_mat
*eq
, *T
, *T2
;
3512 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
))
3514 if (isl_basic_map_is_rational(bmap
))
3516 if (bmap
->n_eq
== 0)
3518 if (!has_multiple_var_equality(bmap
))
3521 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3522 ctx
= isl_basic_map_get_ctx(bmap
);
3523 v
= isl_vec_alloc(ctx
, 1 + total
);
3525 return isl_basic_map_free(bmap
);
3527 eq
= isl_mat_sub_alloc6(ctx
, bmap
->eq
, 0, bmap
->n_eq
, 0, 1 + total
);
3528 T
= isl_mat_variable_compression(eq
, &T2
);
3531 if (T
->n_col
== 0) {
3535 return isl_basic_map_set_to_empty(bmap
);
3539 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3540 isl_seq_cpy(v
->el
, bmap
->ineq
[i
], 1 + total
);
3541 v
= isl_vec_mat_product(v
, isl_mat_copy(T
));
3542 v
= normalize_constraint(v
, &tightened
);
3543 v
= isl_vec_mat_product(v
, isl_mat_copy(T2
));
3546 isl_seq_cpy(bmap
->ineq
[i
], v
->el
, 1 + total
);
3553 ISL_F_SET(bmap
, ISL_BASIC_MAP_REDUCED_COEFFICIENTS
);
3558 bmap
= isl_basic_map_detect_inequality_pairs(bmap
, &progress
);
3560 bmap
= eliminate_divs_eq(bmap
, &progress
);
3561 bmap
= isl_basic_map_gauss(bmap
, NULL
);
3570 return isl_basic_map_free(bmap
);
3573 /* Shift the integer division at position "div" of "bmap"
3574 * by "shift" times the variable at position "pos".
3575 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
3576 * corresponds to the constant term.
3578 * That is, if the integer division has the form
3582 * then replace it by
3584 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
3586 __isl_give isl_basic_map
*isl_basic_map_shift_div(
3587 __isl_take isl_basic_map
*bmap
, int div
, int pos
, isl_int shift
)
3595 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
3596 total
-= isl_basic_map_dim(bmap
, isl_dim_div
);
3598 isl_int_addmul(bmap
->div
[div
][1 + pos
], shift
, bmap
->div
[div
][0]);
3600 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
3601 if (isl_int_is_zero(bmap
->eq
[i
][1 + total
+ div
]))
3603 isl_int_submul(bmap
->eq
[i
][pos
],
3604 shift
, bmap
->eq
[i
][1 + total
+ div
]);
3606 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
3607 if (isl_int_is_zero(bmap
->ineq
[i
][1 + total
+ div
]))
3609 isl_int_submul(bmap
->ineq
[i
][pos
],
3610 shift
, bmap
->ineq
[i
][1 + total
+ div
]);
3612 for (i
= 0; i
< bmap
->n_div
; ++i
) {
3613 if (isl_int_is_zero(bmap
->div
[i
][0]))
3615 if (isl_int_is_zero(bmap
->div
[i
][1 + 1 + total
+ div
]))
3617 isl_int_submul(bmap
->div
[i
][1 + pos
],
3618 shift
, bmap
->div
[i
][1 + 1 + total
+ div
]);