2 * Copyright 2011 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 #include <isl_ctx_private.h>
12 #include <isl_map_private.h>
13 #include <isl_space_private.h>
16 #include <isl/constraint.h>
17 #include <isl/schedule.h>
18 #include <isl_mat_private.h>
22 #include <isl_dim_map.h>
23 #include <isl_hmap_map_basic_set.h>
24 #include <isl_qsort.h>
25 #include <isl_schedule_private.h>
26 #include <isl_band_private.h>
27 #include <isl_list_private.h>
28 #include <isl_options_private.h>
31 * The scheduling algorithm implemented in this file was inspired by
32 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
33 * Parallelization and Locality Optimization in the Polyhedral Model".
37 /* Internal information about a node that is used during the construction
39 * dim represents the space in which the domain lives
40 * sched is a matrix representation of the schedule being constructed
42 * sched_map is an isl_map representation of the same (partial) schedule
43 * sched_map may be NULL
44 * rank is the number of linearly independent rows in the linear part
46 * the columns of cmap represent a change of basis for the schedule
47 * coefficients; the first rank columns span the linear part of
49 * start is the first variable in the LP problem in the sequences that
50 * represents the schedule coefficients of this node
51 * nvar is the dimension of the domain
52 * nparam is the number of parameters or 0 if we are not constructing
53 * a parametric schedule
55 * scc is the index of SCC (or WCC) this node belongs to
57 * band contains the band index for each of the rows of the schedule.
58 * band_id is used to differentiate between separate bands at the same
59 * level within the same parent band, i.e., bands that are separated
60 * by the parent band or bands that are independent of each other.
61 * zero contains a boolean for each of the rows of the schedule,
62 * indicating whether the corresponding scheduling dimension results
63 * in zero dependence distances within its band and with respect
64 * to the proximity edges.
66 * index, min_index and on_stack are used during the SCC detection
67 * index represents the order in which nodes are visited.
68 * min_index is the index of the root of a (sub)component.
69 * on_stack indicates whether the node is currently on the stack.
71 struct isl_sched_node
{
93 static int node_has_dim(const void *entry
, const void *val
)
95 struct isl_sched_node
*node
= (struct isl_sched_node
*)entry
;
96 isl_space
*dim
= (isl_space
*)val
;
98 return isl_space_is_equal(node
->dim
, dim
);
101 /* An edge in the dependence graph. An edge may be used to
102 * ensure validity of the generated schedule, to minimize the dependence
105 * map is the dependence relation
106 * src is the source node
107 * dst is the sink node
108 * validity is set if the edge is used to ensure correctness
109 * proximity is set if the edge is used to minimize dependence distances
111 * For validity edges, start and end mark the sequence of inequality
112 * constraints in the LP problem that encode the validity constraint
113 * corresponding to this edge.
115 struct isl_sched_edge
{
118 struct isl_sched_node
*src
;
119 struct isl_sched_node
*dst
;
129 isl_edge_validity
= 0,
131 isl_edge_last
= isl_edge_proximity
134 /* Internal information about the dependence graph used during
135 * the construction of the schedule.
137 * intra_hmap is a cache, mapping dependence relations to their dual,
138 * for dependences from a node to itself
139 * inter_hmap is a cache, mapping dependence relations to their dual,
140 * for dependences between distinct nodes
142 * n is the number of nodes
143 * node is the list of nodes
144 * maxvar is the maximal number of variables over all nodes
145 * max_row is the allocated number of rows in the schedule
146 * n_row is the current (maximal) number of linearly independent
147 * rows in the node schedules
148 * n_total_row is the current number of rows in the node schedules
149 * n_band is the current number of completed bands
150 * band_start is the starting row in the node schedules of the current band
151 * root is set if this graph is the original dependence graph,
152 * without any splitting
154 * sorted contains a list of node indices sorted according to the
155 * SCC to which a node belongs
157 * n_edge is the number of edges
158 * edge is the list of edges
159 * max_edge contains the maximal number of edges of each type;
160 * in particular, it contains the number of edges in the inital graph.
161 * edge_table contains pointers into the edge array, hashed on the source
162 * and sink spaces; there is one such table for each type;
163 * a given edge may be referenced from more than one table
164 * if the corresponding relation appears in more than of the
165 * sets of dependences
167 * node_table contains pointers into the node array, hashed on the space
169 * region contains a list of variable sequences that should be non-trivial
171 * lp contains the (I)LP problem used to obtain new schedule rows
173 * src_scc and dst_scc are the source and sink SCCs of an edge with
174 * conflicting constraints
176 * scc, sp, index and stack are used during the detection of SCCs
177 * scc is the number of the next SCC
178 * stack contains the nodes on the path from the root to the current node
179 * sp is the stack pointer
180 * index is the index of the last node visited
182 struct isl_sched_graph
{
183 isl_hmap_map_basic_set
*intra_hmap
;
184 isl_hmap_map_basic_set
*inter_hmap
;
186 struct isl_sched_node
*node
;
200 struct isl_sched_edge
*edge
;
202 int max_edge
[isl_edge_last
+ 1];
203 struct isl_hash_table
*edge_table
[isl_edge_last
+ 1];
205 struct isl_hash_table
*node_table
;
206 struct isl_region
*region
;
220 /* Initialize node_table based on the list of nodes.
222 static int graph_init_table(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
226 graph
->node_table
= isl_hash_table_alloc(ctx
, graph
->n
);
227 if (!graph
->node_table
)
230 for (i
= 0; i
< graph
->n
; ++i
) {
231 struct isl_hash_table_entry
*entry
;
234 hash
= isl_space_get_hash(graph
->node
[i
].dim
);
235 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
237 graph
->node
[i
].dim
, 1);
240 entry
->data
= &graph
->node
[i
];
246 /* Return a pointer to the node that lives within the given space,
247 * or NULL if there is no such node.
249 static struct isl_sched_node
*graph_find_node(isl_ctx
*ctx
,
250 struct isl_sched_graph
*graph
, __isl_keep isl_space
*dim
)
252 struct isl_hash_table_entry
*entry
;
255 hash
= isl_space_get_hash(dim
);
256 entry
= isl_hash_table_find(ctx
, graph
->node_table
, hash
,
257 &node_has_dim
, dim
, 0);
259 return entry
? entry
->data
: NULL
;
262 static int edge_has_src_and_dst(const void *entry
, const void *val
)
264 const struct isl_sched_edge
*edge
= entry
;
265 const struct isl_sched_edge
*temp
= val
;
267 return edge
->src
== temp
->src
&& edge
->dst
== temp
->dst
;
270 /* Add the given edge to graph->edge_table[type].
272 static int graph_edge_table_add(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
273 enum isl_edge_type type
, struct isl_sched_edge
*edge
)
275 struct isl_hash_table_entry
*entry
;
278 hash
= isl_hash_init();
279 hash
= isl_hash_builtin(hash
, edge
->src
);
280 hash
= isl_hash_builtin(hash
, edge
->dst
);
281 entry
= isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
282 &edge_has_src_and_dst
, edge
, 1);
290 /* Allocate the edge_tables based on the maximal number of edges of
293 static int graph_init_edge_tables(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
297 for (i
= 0; i
<= isl_edge_last
; ++i
) {
298 graph
->edge_table
[i
] = isl_hash_table_alloc(ctx
,
300 if (!graph
->edge_table
[i
])
307 /* If graph->edge_table[type] contains an edge from the given source
308 * to the given destination, then return the hash table entry of this edge.
309 * Otherwise, return NULL.
311 static struct isl_hash_table_entry
*graph_find_edge_entry(
312 struct isl_sched_graph
*graph
,
313 enum isl_edge_type type
,
314 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
316 isl_ctx
*ctx
= isl_space_get_ctx(src
->dim
);
318 struct isl_sched_edge temp
= { .src
= src
, .dst
= dst
};
320 hash
= isl_hash_init();
321 hash
= isl_hash_builtin(hash
, temp
.src
);
322 hash
= isl_hash_builtin(hash
, temp
.dst
);
323 return isl_hash_table_find(ctx
, graph
->edge_table
[type
], hash
,
324 &edge_has_src_and_dst
, &temp
, 0);
328 /* If graph->edge_table[type] contains an edge from the given source
329 * to the given destination, then return this edge.
330 * Otherwise, return NULL.
332 static struct isl_sched_edge
*graph_find_edge(struct isl_sched_graph
*graph
,
333 enum isl_edge_type type
,
334 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
336 struct isl_hash_table_entry
*entry
;
338 entry
= graph_find_edge_entry(graph
, type
, src
, dst
);
345 /* Check whether the dependence graph has an edge of the give type
346 * between the given two nodes.
348 static int graph_has_edge(struct isl_sched_graph
*graph
,
349 enum isl_edge_type type
,
350 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
352 struct isl_sched_edge
*edge
;
355 edge
= graph_find_edge(graph
, type
, src
, dst
);
359 empty
= isl_map_plain_is_empty(edge
->map
);
366 /* If there is an edge from the given source to the given destination
367 * of any type then return this edge.
368 * Otherwise, return NULL.
370 static struct isl_sched_edge
*graph_find_any_edge(struct isl_sched_graph
*graph
,
371 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
374 struct isl_sched_edge
*edge
;
376 for (i
= 0; i
<= isl_edge_last
; ++i
) {
377 edge
= graph_find_edge(graph
, i
, src
, dst
);
385 /* Remove the given edge from all the edge_tables that refer to it.
387 static void graph_remove_edge(struct isl_sched_graph
*graph
,
388 struct isl_sched_edge
*edge
)
390 isl_ctx
*ctx
= isl_map_get_ctx(edge
->map
);
393 for (i
= 0; i
<= isl_edge_last
; ++i
) {
394 struct isl_hash_table_entry
*entry
;
396 entry
= graph_find_edge_entry(graph
, i
, edge
->src
, edge
->dst
);
399 if (entry
->data
!= edge
)
401 isl_hash_table_remove(ctx
, graph
->edge_table
[i
], entry
);
405 /* Check whether the dependence graph has any edge
406 * between the given two nodes.
408 static int graph_has_any_edge(struct isl_sched_graph
*graph
,
409 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
414 for (i
= 0; i
<= isl_edge_last
; ++i
) {
415 r
= graph_has_edge(graph
, i
, src
, dst
);
423 /* Check whether the dependence graph has a validity edge
424 * between the given two nodes.
426 static int graph_has_validity_edge(struct isl_sched_graph
*graph
,
427 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
429 return graph_has_edge(graph
, isl_edge_validity
, src
, dst
);
432 static int graph_alloc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
433 int n_node
, int n_edge
)
438 graph
->n_edge
= n_edge
;
439 graph
->node
= isl_calloc_array(ctx
, struct isl_sched_node
, graph
->n
);
440 graph
->sorted
= isl_calloc_array(ctx
, int, graph
->n
);
441 graph
->region
= isl_alloc_array(ctx
, struct isl_region
, graph
->n
);
442 graph
->stack
= isl_alloc_array(ctx
, int, graph
->n
);
443 graph
->edge
= isl_calloc_array(ctx
,
444 struct isl_sched_edge
, graph
->n_edge
);
446 graph
->intra_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
447 graph
->inter_hmap
= isl_hmap_map_basic_set_alloc(ctx
, 2 * n_edge
);
449 if (!graph
->node
|| !graph
->region
|| !graph
->stack
|| !graph
->edge
||
453 for(i
= 0; i
< graph
->n
; ++i
)
454 graph
->sorted
[i
] = i
;
459 static void graph_free(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
463 isl_hmap_map_basic_set_free(ctx
, graph
->intra_hmap
);
464 isl_hmap_map_basic_set_free(ctx
, graph
->inter_hmap
);
466 for (i
= 0; i
< graph
->n
; ++i
) {
467 isl_space_free(graph
->node
[i
].dim
);
468 isl_mat_free(graph
->node
[i
].sched
);
469 isl_map_free(graph
->node
[i
].sched_map
);
470 isl_mat_free(graph
->node
[i
].cmap
);
472 free(graph
->node
[i
].band
);
473 free(graph
->node
[i
].band_id
);
474 free(graph
->node
[i
].zero
);
479 for (i
= 0; i
< graph
->n_edge
; ++i
)
480 isl_map_free(graph
->edge
[i
].map
);
484 for (i
= 0; i
<= isl_edge_last
; ++i
)
485 isl_hash_table_free(ctx
, graph
->edge_table
[i
]);
486 isl_hash_table_free(ctx
, graph
->node_table
);
487 isl_basic_set_free(graph
->lp
);
490 /* For each "set" on which this function is called, increment
491 * graph->n by one and update graph->maxvar.
493 static int init_n_maxvar(__isl_take isl_set
*set
, void *user
)
495 struct isl_sched_graph
*graph
= user
;
496 int nvar
= isl_set_dim(set
, isl_dim_set
);
499 if (nvar
> graph
->maxvar
)
500 graph
->maxvar
= nvar
;
507 /* Compute the number of rows that should be allocated for the schedule.
508 * The graph can be split at most "n - 1" times, there can be at most
509 * two rows for each dimension in the iteration domains (in particular,
510 * we usually have one row, but it may be split by split_scaled),
511 * and there can be one extra row for ordering the statements.
512 * Note that if we have actually split "n - 1" times, then no ordering
513 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
515 static int compute_max_row(struct isl_sched_graph
*graph
,
516 __isl_keep isl_union_set
*domain
)
520 if (isl_union_set_foreach_set(domain
, &init_n_maxvar
, graph
) < 0)
522 graph
->max_row
= graph
->n
+ 2 * graph
->maxvar
;
527 /* Add a new node to the graph representing the given set.
529 static int extract_node(__isl_take isl_set
*set
, void *user
)
535 struct isl_sched_graph
*graph
= user
;
536 int *band
, *band_id
, *zero
;
538 ctx
= isl_set_get_ctx(set
);
539 dim
= isl_set_get_space(set
);
541 nvar
= isl_space_dim(dim
, isl_dim_set
);
542 nparam
= isl_space_dim(dim
, isl_dim_param
);
543 if (!ctx
->opt
->schedule_parametric
)
545 sched
= isl_mat_alloc(ctx
, 0, 1 + nparam
+ nvar
);
546 graph
->node
[graph
->n
].dim
= dim
;
547 graph
->node
[graph
->n
].nvar
= nvar
;
548 graph
->node
[graph
->n
].nparam
= nparam
;
549 graph
->node
[graph
->n
].sched
= sched
;
550 graph
->node
[graph
->n
].sched_map
= NULL
;
551 band
= isl_alloc_array(ctx
, int, graph
->max_row
);
552 graph
->node
[graph
->n
].band
= band
;
553 band_id
= isl_calloc_array(ctx
, int, graph
->max_row
);
554 graph
->node
[graph
->n
].band_id
= band_id
;
555 zero
= isl_calloc_array(ctx
, int, graph
->max_row
);
556 graph
->node
[graph
->n
].zero
= zero
;
559 if (!sched
|| !band
|| !band_id
|| !zero
)
565 struct isl_extract_edge_data
{
566 enum isl_edge_type type
;
567 struct isl_sched_graph
*graph
;
570 /* Add a new edge to the graph based on the given map
571 * and add it to data->graph->edge_table[data->type].
572 * If a dependence relation of a given type happens to be identical
573 * to one of the dependence relations of a type that was added before,
574 * then we don't create a new edge, but instead mark the original edge
575 * as also representing a dependence of the current type.
577 static int extract_edge(__isl_take isl_map
*map
, void *user
)
579 isl_ctx
*ctx
= isl_map_get_ctx(map
);
580 struct isl_extract_edge_data
*data
= user
;
581 struct isl_sched_graph
*graph
= data
->graph
;
582 struct isl_sched_node
*src
, *dst
;
584 struct isl_sched_edge
*edge
;
587 dim
= isl_space_domain(isl_map_get_space(map
));
588 src
= graph_find_node(ctx
, graph
, dim
);
590 dim
= isl_space_range(isl_map_get_space(map
));
591 dst
= graph_find_node(ctx
, graph
, dim
);
599 graph
->edge
[graph
->n_edge
].src
= src
;
600 graph
->edge
[graph
->n_edge
].dst
= dst
;
601 graph
->edge
[graph
->n_edge
].map
= map
;
602 if (data
->type
== isl_edge_validity
) {
603 graph
->edge
[graph
->n_edge
].validity
= 1;
604 graph
->edge
[graph
->n_edge
].proximity
= 0;
606 if (data
->type
== isl_edge_proximity
) {
607 graph
->edge
[graph
->n_edge
].validity
= 0;
608 graph
->edge
[graph
->n_edge
].proximity
= 1;
612 edge
= graph_find_any_edge(graph
, src
, dst
);
614 return graph_edge_table_add(ctx
, graph
, data
->type
,
615 &graph
->edge
[graph
->n_edge
- 1]);
616 is_equal
= isl_map_plain_is_equal(map
, edge
->map
);
620 return graph_edge_table_add(ctx
, graph
, data
->type
,
621 &graph
->edge
[graph
->n_edge
- 1]);
624 edge
->validity
|= graph
->edge
[graph
->n_edge
].validity
;
625 edge
->proximity
|= graph
->edge
[graph
->n_edge
].proximity
;
628 return graph_edge_table_add(ctx
, graph
, data
->type
, edge
);
631 /* Check whether there is a validity dependence from src to dst,
632 * forcing dst to follow src (if weak is not set).
633 * If weak is set, then check if there is any dependence from src to dst.
635 static int node_follows(struct isl_sched_graph
*graph
,
636 struct isl_sched_node
*dst
, struct isl_sched_node
*src
, int weak
)
639 return graph_has_any_edge(graph
, src
, dst
);
641 return graph_has_validity_edge(graph
, src
, dst
);
644 /* Perform Tarjan's algorithm for computing the strongly connected components
645 * in the dependence graph (only validity edges).
646 * If weak is set, we consider the graph to be undirected and
647 * we effectively compute the (weakly) connected components.
648 * Additionally, we also consider other edges when weak is set.
650 static int detect_sccs_tarjan(struct isl_sched_graph
*g
, int i
, int weak
)
654 g
->node
[i
].index
= g
->index
;
655 g
->node
[i
].min_index
= g
->index
;
656 g
->node
[i
].on_stack
= 1;
658 g
->stack
[g
->sp
++] = i
;
660 for (j
= g
->n
- 1; j
>= 0; --j
) {
665 if (g
->node
[j
].index
>= 0 &&
666 (!g
->node
[j
].on_stack
||
667 g
->node
[j
].index
> g
->node
[i
].min_index
))
670 f
= node_follows(g
, &g
->node
[i
], &g
->node
[j
], weak
);
674 f
= node_follows(g
, &g
->node
[j
], &g
->node
[i
], weak
);
680 if (g
->node
[j
].index
< 0) {
681 detect_sccs_tarjan(g
, j
, weak
);
682 if (g
->node
[j
].min_index
< g
->node
[i
].min_index
)
683 g
->node
[i
].min_index
= g
->node
[j
].min_index
;
684 } else if (g
->node
[j
].index
< g
->node
[i
].min_index
)
685 g
->node
[i
].min_index
= g
->node
[j
].index
;
688 if (g
->node
[i
].index
!= g
->node
[i
].min_index
)
692 j
= g
->stack
[--g
->sp
];
693 g
->node
[j
].on_stack
= 0;
694 g
->node
[j
].scc
= g
->scc
;
701 static int detect_ccs(struct isl_sched_graph
*graph
, int weak
)
708 for (i
= graph
->n
- 1; i
>= 0; --i
)
709 graph
->node
[i
].index
= -1;
711 for (i
= graph
->n
- 1; i
>= 0; --i
) {
712 if (graph
->node
[i
].index
>= 0)
714 if (detect_sccs_tarjan(graph
, i
, weak
) < 0)
721 /* Apply Tarjan's algorithm to detect the strongly connected components
722 * in the dependence graph.
724 static int detect_sccs(struct isl_sched_graph
*graph
)
726 return detect_ccs(graph
, 0);
729 /* Apply Tarjan's algorithm to detect the (weakly) connected components
730 * in the dependence graph.
732 static int detect_wccs(struct isl_sched_graph
*graph
)
734 return detect_ccs(graph
, 1);
737 static int cmp_scc(const void *a
, const void *b
, void *data
)
739 struct isl_sched_graph
*graph
= data
;
743 return graph
->node
[*i1
].scc
- graph
->node
[*i2
].scc
;
746 /* Sort the elements of graph->sorted according to the corresponding SCCs.
748 static void sort_sccs(struct isl_sched_graph
*graph
)
750 isl_quicksort(graph
->sorted
, graph
->n
, sizeof(int), &cmp_scc
, graph
);
753 /* Given a dependence relation R from a node to itself,
754 * construct the set of coefficients of valid constraints for elements
755 * in that dependence relation.
756 * In particular, the result contains tuples of coefficients
757 * c_0, c_n, c_x such that
759 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
763 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
765 * We choose here to compute the dual of delta R.
766 * Alternatively, we could have computed the dual of R, resulting
767 * in a set of tuples c_0, c_n, c_x, c_y, and then
768 * plugged in (c_0, c_n, c_x, -c_x).
770 static __isl_give isl_basic_set
*intra_coefficients(
771 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
773 isl_ctx
*ctx
= isl_map_get_ctx(map
);
777 if (isl_hmap_map_basic_set_has(ctx
, graph
->intra_hmap
, map
))
778 return isl_hmap_map_basic_set_get(ctx
, graph
->intra_hmap
, map
);
780 delta
= isl_set_remove_divs(isl_map_deltas(isl_map_copy(map
)));
781 coef
= isl_set_coefficients(delta
);
782 isl_hmap_map_basic_set_set(ctx
, graph
->intra_hmap
, map
,
783 isl_basic_set_copy(coef
));
788 /* Given a dependence relation R, * construct the set of coefficients
789 * of valid constraints for elements in that dependence relation.
790 * In particular, the result contains tuples of coefficients
791 * c_0, c_n, c_x, c_y such that
793 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
796 static __isl_give isl_basic_set
*inter_coefficients(
797 struct isl_sched_graph
*graph
, __isl_take isl_map
*map
)
799 isl_ctx
*ctx
= isl_map_get_ctx(map
);
803 if (isl_hmap_map_basic_set_has(ctx
, graph
->inter_hmap
, map
))
804 return isl_hmap_map_basic_set_get(ctx
, graph
->inter_hmap
, map
);
806 set
= isl_map_wrap(isl_map_remove_divs(isl_map_copy(map
)));
807 coef
= isl_set_coefficients(set
);
808 isl_hmap_map_basic_set_set(ctx
, graph
->inter_hmap
, map
,
809 isl_basic_set_copy(coef
));
814 /* Add constraints to graph->lp that force validity for the given
815 * dependence from a node i to itself.
816 * That is, add constraints that enforce
818 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
819 * = c_i_x (y - x) >= 0
821 * for each (x,y) in R.
822 * We obtain general constraints on coefficients (c_0, c_n, c_x)
823 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
824 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
825 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
827 * Actually, we do not construct constraints for the c_i_x themselves,
828 * but for the coefficients of c_i_x written as a linear combination
829 * of the columns in node->cmap.
831 static int add_intra_validity_constraints(struct isl_sched_graph
*graph
,
832 struct isl_sched_edge
*edge
)
835 isl_map
*map
= isl_map_copy(edge
->map
);
836 isl_ctx
*ctx
= isl_map_get_ctx(map
);
838 isl_dim_map
*dim_map
;
840 struct isl_sched_node
*node
= edge
->src
;
842 coef
= intra_coefficients(graph
, map
);
844 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
846 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
847 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
849 total
= isl_basic_set_total_dim(graph
->lp
);
850 dim_map
= isl_dim_map_alloc(ctx
, total
);
851 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
852 isl_space_dim(dim
, isl_dim_set
), 1,
854 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
855 isl_space_dim(dim
, isl_dim_set
), 1,
857 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
858 coef
->n_eq
, coef
->n_ineq
);
859 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
866 /* Add constraints to graph->lp that force validity for the given
867 * dependence from node i to node j.
868 * That is, add constraints that enforce
870 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
872 * for each (x,y) in R.
873 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
874 * of valid constraints for R and then plug in
875 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
876 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
877 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
878 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
880 * Actually, we do not construct constraints for the c_*_x themselves,
881 * but for the coefficients of c_*_x written as a linear combination
882 * of the columns in node->cmap.
884 static int add_inter_validity_constraints(struct isl_sched_graph
*graph
,
885 struct isl_sched_edge
*edge
)
888 isl_map
*map
= isl_map_copy(edge
->map
);
889 isl_ctx
*ctx
= isl_map_get_ctx(map
);
891 isl_dim_map
*dim_map
;
893 struct isl_sched_node
*src
= edge
->src
;
894 struct isl_sched_node
*dst
= edge
->dst
;
896 coef
= inter_coefficients(graph
, map
);
898 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
900 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
901 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
902 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
903 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
904 isl_mat_copy(dst
->cmap
));
906 total
= isl_basic_set_total_dim(graph
->lp
);
907 dim_map
= isl_dim_map_alloc(ctx
, total
);
909 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
910 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
911 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
912 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
913 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
915 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
916 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
919 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
920 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
921 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
922 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
923 isl_space_dim(dim
, isl_dim_set
), 1,
925 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
926 isl_space_dim(dim
, isl_dim_set
), 1,
929 edge
->start
= graph
->lp
->n_ineq
;
930 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
931 coef
->n_eq
, coef
->n_ineq
);
932 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
935 edge
->end
= graph
->lp
->n_ineq
;
940 /* Add constraints to graph->lp that bound the dependence distance for the given
941 * dependence from a node i to itself.
942 * If s = 1, we add the constraint
944 * c_i_x (y - x) <= m_0 + m_n n
948 * -c_i_x (y - x) + m_0 + m_n n >= 0
950 * for each (x,y) in R.
951 * If s = -1, we add the constraint
953 * -c_i_x (y - x) <= m_0 + m_n n
957 * c_i_x (y - x) + m_0 + m_n n >= 0
959 * for each (x,y) in R.
960 * We obtain general constraints on coefficients (c_0, c_n, c_x)
961 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
962 * with each coefficient (except m_0) represented as a pair of non-negative
965 * Actually, we do not construct constraints for the c_i_x themselves,
966 * but for the coefficients of c_i_x written as a linear combination
967 * of the columns in node->cmap.
969 static int add_intra_proximity_constraints(struct isl_sched_graph
*graph
,
970 struct isl_sched_edge
*edge
, int s
)
974 isl_map
*map
= isl_map_copy(edge
->map
);
975 isl_ctx
*ctx
= isl_map_get_ctx(map
);
977 isl_dim_map
*dim_map
;
979 struct isl_sched_node
*node
= edge
->src
;
981 coef
= intra_coefficients(graph
, map
);
983 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
985 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
986 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(node
->cmap
));
988 nparam
= isl_space_dim(node
->dim
, isl_dim_param
);
989 total
= isl_basic_set_total_dim(graph
->lp
);
990 dim_map
= isl_dim_map_alloc(ctx
, total
);
991 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
992 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
993 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
994 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
995 isl_space_dim(dim
, isl_dim_set
), 1,
997 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
998 isl_space_dim(dim
, isl_dim_set
), 1,
1000 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1001 coef
->n_eq
, coef
->n_ineq
);
1002 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1004 isl_space_free(dim
);
1009 /* Add constraints to graph->lp that bound the dependence distance for the given
1010 * dependence from node i to node j.
1011 * If s = 1, we add the constraint
1013 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1018 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1021 * for each (x,y) in R.
1022 * If s = -1, we add the constraint
1024 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1029 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1032 * for each (x,y) in R.
1033 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1034 * of valid constraints for R and then plug in
1035 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1037 * with each coefficient (except m_0, c_j_0 and c_i_0)
1038 * represented as a pair of non-negative coefficients.
1040 * Actually, we do not construct constraints for the c_*_x themselves,
1041 * but for the coefficients of c_*_x written as a linear combination
1042 * of the columns in node->cmap.
1044 static int add_inter_proximity_constraints(struct isl_sched_graph
*graph
,
1045 struct isl_sched_edge
*edge
, int s
)
1049 isl_map
*map
= isl_map_copy(edge
->map
);
1050 isl_ctx
*ctx
= isl_map_get_ctx(map
);
1052 isl_dim_map
*dim_map
;
1053 isl_basic_set
*coef
;
1054 struct isl_sched_node
*src
= edge
->src
;
1055 struct isl_sched_node
*dst
= edge
->dst
;
1057 coef
= inter_coefficients(graph
, map
);
1059 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
1061 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1062 isl_space_dim(dim
, isl_dim_set
), isl_mat_copy(src
->cmap
));
1063 coef
= isl_basic_set_transform_dims(coef
, isl_dim_set
,
1064 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
,
1065 isl_mat_copy(dst
->cmap
));
1067 nparam
= isl_space_dim(src
->dim
, isl_dim_param
);
1068 total
= isl_basic_set_total_dim(graph
->lp
);
1069 dim_map
= isl_dim_map_alloc(ctx
, total
);
1071 isl_dim_map_range(dim_map
, 1, 0, 0, 0, 1, 1);
1072 isl_dim_map_range(dim_map
, 4, 2, 1, 1, nparam
, -1);
1073 isl_dim_map_range(dim_map
, 5, 2, 1, 1, nparam
, 1);
1075 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, -s
);
1076 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, s
);
1077 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, -s
);
1078 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
1079 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1081 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
1082 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
1085 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, s
);
1086 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, -s
);
1087 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, s
);
1088 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
1089 isl_space_dim(dim
, isl_dim_set
), 1,
1091 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
1092 isl_space_dim(dim
, isl_dim_set
), 1,
1095 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
1096 coef
->n_eq
, coef
->n_ineq
);
1097 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
1099 isl_space_free(dim
);
1104 static int add_all_validity_constraints(struct isl_sched_graph
*graph
)
1108 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1109 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1110 if (!edge
->validity
)
1112 if (edge
->src
!= edge
->dst
)
1114 if (add_intra_validity_constraints(graph
, edge
) < 0)
1118 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1119 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1120 if (!edge
->validity
)
1122 if (edge
->src
== edge
->dst
)
1124 if (add_inter_validity_constraints(graph
, edge
) < 0)
1131 /* Add constraints to graph->lp that bound the dependence distance
1132 * for all dependence relations.
1133 * If a given proximity dependence is identical to a validity
1134 * dependence, then the dependence distance is already bounded
1135 * from below (by zero), so we only need to bound the distance
1137 * Otherwise, we need to bound the distance both from above and from below.
1139 static int add_all_proximity_constraints(struct isl_sched_graph
*graph
)
1143 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1144 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1145 if (!edge
->proximity
)
1147 if (edge
->src
== edge
->dst
&&
1148 add_intra_proximity_constraints(graph
, edge
, 1) < 0)
1150 if (edge
->src
!= edge
->dst
&&
1151 add_inter_proximity_constraints(graph
, edge
, 1) < 0)
1155 if (edge
->src
== edge
->dst
&&
1156 add_intra_proximity_constraints(graph
, edge
, -1) < 0)
1158 if (edge
->src
!= edge
->dst
&&
1159 add_inter_proximity_constraints(graph
, edge
, -1) < 0)
1166 /* Compute a basis for the rows in the linear part of the schedule
1167 * and extend this basis to a full basis. The remaining rows
1168 * can then be used to force linear independence from the rows
1171 * In particular, given the schedule rows S, we compute
1175 * with H the Hermite normal form of S. That is, all but the
1176 * first rank columns of Q are zero and so each row in S is
1177 * a linear combination of the first rank rows of Q.
1178 * The matrix Q is then transposed because we will write the
1179 * coefficients of the next schedule row as a column vector s
1180 * and express this s as a linear combination s = Q c of the
1183 static int node_update_cmap(struct isl_sched_node
*node
)
1186 int n_row
= isl_mat_rows(node
->sched
);
1188 H
= isl_mat_sub_alloc(node
->sched
, 0, n_row
,
1189 1 + node
->nparam
, node
->nvar
);
1191 H
= isl_mat_left_hermite(H
, 0, NULL
, &Q
);
1192 isl_mat_free(node
->cmap
);
1193 node
->cmap
= isl_mat_transpose(Q
);
1194 node
->rank
= isl_mat_initial_non_zero_cols(H
);
1197 if (!node
->cmap
|| node
->rank
< 0)
1202 /* Count the number of equality and inequality constraints
1203 * that will be added for the given map.
1204 * If carry is set, then we are counting the number of (validity)
1205 * constraints that will be added in setup_carry_lp and we count
1206 * each edge exactly once. Otherwise, we count as follows
1207 * validity -> 1 (>= 0)
1208 * validity+proximity -> 2 (>= 0 and upper bound)
1209 * proximity -> 2 (lower and upper bound)
1211 static int count_map_constraints(struct isl_sched_graph
*graph
,
1212 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
,
1213 int *n_eq
, int *n_ineq
, int carry
)
1215 isl_basic_set
*coef
;
1216 int f
= carry
? 1 : edge
->proximity
? 2 : 1;
1218 if (carry
&& !edge
->validity
) {
1223 if (edge
->src
== edge
->dst
)
1224 coef
= intra_coefficients(graph
, map
);
1226 coef
= inter_coefficients(graph
, map
);
1229 *n_eq
+= f
* coef
->n_eq
;
1230 *n_ineq
+= f
* coef
->n_ineq
;
1231 isl_basic_set_free(coef
);
1236 /* Count the number of equality and inequality constraints
1237 * that will be added to the main lp problem.
1238 * We count as follows
1239 * validity -> 1 (>= 0)
1240 * validity+proximity -> 2 (>= 0 and upper bound)
1241 * proximity -> 2 (lower and upper bound)
1243 static int count_constraints(struct isl_sched_graph
*graph
,
1244 int *n_eq
, int *n_ineq
)
1248 *n_eq
= *n_ineq
= 0;
1249 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1250 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1251 isl_map
*map
= isl_map_copy(edge
->map
);
1253 if (count_map_constraints(graph
, edge
, map
,
1254 n_eq
, n_ineq
, 0) < 0)
1261 /* Add constraints that bound the values of the variable and parameter
1262 * coefficients of the schedule.
1264 * The maximal value of the coefficients is defined by the option
1265 * 'schedule_max_coefficient'.
1267 static int add_bound_coefficient_constraints(isl_ctx
*ctx
,
1268 struct isl_sched_graph
*graph
)
1271 int max_coefficient
;
1274 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1276 if (max_coefficient
== -1)
1279 total
= isl_basic_set_total_dim(graph
->lp
);
1281 for (i
= 0; i
< graph
->n
; ++i
) {
1282 struct isl_sched_node
*node
= &graph
->node
[i
];
1283 for (j
= 0; j
< 2 * node
->nparam
+ 2 * node
->nvar
; ++j
) {
1285 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1288 dim
= 1 + node
->start
+ 1 + j
;
1289 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1290 isl_int_set_si(graph
->lp
->ineq
[k
][dim
], -1);
1291 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_coefficient
);
1298 /* Construct an ILP problem for finding schedule coefficients
1299 * that result in non-negative, but small dependence distances
1300 * over all dependences.
1301 * In particular, the dependence distances over proximity edges
1302 * are bounded by m_0 + m_n n and we compute schedule coefficients
1303 * with small values (preferably zero) of m_n and m_0.
1305 * All variables of the ILP are non-negative. The actual coefficients
1306 * may be negative, so each coefficient is represented as the difference
1307 * of two non-negative variables. The negative part always appears
1308 * immediately before the positive part.
1309 * Other than that, the variables have the following order
1311 * - sum of positive and negative parts of m_n coefficients
1313 * - sum of positive and negative parts of all c_n coefficients
1314 * (unconstrained when computing non-parametric schedules)
1315 * - sum of positive and negative parts of all c_x coefficients
1316 * - positive and negative parts of m_n coefficients
1319 * - positive and negative parts of c_i_n (if parametric)
1320 * - positive and negative parts of c_i_x
1322 * The c_i_x are not represented directly, but through the columns of
1323 * node->cmap. That is, the computed values are for variable t_i_x
1324 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1326 * The constraints are those from the edges plus two or three equalities
1327 * to express the sums.
1329 * If force_zero is set, then we add equalities to ensure that
1330 * the sum of the m_n coefficients and m_0 are both zero.
1332 static int setup_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
,
1343 int max_constant_term
;
1344 int max_coefficient
;
1346 max_constant_term
= ctx
->opt
->schedule_max_constant_term
;
1347 max_coefficient
= ctx
->opt
->schedule_max_coefficient
;
1349 parametric
= ctx
->opt
->schedule_parametric
;
1350 nparam
= isl_space_dim(graph
->node
[0].dim
, isl_dim_param
);
1352 total
= param_pos
+ 2 * nparam
;
1353 for (i
= 0; i
< graph
->n
; ++i
) {
1354 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
1355 if (node_update_cmap(node
) < 0)
1357 node
->start
= total
;
1358 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
1361 if (count_constraints(graph
, &n_eq
, &n_ineq
) < 0)
1364 dim
= isl_space_set_alloc(ctx
, 0, total
);
1365 isl_basic_set_free(graph
->lp
);
1366 n_eq
+= 2 + parametric
+ force_zero
;
1367 if (max_constant_term
!= -1)
1369 if (max_coefficient
!= -1)
1370 for (i
= 0; i
< graph
->n
; ++i
)
1371 n_ineq
+= 2 * graph
->node
[i
].nparam
+
1372 2 * graph
->node
[i
].nvar
;
1374 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
1376 k
= isl_basic_set_alloc_equality(graph
->lp
);
1379 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1381 isl_int_set_si(graph
->lp
->eq
[k
][1], -1);
1382 for (i
= 0; i
< 2 * nparam
; ++i
)
1383 isl_int_set_si(graph
->lp
->eq
[k
][1 + param_pos
+ i
], 1);
1386 k
= isl_basic_set_alloc_equality(graph
->lp
);
1389 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1390 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
1394 k
= isl_basic_set_alloc_equality(graph
->lp
);
1397 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1398 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
1399 for (i
= 0; i
< graph
->n
; ++i
) {
1400 int pos
= 1 + graph
->node
[i
].start
+ 1;
1402 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
1403 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1407 k
= isl_basic_set_alloc_equality(graph
->lp
);
1410 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
1411 isl_int_set_si(graph
->lp
->eq
[k
][4], -1);
1412 for (i
= 0; i
< graph
->n
; ++i
) {
1413 struct isl_sched_node
*node
= &graph
->node
[i
];
1414 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
1416 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
1417 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
1420 if (max_constant_term
!= -1)
1421 for (i
= 0; i
< graph
->n
; ++i
) {
1422 struct isl_sched_node
*node
= &graph
->node
[i
];
1423 k
= isl_basic_set_alloc_inequality(graph
->lp
);
1426 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
1427 isl_int_set_si(graph
->lp
->ineq
[k
][1 + node
->start
], -1);
1428 isl_int_set_si(graph
->lp
->ineq
[k
][0], max_constant_term
);
1431 if (add_bound_coefficient_constraints(ctx
, graph
) < 0)
1433 if (add_all_validity_constraints(graph
) < 0)
1435 if (add_all_proximity_constraints(graph
) < 0)
1441 /* Analyze the conflicting constraint found by
1442 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1443 * constraint of one of the edges between distinct nodes, living, moreover
1444 * in distinct SCCs, then record the source and sink SCC as this may
1445 * be a good place to cut between SCCs.
1447 static int check_conflict(int con
, void *user
)
1450 struct isl_sched_graph
*graph
= user
;
1452 if (graph
->src_scc
>= 0)
1455 con
-= graph
->lp
->n_eq
;
1457 if (con
>= graph
->lp
->n_ineq
)
1460 for (i
= 0; i
< graph
->n_edge
; ++i
) {
1461 if (!graph
->edge
[i
].validity
)
1463 if (graph
->edge
[i
].src
== graph
->edge
[i
].dst
)
1465 if (graph
->edge
[i
].src
->scc
== graph
->edge
[i
].dst
->scc
)
1467 if (graph
->edge
[i
].start
> con
)
1469 if (graph
->edge
[i
].end
<= con
)
1471 graph
->src_scc
= graph
->edge
[i
].src
->scc
;
1472 graph
->dst_scc
= graph
->edge
[i
].dst
->scc
;
1478 /* Check whether the next schedule row of the given node needs to be
1479 * non-trivial. Lower-dimensional domains may have some trivial rows,
1480 * but as soon as the number of remaining required non-trivial rows
1481 * is as large as the number or remaining rows to be computed,
1482 * all remaining rows need to be non-trivial.
1484 static int needs_row(struct isl_sched_graph
*graph
, struct isl_sched_node
*node
)
1486 return node
->nvar
- node
->rank
>= graph
->maxvar
- graph
->n_row
;
1489 /* Solve the ILP problem constructed in setup_lp.
1490 * For each node such that all the remaining rows of its schedule
1491 * need to be non-trivial, we construct a non-triviality region.
1492 * This region imposes that the next row is independent of previous rows.
1493 * In particular the coefficients c_i_x are represented by t_i_x
1494 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1495 * its first columns span the rows of the previously computed part
1496 * of the schedule. The non-triviality region enforces that at least
1497 * one of the remaining components of t_i_x is non-zero, i.e.,
1498 * that the new schedule row depends on at least one of the remaining
1501 static __isl_give isl_vec
*solve_lp(struct isl_sched_graph
*graph
)
1507 for (i
= 0; i
< graph
->n
; ++i
) {
1508 struct isl_sched_node
*node
= &graph
->node
[i
];
1509 int skip
= node
->rank
;
1510 graph
->region
[i
].pos
= node
->start
+ 1 + 2*(node
->nparam
+skip
);
1511 if (needs_row(graph
, node
))
1512 graph
->region
[i
].len
= 2 * (node
->nvar
- skip
);
1514 graph
->region
[i
].len
= 0;
1516 lp
= isl_basic_set_copy(graph
->lp
);
1517 sol
= isl_tab_basic_set_non_trivial_lexmin(lp
, 2, graph
->n
,
1518 graph
->region
, &check_conflict
, graph
);
1522 /* Update the schedules of all nodes based on the given solution
1523 * of the LP problem.
1524 * The new row is added to the current band.
1525 * All possibly negative coefficients are encoded as a difference
1526 * of two non-negative variables, so we need to perform the subtraction
1527 * here. Moreover, if use_cmap is set, then the solution does
1528 * not refer to the actual coefficients c_i_x, but instead to variables
1529 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1530 * In this case, we then also need to perform this multiplication
1531 * to obtain the values of c_i_x.
1533 * If check_zero is set, then the first two coordinates of sol are
1534 * assumed to correspond to the dependence distance. If these two
1535 * coordinates are zero, then the corresponding scheduling dimension
1536 * is marked as being zero distance.
1538 static int update_schedule(struct isl_sched_graph
*graph
,
1539 __isl_take isl_vec
*sol
, int use_cmap
, int check_zero
)
1543 isl_vec
*csol
= NULL
;
1548 isl_die(sol
->ctx
, isl_error_internal
,
1549 "no solution found", goto error
);
1552 zero
= isl_int_is_zero(sol
->el
[1]) &&
1553 isl_int_is_zero(sol
->el
[2]);
1555 for (i
= 0; i
< graph
->n
; ++i
) {
1556 struct isl_sched_node
*node
= &graph
->node
[i
];
1557 int pos
= node
->start
;
1558 int row
= isl_mat_rows(node
->sched
);
1561 csol
= isl_vec_alloc(sol
->ctx
, node
->nvar
);
1565 isl_map_free(node
->sched_map
);
1566 node
->sched_map
= NULL
;
1567 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1570 node
->sched
= isl_mat_set_element(node
->sched
, row
, 0,
1572 for (j
= 0; j
< node
->nparam
+ node
->nvar
; ++j
)
1573 isl_int_sub(sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1574 sol
->el
[1 + pos
+ 1 + 2 * j
+ 1],
1575 sol
->el
[1 + pos
+ 1 + 2 * j
]);
1576 for (j
= 0; j
< node
->nparam
; ++j
)
1577 node
->sched
= isl_mat_set_element(node
->sched
,
1578 row
, 1 + j
, sol
->el
[1+pos
+1+2*j
+1]);
1579 for (j
= 0; j
< node
->nvar
; ++j
)
1580 isl_int_set(csol
->el
[j
],
1581 sol
->el
[1+pos
+1+2*(node
->nparam
+j
)+1]);
1583 csol
= isl_mat_vec_product(isl_mat_copy(node
->cmap
),
1587 for (j
= 0; j
< node
->nvar
; ++j
)
1588 node
->sched
= isl_mat_set_element(node
->sched
,
1589 row
, 1 + node
->nparam
+ j
, csol
->el
[j
]);
1590 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1591 node
->zero
[graph
->n_total_row
] = zero
;
1597 graph
->n_total_row
++;
1606 /* Convert node->sched into a multi_aff and return this multi_aff.
1608 static __isl_give isl_multi_aff
*node_extract_schedule_multi_aff(
1609 struct isl_sched_node
*node
)
1613 isl_local_space
*ls
;
1619 nrow
= isl_mat_rows(node
->sched
);
1620 ncol
= isl_mat_cols(node
->sched
) - 1;
1621 space
= isl_space_from_domain(isl_space_copy(node
->dim
));
1622 space
= isl_space_add_dims(space
, isl_dim_out
, nrow
);
1623 ma
= isl_multi_aff_zero(space
);
1624 ls
= isl_local_space_from_space(isl_space_copy(node
->dim
));
1628 for (i
= 0; i
< nrow
; ++i
) {
1629 aff
= isl_aff_zero_on_domain(isl_local_space_copy(ls
));
1630 isl_mat_get_element(node
->sched
, i
, 0, &v
);
1631 aff
= isl_aff_set_constant(aff
, v
);
1632 for (j
= 0; j
< node
->nparam
; ++j
) {
1633 isl_mat_get_element(node
->sched
, i
, 1 + j
, &v
);
1634 aff
= isl_aff_set_coefficient(aff
, isl_dim_param
, j
, v
);
1636 for (j
= 0; j
< node
->nvar
; ++j
) {
1637 isl_mat_get_element(node
->sched
,
1638 i
, 1 + node
->nparam
+ j
, &v
);
1639 aff
= isl_aff_set_coefficient(aff
, isl_dim_in
, j
, v
);
1641 ma
= isl_multi_aff_set_aff(ma
, i
, aff
);
1646 isl_local_space_free(ls
);
1651 /* Convert node->sched into a map and return this map.
1653 * The result is cached in node->sched_map, which needs to be released
1654 * whenever node->sched is updated.
1656 static __isl_give isl_map
*node_extract_schedule(struct isl_sched_node
*node
)
1658 if (!node
->sched_map
) {
1661 ma
= node_extract_schedule_multi_aff(node
);
1662 node
->sched_map
= isl_map_from_multi_aff(ma
);
1665 return isl_map_copy(node
->sched_map
);
1668 /* Update the given dependence relation based on the current schedule.
1669 * That is, intersect the dependence relation with a map expressing
1670 * that source and sink are executed within the same iteration of
1671 * the current schedule.
1672 * This is not the most efficient way, but this shouldn't be a critical
1675 static __isl_give isl_map
*specialize(__isl_take isl_map
*map
,
1676 struct isl_sched_node
*src
, struct isl_sched_node
*dst
)
1678 isl_map
*src_sched
, *dst_sched
, *id
;
1680 src_sched
= node_extract_schedule(src
);
1681 dst_sched
= node_extract_schedule(dst
);
1682 id
= isl_map_apply_range(src_sched
, isl_map_reverse(dst_sched
));
1683 return isl_map_intersect(map
, id
);
1686 /* Update the dependence relations of all edges based on the current schedule.
1687 * If a dependence is carried completely by the current schedule, then
1688 * it is removed from the edge_tables. It is kept in the list of edges
1689 * as otherwise all edge_tables would have to be recomputed.
1691 static int update_edges(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1695 for (i
= graph
->n_edge
- 1; i
>= 0; --i
) {
1696 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
1697 edge
->map
= specialize(edge
->map
, edge
->src
, edge
->dst
);
1701 if (isl_map_plain_is_empty(edge
->map
))
1702 graph_remove_edge(graph
, edge
);
1708 static void next_band(struct isl_sched_graph
*graph
)
1710 graph
->band_start
= graph
->n_total_row
;
1714 /* Topologically sort statements mapped to the same schedule iteration
1715 * and add a row to the schedule corresponding to this order.
1717 static int sort_statements(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
1724 if (update_edges(ctx
, graph
) < 0)
1727 if (graph
->n_edge
== 0)
1730 if (detect_sccs(graph
) < 0)
1733 for (i
= 0; i
< graph
->n
; ++i
) {
1734 struct isl_sched_node
*node
= &graph
->node
[i
];
1735 int row
= isl_mat_rows(node
->sched
);
1736 int cols
= isl_mat_cols(node
->sched
);
1738 isl_map_free(node
->sched_map
);
1739 node
->sched_map
= NULL
;
1740 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
1743 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
1745 for (j
= 1; j
< cols
; ++j
)
1746 node
->sched
= isl_mat_set_element_si(node
->sched
,
1748 node
->band
[graph
->n_total_row
] = graph
->n_band
;
1751 graph
->n_total_row
++;
1757 /* Construct an isl_schedule based on the computed schedule stored
1758 * in graph and with parameters specified by dim.
1760 static __isl_give isl_schedule
*extract_schedule(struct isl_sched_graph
*graph
,
1761 __isl_take isl_space
*dim
)
1765 isl_schedule
*sched
= NULL
;
1770 ctx
= isl_space_get_ctx(dim
);
1771 sched
= isl_calloc(ctx
, struct isl_schedule
,
1772 sizeof(struct isl_schedule
) +
1773 (graph
->n
- 1) * sizeof(struct isl_schedule_node
));
1778 sched
->n
= graph
->n
;
1779 sched
->n_band
= graph
->n_band
;
1780 sched
->n_total_row
= graph
->n_total_row
;
1782 for (i
= 0; i
< sched
->n
; ++i
) {
1784 int *band_end
, *band_id
, *zero
;
1786 band_end
= isl_alloc_array(ctx
, int, graph
->n_band
);
1787 band_id
= isl_alloc_array(ctx
, int, graph
->n_band
);
1788 zero
= isl_alloc_array(ctx
, int, graph
->n_total_row
);
1789 sched
->node
[i
].sched
=
1790 node_extract_schedule_multi_aff(&graph
->node
[i
]);
1791 sched
->node
[i
].band_end
= band_end
;
1792 sched
->node
[i
].band_id
= band_id
;
1793 sched
->node
[i
].zero
= zero
;
1794 if (!band_end
|| !band_id
|| !zero
)
1797 for (r
= 0; r
< graph
->n_total_row
; ++r
)
1798 zero
[r
] = graph
->node
[i
].zero
[r
];
1799 for (r
= b
= 0; r
< graph
->n_total_row
; ++r
) {
1800 if (graph
->node
[i
].band
[r
] == b
)
1803 if (graph
->node
[i
].band
[r
] == -1)
1806 if (r
== graph
->n_total_row
)
1808 sched
->node
[i
].n_band
= b
;
1809 for (--b
; b
>= 0; --b
)
1810 band_id
[b
] = graph
->node
[i
].band_id
[b
];
1817 isl_space_free(dim
);
1818 isl_schedule_free(sched
);
1822 /* Copy nodes that satisfy node_pred from the src dependence graph
1823 * to the dst dependence graph.
1825 static int copy_nodes(struct isl_sched_graph
*dst
, struct isl_sched_graph
*src
,
1826 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1831 for (i
= 0; i
< src
->n
; ++i
) {
1832 if (!node_pred(&src
->node
[i
], data
))
1834 dst
->node
[dst
->n
].dim
= isl_space_copy(src
->node
[i
].dim
);
1835 dst
->node
[dst
->n
].nvar
= src
->node
[i
].nvar
;
1836 dst
->node
[dst
->n
].nparam
= src
->node
[i
].nparam
;
1837 dst
->node
[dst
->n
].sched
= isl_mat_copy(src
->node
[i
].sched
);
1838 dst
->node
[dst
->n
].sched_map
=
1839 isl_map_copy(src
->node
[i
].sched_map
);
1840 dst
->node
[dst
->n
].band
= src
->node
[i
].band
;
1841 dst
->node
[dst
->n
].band_id
= src
->node
[i
].band_id
;
1842 dst
->node
[dst
->n
].zero
= src
->node
[i
].zero
;
1849 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1850 * to the dst dependence graph.
1851 * If the source or destination node of the edge is not in the destination
1852 * graph, then it must be a backward proximity edge and it should simply
1855 static int copy_edges(isl_ctx
*ctx
, struct isl_sched_graph
*dst
,
1856 struct isl_sched_graph
*src
,
1857 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
), int data
)
1863 for (i
= 0; i
< src
->n_edge
; ++i
) {
1864 struct isl_sched_edge
*edge
= &src
->edge
[i
];
1866 struct isl_sched_node
*dst_src
, *dst_dst
;
1868 if (!edge_pred(edge
, data
))
1871 if (isl_map_plain_is_empty(edge
->map
))
1874 dst_src
= graph_find_node(ctx
, dst
, edge
->src
->dim
);
1875 dst_dst
= graph_find_node(ctx
, dst
, edge
->dst
->dim
);
1876 if (!dst_src
|| !dst_dst
) {
1878 isl_die(ctx
, isl_error_internal
,
1879 "backward validity edge", return -1);
1883 map
= isl_map_copy(edge
->map
);
1885 dst
->edge
[dst
->n_edge
].src
= dst_src
;
1886 dst
->edge
[dst
->n_edge
].dst
= dst_dst
;
1887 dst
->edge
[dst
->n_edge
].map
= map
;
1888 dst
->edge
[dst
->n_edge
].validity
= edge
->validity
;
1889 dst
->edge
[dst
->n_edge
].proximity
= edge
->proximity
;
1892 for (t
= 0; t
<= isl_edge_last
; ++t
) {
1894 graph_find_edge(src
, t
, edge
->src
, edge
->dst
))
1896 if (graph_edge_table_add(ctx
, dst
, t
,
1897 &dst
->edge
[dst
->n_edge
- 1]) < 0)
1905 /* Given a "src" dependence graph that contains the nodes from "dst"
1906 * that satisfy node_pred, copy the schedule computed in "src"
1907 * for those nodes back to "dst".
1909 static int copy_schedule(struct isl_sched_graph
*dst
,
1910 struct isl_sched_graph
*src
,
1911 int (*node_pred
)(struct isl_sched_node
*node
, int data
), int data
)
1916 for (i
= 0; i
< dst
->n
; ++i
) {
1917 if (!node_pred(&dst
->node
[i
], data
))
1919 isl_mat_free(dst
->node
[i
].sched
);
1920 isl_map_free(dst
->node
[i
].sched_map
);
1921 dst
->node
[i
].sched
= isl_mat_copy(src
->node
[src
->n
].sched
);
1922 dst
->node
[i
].sched_map
=
1923 isl_map_copy(src
->node
[src
->n
].sched_map
);
1927 dst
->n_total_row
= src
->n_total_row
;
1928 dst
->n_band
= src
->n_band
;
1933 /* Compute the maximal number of variables over all nodes.
1934 * This is the maximal number of linearly independent schedule
1935 * rows that we need to compute.
1936 * Just in case we end up in a part of the dependence graph
1937 * with only lower-dimensional domains, we make sure we will
1938 * compute the required amount of extra linearly independent rows.
1940 static int compute_maxvar(struct isl_sched_graph
*graph
)
1945 for (i
= 0; i
< graph
->n
; ++i
) {
1946 struct isl_sched_node
*node
= &graph
->node
[i
];
1949 if (node_update_cmap(node
) < 0)
1951 nvar
= node
->nvar
+ graph
->n_row
- node
->rank
;
1952 if (nvar
> graph
->maxvar
)
1953 graph
->maxvar
= nvar
;
1959 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1960 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
);
1962 /* Compute a schedule for a subgraph of "graph". In particular, for
1963 * the graph composed of nodes that satisfy node_pred and edges that
1964 * that satisfy edge_pred. The caller should precompute the number
1965 * of nodes and edges that satisfy these predicates and pass them along
1966 * as "n" and "n_edge".
1967 * If the subgraph is known to consist of a single component, then wcc should
1968 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1969 * Otherwise, we call compute_schedule, which will check whether the subgraph
1972 static int compute_sub_schedule(isl_ctx
*ctx
,
1973 struct isl_sched_graph
*graph
, int n
, int n_edge
,
1974 int (*node_pred
)(struct isl_sched_node
*node
, int data
),
1975 int (*edge_pred
)(struct isl_sched_edge
*edge
, int data
),
1978 struct isl_sched_graph split
= { 0 };
1981 if (graph_alloc(ctx
, &split
, n
, n_edge
) < 0)
1983 if (copy_nodes(&split
, graph
, node_pred
, data
) < 0)
1985 if (graph_init_table(ctx
, &split
) < 0)
1987 for (t
= 0; t
<= isl_edge_last
; ++t
)
1988 split
.max_edge
[t
] = graph
->max_edge
[t
];
1989 if (graph_init_edge_tables(ctx
, &split
) < 0)
1991 if (copy_edges(ctx
, &split
, graph
, edge_pred
, data
) < 0)
1993 split
.n_row
= graph
->n_row
;
1994 split
.n_total_row
= graph
->n_total_row
;
1995 split
.n_band
= graph
->n_band
;
1996 split
.band_start
= graph
->band_start
;
1998 if (wcc
&& compute_schedule_wcc(ctx
, &split
) < 0)
2000 if (!wcc
&& compute_schedule(ctx
, &split
) < 0)
2003 copy_schedule(graph
, &split
, node_pred
, data
);
2005 graph_free(ctx
, &split
);
2008 graph_free(ctx
, &split
);
2012 static int node_scc_exactly(struct isl_sched_node
*node
, int scc
)
2014 return node
->scc
== scc
;
2017 static int node_scc_at_most(struct isl_sched_node
*node
, int scc
)
2019 return node
->scc
<= scc
;
2022 static int node_scc_at_least(struct isl_sched_node
*node
, int scc
)
2024 return node
->scc
>= scc
;
2027 static int edge_scc_exactly(struct isl_sched_edge
*edge
, int scc
)
2029 return edge
->src
->scc
== scc
&& edge
->dst
->scc
== scc
;
2032 static int edge_dst_scc_at_most(struct isl_sched_edge
*edge
, int scc
)
2034 return edge
->dst
->scc
<= scc
;
2037 static int edge_src_scc_at_least(struct isl_sched_edge
*edge
, int scc
)
2039 return edge
->src
->scc
>= scc
;
2042 /* Pad the schedules of all nodes with zero rows such that in the end
2043 * they all have graph->n_total_row rows.
2044 * The extra rows don't belong to any band, so they get assigned band number -1.
2046 static int pad_schedule(struct isl_sched_graph
*graph
)
2050 for (i
= 0; i
< graph
->n
; ++i
) {
2051 struct isl_sched_node
*node
= &graph
->node
[i
];
2052 int row
= isl_mat_rows(node
->sched
);
2053 if (graph
->n_total_row
> row
) {
2054 isl_map_free(node
->sched_map
);
2055 node
->sched_map
= NULL
;
2057 node
->sched
= isl_mat_add_zero_rows(node
->sched
,
2058 graph
->n_total_row
- row
);
2061 for (j
= row
; j
< graph
->n_total_row
; ++j
)
2068 /* Split the current graph into two parts and compute a schedule for each
2069 * part individually. In particular, one part consists of all SCCs up
2070 * to and including graph->src_scc, while the other part contains the other
2073 * The split is enforced in the schedule by constant rows with two different
2074 * values (0 and 1). These constant rows replace the previously computed rows
2075 * in the current band.
2076 * It would be possible to reuse them as the first rows in the next
2077 * band, but recomputing them may result in better rows as we are looking
2078 * at a smaller part of the dependence graph.
2079 * compute_split_schedule is only called when no zero-distance schedule row
2080 * could be found on the entire graph, so we wark the splitting row as
2081 * non zero-distance.
2083 * The band_id of the second group is set to n, where n is the number
2084 * of nodes in the first group. This ensures that the band_ids over
2085 * the two groups remain disjoint, even if either or both of the two
2086 * groups contain independent components.
2088 static int compute_split_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2090 int i
, j
, n
, e1
, e2
;
2091 int n_total_row
, orig_total_row
;
2092 int n_band
, orig_band
;
2095 drop
= graph
->n_total_row
- graph
->band_start
;
2096 graph
->n_total_row
-= drop
;
2097 graph
->n_row
-= drop
;
2100 for (i
= 0; i
< graph
->n
; ++i
) {
2101 struct isl_sched_node
*node
= &graph
->node
[i
];
2102 int row
= isl_mat_rows(node
->sched
) - drop
;
2103 int cols
= isl_mat_cols(node
->sched
);
2104 int before
= node
->scc
<= graph
->src_scc
;
2109 isl_map_free(node
->sched_map
);
2110 node
->sched_map
= NULL
;
2111 node
->sched
= isl_mat_drop_rows(node
->sched
,
2112 graph
->band_start
, drop
);
2113 node
->sched
= isl_mat_add_rows(node
->sched
, 1);
2116 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2118 for (j
= 1; j
< cols
; ++j
)
2119 node
->sched
= isl_mat_set_element_si(node
->sched
,
2121 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2122 node
->zero
[graph
->n_total_row
] = 0;
2126 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2127 if (graph
->edge
[i
].dst
->scc
<= graph
->src_scc
)
2129 if (graph
->edge
[i
].src
->scc
> graph
->src_scc
)
2133 graph
->n_total_row
++;
2136 for (i
= 0; i
< graph
->n
; ++i
) {
2137 struct isl_sched_node
*node
= &graph
->node
[i
];
2138 if (node
->scc
> graph
->src_scc
)
2139 node
->band_id
[graph
->n_band
] = n
;
2142 orig_total_row
= graph
->n_total_row
;
2143 orig_band
= graph
->n_band
;
2144 if (compute_sub_schedule(ctx
, graph
, n
, e1
,
2145 &node_scc_at_most
, &edge_dst_scc_at_most
,
2146 graph
->src_scc
, 0) < 0)
2148 n_total_row
= graph
->n_total_row
;
2149 graph
->n_total_row
= orig_total_row
;
2150 n_band
= graph
->n_band
;
2151 graph
->n_band
= orig_band
;
2152 if (compute_sub_schedule(ctx
, graph
, graph
->n
- n
, e2
,
2153 &node_scc_at_least
, &edge_src_scc_at_least
,
2154 graph
->src_scc
+ 1, 0) < 0)
2156 if (n_total_row
> graph
->n_total_row
)
2157 graph
->n_total_row
= n_total_row
;
2158 if (n_band
> graph
->n_band
)
2159 graph
->n_band
= n_band
;
2161 return pad_schedule(graph
);
2164 /* Compute the next band of the schedule after updating the dependence
2165 * relations based on the the current schedule.
2167 static int compute_next_band(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2169 if (update_edges(ctx
, graph
) < 0)
2173 return compute_schedule(ctx
, graph
);
2176 /* Add constraints to graph->lp that force the dependence "map" (which
2177 * is part of the dependence relation of "edge")
2178 * to be respected and attempt to carry it, where the edge is one from
2179 * a node j to itself. "pos" is the sequence number of the given map.
2180 * That is, add constraints that enforce
2182 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2183 * = c_j_x (y - x) >= e_i
2185 * for each (x,y) in R.
2186 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2187 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2188 * with each coefficient in c_j_x represented as a pair of non-negative
2191 static int add_intra_constraints(struct isl_sched_graph
*graph
,
2192 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2195 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2197 isl_dim_map
*dim_map
;
2198 isl_basic_set
*coef
;
2199 struct isl_sched_node
*node
= edge
->src
;
2201 coef
= intra_coefficients(graph
, map
);
2203 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2205 total
= isl_basic_set_total_dim(graph
->lp
);
2206 dim_map
= isl_dim_map_alloc(ctx
, total
);
2207 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2208 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 1, 2,
2209 isl_space_dim(dim
, isl_dim_set
), 1,
2211 isl_dim_map_range(dim_map
, node
->start
+ 2 * node
->nparam
+ 2, 2,
2212 isl_space_dim(dim
, isl_dim_set
), 1,
2214 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2215 coef
->n_eq
, coef
->n_ineq
);
2216 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2218 isl_space_free(dim
);
2223 /* Add constraints to graph->lp that force the dependence "map" (which
2224 * is part of the dependence relation of "edge")
2225 * to be respected and attempt to carry it, where the edge is one from
2226 * node j to node k. "pos" is the sequence number of the given map.
2227 * That is, add constraints that enforce
2229 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2231 * for each (x,y) in R.
2232 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2233 * of valid constraints for R and then plug in
2234 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2235 * with each coefficient (except e_i, c_k_0 and c_j_0)
2236 * represented as a pair of non-negative coefficients.
2238 static int add_inter_constraints(struct isl_sched_graph
*graph
,
2239 struct isl_sched_edge
*edge
, __isl_take isl_map
*map
, int pos
)
2242 isl_ctx
*ctx
= isl_map_get_ctx(map
);
2244 isl_dim_map
*dim_map
;
2245 isl_basic_set
*coef
;
2246 struct isl_sched_node
*src
= edge
->src
;
2247 struct isl_sched_node
*dst
= edge
->dst
;
2249 coef
= inter_coefficients(graph
, map
);
2251 dim
= isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef
)));
2253 total
= isl_basic_set_total_dim(graph
->lp
);
2254 dim_map
= isl_dim_map_alloc(ctx
, total
);
2256 isl_dim_map_range(dim_map
, 3 + pos
, 0, 0, 0, 1, -1);
2258 isl_dim_map_range(dim_map
, dst
->start
, 0, 0, 0, 1, 1);
2259 isl_dim_map_range(dim_map
, dst
->start
+ 1, 2, 1, 1, dst
->nparam
, -1);
2260 isl_dim_map_range(dim_map
, dst
->start
+ 2, 2, 1, 1, dst
->nparam
, 1);
2261 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 1, 2,
2262 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2264 isl_dim_map_range(dim_map
, dst
->start
+ 2 * dst
->nparam
+ 2, 2,
2265 isl_space_dim(dim
, isl_dim_set
) + src
->nvar
, 1,
2268 isl_dim_map_range(dim_map
, src
->start
, 0, 0, 0, 1, -1);
2269 isl_dim_map_range(dim_map
, src
->start
+ 1, 2, 1, 1, src
->nparam
, 1);
2270 isl_dim_map_range(dim_map
, src
->start
+ 2, 2, 1, 1, src
->nparam
, -1);
2271 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 1, 2,
2272 isl_space_dim(dim
, isl_dim_set
), 1,
2274 isl_dim_map_range(dim_map
, src
->start
+ 2 * src
->nparam
+ 2, 2,
2275 isl_space_dim(dim
, isl_dim_set
), 1,
2278 graph
->lp
= isl_basic_set_extend_constraints(graph
->lp
,
2279 coef
->n_eq
, coef
->n_ineq
);
2280 graph
->lp
= isl_basic_set_add_constraints_dim_map(graph
->lp
,
2282 isl_space_free(dim
);
2287 /* Add constraints to graph->lp that force all validity dependences
2288 * to be respected and attempt to carry them.
2290 static int add_all_constraints(struct isl_sched_graph
*graph
)
2296 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2297 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2299 if (!edge
->validity
)
2302 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2303 isl_basic_map
*bmap
;
2306 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2307 map
= isl_map_from_basic_map(bmap
);
2309 if (edge
->src
== edge
->dst
&&
2310 add_intra_constraints(graph
, edge
, map
, pos
) < 0)
2312 if (edge
->src
!= edge
->dst
&&
2313 add_inter_constraints(graph
, edge
, map
, pos
) < 0)
2322 /* Count the number of equality and inequality constraints
2323 * that will be added to the carry_lp problem.
2324 * We count each edge exactly once.
2326 static int count_all_constraints(struct isl_sched_graph
*graph
,
2327 int *n_eq
, int *n_ineq
)
2331 *n_eq
= *n_ineq
= 0;
2332 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2333 struct isl_sched_edge
*edge
= &graph
->edge
[i
];
2334 for (j
= 0; j
< edge
->map
->n
; ++j
) {
2335 isl_basic_map
*bmap
;
2338 bmap
= isl_basic_map_copy(edge
->map
->p
[j
]);
2339 map
= isl_map_from_basic_map(bmap
);
2341 if (count_map_constraints(graph
, edge
, map
,
2342 n_eq
, n_ineq
, 1) < 0)
2350 /* Construct an LP problem for finding schedule coefficients
2351 * such that the schedule carries as many dependences as possible.
2352 * In particular, for each dependence i, we bound the dependence distance
2353 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2354 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2355 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2356 * Note that if the dependence relation is a union of basic maps,
2357 * then we have to consider each basic map individually as it may only
2358 * be possible to carry the dependences expressed by some of those
2359 * basic maps and not all off them.
2360 * Below, we consider each of those basic maps as a separate "edge".
2362 * All variables of the LP are non-negative. The actual coefficients
2363 * may be negative, so each coefficient is represented as the difference
2364 * of two non-negative variables. The negative part always appears
2365 * immediately before the positive part.
2366 * Other than that, the variables have the following order
2368 * - sum of (1 - e_i) over all edges
2369 * - sum of positive and negative parts of all c_n coefficients
2370 * (unconstrained when computing non-parametric schedules)
2371 * - sum of positive and negative parts of all c_x coefficients
2376 * - positive and negative parts of c_i_n (if parametric)
2377 * - positive and negative parts of c_i_x
2379 * The constraints are those from the (validity) edges plus three equalities
2380 * to express the sums and n_edge inequalities to express e_i <= 1.
2382 static int setup_carry_lp(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2392 for (i
= 0; i
< graph
->n_edge
; ++i
)
2393 n_edge
+= graph
->edge
[i
].map
->n
;
2396 for (i
= 0; i
< graph
->n
; ++i
) {
2397 struct isl_sched_node
*node
= &graph
->node
[graph
->sorted
[i
]];
2398 node
->start
= total
;
2399 total
+= 1 + 2 * (node
->nparam
+ node
->nvar
);
2402 if (count_all_constraints(graph
, &n_eq
, &n_ineq
) < 0)
2405 dim
= isl_space_set_alloc(ctx
, 0, total
);
2406 isl_basic_set_free(graph
->lp
);
2409 graph
->lp
= isl_basic_set_alloc_space(dim
, 0, n_eq
, n_ineq
);
2410 graph
->lp
= isl_basic_set_set_rational(graph
->lp
);
2412 k
= isl_basic_set_alloc_equality(graph
->lp
);
2415 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2416 isl_int_set_si(graph
->lp
->eq
[k
][0], -n_edge
);
2417 isl_int_set_si(graph
->lp
->eq
[k
][1], 1);
2418 for (i
= 0; i
< n_edge
; ++i
)
2419 isl_int_set_si(graph
->lp
->eq
[k
][4 + i
], 1);
2421 k
= isl_basic_set_alloc_equality(graph
->lp
);
2424 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2425 isl_int_set_si(graph
->lp
->eq
[k
][2], -1);
2426 for (i
= 0; i
< graph
->n
; ++i
) {
2427 int pos
= 1 + graph
->node
[i
].start
+ 1;
2429 for (j
= 0; j
< 2 * graph
->node
[i
].nparam
; ++j
)
2430 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2433 k
= isl_basic_set_alloc_equality(graph
->lp
);
2436 isl_seq_clr(graph
->lp
->eq
[k
], 1 + total
);
2437 isl_int_set_si(graph
->lp
->eq
[k
][3], -1);
2438 for (i
= 0; i
< graph
->n
; ++i
) {
2439 struct isl_sched_node
*node
= &graph
->node
[i
];
2440 int pos
= 1 + node
->start
+ 1 + 2 * node
->nparam
;
2442 for (j
= 0; j
< 2 * node
->nvar
; ++j
)
2443 isl_int_set_si(graph
->lp
->eq
[k
][pos
+ j
], 1);
2446 for (i
= 0; i
< n_edge
; ++i
) {
2447 k
= isl_basic_set_alloc_inequality(graph
->lp
);
2450 isl_seq_clr(graph
->lp
->ineq
[k
], 1 + total
);
2451 isl_int_set_si(graph
->lp
->ineq
[k
][4 + i
], -1);
2452 isl_int_set_si(graph
->lp
->ineq
[k
][0], 1);
2455 if (add_all_constraints(graph
) < 0)
2461 /* If the schedule_split_scaled option is set and if the linear
2462 * parts of the scheduling rows for all nodes in the graphs have
2463 * non-trivial common divisor, then split off the constant term
2464 * from the linear part.
2465 * The constant term is then placed in a separate band and
2466 * the linear part is reduced.
2468 static int split_scaled(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2474 if (!ctx
->opt
->schedule_split_scaled
)
2480 isl_int_init(gcd_i
);
2482 isl_int_set_si(gcd
, 0);
2484 row
= isl_mat_rows(graph
->node
[0].sched
) - 1;
2486 for (i
= 0; i
< graph
->n
; ++i
) {
2487 struct isl_sched_node
*node
= &graph
->node
[i
];
2488 int cols
= isl_mat_cols(node
->sched
);
2490 isl_seq_gcd(node
->sched
->row
[row
] + 1, cols
- 1, &gcd_i
);
2491 isl_int_gcd(gcd
, gcd
, gcd_i
);
2494 isl_int_clear(gcd_i
);
2496 if (isl_int_cmp_si(gcd
, 1) <= 0) {
2503 for (i
= 0; i
< graph
->n
; ++i
) {
2504 struct isl_sched_node
*node
= &graph
->node
[i
];
2506 isl_map_free(node
->sched_map
);
2507 node
->sched_map
= NULL
;
2508 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2511 isl_int_fdiv_r(node
->sched
->row
[row
+ 1][0],
2512 node
->sched
->row
[row
][0], gcd
);
2513 isl_int_fdiv_q(node
->sched
->row
[row
][0],
2514 node
->sched
->row
[row
][0], gcd
);
2515 isl_int_mul(node
->sched
->row
[row
][0],
2516 node
->sched
->row
[row
][0], gcd
);
2517 node
->sched
= isl_mat_scale_down_row(node
->sched
, row
, gcd
);
2520 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2523 graph
->n_total_row
++;
2532 /* Construct a schedule row for each node such that as many dependences
2533 * as possible are carried and then continue with the next band.
2535 static int carry_dependences(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2543 for (i
= 0; i
< graph
->n_edge
; ++i
)
2544 n_edge
+= graph
->edge
[i
].map
->n
;
2546 if (setup_carry_lp(ctx
, graph
) < 0)
2549 lp
= isl_basic_set_copy(graph
->lp
);
2550 sol
= isl_tab_basic_set_non_neg_lexmin(lp
);
2554 if (sol
->size
== 0) {
2556 isl_die(ctx
, isl_error_internal
,
2557 "error in schedule construction", return -1);
2560 if (isl_int_cmp_si(sol
->el
[1], n_edge
) >= 0) {
2562 isl_die(ctx
, isl_error_unknown
,
2563 "unable to carry dependences", return -1);
2566 if (update_schedule(graph
, sol
, 0, 0) < 0)
2569 if (split_scaled(ctx
, graph
) < 0)
2572 return compute_next_band(ctx
, graph
);
2575 /* Are there any (non-empty) validity edges in the graph?
2577 static int has_validity_edges(struct isl_sched_graph
*graph
)
2581 for (i
= 0; i
< graph
->n_edge
; ++i
) {
2584 empty
= isl_map_plain_is_empty(graph
->edge
[i
].map
);
2589 if (graph
->edge
[i
].validity
)
2596 /* Should we apply a Feautrier step?
2597 * That is, did the user request the Feautrier algorithm and are
2598 * there any validity dependences (left)?
2600 static int need_feautrier_step(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2602 if (ctx
->opt
->schedule_algorithm
!= ISL_SCHEDULE_ALGORITHM_FEAUTRIER
)
2605 return has_validity_edges(graph
);
2608 /* Compute a schedule for a connected dependence graph using Feautrier's
2609 * multi-dimensional scheduling algorithm.
2610 * The original algorithm is described in [1].
2611 * The main idea is to minimize the number of scheduling dimensions, by
2612 * trying to satisfy as many dependences as possible per scheduling dimension.
2614 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2615 * Problem, Part II: Multi-Dimensional Time.
2616 * In Intl. Journal of Parallel Programming, 1992.
2618 static int compute_schedule_wcc_feautrier(isl_ctx
*ctx
,
2619 struct isl_sched_graph
*graph
)
2621 return carry_dependences(ctx
, graph
);
2624 /* Compute a schedule for a connected dependence graph.
2625 * We try to find a sequence of as many schedule rows as possible that result
2626 * in non-negative dependence distances (independent of the previous rows
2627 * in the sequence, i.e., such that the sequence is tilable).
2628 * If we can't find any more rows we either
2629 * - split between SCCs and start over (assuming we found an interesting
2630 * pair of SCCs between which to split)
2631 * - continue with the next band (assuming the current band has at least
2633 * - try to carry as many dependences as possible and continue with the next
2636 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2637 * as many validity dependences as possible. When all validity dependences
2638 * are satisfied we extend the schedule to a full-dimensional schedule.
2640 * If we manage to complete the schedule, we finish off by topologically
2641 * sorting the statements based on the remaining dependences.
2643 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2644 * outermost dimension in the current band to be zero distance. If this
2645 * turns out to be impossible, we fall back on the general scheme above
2646 * and try to carry as many dependences as possible.
2648 static int compute_schedule_wcc(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2652 if (detect_sccs(graph
) < 0)
2656 if (compute_maxvar(graph
) < 0)
2659 if (need_feautrier_step(ctx
, graph
))
2660 return compute_schedule_wcc_feautrier(ctx
, graph
);
2662 if (ctx
->opt
->schedule_outer_zero_distance
)
2665 while (graph
->n_row
< graph
->maxvar
) {
2668 graph
->src_scc
= -1;
2669 graph
->dst_scc
= -1;
2671 if (setup_lp(ctx
, graph
, force_zero
) < 0)
2673 sol
= solve_lp(graph
);
2676 if (sol
->size
== 0) {
2678 if (!ctx
->opt
->schedule_maximize_band_depth
&&
2679 graph
->n_total_row
> graph
->band_start
)
2680 return compute_next_band(ctx
, graph
);
2681 if (graph
->src_scc
>= 0)
2682 return compute_split_schedule(ctx
, graph
);
2683 if (graph
->n_total_row
> graph
->band_start
)
2684 return compute_next_band(ctx
, graph
);
2685 return carry_dependences(ctx
, graph
);
2687 if (update_schedule(graph
, sol
, 1, 1) < 0)
2692 if (graph
->n_total_row
> graph
->band_start
)
2694 return sort_statements(ctx
, graph
);
2697 /* Add a row to the schedules that separates the SCCs and move
2700 static int split_on_scc(struct isl_sched_graph
*graph
)
2704 for (i
= 0; i
< graph
->n
; ++i
) {
2705 struct isl_sched_node
*node
= &graph
->node
[i
];
2706 int row
= isl_mat_rows(node
->sched
);
2708 isl_map_free(node
->sched_map
);
2709 node
->sched_map
= NULL
;
2710 node
->sched
= isl_mat_add_zero_rows(node
->sched
, 1);
2711 node
->sched
= isl_mat_set_element_si(node
->sched
, row
, 0,
2715 node
->band
[graph
->n_total_row
] = graph
->n_band
;
2718 graph
->n_total_row
++;
2724 /* Compute a schedule for each component (identified by node->scc)
2725 * of the dependence graph separately and then combine the results.
2726 * Depending on the setting of schedule_fuse, a component may be
2727 * either weakly or strongly connected.
2729 * The band_id is adjusted such that each component has a separate id.
2730 * Note that the band_id may have already been set to a value different
2731 * from zero by compute_split_schedule.
2733 static int compute_component_schedule(isl_ctx
*ctx
,
2734 struct isl_sched_graph
*graph
)
2738 int n_total_row
, orig_total_row
;
2739 int n_band
, orig_band
;
2741 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
||
2742 ctx
->opt
->schedule_separate_components
)
2743 split_on_scc(graph
);
2746 orig_total_row
= graph
->n_total_row
;
2748 orig_band
= graph
->n_band
;
2749 for (i
= 0; i
< graph
->n
; ++i
)
2750 graph
->node
[i
].band_id
[graph
->n_band
] += graph
->node
[i
].scc
;
2751 for (wcc
= 0; wcc
< graph
->scc
; ++wcc
) {
2753 for (i
= 0; i
< graph
->n
; ++i
)
2754 if (graph
->node
[i
].scc
== wcc
)
2757 for (i
= 0; i
< graph
->n_edge
; ++i
)
2758 if (graph
->edge
[i
].src
->scc
== wcc
&&
2759 graph
->edge
[i
].dst
->scc
== wcc
)
2762 if (compute_sub_schedule(ctx
, graph
, n
, n_edge
,
2764 &edge_scc_exactly
, wcc
, 1) < 0)
2766 if (graph
->n_total_row
> n_total_row
)
2767 n_total_row
= graph
->n_total_row
;
2768 graph
->n_total_row
= orig_total_row
;
2769 if (graph
->n_band
> n_band
)
2770 n_band
= graph
->n_band
;
2771 graph
->n_band
= orig_band
;
2774 graph
->n_total_row
= n_total_row
;
2775 graph
->n_band
= n_band
;
2777 return pad_schedule(graph
);
2780 /* Compute a schedule for the given dependence graph.
2781 * We first check if the graph is connected (through validity dependences)
2782 * and, if not, compute a schedule for each component separately.
2783 * If schedule_fuse is set to minimal fusion, then we check for strongly
2784 * connected components instead and compute a separate schedule for
2785 * each such strongly connected component.
2787 static int compute_schedule(isl_ctx
*ctx
, struct isl_sched_graph
*graph
)
2789 if (ctx
->opt
->schedule_fuse
== ISL_SCHEDULE_FUSE_MIN
) {
2790 if (detect_sccs(graph
) < 0)
2793 if (detect_wccs(graph
) < 0)
2798 return compute_component_schedule(ctx
, graph
);
2800 return compute_schedule_wcc(ctx
, graph
);
2803 /* Compute a schedule for the given union of domains that respects
2804 * all the validity dependences.
2805 * If the default isl scheduling algorithm is used, it tries to minimize
2806 * the dependence distances over the proximity dependences.
2807 * If Feautrier's scheduling algorithm is used, the proximity dependence
2808 * distances are only minimized during the extension to a full-dimensional
2811 __isl_give isl_schedule
*isl_union_set_compute_schedule(
2812 __isl_take isl_union_set
*domain
,
2813 __isl_take isl_union_map
*validity
,
2814 __isl_take isl_union_map
*proximity
)
2816 isl_ctx
*ctx
= isl_union_set_get_ctx(domain
);
2818 struct isl_sched_graph graph
= { 0 };
2819 isl_schedule
*sched
;
2820 struct isl_extract_edge_data data
;
2822 domain
= isl_union_set_align_params(domain
,
2823 isl_union_map_get_space(validity
));
2824 domain
= isl_union_set_align_params(domain
,
2825 isl_union_map_get_space(proximity
));
2826 dim
= isl_union_set_get_space(domain
);
2827 validity
= isl_union_map_align_params(validity
, isl_space_copy(dim
));
2828 proximity
= isl_union_map_align_params(proximity
, dim
);
2833 graph
.n
= isl_union_set_n_set(domain
);
2836 if (graph_alloc(ctx
, &graph
, graph
.n
,
2837 isl_union_map_n_map(validity
) + isl_union_map_n_map(proximity
)) < 0)
2839 if (compute_max_row(&graph
, domain
) < 0)
2843 if (isl_union_set_foreach_set(domain
, &extract_node
, &graph
) < 0)
2845 if (graph_init_table(ctx
, &graph
) < 0)
2847 graph
.max_edge
[isl_edge_validity
] = isl_union_map_n_map(validity
);
2848 graph
.max_edge
[isl_edge_proximity
] = isl_union_map_n_map(proximity
);
2849 if (graph_init_edge_tables(ctx
, &graph
) < 0)
2852 data
.graph
= &graph
;
2853 data
.type
= isl_edge_validity
;
2854 if (isl_union_map_foreach_map(validity
, &extract_edge
, &data
) < 0)
2856 data
.type
= isl_edge_proximity
;
2857 if (isl_union_map_foreach_map(proximity
, &extract_edge
, &data
) < 0)
2860 if (compute_schedule(ctx
, &graph
) < 0)
2864 sched
= extract_schedule(&graph
, isl_union_set_get_space(domain
));
2866 graph_free(ctx
, &graph
);
2867 isl_union_set_free(domain
);
2868 isl_union_map_free(validity
);
2869 isl_union_map_free(proximity
);
2873 graph_free(ctx
, &graph
);
2874 isl_union_set_free(domain
);
2875 isl_union_map_free(validity
);
2876 isl_union_map_free(proximity
);
2880 void *isl_schedule_free(__isl_take isl_schedule
*sched
)
2886 if (--sched
->ref
> 0)
2889 for (i
= 0; i
< sched
->n
; ++i
) {
2890 isl_multi_aff_free(sched
->node
[i
].sched
);
2891 free(sched
->node
[i
].band_end
);
2892 free(sched
->node
[i
].band_id
);
2893 free(sched
->node
[i
].zero
);
2895 isl_space_free(sched
->dim
);
2896 isl_band_list_free(sched
->band_forest
);
2901 isl_ctx
*isl_schedule_get_ctx(__isl_keep isl_schedule
*schedule
)
2903 return schedule
? isl_space_get_ctx(schedule
->dim
) : NULL
;
2906 /* Return an isl_union_map of the schedule. If we have already constructed
2907 * a band forest, then this band forest may have been modified so we need
2908 * to extract the isl_union_map from the forest rather than from
2909 * the originally computed schedule.
2911 __isl_give isl_union_map
*isl_schedule_get_map(__isl_keep isl_schedule
*sched
)
2914 isl_union_map
*umap
;
2919 if (sched
->band_forest
)
2920 return isl_band_list_get_suffix_schedule(sched
->band_forest
);
2922 umap
= isl_union_map_empty(isl_space_copy(sched
->dim
));
2923 for (i
= 0; i
< sched
->n
; ++i
) {
2926 ma
= isl_multi_aff_copy(sched
->node
[i
].sched
);
2927 umap
= isl_union_map_add_map(umap
, isl_map_from_multi_aff(ma
));
2933 static __isl_give isl_band_list
*construct_band_list(
2934 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
2935 int band_nr
, int *parent_active
, int n_active
);
2937 /* Construct an isl_band structure for the band in the given schedule
2938 * with sequence number band_nr for the n_active nodes marked by active.
2939 * If the nodes don't have a band with the given sequence number,
2940 * then a band without members is created.
2942 * Because of the way the schedule is constructed, we know that
2943 * the position of the band inside the schedule of a node is the same
2944 * for all active nodes.
2946 static __isl_give isl_band
*construct_band(__isl_keep isl_schedule
*schedule
,
2947 __isl_keep isl_band
*parent
,
2948 int band_nr
, int *active
, int n_active
)
2951 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
2953 unsigned start
, end
;
2955 band
= isl_band_alloc(ctx
);
2959 band
->schedule
= schedule
;
2960 band
->parent
= parent
;
2962 for (i
= 0; i
< schedule
->n
; ++i
)
2963 if (active
[i
] && schedule
->node
[i
].n_band
> band_nr
+ 1)
2966 if (i
< schedule
->n
) {
2967 band
->children
= construct_band_list(schedule
, band
,
2968 band_nr
+ 1, active
, n_active
);
2969 if (!band
->children
)
2973 for (i
= 0; i
< schedule
->n
; ++i
)
2977 if (i
>= schedule
->n
)
2978 isl_die(ctx
, isl_error_internal
,
2979 "band without active statements", goto error
);
2981 start
= band_nr
? schedule
->node
[i
].band_end
[band_nr
- 1] : 0;
2982 end
= band_nr
< schedule
->node
[i
].n_band
?
2983 schedule
->node
[i
].band_end
[band_nr
] : start
;
2984 band
->n
= end
- start
;
2986 band
->zero
= isl_alloc_array(ctx
, int, band
->n
);
2990 for (j
= 0; j
< band
->n
; ++j
)
2991 band
->zero
[j
] = schedule
->node
[i
].zero
[start
+ j
];
2993 band
->pma
= isl_union_pw_multi_aff_empty(isl_space_copy(schedule
->dim
));
2994 for (i
= 0; i
< schedule
->n
; ++i
) {
2996 isl_pw_multi_aff
*pma
;
3002 ma
= isl_multi_aff_copy(schedule
->node
[i
].sched
);
3003 n_out
= isl_multi_aff_dim(ma
, isl_dim_out
);
3004 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, end
, n_out
- end
);
3005 ma
= isl_multi_aff_drop_dims(ma
, isl_dim_out
, 0, start
);
3006 pma
= isl_pw_multi_aff_from_multi_aff(ma
);
3007 band
->pma
= isl_union_pw_multi_aff_add_pw_multi_aff(band
->pma
,
3015 isl_band_free(band
);
3019 /* Construct a list of bands that start at the same position (with
3020 * sequence number band_nr) in the schedules of the nodes that
3021 * were active in the parent band.
3023 * A separate isl_band structure is created for each band_id
3024 * and for each node that does not have a band with sequence
3025 * number band_nr. In the latter case, a band without members
3027 * This ensures that if a band has any children, then each node
3028 * that was active in the band is active in exactly one of the children.
3030 static __isl_give isl_band_list
*construct_band_list(
3031 __isl_keep isl_schedule
*schedule
, __isl_keep isl_band
*parent
,
3032 int band_nr
, int *parent_active
, int n_active
)
3035 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3038 isl_band_list
*list
;
3041 for (i
= 0; i
< n_active
; ++i
) {
3042 for (j
= 0; j
< schedule
->n
; ++j
) {
3043 if (!parent_active
[j
])
3045 if (schedule
->node
[j
].n_band
<= band_nr
)
3047 if (schedule
->node
[j
].band_id
[band_nr
] == i
) {
3053 for (j
= 0; j
< schedule
->n
; ++j
)
3054 if (schedule
->node
[j
].n_band
<= band_nr
)
3059 list
= isl_band_list_alloc(ctx
, n_band
);
3060 band
= construct_band(schedule
, parent
, band_nr
,
3061 parent_active
, n_active
);
3062 return isl_band_list_add(list
, band
);
3065 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3069 list
= isl_band_list_alloc(ctx
, n_band
);
3071 for (i
= 0; i
< n_active
; ++i
) {
3075 for (j
= 0; j
< schedule
->n
; ++j
) {
3076 active
[j
] = parent_active
[j
] &&
3077 schedule
->node
[j
].n_band
> band_nr
&&
3078 schedule
->node
[j
].band_id
[band_nr
] == i
;
3085 band
= construct_band(schedule
, parent
, band_nr
, active
, n
);
3087 list
= isl_band_list_add(list
, band
);
3089 for (i
= 0; i
< schedule
->n
; ++i
) {
3091 if (!parent_active
[i
])
3093 if (schedule
->node
[i
].n_band
> band_nr
)
3095 for (j
= 0; j
< schedule
->n
; ++j
)
3097 band
= construct_band(schedule
, parent
, band_nr
, active
, 1);
3098 list
= isl_band_list_add(list
, band
);
3106 /* Construct a band forest representation of the schedule and
3107 * return the list of roots.
3109 static __isl_give isl_band_list
*construct_forest(
3110 __isl_keep isl_schedule
*schedule
)
3113 isl_ctx
*ctx
= isl_schedule_get_ctx(schedule
);
3114 isl_band_list
*forest
;
3117 active
= isl_alloc_array(ctx
, int, schedule
->n
);
3121 for (i
= 0; i
< schedule
->n
; ++i
)
3124 forest
= construct_band_list(schedule
, NULL
, 0, active
, schedule
->n
);
3131 /* Return the roots of a band forest representation of the schedule.
3133 __isl_give isl_band_list
*isl_schedule_get_band_forest(
3134 __isl_keep isl_schedule
*schedule
)
3138 if (!schedule
->band_forest
)
3139 schedule
->band_forest
= construct_forest(schedule
);
3140 return isl_band_list_dup(schedule
->band_forest
);
3143 /* Call "fn" on each band in the schedule in depth-first post-order.
3145 int isl_schedule_foreach_band(__isl_keep isl_schedule
*sched
,
3146 int (*fn
)(__isl_keep isl_band
*band
, void *user
), void *user
)
3149 isl_band_list
*forest
;
3154 forest
= isl_schedule_get_band_forest(sched
);
3155 r
= isl_band_list_foreach_band(forest
, fn
, user
);
3156 isl_band_list_free(forest
);
3161 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3162 __isl_keep isl_band_list
*list
);
3164 static __isl_give isl_printer
*print_band(__isl_take isl_printer
*p
,
3165 __isl_keep isl_band
*band
)
3167 isl_band_list
*children
;
3169 p
= isl_printer_start_line(p
);
3170 p
= isl_printer_print_union_pw_multi_aff(p
, band
->pma
);
3171 p
= isl_printer_end_line(p
);
3173 if (!isl_band_has_children(band
))
3176 children
= isl_band_get_children(band
);
3178 p
= isl_printer_indent(p
, 4);
3179 p
= print_band_list(p
, children
);
3180 p
= isl_printer_indent(p
, -4);
3182 isl_band_list_free(children
);
3187 static __isl_give isl_printer
*print_band_list(__isl_take isl_printer
*p
,
3188 __isl_keep isl_band_list
*list
)
3192 n
= isl_band_list_n_band(list
);
3193 for (i
= 0; i
< n
; ++i
) {
3195 band
= isl_band_list_get_band(list
, i
);
3196 p
= print_band(p
, band
);
3197 isl_band_free(band
);
3203 __isl_give isl_printer
*isl_printer_print_schedule(__isl_take isl_printer
*p
,
3204 __isl_keep isl_schedule
*schedule
)
3206 isl_band_list
*forest
;
3208 forest
= isl_schedule_get_band_forest(schedule
);
3210 p
= print_band_list(p
, forest
);
3212 isl_band_list_free(forest
);
3217 void isl_schedule_dump(__isl_keep isl_schedule
*schedule
)
3219 isl_printer
*printer
;
3224 printer
= isl_printer_to_file(isl_schedule_get_ctx(schedule
), stderr
);
3225 printer
= isl_printer_print_schedule(printer
, schedule
);
3227 isl_printer_free(printer
);