2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
13 #include <isl_ctx_private.h>
14 #include "isl_map_private.h"
17 #include "isl_sample.h"
18 #include <isl_mat_private.h>
19 #include <isl_vec_private.h>
20 #include <isl_aff_private.h>
21 #include <isl_options_private.h>
22 #include <isl_config.h>
25 * The implementation of parametric integer linear programming in this file
26 * was inspired by the paper "Parametric Integer Programming" and the
27 * report "Solving systems of affine (in)equalities" by Paul Feautrier
30 * The strategy used for obtaining a feasible solution is different
31 * from the one used in isl_tab.c. In particular, in isl_tab.c,
32 * upon finding a constraint that is not yet satisfied, we pivot
33 * in a row that increases the constant term of the row holding the
34 * constraint, making sure the sample solution remains feasible
35 * for all the constraints it already satisfied.
36 * Here, we always pivot in the row holding the constraint,
37 * choosing a column that induces the lexicographically smallest
38 * increment to the sample solution.
40 * By starting out from a sample value that is lexicographically
41 * smaller than any integer point in the problem space, the first
42 * feasible integer sample point we find will also be the lexicographically
43 * smallest. If all variables can be assumed to be non-negative,
44 * then the initial sample value may be chosen equal to zero.
45 * However, we will not make this assumption. Instead, we apply
46 * the "big parameter" trick. Any variable x is then not directly
47 * used in the tableau, but instead it is represented by another
48 * variable x' = M + x, where M is an arbitrarily large (positive)
49 * value. x' is therefore always non-negative, whatever the value of x.
50 * Taking as initial sample value x' = 0 corresponds to x = -M,
51 * which is always smaller than any possible value of x.
53 * The big parameter trick is used in the main tableau and
54 * also in the context tableau if isl_context_lex is used.
55 * In this case, each tableaus has its own big parameter.
56 * Before doing any real work, we check if all the parameters
57 * happen to be non-negative. If so, we drop the column corresponding
58 * to M from the initial context tableau.
59 * If isl_context_gbr is used, then the big parameter trick is only
60 * used in the main tableau.
64 struct isl_context_op
{
65 /* detect nonnegative parameters in context and mark them in tab */
66 struct isl_tab
*(*detect_nonnegative_parameters
)(
67 struct isl_context
*context
, struct isl_tab
*tab
);
68 /* return temporary reference to basic set representation of context */
69 struct isl_basic_set
*(*peek_basic_set
)(struct isl_context
*context
);
70 /* return temporary reference to tableau representation of context */
71 struct isl_tab
*(*peek_tab
)(struct isl_context
*context
);
72 /* add equality; check is 1 if eq may not be valid;
73 * update is 1 if we may want to call ineq_sign on context later.
75 void (*add_eq
)(struct isl_context
*context
, isl_int
*eq
,
76 int check
, int update
);
77 /* add inequality; check is 1 if ineq may not be valid;
78 * update is 1 if we may want to call ineq_sign on context later.
80 void (*add_ineq
)(struct isl_context
*context
, isl_int
*ineq
,
81 int check
, int update
);
82 /* check sign of ineq based on previous information.
83 * strict is 1 if saturation should be treated as a positive sign.
85 enum isl_tab_row_sign (*ineq_sign
)(struct isl_context
*context
,
86 isl_int
*ineq
, int strict
);
87 /* check if inequality maintains feasibility */
88 int (*test_ineq
)(struct isl_context
*context
, isl_int
*ineq
);
89 /* return index of a div that corresponds to "div" */
90 int (*get_div
)(struct isl_context
*context
, struct isl_tab
*tab
,
92 /* add div "div" to context and return non-negativity */
93 int (*add_div
)(struct isl_context
*context
, struct isl_vec
*div
);
94 int (*detect_equalities
)(struct isl_context
*context
,
96 /* return row index of "best" split */
97 int (*best_split
)(struct isl_context
*context
, struct isl_tab
*tab
);
98 /* check if context has already been determined to be empty */
99 int (*is_empty
)(struct isl_context
*context
);
100 /* check if context is still usable */
101 int (*is_ok
)(struct isl_context
*context
);
102 /* save a copy/snapshot of context */
103 void *(*save
)(struct isl_context
*context
);
104 /* restore saved context */
105 void (*restore
)(struct isl_context
*context
, void *);
106 /* discard saved context */
107 void (*discard
)(void *);
108 /* invalidate context */
109 void (*invalidate
)(struct isl_context
*context
);
111 void (*free
)(struct isl_context
*context
);
115 struct isl_context_op
*op
;
118 struct isl_context_lex
{
119 struct isl_context context
;
123 /* A stack (linked list) of solutions of subtrees of the search space.
125 * "M" describes the solution in terms of the dimensions of "dom".
126 * The number of columns of "M" is one more than the total number
127 * of dimensions of "dom".
129 * If "M" is NULL, then there is no solution on "dom".
131 struct isl_partial_sol
{
133 struct isl_basic_set
*dom
;
136 struct isl_partial_sol
*next
;
140 struct isl_sol_callback
{
141 struct isl_tab_callback callback
;
145 /* isl_sol is an interface for constructing a solution to
146 * a parametric integer linear programming problem.
147 * Every time the algorithm reaches a state where a solution
148 * can be read off from the tableau (including cases where the tableau
149 * is empty), the function "add" is called on the isl_sol passed
150 * to find_solutions_main.
152 * The context tableau is owned by isl_sol and is updated incrementally.
154 * There are currently two implementations of this interface,
155 * isl_sol_map, which simply collects the solutions in an isl_map
156 * and (optionally) the parts of the context where there is no solution
158 * isl_sol_for, which calls a user-defined function for each part of
167 struct isl_context
*context
;
168 struct isl_partial_sol
*partial
;
169 void (*add
)(struct isl_sol
*sol
,
170 struct isl_basic_set
*dom
, struct isl_mat
*M
);
171 void (*add_empty
)(struct isl_sol
*sol
, struct isl_basic_set
*bset
);
172 void (*free
)(struct isl_sol
*sol
);
173 struct isl_sol_callback dec_level
;
176 static void sol_free(struct isl_sol
*sol
)
178 struct isl_partial_sol
*partial
, *next
;
181 for (partial
= sol
->partial
; partial
; partial
= next
) {
182 next
= partial
->next
;
183 isl_basic_set_free(partial
->dom
);
184 isl_mat_free(partial
->M
);
190 /* Push a partial solution represented by a domain and mapping M
191 * onto the stack of partial solutions.
193 static void sol_push_sol(struct isl_sol
*sol
,
194 struct isl_basic_set
*dom
, struct isl_mat
*M
)
196 struct isl_partial_sol
*partial
;
198 if (sol
->error
|| !dom
)
201 partial
= isl_alloc_type(dom
->ctx
, struct isl_partial_sol
);
205 partial
->level
= sol
->level
;
208 partial
->next
= sol
->partial
;
210 sol
->partial
= partial
;
214 isl_basic_set_free(dom
);
219 /* Pop one partial solution from the partial solution stack and
220 * pass it on to sol->add or sol->add_empty.
222 static void sol_pop_one(struct isl_sol
*sol
)
224 struct isl_partial_sol
*partial
;
226 partial
= sol
->partial
;
227 sol
->partial
= partial
->next
;
230 sol
->add(sol
, partial
->dom
, partial
->M
);
232 sol
->add_empty(sol
, partial
->dom
);
236 /* Return a fresh copy of the domain represented by the context tableau.
238 static struct isl_basic_set
*sol_domain(struct isl_sol
*sol
)
240 struct isl_basic_set
*bset
;
245 bset
= isl_basic_set_dup(sol
->context
->op
->peek_basic_set(sol
->context
));
246 bset
= isl_basic_set_update_from_tab(bset
,
247 sol
->context
->op
->peek_tab(sol
->context
));
252 /* Check whether two partial solutions have the same mapping, where n_div
253 * is the number of divs that the two partial solutions have in common.
255 static int same_solution(struct isl_partial_sol
*s1
, struct isl_partial_sol
*s2
,
261 if (!s1
->M
!= !s2
->M
)
266 dim
= isl_basic_set_total_dim(s1
->dom
) - s1
->dom
->n_div
;
268 for (i
= 0; i
< s1
->M
->n_row
; ++i
) {
269 if (isl_seq_first_non_zero(s1
->M
->row
[i
]+1+dim
+n_div
,
270 s1
->M
->n_col
-1-dim
-n_div
) != -1)
272 if (isl_seq_first_non_zero(s2
->M
->row
[i
]+1+dim
+n_div
,
273 s2
->M
->n_col
-1-dim
-n_div
) != -1)
275 if (!isl_seq_eq(s1
->M
->row
[i
], s2
->M
->row
[i
], 1+dim
+n_div
))
281 /* Pop all solutions from the partial solution stack that were pushed onto
282 * the stack at levels that are deeper than the current level.
283 * If the two topmost elements on the stack have the same level
284 * and represent the same solution, then their domains are combined.
285 * This combined domain is the same as the current context domain
286 * as sol_pop is called each time we move back to a higher level.
287 * If the outer level (0) has been reached, then all partial solutions
288 * at the current level are also popped off.
290 static void sol_pop(struct isl_sol
*sol
)
292 struct isl_partial_sol
*partial
;
298 partial
= sol
->partial
;
302 if (partial
->level
== 0 && sol
->level
== 0) {
303 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
308 if (partial
->level
<= sol
->level
)
311 if (partial
->next
&& partial
->next
->level
== partial
->level
) {
312 n_div
= isl_basic_set_dim(
313 sol
->context
->op
->peek_basic_set(sol
->context
),
316 if (!same_solution(partial
, partial
->next
, n_div
)) {
320 struct isl_basic_set
*bset
;
324 n
= isl_basic_set_dim(partial
->next
->dom
, isl_dim_div
);
326 bset
= sol_domain(sol
);
327 isl_basic_set_free(partial
->next
->dom
);
328 partial
->next
->dom
= bset
;
329 M
= partial
->next
->M
;
331 M
= isl_mat_drop_cols(M
, M
->n_col
- n
, n
);
332 partial
->next
->M
= M
;
336 partial
->next
->level
= sol
->level
;
341 sol
->partial
= partial
->next
;
342 isl_basic_set_free(partial
->dom
);
343 isl_mat_free(partial
->M
);
349 if (sol
->level
== 0) {
350 for (partial
= sol
->partial
; partial
; partial
= sol
->partial
)
356 error
: sol
->error
= 1;
359 static void sol_dec_level(struct isl_sol
*sol
)
369 static int sol_dec_level_wrap(struct isl_tab_callback
*cb
)
371 struct isl_sol_callback
*callback
= (struct isl_sol_callback
*)cb
;
373 sol_dec_level(callback
->sol
);
375 return callback
->sol
->error
? -1 : 0;
378 /* Move down to next level and push callback onto context tableau
379 * to decrease the level again when it gets rolled back across
380 * the current state. That is, dec_level will be called with
381 * the context tableau in the same state as it is when inc_level
384 static void sol_inc_level(struct isl_sol
*sol
)
392 tab
= sol
->context
->op
->peek_tab(sol
->context
);
393 if (isl_tab_push_callback(tab
, &sol
->dec_level
.callback
) < 0)
397 static void scale_rows(struct isl_mat
*mat
, isl_int m
, int n_row
)
401 if (isl_int_is_one(m
))
404 for (i
= 0; i
< n_row
; ++i
)
405 isl_seq_scale(mat
->row
[i
], mat
->row
[i
], m
, mat
->n_col
);
408 /* Add the solution identified by the tableau and the context tableau.
410 * The layout of the variables is as follows.
411 * tab->n_var is equal to the total number of variables in the input
412 * map (including divs that were copied from the context)
413 * + the number of extra divs constructed
414 * Of these, the first tab->n_param and the last tab->n_div variables
415 * correspond to the variables in the context, i.e.,
416 * tab->n_param + tab->n_div = context_tab->n_var
417 * tab->n_param is equal to the number of parameters and input
418 * dimensions in the input map
419 * tab->n_div is equal to the number of divs in the context
421 * If there is no solution, then call add_empty with a basic set
422 * that corresponds to the context tableau. (If add_empty is NULL,
425 * If there is a solution, then first construct a matrix that maps
426 * all dimensions of the context to the output variables, i.e.,
427 * the output dimensions in the input map.
428 * The divs in the input map (if any) that do not correspond to any
429 * div in the context do not appear in the solution.
430 * The algorithm will make sure that they have an integer value,
431 * but these values themselves are of no interest.
432 * We have to be careful not to drop or rearrange any divs in the
433 * context because that would change the meaning of the matrix.
435 * To extract the value of the output variables, it should be noted
436 * that we always use a big parameter M in the main tableau and so
437 * the variable stored in this tableau is not an output variable x itself, but
438 * x' = M + x (in case of minimization)
440 * x' = M - x (in case of maximization)
441 * If x' appears in a column, then its optimal value is zero,
442 * which means that the optimal value of x is an unbounded number
443 * (-M for minimization and M for maximization).
444 * We currently assume that the output dimensions in the original map
445 * are bounded, so this cannot occur.
446 * Similarly, when x' appears in a row, then the coefficient of M in that
447 * row is necessarily 1.
448 * If the row in the tableau represents
449 * d x' = c + d M + e(y)
450 * then, in case of minimization, the corresponding row in the matrix
453 * with a d = m, the (updated) common denominator of the matrix.
454 * In case of maximization, the row will be
457 static void sol_add(struct isl_sol
*sol
, struct isl_tab
*tab
)
459 struct isl_basic_set
*bset
= NULL
;
460 struct isl_mat
*mat
= NULL
;
465 if (sol
->error
|| !tab
)
468 if (tab
->empty
&& !sol
->add_empty
)
470 if (sol
->context
->op
->is_empty(sol
->context
))
473 bset
= sol_domain(sol
);
476 sol_push_sol(sol
, bset
, NULL
);
482 mat
= isl_mat_alloc(tab
->mat
->ctx
, 1 + sol
->n_out
,
483 1 + tab
->n_param
+ tab
->n_div
);
489 isl_seq_clr(mat
->row
[0] + 1, mat
->n_col
- 1);
490 isl_int_set_si(mat
->row
[0][0], 1);
491 for (row
= 0; row
< sol
->n_out
; ++row
) {
492 int i
= tab
->n_param
+ row
;
495 isl_seq_clr(mat
->row
[1 + row
], mat
->n_col
);
496 if (!tab
->var
[i
].is_row
) {
498 isl_die(mat
->ctx
, isl_error_invalid
,
499 "unbounded optimum", goto error2
);
503 r
= tab
->var
[i
].index
;
505 isl_int_ne(tab
->mat
->row
[r
][2], tab
->mat
->row
[r
][0]))
506 isl_die(mat
->ctx
, isl_error_invalid
,
507 "unbounded optimum", goto error2
);
508 isl_int_gcd(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
509 isl_int_divexact(m
, tab
->mat
->row
[r
][0], m
);
510 scale_rows(mat
, m
, 1 + row
);
511 isl_int_divexact(m
, mat
->row
[0][0], tab
->mat
->row
[r
][0]);
512 isl_int_mul(mat
->row
[1 + row
][0], m
, tab
->mat
->row
[r
][1]);
513 for (j
= 0; j
< tab
->n_param
; ++j
) {
515 if (tab
->var
[j
].is_row
)
517 col
= tab
->var
[j
].index
;
518 isl_int_mul(mat
->row
[1 + row
][1 + j
], m
,
519 tab
->mat
->row
[r
][off
+ col
]);
521 for (j
= 0; j
< tab
->n_div
; ++j
) {
523 if (tab
->var
[tab
->n_var
- tab
->n_div
+j
].is_row
)
525 col
= tab
->var
[tab
->n_var
- tab
->n_div
+j
].index
;
526 isl_int_mul(mat
->row
[1 + row
][1 + tab
->n_param
+ j
], m
,
527 tab
->mat
->row
[r
][off
+ col
]);
530 isl_seq_neg(mat
->row
[1 + row
], mat
->row
[1 + row
],
536 sol_push_sol(sol
, bset
, mat
);
541 isl_basic_set_free(bset
);
549 struct isl_set
*empty
;
552 static void sol_map_free(struct isl_sol_map
*sol_map
)
556 if (sol_map
->sol
.context
)
557 sol_map
->sol
.context
->op
->free(sol_map
->sol
.context
);
558 isl_map_free(sol_map
->map
);
559 isl_set_free(sol_map
->empty
);
563 static void sol_map_free_wrap(struct isl_sol
*sol
)
565 sol_map_free((struct isl_sol_map
*)sol
);
568 /* This function is called for parts of the context where there is
569 * no solution, with "bset" corresponding to the context tableau.
570 * Simply add the basic set to the set "empty".
572 static void sol_map_add_empty(struct isl_sol_map
*sol
,
573 struct isl_basic_set
*bset
)
575 if (!bset
|| !sol
->empty
)
578 sol
->empty
= isl_set_grow(sol
->empty
, 1);
579 bset
= isl_basic_set_simplify(bset
);
580 bset
= isl_basic_set_finalize(bset
);
581 sol
->empty
= isl_set_add_basic_set(sol
->empty
, isl_basic_set_copy(bset
));
584 isl_basic_set_free(bset
);
587 isl_basic_set_free(bset
);
591 static void sol_map_add_empty_wrap(struct isl_sol
*sol
,
592 struct isl_basic_set
*bset
)
594 sol_map_add_empty((struct isl_sol_map
*)sol
, bset
);
597 /* Given a basic map "dom" that represents the context and an affine
598 * matrix "M" that maps the dimensions of the context to the
599 * output variables, construct a basic map with the same parameters
600 * and divs as the context, the dimensions of the context as input
601 * dimensions and a number of output dimensions that is equal to
602 * the number of output dimensions in the input map.
604 * The constraints and divs of the context are simply copied
605 * from "dom". For each row
609 * is added, with d the common denominator of M.
611 static void sol_map_add(struct isl_sol_map
*sol
,
612 struct isl_basic_set
*dom
, struct isl_mat
*M
)
615 struct isl_basic_map
*bmap
= NULL
;
623 if (sol
->sol
.error
|| !dom
|| !M
)
626 n_out
= sol
->sol
.n_out
;
627 n_eq
= dom
->n_eq
+ n_out
;
628 n_ineq
= dom
->n_ineq
;
630 nparam
= isl_basic_set_total_dim(dom
) - n_div
;
631 total
= isl_map_dim(sol
->map
, isl_dim_all
);
632 bmap
= isl_basic_map_alloc_space(isl_map_get_space(sol
->map
),
633 n_div
, n_eq
, 2 * n_div
+ n_ineq
);
636 if (sol
->sol
.rational
)
637 ISL_F_SET(bmap
, ISL_BASIC_MAP_RATIONAL
);
638 for (i
= 0; i
< dom
->n_div
; ++i
) {
639 int k
= isl_basic_map_alloc_div(bmap
);
642 isl_seq_cpy(bmap
->div
[k
], dom
->div
[i
], 1 + 1 + nparam
);
643 isl_seq_clr(bmap
->div
[k
] + 1 + 1 + nparam
, total
- nparam
);
644 isl_seq_cpy(bmap
->div
[k
] + 1 + 1 + total
,
645 dom
->div
[i
] + 1 + 1 + nparam
, i
);
647 for (i
= 0; i
< dom
->n_eq
; ++i
) {
648 int k
= isl_basic_map_alloc_equality(bmap
);
651 isl_seq_cpy(bmap
->eq
[k
], dom
->eq
[i
], 1 + nparam
);
652 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, total
- nparam
);
653 isl_seq_cpy(bmap
->eq
[k
] + 1 + total
,
654 dom
->eq
[i
] + 1 + nparam
, n_div
);
656 for (i
= 0; i
< dom
->n_ineq
; ++i
) {
657 int k
= isl_basic_map_alloc_inequality(bmap
);
660 isl_seq_cpy(bmap
->ineq
[k
], dom
->ineq
[i
], 1 + nparam
);
661 isl_seq_clr(bmap
->ineq
[k
] + 1 + nparam
, total
- nparam
);
662 isl_seq_cpy(bmap
->ineq
[k
] + 1 + total
,
663 dom
->ineq
[i
] + 1 + nparam
, n_div
);
665 for (i
= 0; i
< M
->n_row
- 1; ++i
) {
666 int k
= isl_basic_map_alloc_equality(bmap
);
669 isl_seq_cpy(bmap
->eq
[k
], M
->row
[1 + i
], 1 + nparam
);
670 isl_seq_clr(bmap
->eq
[k
] + 1 + nparam
, n_out
);
671 isl_int_neg(bmap
->eq
[k
][1 + nparam
+ i
], M
->row
[0][0]);
672 isl_seq_cpy(bmap
->eq
[k
] + 1 + nparam
+ n_out
,
673 M
->row
[1 + i
] + 1 + nparam
, n_div
);
675 bmap
= isl_basic_map_simplify(bmap
);
676 bmap
= isl_basic_map_finalize(bmap
);
677 sol
->map
= isl_map_grow(sol
->map
, 1);
678 sol
->map
= isl_map_add_basic_map(sol
->map
, bmap
);
679 isl_basic_set_free(dom
);
685 isl_basic_set_free(dom
);
687 isl_basic_map_free(bmap
);
691 static void sol_map_add_wrap(struct isl_sol
*sol
,
692 struct isl_basic_set
*dom
, struct isl_mat
*M
)
694 sol_map_add((struct isl_sol_map
*)sol
, dom
, M
);
698 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
699 * i.e., the constant term and the coefficients of all variables that
700 * appear in the context tableau.
701 * Note that the coefficient of the big parameter M is NOT copied.
702 * The context tableau may not have a big parameter and even when it
703 * does, it is a different big parameter.
705 static void get_row_parameter_line(struct isl_tab
*tab
, int row
, isl_int
*line
)
708 unsigned off
= 2 + tab
->M
;
710 isl_int_set(line
[0], tab
->mat
->row
[row
][1]);
711 for (i
= 0; i
< tab
->n_param
; ++i
) {
712 if (tab
->var
[i
].is_row
)
713 isl_int_set_si(line
[1 + i
], 0);
715 int col
= tab
->var
[i
].index
;
716 isl_int_set(line
[1 + i
], tab
->mat
->row
[row
][off
+ col
]);
719 for (i
= 0; i
< tab
->n_div
; ++i
) {
720 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
721 isl_int_set_si(line
[1 + tab
->n_param
+ i
], 0);
723 int col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
724 isl_int_set(line
[1 + tab
->n_param
+ i
],
725 tab
->mat
->row
[row
][off
+ col
]);
730 /* Check if rows "row1" and "row2" have identical "parametric constants",
731 * as explained above.
732 * In this case, we also insist that the coefficients of the big parameter
733 * be the same as the values of the constants will only be the same
734 * if these coefficients are also the same.
736 static int identical_parameter_line(struct isl_tab
*tab
, int row1
, int row2
)
739 unsigned off
= 2 + tab
->M
;
741 if (isl_int_ne(tab
->mat
->row
[row1
][1], tab
->mat
->row
[row2
][1]))
744 if (tab
->M
&& isl_int_ne(tab
->mat
->row
[row1
][2],
745 tab
->mat
->row
[row2
][2]))
748 for (i
= 0; i
< tab
->n_param
+ tab
->n_div
; ++i
) {
749 int pos
= i
< tab
->n_param
? i
:
750 tab
->n_var
- tab
->n_div
+ i
- tab
->n_param
;
753 if (tab
->var
[pos
].is_row
)
755 col
= tab
->var
[pos
].index
;
756 if (isl_int_ne(tab
->mat
->row
[row1
][off
+ col
],
757 tab
->mat
->row
[row2
][off
+ col
]))
763 /* Return an inequality that expresses that the "parametric constant"
764 * should be non-negative.
765 * This function is only called when the coefficient of the big parameter
768 static struct isl_vec
*get_row_parameter_ineq(struct isl_tab
*tab
, int row
)
770 struct isl_vec
*ineq
;
772 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_param
+ tab
->n_div
);
776 get_row_parameter_line(tab
, row
, ineq
->el
);
778 ineq
= isl_vec_normalize(ineq
);
783 /* Normalize a div expression of the form
785 * [(g*f(x) + c)/(g * m)]
787 * with c the constant term and f(x) the remaining coefficients, to
791 static void normalize_div(__isl_keep isl_vec
*div
)
793 isl_ctx
*ctx
= isl_vec_get_ctx(div
);
794 int len
= div
->size
- 2;
796 isl_seq_gcd(div
->el
+ 2, len
, &ctx
->normalize_gcd
);
797 isl_int_gcd(ctx
->normalize_gcd
, ctx
->normalize_gcd
, div
->el
[0]);
799 if (isl_int_is_one(ctx
->normalize_gcd
))
802 isl_int_divexact(div
->el
[0], div
->el
[0], ctx
->normalize_gcd
);
803 isl_int_fdiv_q(div
->el
[1], div
->el
[1], ctx
->normalize_gcd
);
804 isl_seq_scale_down(div
->el
+ 2, div
->el
+ 2, ctx
->normalize_gcd
, len
);
807 /* Return a integer division for use in a parametric cut based on the given row.
808 * In particular, let the parametric constant of the row be
812 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
813 * The div returned is equal to
815 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
817 static struct isl_vec
*get_row_parameter_div(struct isl_tab
*tab
, int row
)
821 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
825 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
826 get_row_parameter_line(tab
, row
, div
->el
+ 1);
827 isl_seq_neg(div
->el
+ 1, div
->el
+ 1, div
->size
- 1);
829 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
834 /* Return a integer division for use in transferring an integrality constraint
836 * In particular, let the parametric constant of the row be
840 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
841 * The the returned div is equal to
843 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
845 static struct isl_vec
*get_row_split_div(struct isl_tab
*tab
, int row
)
849 div
= isl_vec_alloc(tab
->mat
->ctx
, 1 + 1 + tab
->n_param
+ tab
->n_div
);
853 isl_int_set(div
->el
[0], tab
->mat
->row
[row
][0]);
854 get_row_parameter_line(tab
, row
, div
->el
+ 1);
856 isl_seq_fdiv_r(div
->el
+ 1, div
->el
+ 1, div
->el
[0], div
->size
- 1);
861 /* Construct and return an inequality that expresses an upper bound
863 * In particular, if the div is given by
867 * then the inequality expresses
871 static struct isl_vec
*ineq_for_div(struct isl_basic_set
*bset
, unsigned div
)
875 struct isl_vec
*ineq
;
880 total
= isl_basic_set_total_dim(bset
);
881 div_pos
= 1 + total
- bset
->n_div
+ div
;
883 ineq
= isl_vec_alloc(bset
->ctx
, 1 + total
);
887 isl_seq_cpy(ineq
->el
, bset
->div
[div
] + 1, 1 + total
);
888 isl_int_neg(ineq
->el
[div_pos
], bset
->div
[div
][0]);
892 /* Given a row in the tableau and a div that was created
893 * using get_row_split_div and that has been constrained to equality, i.e.,
895 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
897 * replace the expression "\sum_i {a_i} y_i" in the row by d,
898 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
899 * The coefficients of the non-parameters in the tableau have been
900 * verified to be integral. We can therefore simply replace coefficient b
901 * by floor(b). For the coefficients of the parameters we have
902 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
905 static struct isl_tab
*set_row_cst_to_div(struct isl_tab
*tab
, int row
, int div
)
907 isl_seq_fdiv_q(tab
->mat
->row
[row
] + 1, tab
->mat
->row
[row
] + 1,
908 tab
->mat
->row
[row
][0], 1 + tab
->M
+ tab
->n_col
);
910 isl_int_set_si(tab
->mat
->row
[row
][0], 1);
912 if (tab
->var
[tab
->n_var
- tab
->n_div
+ div
].is_row
) {
913 int drow
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
915 isl_assert(tab
->mat
->ctx
,
916 isl_int_is_one(tab
->mat
->row
[drow
][0]), goto error
);
917 isl_seq_combine(tab
->mat
->row
[row
] + 1,
918 tab
->mat
->ctx
->one
, tab
->mat
->row
[row
] + 1,
919 tab
->mat
->ctx
->one
, tab
->mat
->row
[drow
] + 1,
920 1 + tab
->M
+ tab
->n_col
);
922 int dcol
= tab
->var
[tab
->n_var
- tab
->n_div
+ div
].index
;
924 isl_int_add_ui(tab
->mat
->row
[row
][2 + tab
->M
+ dcol
],
925 tab
->mat
->row
[row
][2 + tab
->M
+ dcol
], 1);
934 /* Check if the (parametric) constant of the given row is obviously
935 * negative, meaning that we don't need to consult the context tableau.
936 * If there is a big parameter and its coefficient is non-zero,
937 * then this coefficient determines the outcome.
938 * Otherwise, we check whether the constant is negative and
939 * all non-zero coefficients of parameters are negative and
940 * belong to non-negative parameters.
942 static int is_obviously_neg(struct isl_tab
*tab
, int row
)
946 unsigned off
= 2 + tab
->M
;
949 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
951 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
955 if (isl_int_is_nonneg(tab
->mat
->row
[row
][1]))
957 for (i
= 0; i
< tab
->n_param
; ++i
) {
958 /* Eliminated parameter */
959 if (tab
->var
[i
].is_row
)
961 col
= tab
->var
[i
].index
;
962 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
964 if (!tab
->var
[i
].is_nonneg
)
966 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
969 for (i
= 0; i
< tab
->n_div
; ++i
) {
970 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
972 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
973 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
975 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
977 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
983 /* Check if the (parametric) constant of the given row is obviously
984 * non-negative, meaning that we don't need to consult the context tableau.
985 * If there is a big parameter and its coefficient is non-zero,
986 * then this coefficient determines the outcome.
987 * Otherwise, we check whether the constant is non-negative and
988 * all non-zero coefficients of parameters are positive and
989 * belong to non-negative parameters.
991 static int is_obviously_nonneg(struct isl_tab
*tab
, int row
)
995 unsigned off
= 2 + tab
->M
;
998 if (isl_int_is_pos(tab
->mat
->row
[row
][2]))
1000 if (isl_int_is_neg(tab
->mat
->row
[row
][2]))
1004 if (isl_int_is_neg(tab
->mat
->row
[row
][1]))
1006 for (i
= 0; i
< tab
->n_param
; ++i
) {
1007 /* Eliminated parameter */
1008 if (tab
->var
[i
].is_row
)
1010 col
= tab
->var
[i
].index
;
1011 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1013 if (!tab
->var
[i
].is_nonneg
)
1015 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1018 for (i
= 0; i
< tab
->n_div
; ++i
) {
1019 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1021 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1022 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1024 if (!tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_nonneg
)
1026 if (isl_int_is_neg(tab
->mat
->row
[row
][off
+ col
]))
1032 /* Given a row r and two columns, return the column that would
1033 * lead to the lexicographically smallest increment in the sample
1034 * solution when leaving the basis in favor of the row.
1035 * Pivoting with column c will increment the sample value by a non-negative
1036 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
1037 * corresponding to the non-parametric variables.
1038 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
1039 * with all other entries in this virtual row equal to zero.
1040 * If variable v appears in a row, then a_{v,c} is the element in column c
1043 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
1044 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
1045 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
1046 * increment. Otherwise, it's c2.
1048 static int lexmin_col_pair(struct isl_tab
*tab
,
1049 int row
, int col1
, int col2
, isl_int tmp
)
1054 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1056 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
1060 if (!tab
->var
[i
].is_row
) {
1061 if (tab
->var
[i
].index
== col1
)
1063 if (tab
->var
[i
].index
== col2
)
1068 if (tab
->var
[i
].index
== row
)
1071 r
= tab
->mat
->row
[tab
->var
[i
].index
] + 2 + tab
->M
;
1072 s1
= isl_int_sgn(r
[col1
]);
1073 s2
= isl_int_sgn(r
[col2
]);
1074 if (s1
== 0 && s2
== 0)
1081 isl_int_mul(tmp
, r
[col2
], tr
[col1
]);
1082 isl_int_submul(tmp
, r
[col1
], tr
[col2
]);
1083 if (isl_int_is_pos(tmp
))
1085 if (isl_int_is_neg(tmp
))
1091 /* Given a row in the tableau, find and return the column that would
1092 * result in the lexicographically smallest, but positive, increment
1093 * in the sample point.
1094 * If there is no such column, then return tab->n_col.
1095 * If anything goes wrong, return -1.
1097 static int lexmin_pivot_col(struct isl_tab
*tab
, int row
)
1100 int col
= tab
->n_col
;
1104 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1108 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1109 if (tab
->col_var
[j
] >= 0 &&
1110 (tab
->col_var
[j
] < tab
->n_param
||
1111 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1114 if (!isl_int_is_pos(tr
[j
]))
1117 if (col
== tab
->n_col
)
1120 col
= lexmin_col_pair(tab
, row
, col
, j
, tmp
);
1121 isl_assert(tab
->mat
->ctx
, col
>= 0, goto error
);
1131 /* Return the first known violated constraint, i.e., a non-negative
1132 * constraint that currently has an either obviously negative value
1133 * or a previously determined to be negative value.
1135 * If any constraint has a negative coefficient for the big parameter,
1136 * if any, then we return one of these first.
1138 static int first_neg(struct isl_tab
*tab
)
1143 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1144 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1146 if (!isl_int_is_neg(tab
->mat
->row
[row
][2]))
1149 tab
->row_sign
[row
] = isl_tab_row_neg
;
1152 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
1153 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
1155 if (tab
->row_sign
) {
1156 if (tab
->row_sign
[row
] == 0 &&
1157 is_obviously_neg(tab
, row
))
1158 tab
->row_sign
[row
] = isl_tab_row_neg
;
1159 if (tab
->row_sign
[row
] != isl_tab_row_neg
)
1161 } else if (!is_obviously_neg(tab
, row
))
1168 /* Check whether the invariant that all columns are lexico-positive
1169 * is satisfied. This function is not called from the current code
1170 * but is useful during debugging.
1172 static void check_lexpos(struct isl_tab
*tab
) __attribute__ ((unused
));
1173 static void check_lexpos(struct isl_tab
*tab
)
1175 unsigned off
= 2 + tab
->M
;
1180 for (col
= tab
->n_dead
; col
< tab
->n_col
; ++col
) {
1181 if (tab
->col_var
[col
] >= 0 &&
1182 (tab
->col_var
[col
] < tab
->n_param
||
1183 tab
->col_var
[col
] >= tab
->n_var
- tab
->n_div
))
1185 for (var
= tab
->n_param
; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1186 if (!tab
->var
[var
].is_row
) {
1187 if (tab
->var
[var
].index
== col
)
1192 row
= tab
->var
[var
].index
;
1193 if (isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1195 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ col
]))
1197 fprintf(stderr
, "lexneg column %d (row %d)\n",
1200 if (var
>= tab
->n_var
- tab
->n_div
)
1201 fprintf(stderr
, "zero column %d\n", col
);
1205 /* Report to the caller that the given constraint is part of an encountered
1208 static int report_conflicting_constraint(struct isl_tab
*tab
, int con
)
1210 return tab
->conflict(con
, tab
->conflict_user
);
1213 /* Given a conflicting row in the tableau, report all constraints
1214 * involved in the row to the caller. That is, the row itself
1215 * (if it represents a constraint) and all constraint columns with
1216 * non-zero (and therefore negative) coefficients.
1218 static int report_conflict(struct isl_tab
*tab
, int row
)
1226 if (tab
->row_var
[row
] < 0 &&
1227 report_conflicting_constraint(tab
, ~tab
->row_var
[row
]) < 0)
1230 tr
= tab
->mat
->row
[row
] + 2 + tab
->M
;
1232 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
1233 if (tab
->col_var
[j
] >= 0 &&
1234 (tab
->col_var
[j
] < tab
->n_param
||
1235 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
1238 if (!isl_int_is_neg(tr
[j
]))
1241 if (tab
->col_var
[j
] < 0 &&
1242 report_conflicting_constraint(tab
, ~tab
->col_var
[j
]) < 0)
1249 /* Resolve all known or obviously violated constraints through pivoting.
1250 * In particular, as long as we can find any violated constraint, we
1251 * look for a pivoting column that would result in the lexicographically
1252 * smallest increment in the sample point. If there is no such column
1253 * then the tableau is infeasible.
1255 static int restore_lexmin(struct isl_tab
*tab
) WARN_UNUSED
;
1256 static int restore_lexmin(struct isl_tab
*tab
)
1264 while ((row
= first_neg(tab
)) != -1) {
1265 col
= lexmin_pivot_col(tab
, row
);
1266 if (col
>= tab
->n_col
) {
1267 if (report_conflict(tab
, row
) < 0)
1269 if (isl_tab_mark_empty(tab
) < 0)
1275 if (isl_tab_pivot(tab
, row
, col
) < 0)
1281 /* Given a row that represents an equality, look for an appropriate
1283 * In particular, if there are any non-zero coefficients among
1284 * the non-parameter variables, then we take the last of these
1285 * variables. Eliminating this variable in terms of the other
1286 * variables and/or parameters does not influence the property
1287 * that all column in the initial tableau are lexicographically
1288 * positive. The row corresponding to the eliminated variable
1289 * will only have non-zero entries below the diagonal of the
1290 * initial tableau. That is, we transform
1296 * If there is no such non-parameter variable, then we are dealing with
1297 * pure parameter equality and we pick any parameter with coefficient 1 or -1
1298 * for elimination. This will ensure that the eliminated parameter
1299 * always has an integer value whenever all the other parameters are integral.
1300 * If there is no such parameter then we return -1.
1302 static int last_var_col_or_int_par_col(struct isl_tab
*tab
, int row
)
1304 unsigned off
= 2 + tab
->M
;
1307 for (i
= tab
->n_var
- tab
->n_div
- 1; i
>= 0 && i
>= tab
->n_param
; --i
) {
1309 if (tab
->var
[i
].is_row
)
1311 col
= tab
->var
[i
].index
;
1312 if (col
<= tab
->n_dead
)
1314 if (!isl_int_is_zero(tab
->mat
->row
[row
][off
+ col
]))
1317 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1318 if (isl_int_is_one(tab
->mat
->row
[row
][off
+ i
]))
1320 if (isl_int_is_negone(tab
->mat
->row
[row
][off
+ i
]))
1326 /* Add an equality that is known to be valid to the tableau.
1327 * We first check if we can eliminate a variable or a parameter.
1328 * If not, we add the equality as two inequalities.
1329 * In this case, the equality was a pure parameter equality and there
1330 * is no need to resolve any constraint violations.
1332 static struct isl_tab
*add_lexmin_valid_eq(struct isl_tab
*tab
, isl_int
*eq
)
1339 r
= isl_tab_add_row(tab
, eq
);
1343 r
= tab
->con
[r
].index
;
1344 i
= last_var_col_or_int_par_col(tab
, r
);
1346 tab
->con
[r
].is_nonneg
= 1;
1347 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1349 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1350 r
= isl_tab_add_row(tab
, eq
);
1353 tab
->con
[r
].is_nonneg
= 1;
1354 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1357 if (isl_tab_pivot(tab
, r
, i
) < 0)
1359 if (isl_tab_kill_col(tab
, i
) < 0)
1370 /* Check if the given row is a pure constant.
1372 static int is_constant(struct isl_tab
*tab
, int row
)
1374 unsigned off
= 2 + tab
->M
;
1376 return isl_seq_first_non_zero(tab
->mat
->row
[row
] + off
+ tab
->n_dead
,
1377 tab
->n_col
- tab
->n_dead
) == -1;
1380 /* Add an equality that may or may not be valid to the tableau.
1381 * If the resulting row is a pure constant, then it must be zero.
1382 * Otherwise, the resulting tableau is empty.
1384 * If the row is not a pure constant, then we add two inequalities,
1385 * each time checking that they can be satisfied.
1386 * In the end we try to use one of the two constraints to eliminate
1389 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
) WARN_UNUSED
;
1390 static int add_lexmin_eq(struct isl_tab
*tab
, isl_int
*eq
)
1394 struct isl_tab_undo
*snap
;
1398 snap
= isl_tab_snap(tab
);
1399 r1
= isl_tab_add_row(tab
, eq
);
1402 tab
->con
[r1
].is_nonneg
= 1;
1403 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r1
]) < 0)
1406 row
= tab
->con
[r1
].index
;
1407 if (is_constant(tab
, row
)) {
1408 if (!isl_int_is_zero(tab
->mat
->row
[row
][1]) ||
1409 (tab
->M
&& !isl_int_is_zero(tab
->mat
->row
[row
][2]))) {
1410 if (isl_tab_mark_empty(tab
) < 0)
1414 if (isl_tab_rollback(tab
, snap
) < 0)
1419 if (restore_lexmin(tab
) < 0)
1424 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1426 r2
= isl_tab_add_row(tab
, eq
);
1429 tab
->con
[r2
].is_nonneg
= 1;
1430 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r2
]) < 0)
1433 if (restore_lexmin(tab
) < 0)
1438 if (!tab
->con
[r1
].is_row
) {
1439 if (isl_tab_kill_col(tab
, tab
->con
[r1
].index
) < 0)
1441 } else if (!tab
->con
[r2
].is_row
) {
1442 if (isl_tab_kill_col(tab
, tab
->con
[r2
].index
) < 0)
1447 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1448 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1450 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1451 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, eq
);
1452 isl_seq_neg(eq
, eq
, 1 + tab
->n_var
);
1453 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1462 /* Add an inequality to the tableau, resolving violations using
1465 static struct isl_tab
*add_lexmin_ineq(struct isl_tab
*tab
, isl_int
*ineq
)
1472 tab
->bmap
= isl_basic_map_add_ineq(tab
->bmap
, ineq
);
1473 if (isl_tab_push(tab
, isl_tab_undo_bmap_ineq
) < 0)
1478 r
= isl_tab_add_row(tab
, ineq
);
1481 tab
->con
[r
].is_nonneg
= 1;
1482 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1484 if (isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
)) {
1485 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1490 if (restore_lexmin(tab
) < 0)
1492 if (!tab
->empty
&& tab
->con
[r
].is_row
&&
1493 isl_tab_row_is_redundant(tab
, tab
->con
[r
].index
))
1494 if (isl_tab_mark_redundant(tab
, tab
->con
[r
].index
) < 0)
1502 /* Check if the coefficients of the parameters are all integral.
1504 static int integer_parameter(struct isl_tab
*tab
, int row
)
1508 unsigned off
= 2 + tab
->M
;
1510 for (i
= 0; i
< tab
->n_param
; ++i
) {
1511 /* Eliminated parameter */
1512 if (tab
->var
[i
].is_row
)
1514 col
= tab
->var
[i
].index
;
1515 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1516 tab
->mat
->row
[row
][0]))
1519 for (i
= 0; i
< tab
->n_div
; ++i
) {
1520 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
1522 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
1523 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ col
],
1524 tab
->mat
->row
[row
][0]))
1530 /* Check if the coefficients of the non-parameter variables are all integral.
1532 static int integer_variable(struct isl_tab
*tab
, int row
)
1535 unsigned off
= 2 + tab
->M
;
1537 for (i
= tab
->n_dead
; i
< tab
->n_col
; ++i
) {
1538 if (tab
->col_var
[i
] >= 0 &&
1539 (tab
->col_var
[i
] < tab
->n_param
||
1540 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
1542 if (!isl_int_is_divisible_by(tab
->mat
->row
[row
][off
+ i
],
1543 tab
->mat
->row
[row
][0]))
1549 /* Check if the constant term is integral.
1551 static int integer_constant(struct isl_tab
*tab
, int row
)
1553 return isl_int_is_divisible_by(tab
->mat
->row
[row
][1],
1554 tab
->mat
->row
[row
][0]);
1557 #define I_CST 1 << 0
1558 #define I_PAR 1 << 1
1559 #define I_VAR 1 << 2
1561 /* Check for next (non-parameter) variable after "var" (first if var == -1)
1562 * that is non-integer and therefore requires a cut and return
1563 * the index of the variable.
1564 * For parametric tableaus, there are three parts in a row,
1565 * the constant, the coefficients of the parameters and the rest.
1566 * For each part, we check whether the coefficients in that part
1567 * are all integral and if so, set the corresponding flag in *f.
1568 * If the constant and the parameter part are integral, then the
1569 * current sample value is integral and no cut is required
1570 * (irrespective of whether the variable part is integral).
1572 static int next_non_integer_var(struct isl_tab
*tab
, int var
, int *f
)
1574 var
= var
< 0 ? tab
->n_param
: var
+ 1;
1576 for (; var
< tab
->n_var
- tab
->n_div
; ++var
) {
1579 if (!tab
->var
[var
].is_row
)
1581 row
= tab
->var
[var
].index
;
1582 if (integer_constant(tab
, row
))
1583 ISL_FL_SET(flags
, I_CST
);
1584 if (integer_parameter(tab
, row
))
1585 ISL_FL_SET(flags
, I_PAR
);
1586 if (ISL_FL_ISSET(flags
, I_CST
) && ISL_FL_ISSET(flags
, I_PAR
))
1588 if (integer_variable(tab
, row
))
1589 ISL_FL_SET(flags
, I_VAR
);
1596 /* Check for first (non-parameter) variable that is non-integer and
1597 * therefore requires a cut and return the corresponding row.
1598 * For parametric tableaus, there are three parts in a row,
1599 * the constant, the coefficients of the parameters and the rest.
1600 * For each part, we check whether the coefficients in that part
1601 * are all integral and if so, set the corresponding flag in *f.
1602 * If the constant and the parameter part are integral, then the
1603 * current sample value is integral and no cut is required
1604 * (irrespective of whether the variable part is integral).
1606 static int first_non_integer_row(struct isl_tab
*tab
, int *f
)
1608 int var
= next_non_integer_var(tab
, -1, f
);
1610 return var
< 0 ? -1 : tab
->var
[var
].index
;
1613 /* Add a (non-parametric) cut to cut away the non-integral sample
1614 * value of the given row.
1616 * If the row is given by
1618 * m r = f + \sum_i a_i y_i
1622 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1624 * The big parameter, if any, is ignored, since it is assumed to be big
1625 * enough to be divisible by any integer.
1626 * If the tableau is actually a parametric tableau, then this function
1627 * is only called when all coefficients of the parameters are integral.
1628 * The cut therefore has zero coefficients for the parameters.
1630 * The current value is known to be negative, so row_sign, if it
1631 * exists, is set accordingly.
1633 * Return the row of the cut or -1.
1635 static int add_cut(struct isl_tab
*tab
, int row
)
1640 unsigned off
= 2 + tab
->M
;
1642 if (isl_tab_extend_cons(tab
, 1) < 0)
1644 r
= isl_tab_allocate_con(tab
);
1648 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
1649 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
1650 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
1651 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
1652 isl_int_neg(r_row
[1], r_row
[1]);
1654 isl_int_set_si(r_row
[2], 0);
1655 for (i
= 0; i
< tab
->n_col
; ++i
)
1656 isl_int_fdiv_r(r_row
[off
+ i
],
1657 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
1659 tab
->con
[r
].is_nonneg
= 1;
1660 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
1663 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
1665 return tab
->con
[r
].index
;
1671 /* Given a non-parametric tableau, add cuts until an integer
1672 * sample point is obtained or until the tableau is determined
1673 * to be integer infeasible.
1674 * As long as there is any non-integer value in the sample point,
1675 * we add appropriate cuts, if possible, for each of these
1676 * non-integer values and then resolve the violated
1677 * cut constraints using restore_lexmin.
1678 * If one of the corresponding rows is equal to an integral
1679 * combination of variables/constraints plus a non-integral constant,
1680 * then there is no way to obtain an integer point and we return
1681 * a tableau that is marked empty.
1682 * The parameter cutting_strategy controls the strategy used when adding cuts
1683 * to remove non-integer points. CUT_ALL adds all possible cuts
1684 * before continuing the search. CUT_ONE adds only one cut at a time.
1686 static struct isl_tab
*cut_to_integer_lexmin(struct isl_tab
*tab
,
1687 int cutting_strategy
)
1698 while ((var
= next_non_integer_var(tab
, -1, &flags
)) != -1) {
1700 if (ISL_FL_ISSET(flags
, I_VAR
)) {
1701 if (isl_tab_mark_empty(tab
) < 0)
1705 row
= tab
->var
[var
].index
;
1706 row
= add_cut(tab
, row
);
1709 if (cutting_strategy
== CUT_ONE
)
1711 } while ((var
= next_non_integer_var(tab
, var
, &flags
)) != -1);
1712 if (restore_lexmin(tab
) < 0)
1723 /* Check whether all the currently active samples also satisfy the inequality
1724 * "ineq" (treated as an equality if eq is set).
1725 * Remove those samples that do not.
1727 static struct isl_tab
*check_samples(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1735 isl_assert(tab
->mat
->ctx
, tab
->bmap
, goto error
);
1736 isl_assert(tab
->mat
->ctx
, tab
->samples
, goto error
);
1737 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, goto error
);
1740 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1742 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1743 1 + tab
->n_var
, &v
);
1744 sgn
= isl_int_sgn(v
);
1745 if (eq
? (sgn
== 0) : (sgn
>= 0))
1747 tab
= isl_tab_drop_sample(tab
, i
);
1759 /* Check whether the sample value of the tableau is finite,
1760 * i.e., either the tableau does not use a big parameter, or
1761 * all values of the variables are equal to the big parameter plus
1762 * some constant. This constant is the actual sample value.
1764 static int sample_is_finite(struct isl_tab
*tab
)
1771 for (i
= 0; i
< tab
->n_var
; ++i
) {
1773 if (!tab
->var
[i
].is_row
)
1775 row
= tab
->var
[i
].index
;
1776 if (isl_int_ne(tab
->mat
->row
[row
][0], tab
->mat
->row
[row
][2]))
1782 /* Check if the context tableau of sol has any integer points.
1783 * Leave tab in empty state if no integer point can be found.
1784 * If an integer point can be found and if moreover it is finite,
1785 * then it is added to the list of sample values.
1787 * This function is only called when none of the currently active sample
1788 * values satisfies the most recently added constraint.
1790 static struct isl_tab
*check_integer_feasible(struct isl_tab
*tab
)
1792 struct isl_tab_undo
*snap
;
1797 snap
= isl_tab_snap(tab
);
1798 if (isl_tab_push_basis(tab
) < 0)
1801 tab
= cut_to_integer_lexmin(tab
, CUT_ALL
);
1805 if (!tab
->empty
&& sample_is_finite(tab
)) {
1806 struct isl_vec
*sample
;
1808 sample
= isl_tab_get_sample_value(tab
);
1810 if (isl_tab_add_sample(tab
, sample
) < 0)
1814 if (!tab
->empty
&& isl_tab_rollback(tab
, snap
) < 0)
1823 /* Check if any of the currently active sample values satisfies
1824 * the inequality "ineq" (an equality if eq is set).
1826 static int tab_has_valid_sample(struct isl_tab
*tab
, isl_int
*ineq
, int eq
)
1834 isl_assert(tab
->mat
->ctx
, tab
->bmap
, return -1);
1835 isl_assert(tab
->mat
->ctx
, tab
->samples
, return -1);
1836 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
, return -1);
1839 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
1841 isl_seq_inner_product(ineq
, tab
->samples
->row
[i
],
1842 1 + tab
->n_var
, &v
);
1843 sgn
= isl_int_sgn(v
);
1844 if (eq
? (sgn
== 0) : (sgn
>= 0))
1849 return i
< tab
->n_sample
;
1852 /* Add a div specified by "div" to the tableau "tab" and return
1853 * 1 if the div is obviously non-negative.
1855 static int context_tab_add_div(struct isl_tab
*tab
, struct isl_vec
*div
,
1856 int (*add_ineq
)(void *user
, isl_int
*), void *user
)
1860 struct isl_mat
*samples
;
1863 r
= isl_tab_add_div(tab
, div
, add_ineq
, user
);
1866 nonneg
= tab
->var
[r
].is_nonneg
;
1867 tab
->var
[r
].frozen
= 1;
1869 samples
= isl_mat_extend(tab
->samples
,
1870 tab
->n_sample
, 1 + tab
->n_var
);
1871 tab
->samples
= samples
;
1874 for (i
= tab
->n_outside
; i
< samples
->n_row
; ++i
) {
1875 isl_seq_inner_product(div
->el
+ 1, samples
->row
[i
],
1876 div
->size
- 1, &samples
->row
[i
][samples
->n_col
- 1]);
1877 isl_int_fdiv_q(samples
->row
[i
][samples
->n_col
- 1],
1878 samples
->row
[i
][samples
->n_col
- 1], div
->el
[0]);
1884 /* Add a div specified by "div" to both the main tableau and
1885 * the context tableau. In case of the main tableau, we only
1886 * need to add an extra div. In the context tableau, we also
1887 * need to express the meaning of the div.
1888 * Return the index of the div or -1 if anything went wrong.
1890 static int add_div(struct isl_tab
*tab
, struct isl_context
*context
,
1891 struct isl_vec
*div
)
1896 if ((nonneg
= context
->op
->add_div(context
, div
)) < 0)
1899 if (!context
->op
->is_ok(context
))
1902 if (isl_tab_extend_vars(tab
, 1) < 0)
1904 r
= isl_tab_allocate_var(tab
);
1908 tab
->var
[r
].is_nonneg
= 1;
1909 tab
->var
[r
].frozen
= 1;
1912 return tab
->n_div
- 1;
1914 context
->op
->invalidate(context
);
1918 static int find_div(struct isl_tab
*tab
, isl_int
*div
, isl_int denom
)
1921 unsigned total
= isl_basic_map_total_dim(tab
->bmap
);
1923 for (i
= 0; i
< tab
->bmap
->n_div
; ++i
) {
1924 if (isl_int_ne(tab
->bmap
->div
[i
][0], denom
))
1926 if (!isl_seq_eq(tab
->bmap
->div
[i
] + 1, div
, 1 + total
))
1933 /* Return the index of a div that corresponds to "div".
1934 * We first check if we already have such a div and if not, we create one.
1936 static int get_div(struct isl_tab
*tab
, struct isl_context
*context
,
1937 struct isl_vec
*div
)
1940 struct isl_tab
*context_tab
= context
->op
->peek_tab(context
);
1945 d
= find_div(context_tab
, div
->el
+ 1, div
->el
[0]);
1949 return add_div(tab
, context
, div
);
1952 /* Add a parametric cut to cut away the non-integral sample value
1954 * Let a_i be the coefficients of the constant term and the parameters
1955 * and let b_i be the coefficients of the variables or constraints
1956 * in basis of the tableau.
1957 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1959 * The cut is expressed as
1961 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1963 * If q did not already exist in the context tableau, then it is added first.
1964 * If q is in a column of the main tableau then the "+ q" can be accomplished
1965 * by setting the corresponding entry to the denominator of the constraint.
1966 * If q happens to be in a row of the main tableau, then the corresponding
1967 * row needs to be added instead (taking care of the denominators).
1968 * Note that this is very unlikely, but perhaps not entirely impossible.
1970 * The current value of the cut is known to be negative (or at least
1971 * non-positive), so row_sign is set accordingly.
1973 * Return the row of the cut or -1.
1975 static int add_parametric_cut(struct isl_tab
*tab
, int row
,
1976 struct isl_context
*context
)
1978 struct isl_vec
*div
;
1985 unsigned off
= 2 + tab
->M
;
1990 div
= get_row_parameter_div(tab
, row
);
1995 d
= context
->op
->get_div(context
, tab
, div
);
2000 if (isl_tab_extend_cons(tab
, 1) < 0)
2002 r
= isl_tab_allocate_con(tab
);
2006 r_row
= tab
->mat
->row
[tab
->con
[r
].index
];
2007 isl_int_set(r_row
[0], tab
->mat
->row
[row
][0]);
2008 isl_int_neg(r_row
[1], tab
->mat
->row
[row
][1]);
2009 isl_int_fdiv_r(r_row
[1], r_row
[1], tab
->mat
->row
[row
][0]);
2010 isl_int_neg(r_row
[1], r_row
[1]);
2012 isl_int_set_si(r_row
[2], 0);
2013 for (i
= 0; i
< tab
->n_param
; ++i
) {
2014 if (tab
->var
[i
].is_row
)
2016 col
= tab
->var
[i
].index
;
2017 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2018 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2019 tab
->mat
->row
[row
][0]);
2020 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2022 for (i
= 0; i
< tab
->n_div
; ++i
) {
2023 if (tab
->var
[tab
->n_var
- tab
->n_div
+ i
].is_row
)
2025 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ i
].index
;
2026 isl_int_neg(r_row
[off
+ col
], tab
->mat
->row
[row
][off
+ col
]);
2027 isl_int_fdiv_r(r_row
[off
+ col
], r_row
[off
+ col
],
2028 tab
->mat
->row
[row
][0]);
2029 isl_int_neg(r_row
[off
+ col
], r_row
[off
+ col
]);
2031 for (i
= 0; i
< tab
->n_col
; ++i
) {
2032 if (tab
->col_var
[i
] >= 0 &&
2033 (tab
->col_var
[i
] < tab
->n_param
||
2034 tab
->col_var
[i
] >= tab
->n_var
- tab
->n_div
))
2036 isl_int_fdiv_r(r_row
[off
+ i
],
2037 tab
->mat
->row
[row
][off
+ i
], tab
->mat
->row
[row
][0]);
2039 if (tab
->var
[tab
->n_var
- tab
->n_div
+ d
].is_row
) {
2041 int d_row
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2043 isl_int_gcd(gcd
, tab
->mat
->row
[d_row
][0], r_row
[0]);
2044 isl_int_divexact(r_row
[0], r_row
[0], gcd
);
2045 isl_int_divexact(gcd
, tab
->mat
->row
[d_row
][0], gcd
);
2046 isl_seq_combine(r_row
+ 1, gcd
, r_row
+ 1,
2047 r_row
[0], tab
->mat
->row
[d_row
] + 1,
2048 off
- 1 + tab
->n_col
);
2049 isl_int_mul(r_row
[0], r_row
[0], tab
->mat
->row
[d_row
][0]);
2052 col
= tab
->var
[tab
->n_var
- tab
->n_div
+ d
].index
;
2053 isl_int_set(r_row
[off
+ col
], tab
->mat
->row
[row
][0]);
2056 tab
->con
[r
].is_nonneg
= 1;
2057 if (isl_tab_push_var(tab
, isl_tab_undo_nonneg
, &tab
->con
[r
]) < 0)
2060 tab
->row_sign
[tab
->con
[r
].index
] = isl_tab_row_neg
;
2062 row
= tab
->con
[r
].index
;
2064 if (d
>= n
&& context
->op
->detect_equalities(context
, tab
) < 0)
2070 /* Construct a tableau for bmap that can be used for computing
2071 * the lexicographic minimum (or maximum) of bmap.
2072 * If not NULL, then dom is the domain where the minimum
2073 * should be computed. In this case, we set up a parametric
2074 * tableau with row signs (initialized to "unknown").
2075 * If M is set, then the tableau will use a big parameter.
2076 * If max is set, then a maximum should be computed instead of a minimum.
2077 * This means that for each variable x, the tableau will contain the variable
2078 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
2079 * of the variables in all constraints are negated prior to adding them
2082 static struct isl_tab
*tab_for_lexmin(struct isl_basic_map
*bmap
,
2083 struct isl_basic_set
*dom
, unsigned M
, int max
)
2086 struct isl_tab
*tab
;
2090 tab
= isl_tab_alloc(bmap
->ctx
, 2 * bmap
->n_eq
+ bmap
->n_ineq
+ 1,
2091 isl_basic_map_total_dim(bmap
), M
);
2095 tab
->rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
2097 tab
->n_param
= isl_basic_set_total_dim(dom
) - dom
->n_div
;
2098 tab
->n_div
= dom
->n_div
;
2099 tab
->row_sign
= isl_calloc_array(bmap
->ctx
,
2100 enum isl_tab_row_sign
, tab
->mat
->n_row
);
2101 if (tab
->mat
->n_row
&& !tab
->row_sign
)
2104 if (ISL_F_ISSET(bmap
, ISL_BASIC_MAP_EMPTY
)) {
2105 if (isl_tab_mark_empty(tab
) < 0)
2110 for (i
= tab
->n_param
; i
< tab
->n_var
- tab
->n_div
; ++i
) {
2111 tab
->var
[i
].is_nonneg
= 1;
2112 tab
->var
[i
].frozen
= 1;
2114 o_var
= 1 + tab
->n_param
;
2115 n_var
= tab
->n_var
- tab
->n_param
- tab
->n_div
;
2116 for (i
= 0; i
< bmap
->n_eq
; ++i
) {
2118 isl_seq_neg(bmap
->eq
[i
] + o_var
,
2119 bmap
->eq
[i
] + o_var
, n_var
);
2120 tab
= add_lexmin_valid_eq(tab
, bmap
->eq
[i
]);
2122 isl_seq_neg(bmap
->eq
[i
] + o_var
,
2123 bmap
->eq
[i
] + o_var
, n_var
);
2124 if (!tab
|| tab
->empty
)
2127 if (bmap
->n_eq
&& restore_lexmin(tab
) < 0)
2129 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
2131 isl_seq_neg(bmap
->ineq
[i
] + o_var
,
2132 bmap
->ineq
[i
] + o_var
, n_var
);
2133 tab
= add_lexmin_ineq(tab
, bmap
->ineq
[i
]);
2135 isl_seq_neg(bmap
->ineq
[i
] + o_var
,
2136 bmap
->ineq
[i
] + o_var
, n_var
);
2137 if (!tab
|| tab
->empty
)
2146 /* Given a main tableau where more than one row requires a split,
2147 * determine and return the "best" row to split on.
2149 * Given two rows in the main tableau, if the inequality corresponding
2150 * to the first row is redundant with respect to that of the second row
2151 * in the current tableau, then it is better to split on the second row,
2152 * since in the positive part, both row will be positive.
2153 * (In the negative part a pivot will have to be performed and just about
2154 * anything can happen to the sign of the other row.)
2156 * As a simple heuristic, we therefore select the row that makes the most
2157 * of the other rows redundant.
2159 * Perhaps it would also be useful to look at the number of constraints
2160 * that conflict with any given constraint.
2162 * best is the best row so far (-1 when we have not found any row yet).
2163 * best_r is the number of other rows made redundant by row best.
2164 * When best is still -1, bset_r is meaningless, but it is initialized
2165 * to some arbitrary value (0) anyway. Without this redundant initialization
2166 * valgrind may warn about uninitialized memory accesses when isl
2167 * is compiled with some versions of gcc.
2169 static int best_split(struct isl_tab
*tab
, struct isl_tab
*context_tab
)
2171 struct isl_tab_undo
*snap
;
2177 if (isl_tab_extend_cons(context_tab
, 2) < 0)
2180 snap
= isl_tab_snap(context_tab
);
2182 for (split
= tab
->n_redundant
; split
< tab
->n_row
; ++split
) {
2183 struct isl_tab_undo
*snap2
;
2184 struct isl_vec
*ineq
= NULL
;
2188 if (!isl_tab_var_from_row(tab
, split
)->is_nonneg
)
2190 if (tab
->row_sign
[split
] != isl_tab_row_any
)
2193 ineq
= get_row_parameter_ineq(tab
, split
);
2196 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2201 snap2
= isl_tab_snap(context_tab
);
2203 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
2204 struct isl_tab_var
*var
;
2208 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
2210 if (tab
->row_sign
[row
] != isl_tab_row_any
)
2213 ineq
= get_row_parameter_ineq(tab
, row
);
2216 ok
= isl_tab_add_ineq(context_tab
, ineq
->el
) >= 0;
2220 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2221 if (!context_tab
->empty
&&
2222 !isl_tab_min_at_most_neg_one(context_tab
, var
))
2224 if (isl_tab_rollback(context_tab
, snap2
) < 0)
2227 if (best
== -1 || r
> best_r
) {
2231 if (isl_tab_rollback(context_tab
, snap
) < 0)
2238 static struct isl_basic_set
*context_lex_peek_basic_set(
2239 struct isl_context
*context
)
2241 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2244 return isl_tab_peek_bset(clex
->tab
);
2247 static struct isl_tab
*context_lex_peek_tab(struct isl_context
*context
)
2249 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2253 static void context_lex_add_eq(struct isl_context
*context
, isl_int
*eq
,
2254 int check
, int update
)
2256 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2257 if (isl_tab_extend_cons(clex
->tab
, 2) < 0)
2259 if (add_lexmin_eq(clex
->tab
, eq
) < 0)
2262 int v
= tab_has_valid_sample(clex
->tab
, eq
, 1);
2266 clex
->tab
= check_integer_feasible(clex
->tab
);
2269 clex
->tab
= check_samples(clex
->tab
, eq
, 1);
2272 isl_tab_free(clex
->tab
);
2276 static void context_lex_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2277 int check
, int update
)
2279 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2280 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2282 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2284 int v
= tab_has_valid_sample(clex
->tab
, ineq
, 0);
2288 clex
->tab
= check_integer_feasible(clex
->tab
);
2291 clex
->tab
= check_samples(clex
->tab
, ineq
, 0);
2294 isl_tab_free(clex
->tab
);
2298 static int context_lex_add_ineq_wrap(void *user
, isl_int
*ineq
)
2300 struct isl_context
*context
= (struct isl_context
*)user
;
2301 context_lex_add_ineq(context
, ineq
, 0, 0);
2302 return context
->op
->is_ok(context
) ? 0 : -1;
2305 /* Check which signs can be obtained by "ineq" on all the currently
2306 * active sample values. See row_sign for more information.
2308 static enum isl_tab_row_sign
tab_ineq_sign(struct isl_tab
*tab
, isl_int
*ineq
,
2314 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
2316 isl_assert(tab
->mat
->ctx
, tab
->samples
, return isl_tab_row_unknown
);
2317 isl_assert(tab
->mat
->ctx
, tab
->samples
->n_col
== 1 + tab
->n_var
,
2318 return isl_tab_row_unknown
);
2321 for (i
= tab
->n_outside
; i
< tab
->n_sample
; ++i
) {
2322 isl_seq_inner_product(tab
->samples
->row
[i
], ineq
,
2323 1 + tab
->n_var
, &tmp
);
2324 sgn
= isl_int_sgn(tmp
);
2325 if (sgn
> 0 || (sgn
== 0 && strict
)) {
2326 if (res
== isl_tab_row_unknown
)
2327 res
= isl_tab_row_pos
;
2328 if (res
== isl_tab_row_neg
)
2329 res
= isl_tab_row_any
;
2332 if (res
== isl_tab_row_unknown
)
2333 res
= isl_tab_row_neg
;
2334 if (res
== isl_tab_row_pos
)
2335 res
= isl_tab_row_any
;
2337 if (res
== isl_tab_row_any
)
2345 static enum isl_tab_row_sign
context_lex_ineq_sign(struct isl_context
*context
,
2346 isl_int
*ineq
, int strict
)
2348 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2349 return tab_ineq_sign(clex
->tab
, ineq
, strict
);
2352 /* Check whether "ineq" can be added to the tableau without rendering
2355 static int context_lex_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
2357 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2358 struct isl_tab_undo
*snap
;
2364 if (isl_tab_extend_cons(clex
->tab
, 1) < 0)
2367 snap
= isl_tab_snap(clex
->tab
);
2368 if (isl_tab_push_basis(clex
->tab
) < 0)
2370 clex
->tab
= add_lexmin_ineq(clex
->tab
, ineq
);
2371 clex
->tab
= check_integer_feasible(clex
->tab
);
2374 feasible
= !clex
->tab
->empty
;
2375 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2381 static int context_lex_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
2382 struct isl_vec
*div
)
2384 return get_div(tab
, context
, div
);
2387 /* Add a div specified by "div" to the context tableau and return
2388 * 1 if the div is obviously non-negative.
2389 * context_tab_add_div will always return 1, because all variables
2390 * in a isl_context_lex tableau are non-negative.
2391 * However, if we are using a big parameter in the context, then this only
2392 * reflects the non-negativity of the variable used to _encode_ the
2393 * div, i.e., div' = M + div, so we can't draw any conclusions.
2395 static int context_lex_add_div(struct isl_context
*context
, struct isl_vec
*div
)
2397 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2399 nonneg
= context_tab_add_div(clex
->tab
, div
,
2400 context_lex_add_ineq_wrap
, context
);
2408 static int context_lex_detect_equalities(struct isl_context
*context
,
2409 struct isl_tab
*tab
)
2414 static int context_lex_best_split(struct isl_context
*context
,
2415 struct isl_tab
*tab
)
2417 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2418 struct isl_tab_undo
*snap
;
2421 snap
= isl_tab_snap(clex
->tab
);
2422 if (isl_tab_push_basis(clex
->tab
) < 0)
2424 r
= best_split(tab
, clex
->tab
);
2426 if (r
>= 0 && isl_tab_rollback(clex
->tab
, snap
) < 0)
2432 static int context_lex_is_empty(struct isl_context
*context
)
2434 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2437 return clex
->tab
->empty
;
2440 static void *context_lex_save(struct isl_context
*context
)
2442 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2443 struct isl_tab_undo
*snap
;
2445 snap
= isl_tab_snap(clex
->tab
);
2446 if (isl_tab_push_basis(clex
->tab
) < 0)
2448 if (isl_tab_save_samples(clex
->tab
) < 0)
2454 static void context_lex_restore(struct isl_context
*context
, void *save
)
2456 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2457 if (isl_tab_rollback(clex
->tab
, (struct isl_tab_undo
*)save
) < 0) {
2458 isl_tab_free(clex
->tab
);
2463 static void context_lex_discard(void *save
)
2467 static int context_lex_is_ok(struct isl_context
*context
)
2469 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2473 /* For each variable in the context tableau, check if the variable can
2474 * only attain non-negative values. If so, mark the parameter as non-negative
2475 * in the main tableau. This allows for a more direct identification of some
2476 * cases of violated constraints.
2478 static struct isl_tab
*tab_detect_nonnegative_parameters(struct isl_tab
*tab
,
2479 struct isl_tab
*context_tab
)
2482 struct isl_tab_undo
*snap
;
2483 struct isl_vec
*ineq
= NULL
;
2484 struct isl_tab_var
*var
;
2487 if (context_tab
->n_var
== 0)
2490 ineq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + context_tab
->n_var
);
2494 if (isl_tab_extend_cons(context_tab
, 1) < 0)
2497 snap
= isl_tab_snap(context_tab
);
2500 isl_seq_clr(ineq
->el
, ineq
->size
);
2501 for (i
= 0; i
< context_tab
->n_var
; ++i
) {
2502 isl_int_set_si(ineq
->el
[1 + i
], 1);
2503 if (isl_tab_add_ineq(context_tab
, ineq
->el
) < 0)
2505 var
= &context_tab
->con
[context_tab
->n_con
- 1];
2506 if (!context_tab
->empty
&&
2507 !isl_tab_min_at_most_neg_one(context_tab
, var
)) {
2509 if (i
>= tab
->n_param
)
2510 j
= i
- tab
->n_param
+ tab
->n_var
- tab
->n_div
;
2511 tab
->var
[j
].is_nonneg
= 1;
2514 isl_int_set_si(ineq
->el
[1 + i
], 0);
2515 if (isl_tab_rollback(context_tab
, snap
) < 0)
2519 if (context_tab
->M
&& n
== context_tab
->n_var
) {
2520 context_tab
->mat
= isl_mat_drop_cols(context_tab
->mat
, 2, 1);
2532 static struct isl_tab
*context_lex_detect_nonnegative_parameters(
2533 struct isl_context
*context
, struct isl_tab
*tab
)
2535 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2536 struct isl_tab_undo
*snap
;
2541 snap
= isl_tab_snap(clex
->tab
);
2542 if (isl_tab_push_basis(clex
->tab
) < 0)
2545 tab
= tab_detect_nonnegative_parameters(tab
, clex
->tab
);
2547 if (isl_tab_rollback(clex
->tab
, snap
) < 0)
2556 static void context_lex_invalidate(struct isl_context
*context
)
2558 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2559 isl_tab_free(clex
->tab
);
2563 static void context_lex_free(struct isl_context
*context
)
2565 struct isl_context_lex
*clex
= (struct isl_context_lex
*)context
;
2566 isl_tab_free(clex
->tab
);
2570 struct isl_context_op isl_context_lex_op
= {
2571 context_lex_detect_nonnegative_parameters
,
2572 context_lex_peek_basic_set
,
2573 context_lex_peek_tab
,
2575 context_lex_add_ineq
,
2576 context_lex_ineq_sign
,
2577 context_lex_test_ineq
,
2578 context_lex_get_div
,
2579 context_lex_add_div
,
2580 context_lex_detect_equalities
,
2581 context_lex_best_split
,
2582 context_lex_is_empty
,
2585 context_lex_restore
,
2586 context_lex_discard
,
2587 context_lex_invalidate
,
2591 static struct isl_tab
*context_tab_for_lexmin(struct isl_basic_set
*bset
)
2593 struct isl_tab
*tab
;
2597 tab
= tab_for_lexmin((struct isl_basic_map
*)bset
, NULL
, 1, 0);
2600 if (isl_tab_track_bset(tab
, bset
) < 0)
2602 tab
= isl_tab_init_samples(tab
);
2605 isl_basic_set_free(bset
);
2609 static struct isl_context
*isl_context_lex_alloc(struct isl_basic_set
*dom
)
2611 struct isl_context_lex
*clex
;
2616 clex
= isl_alloc_type(dom
->ctx
, struct isl_context_lex
);
2620 clex
->context
.op
= &isl_context_lex_op
;
2622 clex
->tab
= context_tab_for_lexmin(isl_basic_set_copy(dom
));
2623 if (restore_lexmin(clex
->tab
) < 0)
2625 clex
->tab
= check_integer_feasible(clex
->tab
);
2629 return &clex
->context
;
2631 clex
->context
.op
->free(&clex
->context
);
2635 /* Representation of the context when using generalized basis reduction.
2637 * "shifted" contains the offsets of the unit hypercubes that lie inside the
2638 * context. Any rational point in "shifted" can therefore be rounded
2639 * up to an integer point in the context.
2640 * If the context is constrained by any equality, then "shifted" is not used
2641 * as it would be empty.
2643 struct isl_context_gbr
{
2644 struct isl_context context
;
2645 struct isl_tab
*tab
;
2646 struct isl_tab
*shifted
;
2647 struct isl_tab
*cone
;
2650 static struct isl_tab
*context_gbr_detect_nonnegative_parameters(
2651 struct isl_context
*context
, struct isl_tab
*tab
)
2653 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2656 return tab_detect_nonnegative_parameters(tab
, cgbr
->tab
);
2659 static struct isl_basic_set
*context_gbr_peek_basic_set(
2660 struct isl_context
*context
)
2662 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2665 return isl_tab_peek_bset(cgbr
->tab
);
2668 static struct isl_tab
*context_gbr_peek_tab(struct isl_context
*context
)
2670 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2674 /* Initialize the "shifted" tableau of the context, which
2675 * contains the constraints of the original tableau shifted
2676 * by the sum of all negative coefficients. This ensures
2677 * that any rational point in the shifted tableau can
2678 * be rounded up to yield an integer point in the original tableau.
2680 static void gbr_init_shifted(struct isl_context_gbr
*cgbr
)
2683 struct isl_vec
*cst
;
2684 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
2685 unsigned dim
= isl_basic_set_total_dim(bset
);
2687 cst
= isl_vec_alloc(cgbr
->tab
->mat
->ctx
, bset
->n_ineq
);
2691 for (i
= 0; i
< bset
->n_ineq
; ++i
) {
2692 isl_int_set(cst
->el
[i
], bset
->ineq
[i
][0]);
2693 for (j
= 0; j
< dim
; ++j
) {
2694 if (!isl_int_is_neg(bset
->ineq
[i
][1 + j
]))
2696 isl_int_add(bset
->ineq
[i
][0], bset
->ineq
[i
][0],
2697 bset
->ineq
[i
][1 + j
]);
2701 cgbr
->shifted
= isl_tab_from_basic_set(bset
, 0);
2703 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2704 isl_int_set(bset
->ineq
[i
][0], cst
->el
[i
]);
2709 /* Check if the shifted tableau is non-empty, and if so
2710 * use the sample point to construct an integer point
2711 * of the context tableau.
2713 static struct isl_vec
*gbr_get_shifted_sample(struct isl_context_gbr
*cgbr
)
2715 struct isl_vec
*sample
;
2718 gbr_init_shifted(cgbr
);
2721 if (cgbr
->shifted
->empty
)
2722 return isl_vec_alloc(cgbr
->tab
->mat
->ctx
, 0);
2724 sample
= isl_tab_get_sample_value(cgbr
->shifted
);
2725 sample
= isl_vec_ceil(sample
);
2730 static struct isl_basic_set
*drop_constant_terms(struct isl_basic_set
*bset
)
2737 for (i
= 0; i
< bset
->n_eq
; ++i
)
2738 isl_int_set_si(bset
->eq
[i
][0], 0);
2740 for (i
= 0; i
< bset
->n_ineq
; ++i
)
2741 isl_int_set_si(bset
->ineq
[i
][0], 0);
2746 static int use_shifted(struct isl_context_gbr
*cgbr
)
2750 return cgbr
->tab
->bmap
->n_eq
== 0 && cgbr
->tab
->bmap
->n_div
== 0;
2753 static struct isl_vec
*gbr_get_sample(struct isl_context_gbr
*cgbr
)
2755 struct isl_basic_set
*bset
;
2756 struct isl_basic_set
*cone
;
2758 if (isl_tab_sample_is_integer(cgbr
->tab
))
2759 return isl_tab_get_sample_value(cgbr
->tab
);
2761 if (use_shifted(cgbr
)) {
2762 struct isl_vec
*sample
;
2764 sample
= gbr_get_shifted_sample(cgbr
);
2765 if (!sample
|| sample
->size
> 0)
2768 isl_vec_free(sample
);
2772 bset
= isl_tab_peek_bset(cgbr
->tab
);
2773 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
2776 if (isl_tab_track_bset(cgbr
->cone
,
2777 isl_basic_set_copy(bset
)) < 0)
2780 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
2783 if (cgbr
->cone
->n_dead
== cgbr
->cone
->n_col
) {
2784 struct isl_vec
*sample
;
2785 struct isl_tab_undo
*snap
;
2787 if (cgbr
->tab
->basis
) {
2788 if (cgbr
->tab
->basis
->n_col
!= 1 + cgbr
->tab
->n_var
) {
2789 isl_mat_free(cgbr
->tab
->basis
);
2790 cgbr
->tab
->basis
= NULL
;
2792 cgbr
->tab
->n_zero
= 0;
2793 cgbr
->tab
->n_unbounded
= 0;
2796 snap
= isl_tab_snap(cgbr
->tab
);
2798 sample
= isl_tab_sample(cgbr
->tab
);
2800 if (!sample
|| isl_tab_rollback(cgbr
->tab
, snap
) < 0) {
2801 isl_vec_free(sample
);
2808 cone
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->cone
));
2809 cone
= drop_constant_terms(cone
);
2810 cone
= isl_basic_set_update_from_tab(cone
, cgbr
->cone
);
2811 cone
= isl_basic_set_underlying_set(cone
);
2812 cone
= isl_basic_set_gauss(cone
, NULL
);
2814 bset
= isl_basic_set_dup(isl_tab_peek_bset(cgbr
->tab
));
2815 bset
= isl_basic_set_update_from_tab(bset
, cgbr
->tab
);
2816 bset
= isl_basic_set_underlying_set(bset
);
2817 bset
= isl_basic_set_gauss(bset
, NULL
);
2819 return isl_basic_set_sample_with_cone(bset
, cone
);
2822 static void check_gbr_integer_feasible(struct isl_context_gbr
*cgbr
)
2824 struct isl_vec
*sample
;
2829 if (cgbr
->tab
->empty
)
2832 sample
= gbr_get_sample(cgbr
);
2836 if (sample
->size
== 0) {
2837 isl_vec_free(sample
);
2838 if (isl_tab_mark_empty(cgbr
->tab
) < 0)
2843 if (isl_tab_add_sample(cgbr
->tab
, sample
) < 0)
2848 isl_tab_free(cgbr
->tab
);
2852 static struct isl_tab
*add_gbr_eq(struct isl_tab
*tab
, isl_int
*eq
)
2857 if (isl_tab_extend_cons(tab
, 2) < 0)
2860 if (isl_tab_add_eq(tab
, eq
) < 0)
2869 /* Add the equality described by "eq" to the context.
2870 * If "check" is set, then we check if the context is empty after
2871 * adding the equality.
2872 * If "update" is set, then we check if the samples are still valid.
2874 * We do not explicitly add shifted copies of the equality to
2875 * cgbr->shifted since they would conflict with each other.
2876 * Instead, we directly mark cgbr->shifted empty.
2878 static void context_gbr_add_eq(struct isl_context
*context
, isl_int
*eq
,
2879 int check
, int update
)
2881 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2883 cgbr
->tab
= add_gbr_eq(cgbr
->tab
, eq
);
2885 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2886 if (isl_tab_mark_empty(cgbr
->shifted
) < 0)
2890 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2891 if (isl_tab_extend_cons(cgbr
->cone
, 2) < 0)
2893 if (isl_tab_add_eq(cgbr
->cone
, eq
) < 0)
2898 int v
= tab_has_valid_sample(cgbr
->tab
, eq
, 1);
2902 check_gbr_integer_feasible(cgbr
);
2905 cgbr
->tab
= check_samples(cgbr
->tab
, eq
, 1);
2908 isl_tab_free(cgbr
->tab
);
2912 static void add_gbr_ineq(struct isl_context_gbr
*cgbr
, isl_int
*ineq
)
2917 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
2920 if (isl_tab_add_ineq(cgbr
->tab
, ineq
) < 0)
2923 if (cgbr
->shifted
&& !cgbr
->shifted
->empty
&& use_shifted(cgbr
)) {
2926 dim
= isl_basic_map_total_dim(cgbr
->tab
->bmap
);
2928 if (isl_tab_extend_cons(cgbr
->shifted
, 1) < 0)
2931 for (i
= 0; i
< dim
; ++i
) {
2932 if (!isl_int_is_neg(ineq
[1 + i
]))
2934 isl_int_add(ineq
[0], ineq
[0], ineq
[1 + i
]);
2937 if (isl_tab_add_ineq(cgbr
->shifted
, ineq
) < 0)
2940 for (i
= 0; i
< dim
; ++i
) {
2941 if (!isl_int_is_neg(ineq
[1 + i
]))
2943 isl_int_sub(ineq
[0], ineq
[0], ineq
[1 + i
]);
2947 if (cgbr
->cone
&& cgbr
->cone
->n_col
!= cgbr
->cone
->n_dead
) {
2948 if (isl_tab_extend_cons(cgbr
->cone
, 1) < 0)
2950 if (isl_tab_add_ineq(cgbr
->cone
, ineq
) < 0)
2956 isl_tab_free(cgbr
->tab
);
2960 static void context_gbr_add_ineq(struct isl_context
*context
, isl_int
*ineq
,
2961 int check
, int update
)
2963 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2965 add_gbr_ineq(cgbr
, ineq
);
2970 int v
= tab_has_valid_sample(cgbr
->tab
, ineq
, 0);
2974 check_gbr_integer_feasible(cgbr
);
2977 cgbr
->tab
= check_samples(cgbr
->tab
, ineq
, 0);
2980 isl_tab_free(cgbr
->tab
);
2984 static int context_gbr_add_ineq_wrap(void *user
, isl_int
*ineq
)
2986 struct isl_context
*context
= (struct isl_context
*)user
;
2987 context_gbr_add_ineq(context
, ineq
, 0, 0);
2988 return context
->op
->is_ok(context
) ? 0 : -1;
2991 static enum isl_tab_row_sign
context_gbr_ineq_sign(struct isl_context
*context
,
2992 isl_int
*ineq
, int strict
)
2994 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
2995 return tab_ineq_sign(cgbr
->tab
, ineq
, strict
);
2998 /* Check whether "ineq" can be added to the tableau without rendering
3001 static int context_gbr_test_ineq(struct isl_context
*context
, isl_int
*ineq
)
3003 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3004 struct isl_tab_undo
*snap
;
3005 struct isl_tab_undo
*shifted_snap
= NULL
;
3006 struct isl_tab_undo
*cone_snap
= NULL
;
3012 if (isl_tab_extend_cons(cgbr
->tab
, 1) < 0)
3015 snap
= isl_tab_snap(cgbr
->tab
);
3017 shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3019 cone_snap
= isl_tab_snap(cgbr
->cone
);
3020 add_gbr_ineq(cgbr
, ineq
);
3021 check_gbr_integer_feasible(cgbr
);
3024 feasible
= !cgbr
->tab
->empty
;
3025 if (isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3028 if (isl_tab_rollback(cgbr
->shifted
, shifted_snap
))
3030 } else if (cgbr
->shifted
) {
3031 isl_tab_free(cgbr
->shifted
);
3032 cgbr
->shifted
= NULL
;
3035 if (isl_tab_rollback(cgbr
->cone
, cone_snap
))
3037 } else if (cgbr
->cone
) {
3038 isl_tab_free(cgbr
->cone
);
3045 /* Return the column of the last of the variables associated to
3046 * a column that has a non-zero coefficient.
3047 * This function is called in a context where only coefficients
3048 * of parameters or divs can be non-zero.
3050 static int last_non_zero_var_col(struct isl_tab
*tab
, isl_int
*p
)
3055 if (tab
->n_var
== 0)
3058 for (i
= tab
->n_var
- 1; i
>= 0; --i
) {
3059 if (i
>= tab
->n_param
&& i
< tab
->n_var
- tab
->n_div
)
3061 if (tab
->var
[i
].is_row
)
3063 col
= tab
->var
[i
].index
;
3064 if (!isl_int_is_zero(p
[col
]))
3071 /* Look through all the recently added equalities in the context
3072 * to see if we can propagate any of them to the main tableau.
3074 * The newly added equalities in the context are encoded as pairs
3075 * of inequalities starting at inequality "first".
3077 * We tentatively add each of these equalities to the main tableau
3078 * and if this happens to result in a row with a final coefficient
3079 * that is one or negative one, we use it to kill a column
3080 * in the main tableau. Otherwise, we discard the tentatively
3083 * Return 0 on success and -1 on failure.
3085 static int propagate_equalities(struct isl_context_gbr
*cgbr
,
3086 struct isl_tab
*tab
, unsigned first
)
3089 struct isl_vec
*eq
= NULL
;
3091 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1 + tab
->n_var
);
3095 if (isl_tab_extend_cons(tab
, (cgbr
->tab
->bmap
->n_ineq
- first
)/2) < 0)
3098 isl_seq_clr(eq
->el
+ 1 + tab
->n_param
,
3099 tab
->n_var
- tab
->n_param
- tab
->n_div
);
3100 for (i
= first
; i
< cgbr
->tab
->bmap
->n_ineq
; i
+= 2) {
3103 struct isl_tab_undo
*snap
;
3104 snap
= isl_tab_snap(tab
);
3106 isl_seq_cpy(eq
->el
, cgbr
->tab
->bmap
->ineq
[i
], 1 + tab
->n_param
);
3107 isl_seq_cpy(eq
->el
+ 1 + tab
->n_var
- tab
->n_div
,
3108 cgbr
->tab
->bmap
->ineq
[i
] + 1 + tab
->n_param
,
3111 r
= isl_tab_add_row(tab
, eq
->el
);
3114 r
= tab
->con
[r
].index
;
3115 j
= last_non_zero_var_col(tab
, tab
->mat
->row
[r
] + 2 + tab
->M
);
3116 if (j
< 0 || j
< tab
->n_dead
||
3117 !isl_int_is_one(tab
->mat
->row
[r
][0]) ||
3118 (!isl_int_is_one(tab
->mat
->row
[r
][2 + tab
->M
+ j
]) &&
3119 !isl_int_is_negone(tab
->mat
->row
[r
][2 + tab
->M
+ j
]))) {
3120 if (isl_tab_rollback(tab
, snap
) < 0)
3124 if (isl_tab_pivot(tab
, r
, j
) < 0)
3126 if (isl_tab_kill_col(tab
, j
) < 0)
3129 if (restore_lexmin(tab
) < 0)
3138 isl_tab_free(cgbr
->tab
);
3143 static int context_gbr_detect_equalities(struct isl_context
*context
,
3144 struct isl_tab
*tab
)
3146 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3150 struct isl_basic_set
*bset
= isl_tab_peek_bset(cgbr
->tab
);
3151 cgbr
->cone
= isl_tab_from_recession_cone(bset
, 0);
3154 if (isl_tab_track_bset(cgbr
->cone
,
3155 isl_basic_set_copy(bset
)) < 0)
3158 if (isl_tab_detect_implicit_equalities(cgbr
->cone
) < 0)
3161 n_ineq
= cgbr
->tab
->bmap
->n_ineq
;
3162 cgbr
->tab
= isl_tab_detect_equalities(cgbr
->tab
, cgbr
->cone
);
3165 if (cgbr
->tab
->bmap
->n_ineq
> n_ineq
&&
3166 propagate_equalities(cgbr
, tab
, n_ineq
) < 0)
3171 isl_tab_free(cgbr
->tab
);
3176 static int context_gbr_get_div(struct isl_context
*context
, struct isl_tab
*tab
,
3177 struct isl_vec
*div
)
3179 return get_div(tab
, context
, div
);
3182 static int context_gbr_add_div(struct isl_context
*context
, struct isl_vec
*div
)
3184 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3188 if (isl_tab_extend_cons(cgbr
->cone
, 3) < 0)
3190 if (isl_tab_extend_vars(cgbr
->cone
, 1) < 0)
3192 if (isl_tab_allocate_var(cgbr
->cone
) <0)
3195 cgbr
->cone
->bmap
= isl_basic_map_extend_space(cgbr
->cone
->bmap
,
3196 isl_basic_map_get_space(cgbr
->cone
->bmap
), 1, 0, 2);
3197 k
= isl_basic_map_alloc_div(cgbr
->cone
->bmap
);
3200 isl_seq_cpy(cgbr
->cone
->bmap
->div
[k
], div
->el
, div
->size
);
3201 if (isl_tab_push(cgbr
->cone
, isl_tab_undo_bmap_div
) < 0)
3204 return context_tab_add_div(cgbr
->tab
, div
,
3205 context_gbr_add_ineq_wrap
, context
);
3208 static int context_gbr_best_split(struct isl_context
*context
,
3209 struct isl_tab
*tab
)
3211 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3212 struct isl_tab_undo
*snap
;
3215 snap
= isl_tab_snap(cgbr
->tab
);
3216 r
= best_split(tab
, cgbr
->tab
);
3218 if (r
>= 0 && isl_tab_rollback(cgbr
->tab
, snap
) < 0)
3224 static int context_gbr_is_empty(struct isl_context
*context
)
3226 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3229 return cgbr
->tab
->empty
;
3232 struct isl_gbr_tab_undo
{
3233 struct isl_tab_undo
*tab_snap
;
3234 struct isl_tab_undo
*shifted_snap
;
3235 struct isl_tab_undo
*cone_snap
;
3238 static void *context_gbr_save(struct isl_context
*context
)
3240 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3241 struct isl_gbr_tab_undo
*snap
;
3246 snap
= isl_alloc_type(cgbr
->tab
->mat
->ctx
, struct isl_gbr_tab_undo
);
3250 snap
->tab_snap
= isl_tab_snap(cgbr
->tab
);
3251 if (isl_tab_save_samples(cgbr
->tab
) < 0)
3255 snap
->shifted_snap
= isl_tab_snap(cgbr
->shifted
);
3257 snap
->shifted_snap
= NULL
;
3260 snap
->cone_snap
= isl_tab_snap(cgbr
->cone
);
3262 snap
->cone_snap
= NULL
;
3270 static void context_gbr_restore(struct isl_context
*context
, void *save
)
3272 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3273 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3276 if (isl_tab_rollback(cgbr
->tab
, snap
->tab_snap
) < 0)
3279 if (snap
->shifted_snap
) {
3280 if (isl_tab_rollback(cgbr
->shifted
, snap
->shifted_snap
) < 0)
3282 } else if (cgbr
->shifted
) {
3283 isl_tab_free(cgbr
->shifted
);
3284 cgbr
->shifted
= NULL
;
3287 if (snap
->cone_snap
) {
3288 if (isl_tab_rollback(cgbr
->cone
, snap
->cone_snap
) < 0)
3290 } else if (cgbr
->cone
) {
3291 isl_tab_free(cgbr
->cone
);
3300 isl_tab_free(cgbr
->tab
);
3304 static void context_gbr_discard(void *save
)
3306 struct isl_gbr_tab_undo
*snap
= (struct isl_gbr_tab_undo
*)save
;
3310 static int context_gbr_is_ok(struct isl_context
*context
)
3312 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3316 static void context_gbr_invalidate(struct isl_context
*context
)
3318 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3319 isl_tab_free(cgbr
->tab
);
3323 static void context_gbr_free(struct isl_context
*context
)
3325 struct isl_context_gbr
*cgbr
= (struct isl_context_gbr
*)context
;
3326 isl_tab_free(cgbr
->tab
);
3327 isl_tab_free(cgbr
->shifted
);
3328 isl_tab_free(cgbr
->cone
);
3332 struct isl_context_op isl_context_gbr_op
= {
3333 context_gbr_detect_nonnegative_parameters
,
3334 context_gbr_peek_basic_set
,
3335 context_gbr_peek_tab
,
3337 context_gbr_add_ineq
,
3338 context_gbr_ineq_sign
,
3339 context_gbr_test_ineq
,
3340 context_gbr_get_div
,
3341 context_gbr_add_div
,
3342 context_gbr_detect_equalities
,
3343 context_gbr_best_split
,
3344 context_gbr_is_empty
,
3347 context_gbr_restore
,
3348 context_gbr_discard
,
3349 context_gbr_invalidate
,
3353 static struct isl_context
*isl_context_gbr_alloc(struct isl_basic_set
*dom
)
3355 struct isl_context_gbr
*cgbr
;
3360 cgbr
= isl_calloc_type(dom
->ctx
, struct isl_context_gbr
);
3364 cgbr
->context
.op
= &isl_context_gbr_op
;
3366 cgbr
->shifted
= NULL
;
3368 cgbr
->tab
= isl_tab_from_basic_set(dom
, 1);
3369 cgbr
->tab
= isl_tab_init_samples(cgbr
->tab
);
3372 check_gbr_integer_feasible(cgbr
);
3374 return &cgbr
->context
;
3376 cgbr
->context
.op
->free(&cgbr
->context
);
3380 static struct isl_context
*isl_context_alloc(struct isl_basic_set
*dom
)
3385 if (dom
->ctx
->opt
->context
== ISL_CONTEXT_LEXMIN
)
3386 return isl_context_lex_alloc(dom
);
3388 return isl_context_gbr_alloc(dom
);
3391 /* Construct an isl_sol_map structure for accumulating the solution.
3392 * If track_empty is set, then we also keep track of the parts
3393 * of the context where there is no solution.
3394 * If max is set, then we are solving a maximization, rather than
3395 * a minimization problem, which means that the variables in the
3396 * tableau have value "M - x" rather than "M + x".
3398 static struct isl_sol
*sol_map_init(struct isl_basic_map
*bmap
,
3399 struct isl_basic_set
*dom
, int track_empty
, int max
)
3401 struct isl_sol_map
*sol_map
= NULL
;
3406 sol_map
= isl_calloc_type(bmap
->ctx
, struct isl_sol_map
);
3410 sol_map
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
3411 sol_map
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
3412 sol_map
->sol
.dec_level
.sol
= &sol_map
->sol
;
3413 sol_map
->sol
.max
= max
;
3414 sol_map
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
3415 sol_map
->sol
.add
= &sol_map_add_wrap
;
3416 sol_map
->sol
.add_empty
= track_empty
? &sol_map_add_empty_wrap
: NULL
;
3417 sol_map
->sol
.free
= &sol_map_free_wrap
;
3418 sol_map
->map
= isl_map_alloc_space(isl_basic_map_get_space(bmap
), 1,
3423 sol_map
->sol
.context
= isl_context_alloc(dom
);
3424 if (!sol_map
->sol
.context
)
3428 sol_map
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
3429 1, ISL_SET_DISJOINT
);
3430 if (!sol_map
->empty
)
3434 isl_basic_set_free(dom
);
3435 return &sol_map
->sol
;
3437 isl_basic_set_free(dom
);
3438 sol_map_free(sol_map
);
3442 /* Check whether all coefficients of (non-parameter) variables
3443 * are non-positive, meaning that no pivots can be performed on the row.
3445 static int is_critical(struct isl_tab
*tab
, int row
)
3448 unsigned off
= 2 + tab
->M
;
3450 for (j
= tab
->n_dead
; j
< tab
->n_col
; ++j
) {
3451 if (tab
->col_var
[j
] >= 0 &&
3452 (tab
->col_var
[j
] < tab
->n_param
||
3453 tab
->col_var
[j
] >= tab
->n_var
- tab
->n_div
))
3456 if (isl_int_is_pos(tab
->mat
->row
[row
][off
+ j
]))
3463 /* Check whether the inequality represented by vec is strict over the integers,
3464 * i.e., there are no integer values satisfying the constraint with
3465 * equality. This happens if the gcd of the coefficients is not a divisor
3466 * of the constant term. If so, scale the constraint down by the gcd
3467 * of the coefficients.
3469 static int is_strict(struct isl_vec
*vec
)
3475 isl_seq_gcd(vec
->el
+ 1, vec
->size
- 1, &gcd
);
3476 if (!isl_int_is_one(gcd
)) {
3477 strict
= !isl_int_is_divisible_by(vec
->el
[0], gcd
);
3478 isl_int_fdiv_q(vec
->el
[0], vec
->el
[0], gcd
);
3479 isl_seq_scale_down(vec
->el
+ 1, vec
->el
+ 1, gcd
, vec
->size
-1);
3486 /* Determine the sign of the given row of the main tableau.
3487 * The result is one of
3488 * isl_tab_row_pos: always non-negative; no pivot needed
3489 * isl_tab_row_neg: always non-positive; pivot
3490 * isl_tab_row_any: can be both positive and negative; split
3492 * We first handle some simple cases
3493 * - the row sign may be known already
3494 * - the row may be obviously non-negative
3495 * - the parametric constant may be equal to that of another row
3496 * for which we know the sign. This sign will be either "pos" or
3497 * "any". If it had been "neg" then we would have pivoted before.
3499 * If none of these cases hold, we check the value of the row for each
3500 * of the currently active samples. Based on the signs of these values
3501 * we make an initial determination of the sign of the row.
3503 * all zero -> unk(nown)
3504 * all non-negative -> pos
3505 * all non-positive -> neg
3506 * both negative and positive -> all
3508 * If we end up with "all", we are done.
3509 * Otherwise, we perform a check for positive and/or negative
3510 * values as follows.
3512 * samples neg unk pos
3518 * There is no special sign for "zero", because we can usually treat zero
3519 * as either non-negative or non-positive, whatever works out best.
3520 * However, if the row is "critical", meaning that pivoting is impossible
3521 * then we don't want to limp zero with the non-positive case, because
3522 * then we we would lose the solution for those values of the parameters
3523 * where the value of the row is zero. Instead, we treat 0 as non-negative
3524 * ensuring a split if the row can attain both zero and negative values.
3525 * The same happens when the original constraint was one that could not
3526 * be satisfied with equality by any integer values of the parameters.
3527 * In this case, we normalize the constraint, but then a value of zero
3528 * for the normalized constraint is actually a positive value for the
3529 * original constraint, so again we need to treat zero as non-negative.
3530 * In both these cases, we have the following decision tree instead:
3532 * all non-negative -> pos
3533 * all negative -> neg
3534 * both negative and non-negative -> all
3542 static enum isl_tab_row_sign
row_sign(struct isl_tab
*tab
,
3543 struct isl_sol
*sol
, int row
)
3545 struct isl_vec
*ineq
= NULL
;
3546 enum isl_tab_row_sign res
= isl_tab_row_unknown
;
3551 if (tab
->row_sign
[row
] != isl_tab_row_unknown
)
3552 return tab
->row_sign
[row
];
3553 if (is_obviously_nonneg(tab
, row
))
3554 return isl_tab_row_pos
;
3555 for (row2
= tab
->n_redundant
; row2
< tab
->n_row
; ++row2
) {
3556 if (tab
->row_sign
[row2
] == isl_tab_row_unknown
)
3558 if (identical_parameter_line(tab
, row
, row2
))
3559 return tab
->row_sign
[row2
];
3562 critical
= is_critical(tab
, row
);
3564 ineq
= get_row_parameter_ineq(tab
, row
);
3568 strict
= is_strict(ineq
);
3570 res
= sol
->context
->op
->ineq_sign(sol
->context
, ineq
->el
,
3571 critical
|| strict
);
3573 if (res
== isl_tab_row_unknown
|| res
== isl_tab_row_pos
) {
3574 /* test for negative values */
3576 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3577 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3579 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3583 res
= isl_tab_row_pos
;
3585 res
= (res
== isl_tab_row_unknown
) ? isl_tab_row_neg
3587 if (res
== isl_tab_row_neg
) {
3588 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3589 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3593 if (res
== isl_tab_row_neg
) {
3594 /* test for positive values */
3596 if (!critical
&& !strict
)
3597 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3599 feasible
= sol
->context
->op
->test_ineq(sol
->context
, ineq
->el
);
3603 res
= isl_tab_row_any
;
3610 return isl_tab_row_unknown
;
3613 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
);
3615 /* Find solutions for values of the parameters that satisfy the given
3618 * We currently take a snapshot of the context tableau that is reset
3619 * when we return from this function, while we make a copy of the main
3620 * tableau, leaving the original main tableau untouched.
3621 * These are fairly arbitrary choices. Making a copy also of the context
3622 * tableau would obviate the need to undo any changes made to it later,
3623 * while taking a snapshot of the main tableau could reduce memory usage.
3624 * If we were to switch to taking a snapshot of the main tableau,
3625 * we would have to keep in mind that we need to save the row signs
3626 * and that we need to do this before saving the current basis
3627 * such that the basis has been restore before we restore the row signs.
3629 static void find_in_pos(struct isl_sol
*sol
, struct isl_tab
*tab
, isl_int
*ineq
)
3635 saved
= sol
->context
->op
->save(sol
->context
);
3637 tab
= isl_tab_dup(tab
);
3641 sol
->context
->op
->add_ineq(sol
->context
, ineq
, 0, 1);
3643 find_solutions(sol
, tab
);
3646 sol
->context
->op
->restore(sol
->context
, saved
);
3648 sol
->context
->op
->discard(saved
);
3654 /* Record the absence of solutions for those values of the parameters
3655 * that do not satisfy the given inequality with equality.
3657 static void no_sol_in_strict(struct isl_sol
*sol
,
3658 struct isl_tab
*tab
, struct isl_vec
*ineq
)
3663 if (!sol
->context
|| sol
->error
)
3665 saved
= sol
->context
->op
->save(sol
->context
);
3667 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3669 sol
->context
->op
->add_ineq(sol
->context
, ineq
->el
, 1, 0);
3678 isl_int_add_ui(ineq
->el
[0], ineq
->el
[0], 1);
3680 sol
->context
->op
->restore(sol
->context
, saved
);
3686 /* Compute the lexicographic minimum of the set represented by the main
3687 * tableau "tab" within the context "sol->context_tab".
3688 * On entry the sample value of the main tableau is lexicographically
3689 * less than or equal to this lexicographic minimum.
3690 * Pivots are performed until a feasible point is found, which is then
3691 * necessarily equal to the minimum, or until the tableau is found to
3692 * be infeasible. Some pivots may need to be performed for only some
3693 * feasible values of the context tableau. If so, the context tableau
3694 * is split into a part where the pivot is needed and a part where it is not.
3696 * Whenever we enter the main loop, the main tableau is such that no
3697 * "obvious" pivots need to be performed on it, where "obvious" means
3698 * that the given row can be seen to be negative without looking at
3699 * the context tableau. In particular, for non-parametric problems,
3700 * no pivots need to be performed on the main tableau.
3701 * The caller of find_solutions is responsible for making this property
3702 * hold prior to the first iteration of the loop, while restore_lexmin
3703 * is called before every other iteration.
3705 * Inside the main loop, we first examine the signs of the rows of
3706 * the main tableau within the context of the context tableau.
3707 * If we find a row that is always non-positive for all values of
3708 * the parameters satisfying the context tableau and negative for at
3709 * least one value of the parameters, we perform the appropriate pivot
3710 * and start over. An exception is the case where no pivot can be
3711 * performed on the row. In this case, we require that the sign of
3712 * the row is negative for all values of the parameters (rather than just
3713 * non-positive). This special case is handled inside row_sign, which
3714 * will say that the row can have any sign if it determines that it can
3715 * attain both negative and zero values.
3717 * If we can't find a row that always requires a pivot, but we can find
3718 * one or more rows that require a pivot for some values of the parameters
3719 * (i.e., the row can attain both positive and negative signs), then we split
3720 * the context tableau into two parts, one where we force the sign to be
3721 * non-negative and one where we force is to be negative.
3722 * The non-negative part is handled by a recursive call (through find_in_pos).
3723 * Upon returning from this call, we continue with the negative part and
3724 * perform the required pivot.
3726 * If no such rows can be found, all rows are non-negative and we have
3727 * found a (rational) feasible point. If we only wanted a rational point
3729 * Otherwise, we check if all values of the sample point of the tableau
3730 * are integral for the variables. If so, we have found the minimal
3731 * integral point and we are done.
3732 * If the sample point is not integral, then we need to make a distinction
3733 * based on whether the constant term is non-integral or the coefficients
3734 * of the parameters. Furthermore, in order to decide how to handle
3735 * the non-integrality, we also need to know whether the coefficients
3736 * of the other columns in the tableau are integral. This leads
3737 * to the following table. The first two rows do not correspond
3738 * to a non-integral sample point and are only mentioned for completeness.
3740 * constant parameters other
3743 * int int rat | -> no problem
3745 * rat int int -> fail
3747 * rat int rat -> cut
3750 * rat rat rat | -> parametric cut
3753 * rat rat int | -> split context
3755 * If the parametric constant is completely integral, then there is nothing
3756 * to be done. If the constant term is non-integral, but all the other
3757 * coefficient are integral, then there is nothing that can be done
3758 * and the tableau has no integral solution.
3759 * If, on the other hand, one or more of the other columns have rational
3760 * coefficients, but the parameter coefficients are all integral, then
3761 * we can perform a regular (non-parametric) cut.
3762 * Finally, if there is any parameter coefficient that is non-integral,
3763 * then we need to involve the context tableau. There are two cases here.
3764 * If at least one other column has a rational coefficient, then we
3765 * can perform a parametric cut in the main tableau by adding a new
3766 * integer division in the context tableau.
3767 * If all other columns have integral coefficients, then we need to
3768 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
3769 * is always integral. We do this by introducing an integer division
3770 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
3771 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
3772 * Since q is expressed in the tableau as
3773 * c + \sum a_i y_i - m q >= 0
3774 * -c - \sum a_i y_i + m q + m - 1 >= 0
3775 * it is sufficient to add the inequality
3776 * -c - \sum a_i y_i + m q >= 0
3777 * In the part of the context where this inequality does not hold, the
3778 * main tableau is marked as being empty.
3780 static void find_solutions(struct isl_sol
*sol
, struct isl_tab
*tab
)
3782 struct isl_context
*context
;
3785 if (!tab
|| sol
->error
)
3788 context
= sol
->context
;
3792 if (context
->op
->is_empty(context
))
3795 for (r
= 0; r
>= 0 && tab
&& !tab
->empty
; r
= restore_lexmin(tab
)) {
3798 enum isl_tab_row_sign sgn
;
3802 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3803 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3805 sgn
= row_sign(tab
, sol
, row
);
3808 tab
->row_sign
[row
] = sgn
;
3809 if (sgn
== isl_tab_row_any
)
3811 if (sgn
== isl_tab_row_any
&& split
== -1)
3813 if (sgn
== isl_tab_row_neg
)
3816 if (row
< tab
->n_row
)
3819 struct isl_vec
*ineq
;
3821 split
= context
->op
->best_split(context
, tab
);
3824 ineq
= get_row_parameter_ineq(tab
, split
);
3828 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3829 if (!isl_tab_var_from_row(tab
, row
)->is_nonneg
)
3831 if (tab
->row_sign
[row
] == isl_tab_row_any
)
3832 tab
->row_sign
[row
] = isl_tab_row_unknown
;
3834 tab
->row_sign
[split
] = isl_tab_row_pos
;
3836 find_in_pos(sol
, tab
, ineq
->el
);
3837 tab
->row_sign
[split
] = isl_tab_row_neg
;
3838 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3839 isl_int_sub_ui(ineq
->el
[0], ineq
->el
[0], 1);
3841 context
->op
->add_ineq(context
, ineq
->el
, 0, 1);
3849 row
= first_non_integer_row(tab
, &flags
);
3852 if (ISL_FL_ISSET(flags
, I_PAR
)) {
3853 if (ISL_FL_ISSET(flags
, I_VAR
)) {
3854 if (isl_tab_mark_empty(tab
) < 0)
3858 row
= add_cut(tab
, row
);
3859 } else if (ISL_FL_ISSET(flags
, I_VAR
)) {
3860 struct isl_vec
*div
;
3861 struct isl_vec
*ineq
;
3863 div
= get_row_split_div(tab
, row
);
3866 d
= context
->op
->get_div(context
, tab
, div
);
3870 ineq
= ineq_for_div(context
->op
->peek_basic_set(context
), d
);
3874 no_sol_in_strict(sol
, tab
, ineq
);
3875 isl_seq_neg(ineq
->el
, ineq
->el
, ineq
->size
);
3876 context
->op
->add_ineq(context
, ineq
->el
, 1, 1);
3878 if (sol
->error
|| !context
->op
->is_ok(context
))
3880 tab
= set_row_cst_to_div(tab
, row
, d
);
3881 if (context
->op
->is_empty(context
))
3884 row
= add_parametric_cut(tab
, row
, context
);
3899 /* Does "sol" contain a pair of partial solutions that could potentially
3902 * We currently only check that "sol" is not in an error state
3903 * and that there are at least two partial solutions of which the final two
3904 * are defined at the same level.
3906 static int sol_has_mergeable_solutions(struct isl_sol
*sol
)
3912 if (!sol
->partial
->next
)
3914 return sol
->partial
->level
== sol
->partial
->next
->level
;
3917 /* Compute the lexicographic minimum of the set represented by the main
3918 * tableau "tab" within the context "sol->context_tab".
3920 * As a preprocessing step, we first transfer all the purely parametric
3921 * equalities from the main tableau to the context tableau, i.e.,
3922 * parameters that have been pivoted to a row.
3923 * These equalities are ignored by the main algorithm, because the
3924 * corresponding rows may not be marked as being non-negative.
3925 * In parts of the context where the added equality does not hold,
3926 * the main tableau is marked as being empty.
3928 * Before we embark on the actual computation, we save a copy
3929 * of the context. When we return, we check if there are any
3930 * partial solutions that can potentially be merged. If so,
3931 * we perform a rollback to the initial state of the context.
3932 * The merging of partial solutions happens inside calls to
3933 * sol_dec_level that are pushed onto the undo stack of the context.
3934 * If there are no partial solutions that can potentially be merged
3935 * then the rollback is skipped as it would just be wasted effort.
3937 static void find_solutions_main(struct isl_sol
*sol
, struct isl_tab
*tab
)
3947 for (row
= tab
->n_redundant
; row
< tab
->n_row
; ++row
) {
3951 if (tab
->row_var
[row
] < 0)
3953 if (tab
->row_var
[row
] >= tab
->n_param
&&
3954 tab
->row_var
[row
] < tab
->n_var
- tab
->n_div
)
3956 if (tab
->row_var
[row
] < tab
->n_param
)
3957 p
= tab
->row_var
[row
];
3959 p
= tab
->row_var
[row
]
3960 + tab
->n_param
- (tab
->n_var
- tab
->n_div
);
3962 eq
= isl_vec_alloc(tab
->mat
->ctx
, 1+tab
->n_param
+tab
->n_div
);
3965 get_row_parameter_line(tab
, row
, eq
->el
);
3966 isl_int_neg(eq
->el
[1 + p
], tab
->mat
->row
[row
][0]);
3967 eq
= isl_vec_normalize(eq
);
3970 no_sol_in_strict(sol
, tab
, eq
);
3972 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3974 no_sol_in_strict(sol
, tab
, eq
);
3975 isl_seq_neg(eq
->el
, eq
->el
, eq
->size
);
3977 sol
->context
->op
->add_eq(sol
->context
, eq
->el
, 1, 1);
3981 if (isl_tab_mark_redundant(tab
, row
) < 0)
3984 if (sol
->context
->op
->is_empty(sol
->context
))
3987 row
= tab
->n_redundant
- 1;
3990 saved
= sol
->context
->op
->save(sol
->context
);
3992 find_solutions(sol
, tab
);
3994 if (sol_has_mergeable_solutions(sol
))
3995 sol
->context
->op
->restore(sol
->context
, saved
);
3997 sol
->context
->op
->discard(saved
);
4008 /* Check if integer division "div" of "dom" also occurs in "bmap".
4009 * If so, return its position within the divs.
4010 * If not, return -1.
4012 static int find_context_div(struct isl_basic_map
*bmap
,
4013 struct isl_basic_set
*dom
, unsigned div
)
4016 unsigned b_dim
= isl_space_dim(bmap
->dim
, isl_dim_all
);
4017 unsigned d_dim
= isl_space_dim(dom
->dim
, isl_dim_all
);
4019 if (isl_int_is_zero(dom
->div
[div
][0]))
4021 if (isl_seq_first_non_zero(dom
->div
[div
] + 2 + d_dim
, dom
->n_div
) != -1)
4024 for (i
= 0; i
< bmap
->n_div
; ++i
) {
4025 if (isl_int_is_zero(bmap
->div
[i
][0]))
4027 if (isl_seq_first_non_zero(bmap
->div
[i
] + 2 + d_dim
,
4028 (b_dim
- d_dim
) + bmap
->n_div
) != -1)
4030 if (isl_seq_eq(bmap
->div
[i
], dom
->div
[div
], 2 + d_dim
))
4036 /* The correspondence between the variables in the main tableau,
4037 * the context tableau, and the input map and domain is as follows.
4038 * The first n_param and the last n_div variables of the main tableau
4039 * form the variables of the context tableau.
4040 * In the basic map, these n_param variables correspond to the
4041 * parameters and the input dimensions. In the domain, they correspond
4042 * to the parameters and the set dimensions.
4043 * The n_div variables correspond to the integer divisions in the domain.
4044 * To ensure that everything lines up, we may need to copy some of the
4045 * integer divisions of the domain to the map. These have to be placed
4046 * in the same order as those in the context and they have to be placed
4047 * after any other integer divisions that the map may have.
4048 * This function performs the required reordering.
4050 static struct isl_basic_map
*align_context_divs(struct isl_basic_map
*bmap
,
4051 struct isl_basic_set
*dom
)
4057 for (i
= 0; i
< dom
->n_div
; ++i
)
4058 if (find_context_div(bmap
, dom
, i
) != -1)
4060 other
= bmap
->n_div
- common
;
4061 if (dom
->n_div
- common
> 0) {
4062 bmap
= isl_basic_map_extend_space(bmap
, isl_space_copy(bmap
->dim
),
4063 dom
->n_div
- common
, 0, 0);
4067 for (i
= 0; i
< dom
->n_div
; ++i
) {
4068 int pos
= find_context_div(bmap
, dom
, i
);
4070 pos
= isl_basic_map_alloc_div(bmap
);
4073 isl_int_set_si(bmap
->div
[pos
][0], 0);
4075 if (pos
!= other
+ i
)
4076 isl_basic_map_swap_div(bmap
, pos
, other
+ i
);
4080 isl_basic_map_free(bmap
);
4084 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4085 * some obvious symmetries.
4087 * We make sure the divs in the domain are properly ordered,
4088 * because they will be added one by one in the given order
4089 * during the construction of the solution map.
4091 static struct isl_sol
*basic_map_partial_lexopt_base(
4092 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4093 __isl_give isl_set
**empty
, int max
,
4094 struct isl_sol
*(*init
)(__isl_keep isl_basic_map
*bmap
,
4095 __isl_take isl_basic_set
*dom
, int track_empty
, int max
))
4097 struct isl_tab
*tab
;
4098 struct isl_sol
*sol
= NULL
;
4099 struct isl_context
*context
;
4102 dom
= isl_basic_set_order_divs(dom
);
4103 bmap
= align_context_divs(bmap
, dom
);
4105 sol
= init(bmap
, dom
, !!empty
, max
);
4109 context
= sol
->context
;
4110 if (isl_basic_set_plain_is_empty(context
->op
->peek_basic_set(context
)))
4112 else if (isl_basic_map_plain_is_empty(bmap
)) {
4115 isl_basic_set_copy(context
->op
->peek_basic_set(context
)));
4117 tab
= tab_for_lexmin(bmap
,
4118 context
->op
->peek_basic_set(context
), 1, max
);
4119 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4120 find_solutions_main(sol
, tab
);
4125 isl_basic_map_free(bmap
);
4129 isl_basic_map_free(bmap
);
4133 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
4134 * some obvious symmetries.
4136 * We call basic_map_partial_lexopt_base and extract the results.
4138 static __isl_give isl_map
*basic_map_partial_lexopt_base_map(
4139 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4140 __isl_give isl_set
**empty
, int max
)
4142 isl_map
*result
= NULL
;
4143 struct isl_sol
*sol
;
4144 struct isl_sol_map
*sol_map
;
4146 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
4150 sol_map
= (struct isl_sol_map
*) sol
;
4152 result
= isl_map_copy(sol_map
->map
);
4154 *empty
= isl_set_copy(sol_map
->empty
);
4155 sol_free(&sol_map
->sol
);
4159 /* Structure used during detection of parallel constraints.
4160 * n_in: number of "input" variables: isl_dim_param + isl_dim_in
4161 * n_out: number of "output" variables: isl_dim_out + isl_dim_div
4162 * val: the coefficients of the output variables
4164 struct isl_constraint_equal_info
{
4165 isl_basic_map
*bmap
;
4171 /* Check whether the coefficients of the output variables
4172 * of the constraint in "entry" are equal to info->val.
4174 static int constraint_equal(const void *entry
, const void *val
)
4176 isl_int
**row
= (isl_int
**)entry
;
4177 const struct isl_constraint_equal_info
*info
= val
;
4179 return isl_seq_eq((*row
) + 1 + info
->n_in
, info
->val
, info
->n_out
);
4182 /* Check whether "bmap" has a pair of constraints that have
4183 * the same coefficients for the output variables.
4184 * Note that the coefficients of the existentially quantified
4185 * variables need to be zero since the existentially quantified
4186 * of the result are usually not the same as those of the input.
4187 * the isl_dim_out and isl_dim_div dimensions.
4188 * If so, return 1 and return the row indices of the two constraints
4189 * in *first and *second.
4191 static int parallel_constraints(__isl_keep isl_basic_map
*bmap
,
4192 int *first
, int *second
)
4196 struct isl_hash_table
*table
= NULL
;
4197 struct isl_hash_table_entry
*entry
;
4198 struct isl_constraint_equal_info info
;
4202 ctx
= isl_basic_map_get_ctx(bmap
);
4203 table
= isl_hash_table_alloc(ctx
, bmap
->n_ineq
);
4207 info
.n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4208 isl_basic_map_dim(bmap
, isl_dim_in
);
4210 n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4211 n_div
= isl_basic_map_dim(bmap
, isl_dim_div
);
4212 info
.n_out
= n_out
+ n_div
;
4213 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4216 info
.val
= bmap
->ineq
[i
] + 1 + info
.n_in
;
4217 if (isl_seq_first_non_zero(info
.val
, n_out
) < 0)
4219 if (isl_seq_first_non_zero(info
.val
+ n_out
, n_div
) >= 0)
4221 hash
= isl_seq_get_hash(info
.val
, info
.n_out
);
4222 entry
= isl_hash_table_find(ctx
, table
, hash
,
4223 constraint_equal
, &info
, 1);
4228 entry
->data
= &bmap
->ineq
[i
];
4231 if (i
< bmap
->n_ineq
) {
4232 *first
= ((isl_int
**)entry
->data
) - bmap
->ineq
;
4236 isl_hash_table_free(ctx
, table
);
4238 return i
< bmap
->n_ineq
;
4240 isl_hash_table_free(ctx
, table
);
4244 /* Given a set of upper bounds in "var", add constraints to "bset"
4245 * that make the i-th bound smallest.
4247 * In particular, if there are n bounds b_i, then add the constraints
4249 * b_i <= b_j for j > i
4250 * b_i < b_j for j < i
4252 static __isl_give isl_basic_set
*select_minimum(__isl_take isl_basic_set
*bset
,
4253 __isl_keep isl_mat
*var
, int i
)
4258 ctx
= isl_mat_get_ctx(var
);
4260 for (j
= 0; j
< var
->n_row
; ++j
) {
4263 k
= isl_basic_set_alloc_inequality(bset
);
4266 isl_seq_combine(bset
->ineq
[k
], ctx
->one
, var
->row
[j
],
4267 ctx
->negone
, var
->row
[i
], var
->n_col
);
4268 isl_int_set_si(bset
->ineq
[k
][var
->n_col
], 0);
4270 isl_int_sub_ui(bset
->ineq
[k
][0], bset
->ineq
[k
][0], 1);
4273 bset
= isl_basic_set_finalize(bset
);
4277 isl_basic_set_free(bset
);
4281 /* Given a set of upper bounds on the last "input" variable m,
4282 * construct a set that assigns the minimal upper bound to m, i.e.,
4283 * construct a set that divides the space into cells where one
4284 * of the upper bounds is smaller than all the others and assign
4285 * this upper bound to m.
4287 * In particular, if there are n bounds b_i, then the result
4288 * consists of n basic sets, each one of the form
4291 * b_i <= b_j for j > i
4292 * b_i < b_j for j < i
4294 static __isl_give isl_set
*set_minimum(__isl_take isl_space
*dim
,
4295 __isl_take isl_mat
*var
)
4298 isl_basic_set
*bset
= NULL
;
4299 isl_set
*set
= NULL
;
4304 set
= isl_set_alloc_space(isl_space_copy(dim
),
4305 var
->n_row
, ISL_SET_DISJOINT
);
4307 for (i
= 0; i
< var
->n_row
; ++i
) {
4308 bset
= isl_basic_set_alloc_space(isl_space_copy(dim
), 0,
4310 k
= isl_basic_set_alloc_equality(bset
);
4313 isl_seq_cpy(bset
->eq
[k
], var
->row
[i
], var
->n_col
);
4314 isl_int_set_si(bset
->eq
[k
][var
->n_col
], -1);
4315 bset
= select_minimum(bset
, var
, i
);
4316 set
= isl_set_add_basic_set(set
, bset
);
4319 isl_space_free(dim
);
4323 isl_basic_set_free(bset
);
4325 isl_space_free(dim
);
4330 /* Given that the last input variable of "bmap" represents the minimum
4331 * of the bounds in "cst", check whether we need to split the domain
4332 * based on which bound attains the minimum.
4334 * A split is needed when the minimum appears in an integer division
4335 * or in an equality. Otherwise, it is only needed if it appears in
4336 * an upper bound that is different from the upper bounds on which it
4339 static int need_split_basic_map(__isl_keep isl_basic_map
*bmap
,
4340 __isl_keep isl_mat
*cst
)
4346 pos
= cst
->n_col
- 1;
4347 total
= isl_basic_map_dim(bmap
, isl_dim_all
);
4349 for (i
= 0; i
< bmap
->n_div
; ++i
)
4350 if (!isl_int_is_zero(bmap
->div
[i
][2 + pos
]))
4353 for (i
= 0; i
< bmap
->n_eq
; ++i
)
4354 if (!isl_int_is_zero(bmap
->eq
[i
][1 + pos
]))
4357 for (i
= 0; i
< bmap
->n_ineq
; ++i
) {
4358 if (isl_int_is_nonneg(bmap
->ineq
[i
][1 + pos
]))
4360 if (!isl_int_is_negone(bmap
->ineq
[i
][1 + pos
]))
4362 if (isl_seq_first_non_zero(bmap
->ineq
[i
] + 1 + pos
+ 1,
4363 total
- pos
- 1) >= 0)
4366 for (j
= 0; j
< cst
->n_row
; ++j
)
4367 if (isl_seq_eq(bmap
->ineq
[i
], cst
->row
[j
], cst
->n_col
))
4369 if (j
>= cst
->n_row
)
4376 /* Given that the last set variable of "bset" represents the minimum
4377 * of the bounds in "cst", check whether we need to split the domain
4378 * based on which bound attains the minimum.
4380 * We simply call need_split_basic_map here. This is safe because
4381 * the position of the minimum is computed from "cst" and not
4384 static int need_split_basic_set(__isl_keep isl_basic_set
*bset
,
4385 __isl_keep isl_mat
*cst
)
4387 return need_split_basic_map((isl_basic_map
*)bset
, cst
);
4390 /* Given that the last set variable of "set" represents the minimum
4391 * of the bounds in "cst", check whether we need to split the domain
4392 * based on which bound attains the minimum.
4394 static int need_split_set(__isl_keep isl_set
*set
, __isl_keep isl_mat
*cst
)
4398 for (i
= 0; i
< set
->n
; ++i
)
4399 if (need_split_basic_set(set
->p
[i
], cst
))
4405 /* Given a set of which the last set variable is the minimum
4406 * of the bounds in "cst", split each basic set in the set
4407 * in pieces where one of the bounds is (strictly) smaller than the others.
4408 * This subdivision is given in "min_expr".
4409 * The variable is subsequently projected out.
4411 * We only do the split when it is needed.
4412 * For example if the last input variable m = min(a,b) and the only
4413 * constraints in the given basic set are lower bounds on m,
4414 * i.e., l <= m = min(a,b), then we can simply project out m
4415 * to obtain l <= a and l <= b, without having to split on whether
4416 * m is equal to a or b.
4418 static __isl_give isl_set
*split(__isl_take isl_set
*empty
,
4419 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4426 if (!empty
|| !min_expr
|| !cst
)
4429 n_in
= isl_set_dim(empty
, isl_dim_set
);
4430 dim
= isl_set_get_space(empty
);
4431 dim
= isl_space_drop_dims(dim
, isl_dim_set
, n_in
- 1, 1);
4432 res
= isl_set_empty(dim
);
4434 for (i
= 0; i
< empty
->n
; ++i
) {
4437 set
= isl_set_from_basic_set(isl_basic_set_copy(empty
->p
[i
]));
4438 if (need_split_basic_set(empty
->p
[i
], cst
))
4439 set
= isl_set_intersect(set
, isl_set_copy(min_expr
));
4440 set
= isl_set_remove_dims(set
, isl_dim_set
, n_in
- 1, 1);
4442 res
= isl_set_union_disjoint(res
, set
);
4445 isl_set_free(empty
);
4446 isl_set_free(min_expr
);
4450 isl_set_free(empty
);
4451 isl_set_free(min_expr
);
4456 /* Given a map of which the last input variable is the minimum
4457 * of the bounds in "cst", split each basic set in the set
4458 * in pieces where one of the bounds is (strictly) smaller than the others.
4459 * This subdivision is given in "min_expr".
4460 * The variable is subsequently projected out.
4462 * The implementation is essentially the same as that of "split".
4464 static __isl_give isl_map
*split_domain(__isl_take isl_map
*opt
,
4465 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
4472 if (!opt
|| !min_expr
|| !cst
)
4475 n_in
= isl_map_dim(opt
, isl_dim_in
);
4476 dim
= isl_map_get_space(opt
);
4477 dim
= isl_space_drop_dims(dim
, isl_dim_in
, n_in
- 1, 1);
4478 res
= isl_map_empty(dim
);
4480 for (i
= 0; i
< opt
->n
; ++i
) {
4483 map
= isl_map_from_basic_map(isl_basic_map_copy(opt
->p
[i
]));
4484 if (need_split_basic_map(opt
->p
[i
], cst
))
4485 map
= isl_map_intersect_domain(map
,
4486 isl_set_copy(min_expr
));
4487 map
= isl_map_remove_dims(map
, isl_dim_in
, n_in
- 1, 1);
4489 res
= isl_map_union_disjoint(res
, map
);
4493 isl_set_free(min_expr
);
4498 isl_set_free(min_expr
);
4503 static __isl_give isl_map
*basic_map_partial_lexopt(
4504 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4505 __isl_give isl_set
**empty
, int max
);
4510 isl_pw_multi_aff
*pma
;
4513 /* This function is called from basic_map_partial_lexopt_symm.
4514 * The last variable of "bmap" and "dom" corresponds to the minimum
4515 * of the bounds in "cst". "map_space" is the space of the original
4516 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
4517 * is the space of the original domain.
4519 * We recursively call basic_map_partial_lexopt and then plug in
4520 * the definition of the minimum in the result.
4522 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_map_core(
4523 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4524 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
4525 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
4529 union isl_lex_res res
;
4531 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
4533 opt
= basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4536 *empty
= split(*empty
,
4537 isl_set_copy(min_expr
), isl_mat_copy(cst
));
4538 *empty
= isl_set_reset_space(*empty
, set_space
);
4541 opt
= split_domain(opt
, min_expr
, cst
);
4542 opt
= isl_map_reset_space(opt
, map_space
);
4548 /* Given a basic map with at least two parallel constraints (as found
4549 * by the function parallel_constraints), first look for more constraints
4550 * parallel to the two constraint and replace the found list of parallel
4551 * constraints by a single constraint with as "input" part the minimum
4552 * of the input parts of the list of constraints. Then, recursively call
4553 * basic_map_partial_lexopt (possibly finding more parallel constraints)
4554 * and plug in the definition of the minimum in the result.
4556 * More specifically, given a set of constraints
4560 * Replace this set by a single constraint
4564 * with u a new parameter with constraints
4568 * Any solution to the new system is also a solution for the original system
4571 * a x >= -u >= -b_i(p)
4573 * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can
4574 * therefore be plugged into the solution.
4576 static union isl_lex_res
basic_map_partial_lexopt_symm(
4577 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4578 __isl_give isl_set
**empty
, int max
, int first
, int second
,
4579 __isl_give
union isl_lex_res (*core
)(__isl_take isl_basic_map
*bmap
,
4580 __isl_take isl_basic_set
*dom
,
4581 __isl_give isl_set
**empty
,
4582 int max
, __isl_take isl_mat
*cst
,
4583 __isl_take isl_space
*map_space
,
4584 __isl_take isl_space
*set_space
))
4588 unsigned n_in
, n_out
, n_div
;
4590 isl_vec
*var
= NULL
;
4591 isl_mat
*cst
= NULL
;
4592 isl_space
*map_space
, *set_space
;
4593 union isl_lex_res res
;
4595 map_space
= isl_basic_map_get_space(bmap
);
4596 set_space
= empty
? isl_basic_set_get_space(dom
) : NULL
;
4598 n_in
= isl_basic_map_dim(bmap
, isl_dim_param
) +
4599 isl_basic_map_dim(bmap
, isl_dim_in
);
4600 n_out
= isl_basic_map_dim(bmap
, isl_dim_all
) - n_in
;
4602 ctx
= isl_basic_map_get_ctx(bmap
);
4603 list
= isl_alloc_array(ctx
, int, bmap
->n_ineq
);
4604 var
= isl_vec_alloc(ctx
, n_out
);
4605 if ((bmap
->n_ineq
&& !list
) || (n_out
&& !var
))
4610 isl_seq_cpy(var
->el
, bmap
->ineq
[first
] + 1 + n_in
, n_out
);
4611 for (i
= second
+ 1, n
= 2; i
< bmap
->n_ineq
; ++i
) {
4612 if (isl_seq_eq(var
->el
, bmap
->ineq
[i
] + 1 + n_in
, n_out
))
4616 cst
= isl_mat_alloc(ctx
, n
, 1 + n_in
);
4620 for (i
= 0; i
< n
; ++i
)
4621 isl_seq_cpy(cst
->row
[i
], bmap
->ineq
[list
[i
]], 1 + n_in
);
4623 bmap
= isl_basic_map_cow(bmap
);
4626 for (i
= n
- 1; i
>= 0; --i
)
4627 if (isl_basic_map_drop_inequality(bmap
, list
[i
]) < 0)
4630 bmap
= isl_basic_map_add_dims(bmap
, isl_dim_in
, 1);
4631 bmap
= isl_basic_map_extend_constraints(bmap
, 0, 1);
4632 k
= isl_basic_map_alloc_inequality(bmap
);
4635 isl_seq_clr(bmap
->ineq
[k
], 1 + n_in
);
4636 isl_int_set_si(bmap
->ineq
[k
][1 + n_in
], 1);
4637 isl_seq_cpy(bmap
->ineq
[k
] + 1 + n_in
+ 1, var
->el
, n_out
);
4638 bmap
= isl_basic_map_finalize(bmap
);
4640 n_div
= isl_basic_set_dim(dom
, isl_dim_div
);
4641 dom
= isl_basic_set_add_dims(dom
, isl_dim_set
, 1);
4642 dom
= isl_basic_set_extend_constraints(dom
, 0, n
);
4643 for (i
= 0; i
< n
; ++i
) {
4644 k
= isl_basic_set_alloc_inequality(dom
);
4647 isl_seq_cpy(dom
->ineq
[k
], cst
->row
[i
], 1 + n_in
);
4648 isl_int_set_si(dom
->ineq
[k
][1 + n_in
], -1);
4649 isl_seq_clr(dom
->ineq
[k
] + 1 + n_in
+ 1, n_div
);
4655 return core(bmap
, dom
, empty
, max
, cst
, map_space
, set_space
);
4657 isl_space_free(map_space
);
4658 isl_space_free(set_space
);
4662 isl_basic_set_free(dom
);
4663 isl_basic_map_free(bmap
);
4668 static __isl_give isl_map
*basic_map_partial_lexopt_symm_map(
4669 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4670 __isl_give isl_set
**empty
, int max
, int first
, int second
)
4672 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
4673 first
, second
, &basic_map_partial_lexopt_symm_map_core
).map
;
4676 /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting
4677 * equalities and removing redundant constraints.
4679 * We first check if there are any parallel constraints (left).
4680 * If not, we are in the base case.
4681 * If there are parallel constraints, we replace them by a single
4682 * constraint in basic_map_partial_lexopt_symm and then call
4683 * this function recursively to look for more parallel constraints.
4685 static __isl_give isl_map
*basic_map_partial_lexopt(
4686 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
4687 __isl_give isl_set
**empty
, int max
)
4695 if (bmap
->ctx
->opt
->pip_symmetry
)
4696 par
= parallel_constraints(bmap
, &first
, &second
);
4700 return basic_map_partial_lexopt_base_map(bmap
, dom
, empty
, max
);
4702 return basic_map_partial_lexopt_symm_map(bmap
, dom
, empty
, max
,
4705 isl_basic_set_free(dom
);
4706 isl_basic_map_free(bmap
);
4710 /* Compute the lexicographic minimum (or maximum if "max" is set)
4711 * of "bmap" over the domain "dom" and return the result as a map.
4712 * If "empty" is not NULL, then *empty is assigned a set that
4713 * contains those parts of the domain where there is no solution.
4714 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
4715 * then we compute the rational optimum. Otherwise, we compute
4716 * the integral optimum.
4718 * We perform some preprocessing. As the PILP solver does not
4719 * handle implicit equalities very well, we first make sure all
4720 * the equalities are explicitly available.
4722 * We also add context constraints to the basic map and remove
4723 * redundant constraints. This is only needed because of the
4724 * way we handle simple symmetries. In particular, we currently look
4725 * for symmetries on the constraints, before we set up the main tableau.
4726 * It is then no good to look for symmetries on possibly redundant constraints.
4728 struct isl_map
*isl_tab_basic_map_partial_lexopt(
4729 struct isl_basic_map
*bmap
, struct isl_basic_set
*dom
,
4730 struct isl_set
**empty
, int max
)
4737 isl_assert(bmap
->ctx
,
4738 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
4740 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
4741 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4743 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
4744 bmap
= isl_basic_map_detect_equalities(bmap
);
4745 bmap
= isl_basic_map_remove_redundancies(bmap
);
4747 return basic_map_partial_lexopt(bmap
, dom
, empty
, max
);
4749 isl_basic_set_free(dom
);
4750 isl_basic_map_free(bmap
);
4754 struct isl_sol_for
{
4756 int (*fn
)(__isl_take isl_basic_set
*dom
,
4757 __isl_take isl_aff_list
*list
, void *user
);
4761 static void sol_for_free(struct isl_sol_for
*sol_for
)
4765 if (sol_for
->sol
.context
)
4766 sol_for
->sol
.context
->op
->free(sol_for
->sol
.context
);
4770 static void sol_for_free_wrap(struct isl_sol
*sol
)
4772 sol_for_free((struct isl_sol_for
*)sol
);
4775 /* Add the solution identified by the tableau and the context tableau.
4777 * See documentation of sol_add for more details.
4779 * Instead of constructing a basic map, this function calls a user
4780 * defined function with the current context as a basic set and
4781 * a list of affine expressions representing the relation between
4782 * the input and output. The space over which the affine expressions
4783 * are defined is the same as that of the domain. The number of
4784 * affine expressions in the list is equal to the number of output variables.
4786 static void sol_for_add(struct isl_sol_for
*sol
,
4787 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4791 isl_local_space
*ls
;
4795 if (sol
->sol
.error
|| !dom
|| !M
)
4798 ctx
= isl_basic_set_get_ctx(dom
);
4799 ls
= isl_basic_set_get_local_space(dom
);
4800 list
= isl_aff_list_alloc(ctx
, M
->n_row
- 1);
4801 for (i
= 1; i
< M
->n_row
; ++i
) {
4802 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
4804 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
4805 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
4807 aff
= isl_aff_normalize(aff
);
4808 list
= isl_aff_list_add(list
, aff
);
4810 isl_local_space_free(ls
);
4812 dom
= isl_basic_set_finalize(dom
);
4814 if (sol
->fn(isl_basic_set_copy(dom
), list
, sol
->user
) < 0)
4817 isl_basic_set_free(dom
);
4821 isl_basic_set_free(dom
);
4826 static void sol_for_add_wrap(struct isl_sol
*sol
,
4827 struct isl_basic_set
*dom
, struct isl_mat
*M
)
4829 sol_for_add((struct isl_sol_for
*)sol
, dom
, M
);
4832 static struct isl_sol_for
*sol_for_init(struct isl_basic_map
*bmap
, int max
,
4833 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4837 struct isl_sol_for
*sol_for
= NULL
;
4839 struct isl_basic_set
*dom
= NULL
;
4841 sol_for
= isl_calloc_type(bmap
->ctx
, struct isl_sol_for
);
4845 dom_dim
= isl_space_domain(isl_space_copy(bmap
->dim
));
4846 dom
= isl_basic_set_universe(dom_dim
);
4848 sol_for
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
4849 sol_for
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
4850 sol_for
->sol
.dec_level
.sol
= &sol_for
->sol
;
4852 sol_for
->user
= user
;
4853 sol_for
->sol
.max
= max
;
4854 sol_for
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
4855 sol_for
->sol
.add
= &sol_for_add_wrap
;
4856 sol_for
->sol
.add_empty
= NULL
;
4857 sol_for
->sol
.free
= &sol_for_free_wrap
;
4859 sol_for
->sol
.context
= isl_context_alloc(dom
);
4860 if (!sol_for
->sol
.context
)
4863 isl_basic_set_free(dom
);
4866 isl_basic_set_free(dom
);
4867 sol_for_free(sol_for
);
4871 static void sol_for_find_solutions(struct isl_sol_for
*sol_for
,
4872 struct isl_tab
*tab
)
4874 find_solutions_main(&sol_for
->sol
, tab
);
4877 int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map
*bmap
, int max
,
4878 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4882 struct isl_sol_for
*sol_for
= NULL
;
4884 bmap
= isl_basic_map_copy(bmap
);
4885 bmap
= isl_basic_map_detect_equalities(bmap
);
4889 sol_for
= sol_for_init(bmap
, max
, fn
, user
);
4893 if (isl_basic_map_plain_is_empty(bmap
))
4896 struct isl_tab
*tab
;
4897 struct isl_context
*context
= sol_for
->sol
.context
;
4898 tab
= tab_for_lexmin(bmap
,
4899 context
->op
->peek_basic_set(context
), 1, max
);
4900 tab
= context
->op
->detect_nonnegative_parameters(context
, tab
);
4901 sol_for_find_solutions(sol_for
, tab
);
4902 if (sol_for
->sol
.error
)
4906 sol_free(&sol_for
->sol
);
4907 isl_basic_map_free(bmap
);
4910 sol_free(&sol_for
->sol
);
4911 isl_basic_map_free(bmap
);
4915 int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set
*bset
, int max
,
4916 int (*fn
)(__isl_take isl_basic_set
*dom
, __isl_take isl_aff_list
*list
,
4920 return isl_basic_map_foreach_lexopt(bset
, max
, fn
, user
);
4923 /* Check if the given sequence of len variables starting at pos
4924 * represents a trivial (i.e., zero) solution.
4925 * The variables are assumed to be non-negative and to come in pairs,
4926 * with each pair representing a variable of unrestricted sign.
4927 * The solution is trivial if each such pair in the sequence consists
4928 * of two identical values, meaning that the variable being represented
4931 static int region_is_trivial(struct isl_tab
*tab
, int pos
, int len
)
4938 for (i
= 0; i
< len
; i
+= 2) {
4942 neg_row
= tab
->var
[pos
+ i
].is_row
?
4943 tab
->var
[pos
+ i
].index
: -1;
4944 pos_row
= tab
->var
[pos
+ i
+ 1].is_row
?
4945 tab
->var
[pos
+ i
+ 1].index
: -1;
4948 isl_int_is_zero(tab
->mat
->row
[neg_row
][1])) &&
4950 isl_int_is_zero(tab
->mat
->row
[pos_row
][1])))
4953 if (neg_row
< 0 || pos_row
< 0)
4955 if (isl_int_ne(tab
->mat
->row
[neg_row
][1],
4956 tab
->mat
->row
[pos_row
][1]))
4963 /* Return the index of the first trivial region or -1 if all regions
4966 static int first_trivial_region(struct isl_tab
*tab
,
4967 int n_region
, struct isl_region
*region
)
4971 for (i
= 0; i
< n_region
; ++i
) {
4972 if (region_is_trivial(tab
, region
[i
].pos
, region
[i
].len
))
4979 /* Check if the solution is optimal, i.e., whether the first
4980 * n_op entries are zero.
4982 static int is_optimal(__isl_keep isl_vec
*sol
, int n_op
)
4986 for (i
= 0; i
< n_op
; ++i
)
4987 if (!isl_int_is_zero(sol
->el
[1 + i
]))
4992 /* Add constraints to "tab" that ensure that any solution is significantly
4993 * better that that represented by "sol". That is, find the first
4994 * relevant (within first n_op) non-zero coefficient and force it (along
4995 * with all previous coefficients) to be zero.
4996 * If the solution is already optimal (all relevant coefficients are zero),
4997 * then just mark the table as empty.
4999 static int force_better_solution(struct isl_tab
*tab
,
5000 __isl_keep isl_vec
*sol
, int n_op
)
5009 for (i
= 0; i
< n_op
; ++i
)
5010 if (!isl_int_is_zero(sol
->el
[1 + i
]))
5014 if (isl_tab_mark_empty(tab
) < 0)
5019 ctx
= isl_vec_get_ctx(sol
);
5020 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5024 for (; i
>= 0; --i
) {
5026 isl_int_set_si(v
->el
[1 + i
], -1);
5027 if (add_lexmin_eq(tab
, v
->el
) < 0)
5038 struct isl_trivial
{
5042 struct isl_tab_undo
*snap
;
5045 /* Return the lexicographically smallest non-trivial solution of the
5046 * given ILP problem.
5048 * All variables are assumed to be non-negative.
5050 * n_op is the number of initial coordinates to optimize.
5051 * That is, once a solution has been found, we will only continue looking
5052 * for solution that result in significantly better values for those
5053 * initial coordinates. That is, we only continue looking for solutions
5054 * that increase the number of initial zeros in this sequence.
5056 * A solution is non-trivial, if it is non-trivial on each of the
5057 * specified regions. Each region represents a sequence of pairs
5058 * of variables. A solution is non-trivial on such a region if
5059 * at least one of these pairs consists of different values, i.e.,
5060 * such that the non-negative variable represented by the pair is non-zero.
5062 * Whenever a conflict is encountered, all constraints involved are
5063 * reported to the caller through a call to "conflict".
5065 * We perform a simple branch-and-bound backtracking search.
5066 * Each level in the search represents initially trivial region that is forced
5067 * to be non-trivial.
5068 * At each level we consider n cases, where n is the length of the region.
5069 * In terms of the n/2 variables of unrestricted signs being encoded by
5070 * the region, we consider the cases
5073 * x_0 = 0 and x_1 >= 1
5074 * x_0 = 0 and x_1 <= -1
5075 * x_0 = 0 and x_1 = 0 and x_2 >= 1
5076 * x_0 = 0 and x_1 = 0 and x_2 <= -1
5078 * The cases are considered in this order, assuming that each pair
5079 * x_i_a x_i_b represents the value x_i_b - x_i_a.
5080 * That is, x_0 >= 1 is enforced by adding the constraint
5081 * x_0_b - x_0_a >= 1
5083 __isl_give isl_vec
*isl_tab_basic_set_non_trivial_lexmin(
5084 __isl_take isl_basic_set
*bset
, int n_op
, int n_region
,
5085 struct isl_region
*region
,
5086 int (*conflict
)(int con
, void *user
), void *user
)
5092 isl_vec
*sol
= NULL
;
5093 struct isl_tab
*tab
;
5094 struct isl_trivial
*triv
= NULL
;
5100 ctx
= isl_basic_set_get_ctx(bset
);
5101 sol
= isl_vec_alloc(ctx
, 0);
5103 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5106 tab
->conflict
= conflict
;
5107 tab
->conflict_user
= user
;
5109 v
= isl_vec_alloc(ctx
, 1 + tab
->n_var
);
5110 triv
= isl_calloc_array(ctx
, struct isl_trivial
, n_region
);
5111 if (!v
|| (n_region
&& !triv
))
5117 while (level
>= 0) {
5121 tab
= cut_to_integer_lexmin(tab
, CUT_ONE
);
5126 r
= first_trivial_region(tab
, n_region
, region
);
5128 for (i
= 0; i
< level
; ++i
)
5131 sol
= isl_tab_get_sample_value(tab
);
5134 if (is_optimal(sol
, n_op
))
5138 if (level
>= n_region
)
5139 isl_die(ctx
, isl_error_internal
,
5140 "nesting level too deep", goto error
);
5141 if (isl_tab_extend_cons(tab
,
5142 2 * region
[r
].len
+ 2 * n_op
) < 0)
5144 triv
[level
].region
= r
;
5145 triv
[level
].side
= 0;
5148 r
= triv
[level
].region
;
5149 side
= triv
[level
].side
;
5150 base
= 2 * (side
/2);
5152 if (side
>= region
[r
].len
) {
5157 if (isl_tab_rollback(tab
, triv
[level
].snap
) < 0)
5162 if (triv
[level
].update
) {
5163 if (force_better_solution(tab
, sol
, n_op
) < 0)
5165 triv
[level
].update
= 0;
5168 if (side
== base
&& base
>= 2) {
5169 for (j
= base
- 2; j
< base
; ++j
) {
5171 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ j
], 1);
5172 if (add_lexmin_eq(tab
, v
->el
) < 0)
5177 triv
[level
].snap
= isl_tab_snap(tab
);
5178 if (isl_tab_push_basis(tab
) < 0)
5182 isl_int_set_si(v
->el
[0], -1);
5183 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ side
], -1);
5184 isl_int_set_si(v
->el
[1 + region
[r
].pos
+ (side
^ 1)], 1);
5185 tab
= add_lexmin_ineq(tab
, v
->el
);
5195 isl_basic_set_free(bset
);
5202 isl_basic_set_free(bset
);
5207 /* Return the lexicographically smallest rational point in "bset",
5208 * assuming that all variables are non-negative.
5209 * If "bset" is empty, then return a zero-length vector.
5211 __isl_give isl_vec
*isl_tab_basic_set_non_neg_lexmin(
5212 __isl_take isl_basic_set
*bset
)
5214 struct isl_tab
*tab
;
5215 isl_ctx
*ctx
= isl_basic_set_get_ctx(bset
);
5221 tab
= tab_for_lexmin(bset
, NULL
, 0, 0);
5225 sol
= isl_vec_alloc(ctx
, 0);
5227 sol
= isl_tab_get_sample_value(tab
);
5229 isl_basic_set_free(bset
);
5233 isl_basic_set_free(bset
);
5237 struct isl_sol_pma
{
5239 isl_pw_multi_aff
*pma
;
5243 static void sol_pma_free(struct isl_sol_pma
*sol_pma
)
5247 if (sol_pma
->sol
.context
)
5248 sol_pma
->sol
.context
->op
->free(sol_pma
->sol
.context
);
5249 isl_pw_multi_aff_free(sol_pma
->pma
);
5250 isl_set_free(sol_pma
->empty
);
5254 /* This function is called for parts of the context where there is
5255 * no solution, with "bset" corresponding to the context tableau.
5256 * Simply add the basic set to the set "empty".
5258 static void sol_pma_add_empty(struct isl_sol_pma
*sol
,
5259 __isl_take isl_basic_set
*bset
)
5261 if (!bset
|| !sol
->empty
)
5264 sol
->empty
= isl_set_grow(sol
->empty
, 1);
5265 bset
= isl_basic_set_simplify(bset
);
5266 bset
= isl_basic_set_finalize(bset
);
5267 sol
->empty
= isl_set_add_basic_set(sol
->empty
, bset
);
5272 isl_basic_set_free(bset
);
5276 /* Given a basic map "dom" that represents the context and an affine
5277 * matrix "M" that maps the dimensions of the context to the
5278 * output variables, construct an isl_pw_multi_aff with a single
5279 * cell corresponding to "dom" and affine expressions copied from "M".
5281 static void sol_pma_add(struct isl_sol_pma
*sol
,
5282 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5285 isl_local_space
*ls
;
5287 isl_multi_aff
*maff
;
5288 isl_pw_multi_aff
*pma
;
5290 maff
= isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol
->pma
));
5291 ls
= isl_basic_set_get_local_space(dom
);
5292 for (i
= 1; i
< M
->n_row
; ++i
) {
5293 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5295 isl_int_set(aff
->v
->el
[0], M
->row
[0][0]);
5296 isl_seq_cpy(aff
->v
->el
+ 1, M
->row
[i
], M
->n_col
);
5298 aff
= isl_aff_normalize(aff
);
5299 maff
= isl_multi_aff_set_aff(maff
, i
- 1, aff
);
5301 isl_local_space_free(ls
);
5303 dom
= isl_basic_set_simplify(dom
);
5304 dom
= isl_basic_set_finalize(dom
);
5305 pma
= isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom
), maff
);
5306 sol
->pma
= isl_pw_multi_aff_add_disjoint(sol
->pma
, pma
);
5311 static void sol_pma_free_wrap(struct isl_sol
*sol
)
5313 sol_pma_free((struct isl_sol_pma
*)sol
);
5316 static void sol_pma_add_empty_wrap(struct isl_sol
*sol
,
5317 __isl_take isl_basic_set
*bset
)
5319 sol_pma_add_empty((struct isl_sol_pma
*)sol
, bset
);
5322 static void sol_pma_add_wrap(struct isl_sol
*sol
,
5323 __isl_take isl_basic_set
*dom
, __isl_take isl_mat
*M
)
5325 sol_pma_add((struct isl_sol_pma
*)sol
, dom
, M
);
5328 /* Construct an isl_sol_pma structure for accumulating the solution.
5329 * If track_empty is set, then we also keep track of the parts
5330 * of the context where there is no solution.
5331 * If max is set, then we are solving a maximization, rather than
5332 * a minimization problem, which means that the variables in the
5333 * tableau have value "M - x" rather than "M + x".
5335 static struct isl_sol
*sol_pma_init(__isl_keep isl_basic_map
*bmap
,
5336 __isl_take isl_basic_set
*dom
, int track_empty
, int max
)
5338 struct isl_sol_pma
*sol_pma
= NULL
;
5343 sol_pma
= isl_calloc_type(bmap
->ctx
, struct isl_sol_pma
);
5347 sol_pma
->sol
.rational
= ISL_F_ISSET(bmap
, ISL_BASIC_MAP_RATIONAL
);
5348 sol_pma
->sol
.dec_level
.callback
.run
= &sol_dec_level_wrap
;
5349 sol_pma
->sol
.dec_level
.sol
= &sol_pma
->sol
;
5350 sol_pma
->sol
.max
= max
;
5351 sol_pma
->sol
.n_out
= isl_basic_map_dim(bmap
, isl_dim_out
);
5352 sol_pma
->sol
.add
= &sol_pma_add_wrap
;
5353 sol_pma
->sol
.add_empty
= track_empty
? &sol_pma_add_empty_wrap
: NULL
;
5354 sol_pma
->sol
.free
= &sol_pma_free_wrap
;
5355 sol_pma
->pma
= isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap
));
5359 sol_pma
->sol
.context
= isl_context_alloc(dom
);
5360 if (!sol_pma
->sol
.context
)
5364 sol_pma
->empty
= isl_set_alloc_space(isl_basic_set_get_space(dom
),
5365 1, ISL_SET_DISJOINT
);
5366 if (!sol_pma
->empty
)
5370 isl_basic_set_free(dom
);
5371 return &sol_pma
->sol
;
5373 isl_basic_set_free(dom
);
5374 sol_pma_free(sol_pma
);
5378 /* Base case of isl_tab_basic_map_partial_lexopt, after removing
5379 * some obvious symmetries.
5381 * We call basic_map_partial_lexopt_base and extract the results.
5383 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_base_pma(
5384 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5385 __isl_give isl_set
**empty
, int max
)
5387 isl_pw_multi_aff
*result
= NULL
;
5388 struct isl_sol
*sol
;
5389 struct isl_sol_pma
*sol_pma
;
5391 sol
= basic_map_partial_lexopt_base(bmap
, dom
, empty
, max
,
5395 sol_pma
= (struct isl_sol_pma
*) sol
;
5397 result
= isl_pw_multi_aff_copy(sol_pma
->pma
);
5399 *empty
= isl_set_copy(sol_pma
->empty
);
5400 sol_free(&sol_pma
->sol
);
5404 /* Given that the last input variable of "maff" represents the minimum
5405 * of some bounds, check whether we need to plug in the expression
5408 * In particular, check if the last input variable appears in any
5409 * of the expressions in "maff".
5411 static int need_substitution(__isl_keep isl_multi_aff
*maff
)
5416 pos
= isl_multi_aff_dim(maff
, isl_dim_in
) - 1;
5418 for (i
= 0; i
< maff
->n
; ++i
)
5419 if (isl_aff_involves_dims(maff
->p
[i
], isl_dim_in
, pos
, 1))
5425 /* Given a set of upper bounds on the last "input" variable m,
5426 * construct a piecewise affine expression that selects
5427 * the minimal upper bound to m, i.e.,
5428 * divide the space into cells where one
5429 * of the upper bounds is smaller than all the others and select
5430 * this upper bound on that cell.
5432 * In particular, if there are n bounds b_i, then the result
5433 * consists of n cell, each one of the form
5435 * b_i <= b_j for j > i
5436 * b_i < b_j for j < i
5438 * The affine expression on this cell is
5442 static __isl_give isl_pw_aff
*set_minimum_pa(__isl_take isl_space
*space
,
5443 __isl_take isl_mat
*var
)
5446 isl_aff
*aff
= NULL
;
5447 isl_basic_set
*bset
= NULL
;
5448 isl_pw_aff
*paff
= NULL
;
5449 isl_space
*pw_space
;
5450 isl_local_space
*ls
= NULL
;
5455 ls
= isl_local_space_from_space(isl_space_copy(space
));
5456 pw_space
= isl_space_copy(space
);
5457 pw_space
= isl_space_from_domain(pw_space
);
5458 pw_space
= isl_space_add_dims(pw_space
, isl_dim_out
, 1);
5459 paff
= isl_pw_aff_alloc_size(pw_space
, var
->n_row
);
5461 for (i
= 0; i
< var
->n_row
; ++i
) {
5464 aff
= isl_aff_alloc(isl_local_space_copy(ls
));
5465 bset
= isl_basic_set_alloc_space(isl_space_copy(space
), 0,
5469 isl_int_set_si(aff
->v
->el
[0], 1);
5470 isl_seq_cpy(aff
->v
->el
+ 1, var
->row
[i
], var
->n_col
);
5471 isl_int_set_si(aff
->v
->el
[1 + var
->n_col
], 0);
5472 bset
= select_minimum(bset
, var
, i
);
5473 paff_i
= isl_pw_aff_alloc(isl_set_from_basic_set(bset
), aff
);
5474 paff
= isl_pw_aff_add_disjoint(paff
, paff_i
);
5477 isl_local_space_free(ls
);
5478 isl_space_free(space
);
5483 isl_basic_set_free(bset
);
5484 isl_pw_aff_free(paff
);
5485 isl_local_space_free(ls
);
5486 isl_space_free(space
);
5491 /* Given a piecewise multi-affine expression of which the last input variable
5492 * is the minimum of the bounds in "cst", plug in the value of the minimum.
5493 * This minimum expression is given in "min_expr_pa".
5494 * The set "min_expr" contains the same information, but in the form of a set.
5495 * The variable is subsequently projected out.
5497 * The implementation is similar to those of "split" and "split_domain".
5498 * If the variable appears in a given expression, then minimum expression
5499 * is plugged in. Otherwise, if the variable appears in the constraints
5500 * and a split is required, then the domain is split. Otherwise, no split
5503 static __isl_give isl_pw_multi_aff
*split_domain_pma(
5504 __isl_take isl_pw_multi_aff
*opt
, __isl_take isl_pw_aff
*min_expr_pa
,
5505 __isl_take isl_set
*min_expr
, __isl_take isl_mat
*cst
)
5510 isl_pw_multi_aff
*res
;
5512 if (!opt
|| !min_expr
|| !cst
)
5515 n_in
= isl_pw_multi_aff_dim(opt
, isl_dim_in
);
5516 space
= isl_pw_multi_aff_get_space(opt
);
5517 space
= isl_space_drop_dims(space
, isl_dim_in
, n_in
- 1, 1);
5518 res
= isl_pw_multi_aff_empty(space
);
5520 for (i
= 0; i
< opt
->n
; ++i
) {
5521 isl_pw_multi_aff
*pma
;
5523 pma
= isl_pw_multi_aff_alloc(isl_set_copy(opt
->p
[i
].set
),
5524 isl_multi_aff_copy(opt
->p
[i
].maff
));
5525 if (need_substitution(opt
->p
[i
].maff
))
5526 pma
= isl_pw_multi_aff_substitute(pma
,
5527 isl_dim_in
, n_in
- 1, min_expr_pa
);
5528 else if (need_split_set(opt
->p
[i
].set
, cst
))
5529 pma
= isl_pw_multi_aff_intersect_domain(pma
,
5530 isl_set_copy(min_expr
));
5531 pma
= isl_pw_multi_aff_project_out(pma
,
5532 isl_dim_in
, n_in
- 1, 1);
5534 res
= isl_pw_multi_aff_add_disjoint(res
, pma
);
5537 isl_pw_multi_aff_free(opt
);
5538 isl_pw_aff_free(min_expr_pa
);
5539 isl_set_free(min_expr
);
5543 isl_pw_multi_aff_free(opt
);
5544 isl_pw_aff_free(min_expr_pa
);
5545 isl_set_free(min_expr
);
5550 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5551 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5552 __isl_give isl_set
**empty
, int max
);
5554 /* This function is called from basic_map_partial_lexopt_symm.
5555 * The last variable of "bmap" and "dom" corresponds to the minimum
5556 * of the bounds in "cst". "map_space" is the space of the original
5557 * input relation (of basic_map_partial_lexopt_symm) and "set_space"
5558 * is the space of the original domain.
5560 * We recursively call basic_map_partial_lexopt and then plug in
5561 * the definition of the minimum in the result.
5563 static __isl_give
union isl_lex_res
basic_map_partial_lexopt_symm_pma_core(
5564 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5565 __isl_give isl_set
**empty
, int max
, __isl_take isl_mat
*cst
,
5566 __isl_take isl_space
*map_space
, __isl_take isl_space
*set_space
)
5568 isl_pw_multi_aff
*opt
;
5569 isl_pw_aff
*min_expr_pa
;
5571 union isl_lex_res res
;
5573 min_expr
= set_minimum(isl_basic_set_get_space(dom
), isl_mat_copy(cst
));
5574 min_expr_pa
= set_minimum_pa(isl_basic_set_get_space(dom
),
5577 opt
= basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5580 *empty
= split(*empty
,
5581 isl_set_copy(min_expr
), isl_mat_copy(cst
));
5582 *empty
= isl_set_reset_space(*empty
, set_space
);
5585 opt
= split_domain_pma(opt
, min_expr_pa
, min_expr
, cst
);
5586 opt
= isl_pw_multi_aff_reset_space(opt
, map_space
);
5592 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_symm_pma(
5593 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5594 __isl_give isl_set
**empty
, int max
, int first
, int second
)
5596 return basic_map_partial_lexopt_symm(bmap
, dom
, empty
, max
,
5597 first
, second
, &basic_map_partial_lexopt_symm_pma_core
).pma
;
5600 /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting
5601 * equalities and removing redundant constraints.
5603 * We first check if there are any parallel constraints (left).
5604 * If not, we are in the base case.
5605 * If there are parallel constraints, we replace them by a single
5606 * constraint in basic_map_partial_lexopt_symm_pma and then call
5607 * this function recursively to look for more parallel constraints.
5609 static __isl_give isl_pw_multi_aff
*basic_map_partial_lexopt_pma(
5610 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5611 __isl_give isl_set
**empty
, int max
)
5619 if (bmap
->ctx
->opt
->pip_symmetry
)
5620 par
= parallel_constraints(bmap
, &first
, &second
);
5624 return basic_map_partial_lexopt_base_pma(bmap
, dom
, empty
, max
);
5626 return basic_map_partial_lexopt_symm_pma(bmap
, dom
, empty
, max
,
5629 isl_basic_set_free(dom
);
5630 isl_basic_map_free(bmap
);
5634 /* Compute the lexicographic minimum (or maximum if "max" is set)
5635 * of "bmap" over the domain "dom" and return the result as a piecewise
5636 * multi-affine expression.
5637 * If "empty" is not NULL, then *empty is assigned a set that
5638 * contains those parts of the domain where there is no solution.
5639 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
5640 * then we compute the rational optimum. Otherwise, we compute
5641 * the integral optimum.
5643 * We perform some preprocessing. As the PILP solver does not
5644 * handle implicit equalities very well, we first make sure all
5645 * the equalities are explicitly available.
5647 * We also add context constraints to the basic map and remove
5648 * redundant constraints. This is only needed because of the
5649 * way we handle simple symmetries. In particular, we currently look
5650 * for symmetries on the constraints, before we set up the main tableau.
5651 * It is then no good to look for symmetries on possibly redundant constraints.
5653 __isl_give isl_pw_multi_aff
*isl_basic_map_partial_lexopt_pw_multi_aff(
5654 __isl_take isl_basic_map
*bmap
, __isl_take isl_basic_set
*dom
,
5655 __isl_give isl_set
**empty
, int max
)
5662 isl_assert(bmap
->ctx
,
5663 isl_basic_map_compatible_domain(bmap
, dom
), goto error
);
5665 if (isl_basic_set_dim(dom
, isl_dim_all
) == 0)
5666 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5668 bmap
= isl_basic_map_intersect_domain(bmap
, isl_basic_set_copy(dom
));
5669 bmap
= isl_basic_map_detect_equalities(bmap
);
5670 bmap
= isl_basic_map_remove_redundancies(bmap
);
5672 return basic_map_partial_lexopt_pma(bmap
, dom
, empty
, max
);
5674 isl_basic_set_free(dom
);
5675 isl_basic_map_free(bmap
);