add isl_tab_mark_rational
[isl.git] / isl_coalesce.c
blobb9aee907c457bd18ec75ba9a621133af51200066
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012-2013 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
15 #include "isl_map_private.h"
16 #include <isl_seq.h>
17 #include <isl/options.h>
18 #include "isl_tab.h"
19 #include <isl_mat_private.h>
20 #include <isl_local_space_private.h>
21 #include <isl_vec_private.h>
23 #define STATUS_ERROR -1
24 #define STATUS_REDUNDANT 1
25 #define STATUS_VALID 2
26 #define STATUS_SEPARATE 3
27 #define STATUS_CUT 4
28 #define STATUS_ADJ_EQ 5
29 #define STATUS_ADJ_INEQ 6
31 static int status_in(isl_int *ineq, struct isl_tab *tab)
33 enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq);
34 switch (type) {
35 default:
36 case isl_ineq_error: return STATUS_ERROR;
37 case isl_ineq_redundant: return STATUS_VALID;
38 case isl_ineq_separate: return STATUS_SEPARATE;
39 case isl_ineq_cut: return STATUS_CUT;
40 case isl_ineq_adj_eq: return STATUS_ADJ_EQ;
41 case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ;
45 /* Compute the position of the equalities of basic map "bmap_i"
46 * with respect to the basic map represented by "tab_j".
47 * The resulting array has twice as many entries as the number
48 * of equalities corresponding to the two inequalties to which
49 * each equality corresponds.
51 static int *eq_status_in(__isl_keep isl_basic_map *bmap_i,
52 struct isl_tab *tab_j)
54 int k, l;
55 int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq);
56 unsigned dim;
58 if (!eq)
59 return NULL;
61 dim = isl_basic_map_total_dim(bmap_i);
62 for (k = 0; k < bmap_i->n_eq; ++k) {
63 for (l = 0; l < 2; ++l) {
64 isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim);
65 eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j);
66 if (eq[2 * k + l] == STATUS_ERROR)
67 goto error;
69 if (eq[2 * k] == STATUS_SEPARATE ||
70 eq[2 * k + 1] == STATUS_SEPARATE)
71 break;
74 return eq;
75 error:
76 free(eq);
77 return NULL;
80 /* Compute the position of the inequalities of basic map "bmap_i"
81 * (also represented by "tab_i", if not NULL) with respect to the basic map
82 * represented by "tab_j".
84 static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i,
85 struct isl_tab *tab_i, struct isl_tab *tab_j)
87 int k;
88 unsigned n_eq = bmap_i->n_eq;
89 int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq);
91 if (!ineq)
92 return NULL;
94 for (k = 0; k < bmap_i->n_ineq; ++k) {
95 if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) {
96 ineq[k] = STATUS_REDUNDANT;
97 continue;
99 ineq[k] = status_in(bmap_i->ineq[k], tab_j);
100 if (ineq[k] == STATUS_ERROR)
101 goto error;
102 if (ineq[k] == STATUS_SEPARATE)
103 break;
106 return ineq;
107 error:
108 free(ineq);
109 return NULL;
112 static int any(int *con, unsigned len, int status)
114 int i;
116 for (i = 0; i < len ; ++i)
117 if (con[i] == status)
118 return 1;
119 return 0;
122 static int count(int *con, unsigned len, int status)
124 int i;
125 int c = 0;
127 for (i = 0; i < len ; ++i)
128 if (con[i] == status)
129 c++;
130 return c;
133 static int all(int *con, unsigned len, int status)
135 int i;
137 for (i = 0; i < len ; ++i) {
138 if (con[i] == STATUS_REDUNDANT)
139 continue;
140 if (con[i] != status)
141 return 0;
143 return 1;
146 static void drop(struct isl_map *map, int i, struct isl_tab **tabs)
148 isl_basic_map_free(map->p[i]);
149 isl_tab_free(tabs[i]);
151 if (i != map->n - 1) {
152 map->p[i] = map->p[map->n - 1];
153 tabs[i] = tabs[map->n - 1];
155 tabs[map->n - 1] = NULL;
156 map->n--;
159 /* Replace the pair of basic maps i and j by the basic map bounded
160 * by the valid constraints in both basic maps and the constraints
161 * in extra (if not NULL).
163 static int fuse(struct isl_map *map, int i, int j,
164 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j,
165 __isl_keep isl_mat *extra)
167 int k, l;
168 struct isl_basic_map *fused = NULL;
169 struct isl_tab *fused_tab = NULL;
170 unsigned total = isl_basic_map_total_dim(map->p[i]);
171 unsigned extra_rows = extra ? extra->n_row : 0;
173 fused = isl_basic_map_alloc_space(isl_space_copy(map->p[i]->dim),
174 map->p[i]->n_div,
175 map->p[i]->n_eq + map->p[j]->n_eq,
176 map->p[i]->n_ineq + map->p[j]->n_ineq + extra_rows);
177 if (!fused)
178 goto error;
180 for (k = 0; k < map->p[i]->n_eq; ++k) {
181 if (eq_i && (eq_i[2 * k] != STATUS_VALID ||
182 eq_i[2 * k + 1] != STATUS_VALID))
183 continue;
184 l = isl_basic_map_alloc_equality(fused);
185 if (l < 0)
186 goto error;
187 isl_seq_cpy(fused->eq[l], map->p[i]->eq[k], 1 + total);
190 for (k = 0; k < map->p[j]->n_eq; ++k) {
191 if (eq_j && (eq_j[2 * k] != STATUS_VALID ||
192 eq_j[2 * k + 1] != STATUS_VALID))
193 continue;
194 l = isl_basic_map_alloc_equality(fused);
195 if (l < 0)
196 goto error;
197 isl_seq_cpy(fused->eq[l], map->p[j]->eq[k], 1 + total);
200 for (k = 0; k < map->p[i]->n_ineq; ++k) {
201 if (ineq_i[k] != STATUS_VALID)
202 continue;
203 l = isl_basic_map_alloc_inequality(fused);
204 if (l < 0)
205 goto error;
206 isl_seq_cpy(fused->ineq[l], map->p[i]->ineq[k], 1 + total);
209 for (k = 0; k < map->p[j]->n_ineq; ++k) {
210 if (ineq_j[k] != STATUS_VALID)
211 continue;
212 l = isl_basic_map_alloc_inequality(fused);
213 if (l < 0)
214 goto error;
215 isl_seq_cpy(fused->ineq[l], map->p[j]->ineq[k], 1 + total);
218 for (k = 0; k < map->p[i]->n_div; ++k) {
219 int l = isl_basic_map_alloc_div(fused);
220 if (l < 0)
221 goto error;
222 isl_seq_cpy(fused->div[l], map->p[i]->div[k], 1 + 1 + total);
225 for (k = 0; k < extra_rows; ++k) {
226 l = isl_basic_map_alloc_inequality(fused);
227 if (l < 0)
228 goto error;
229 isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total);
232 fused = isl_basic_map_gauss(fused, NULL);
233 ISL_F_SET(fused, ISL_BASIC_MAP_FINAL);
234 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) &&
235 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
236 ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL);
238 fused_tab = isl_tab_from_basic_map(fused, 0);
239 if (isl_tab_detect_redundant(fused_tab) < 0)
240 goto error;
242 isl_basic_map_free(map->p[i]);
243 map->p[i] = fused;
244 isl_tab_free(tabs[i]);
245 tabs[i] = fused_tab;
246 drop(map, j, tabs);
248 return 1;
249 error:
250 isl_tab_free(fused_tab);
251 isl_basic_map_free(fused);
252 return -1;
255 /* Given a pair of basic maps i and j such that all constraints are either
256 * "valid" or "cut", check if the facets corresponding to the "cut"
257 * constraints of i lie entirely within basic map j.
258 * If so, replace the pair by the basic map consisting of the valid
259 * constraints in both basic maps.
261 * To see that we are not introducing any extra points, call the
262 * two basic maps A and B and the resulting map U and let x
263 * be an element of U \setminus ( A \cup B ).
264 * Then there is a pair of cut constraints c_1 and c_2 in A and B such that x
265 * violates them. Let X be the intersection of U with the opposites
266 * of these constraints. Then x \in X.
267 * The facet corresponding to c_1 contains the corresponding facet of A.
268 * This facet is entirely contained in B, so c_2 is valid on the facet.
269 * However, since it is also (part of) a facet of X, -c_2 is also valid
270 * on the facet. This means c_2 is saturated on the facet, so c_1 and
271 * c_2 must be opposites of each other, but then x could not violate
272 * both of them.
274 static int check_facets(struct isl_map *map, int i, int j,
275 struct isl_tab **tabs, int *ineq_i, int *ineq_j)
277 int k, l;
278 struct isl_tab_undo *snap;
279 unsigned n_eq = map->p[i]->n_eq;
281 snap = isl_tab_snap(tabs[i]);
283 for (k = 0; k < map->p[i]->n_ineq; ++k) {
284 if (ineq_i[k] != STATUS_CUT)
285 continue;
286 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
287 return -1;
288 for (l = 0; l < map->p[j]->n_ineq; ++l) {
289 int stat;
290 if (ineq_j[l] != STATUS_CUT)
291 continue;
292 stat = status_in(map->p[j]->ineq[l], tabs[i]);
293 if (stat != STATUS_VALID)
294 break;
296 if (isl_tab_rollback(tabs[i], snap) < 0)
297 return -1;
298 if (l < map->p[j]->n_ineq)
299 break;
302 if (k < map->p[i]->n_ineq)
303 /* BAD CUT PAIR */
304 return 0;
305 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
308 /* Check if basic map "i" contains the basic map represented
309 * by the tableau "tab".
311 static int contains(struct isl_map *map, int i, int *ineq_i,
312 struct isl_tab *tab)
314 int k, l;
315 unsigned dim;
317 dim = isl_basic_map_total_dim(map->p[i]);
318 for (k = 0; k < map->p[i]->n_eq; ++k) {
319 for (l = 0; l < 2; ++l) {
320 int stat;
321 isl_seq_neg(map->p[i]->eq[k], map->p[i]->eq[k], 1+dim);
322 stat = status_in(map->p[i]->eq[k], tab);
323 if (stat != STATUS_VALID)
324 return 0;
328 for (k = 0; k < map->p[i]->n_ineq; ++k) {
329 int stat;
330 if (ineq_i[k] == STATUS_REDUNDANT)
331 continue;
332 stat = status_in(map->p[i]->ineq[k], tab);
333 if (stat != STATUS_VALID)
334 return 0;
336 return 1;
339 /* Basic map "i" has an inequality (say "k") that is adjacent
340 * to some inequality of basic map "j". All the other inequalities
341 * are valid for "j".
342 * Check if basic map "j" forms an extension of basic map "i".
344 * Note that this function is only called if some of the equalities or
345 * inequalities of basic map "j" do cut basic map "i". The function is
346 * correct even if there are no such cut constraints, but in that case
347 * the additional checks performed by this function are overkill.
349 * In particular, we replace constraint k, say f >= 0, by constraint
350 * f <= -1, add the inequalities of "j" that are valid for "i"
351 * and check if the result is a subset of basic map "j".
352 * If so, then we know that this result is exactly equal to basic map "j"
353 * since all its constraints are valid for basic map "j".
354 * By combining the valid constraints of "i" (all equalities and all
355 * inequalities except "k") and the valid constraints of "j" we therefore
356 * obtain a basic map that is equal to their union.
357 * In this case, there is no need to perform a rollback of the tableau
358 * since it is going to be destroyed in fuse().
361 * |\__ |\__
362 * | \__ | \__
363 * | \_ => | \__
364 * |_______| _ |_________\
367 * |\ |\
368 * | \ | \
369 * | \ | \
370 * | | | \
371 * | ||\ => | \
372 * | || \ | \
373 * | || | | |
374 * |__||_/ |_____/
376 static int is_adj_ineq_extension(__isl_keep isl_map *map, int i, int j,
377 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
379 int k;
380 struct isl_tab_undo *snap;
381 unsigned n_eq = map->p[i]->n_eq;
382 unsigned total = isl_basic_map_total_dim(map->p[i]);
383 int r;
385 if (isl_tab_extend_cons(tabs[i], 1 + map->p[j]->n_ineq) < 0)
386 return -1;
388 for (k = 0; k < map->p[i]->n_ineq; ++k)
389 if (ineq_i[k] == STATUS_ADJ_INEQ)
390 break;
391 if (k >= map->p[i]->n_ineq)
392 isl_die(isl_map_get_ctx(map), isl_error_internal,
393 "ineq_i should have exactly one STATUS_ADJ_INEQ",
394 return -1);
396 snap = isl_tab_snap(tabs[i]);
398 if (isl_tab_unrestrict(tabs[i], n_eq + k) < 0)
399 return -1;
401 isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
402 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
403 r = isl_tab_add_ineq(tabs[i], map->p[i]->ineq[k]);
404 isl_seq_neg(map->p[i]->ineq[k], map->p[i]->ineq[k], 1 + total);
405 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
406 if (r < 0)
407 return -1;
409 for (k = 0; k < map->p[j]->n_ineq; ++k) {
410 if (ineq_j[k] != STATUS_VALID)
411 continue;
412 if (isl_tab_add_ineq(tabs[i], map->p[j]->ineq[k]) < 0)
413 return -1;
416 if (contains(map, j, ineq_j, tabs[i]))
417 return fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, NULL);
419 if (isl_tab_rollback(tabs[i], snap) < 0)
420 return -1;
422 return 0;
426 /* Both basic maps have at least one inequality with and adjacent
427 * (but opposite) inequality in the other basic map.
428 * Check that there are no cut constraints and that there is only
429 * a single pair of adjacent inequalities.
430 * If so, we can replace the pair by a single basic map described
431 * by all but the pair of adjacent inequalities.
432 * Any additional points introduced lie strictly between the two
433 * adjacent hyperplanes and can therefore be integral.
435 * ____ _____
436 * / ||\ / \
437 * / || \ / \
438 * \ || \ => \ \
439 * \ || / \ /
440 * \___||_/ \_____/
442 * The test for a single pair of adjancent inequalities is important
443 * for avoiding the combination of two basic maps like the following
445 * /|
446 * / |
447 * /__|
448 * _____
449 * | |
450 * | |
451 * |___|
453 * If there are some cut constraints on one side, then we may
454 * still be able to fuse the two basic maps, but we need to perform
455 * some additional checks in is_adj_ineq_extension.
457 static int check_adj_ineq(struct isl_map *map, int i, int j,
458 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
460 int count_i, count_j;
461 int cut_i, cut_j;
463 count_i = count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ);
464 count_j = count(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ);
466 if (count_i != 1 && count_j != 1)
467 return 0;
469 cut_i = any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) ||
470 any(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
471 cut_j = any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT) ||
472 any(ineq_j, map->p[j]->n_ineq, STATUS_CUT);
474 if (!cut_i && !cut_j && count_i == 1 && count_j == 1)
475 return fuse(map, i, j, tabs, NULL, ineq_i, NULL, ineq_j, NULL);
477 if (count_i == 1 && !cut_i)
478 return is_adj_ineq_extension(map, i, j, tabs,
479 eq_i, ineq_i, eq_j, ineq_j);
481 if (count_j == 1 && !cut_j)
482 return is_adj_ineq_extension(map, j, i, tabs,
483 eq_j, ineq_j, eq_i, ineq_i);
485 return 0;
488 /* Basic map "i" has an inequality "k" that is adjacent to some equality
489 * of basic map "j". All the other inequalities are valid for "j".
490 * Check if basic map "j" forms an extension of basic map "i".
492 * In particular, we relax constraint "k", compute the corresponding
493 * facet and check whether it is included in the other basic map.
494 * If so, we know that relaxing the constraint extends the basic
495 * map with exactly the other basic map (we already know that this
496 * other basic map is included in the extension, because there
497 * were no "cut" inequalities in "i") and we can replace the
498 * two basic maps by this extension.
499 * ____ _____
500 * / || / |
501 * / || / |
502 * \ || => \ |
503 * \ || \ |
504 * \___|| \____|
506 static int is_adj_eq_extension(struct isl_map *map, int i, int j, int k,
507 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
509 int changed = 0;
510 int super;
511 struct isl_tab_undo *snap, *snap2;
512 unsigned n_eq = map->p[i]->n_eq;
514 if (isl_tab_is_equality(tabs[i], n_eq + k))
515 return 0;
517 snap = isl_tab_snap(tabs[i]);
518 if (isl_tab_relax(tabs[i], n_eq + k) < 0)
519 return -1;
520 snap2 = isl_tab_snap(tabs[i]);
521 if (isl_tab_select_facet(tabs[i], n_eq + k) < 0)
522 return -1;
523 super = contains(map, j, ineq_j, tabs[i]);
524 if (super) {
525 if (isl_tab_rollback(tabs[i], snap2) < 0)
526 return -1;
527 map->p[i] = isl_basic_map_cow(map->p[i]);
528 if (!map->p[i])
529 return -1;
530 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
531 ISL_F_SET(map->p[i], ISL_BASIC_MAP_FINAL);
532 drop(map, j, tabs);
533 changed = 1;
534 } else
535 if (isl_tab_rollback(tabs[i], snap) < 0)
536 return -1;
538 return changed;
541 /* Data structure that keeps track of the wrapping constraints
542 * and of information to bound the coefficients of those constraints.
544 * bound is set if we want to apply a bound on the coefficients
545 * mat contains the wrapping constraints
546 * max is the bound on the coefficients (if bound is set)
548 struct isl_wraps {
549 int bound;
550 isl_mat *mat;
551 isl_int max;
554 /* Update wraps->max to be greater than or equal to the coefficients
555 * in the equalities and inequalities of bmap that can be removed if we end up
556 * applying wrapping.
558 static void wraps_update_max(struct isl_wraps *wraps,
559 __isl_keep isl_basic_map *bmap, int *eq, int *ineq)
561 int k;
562 isl_int max_k;
563 unsigned total = isl_basic_map_total_dim(bmap);
565 isl_int_init(max_k);
567 for (k = 0; k < bmap->n_eq; ++k) {
568 if (eq[2 * k] == STATUS_VALID &&
569 eq[2 * k + 1] == STATUS_VALID)
570 continue;
571 isl_seq_abs_max(bmap->eq[k] + 1, total, &max_k);
572 if (isl_int_abs_gt(max_k, wraps->max))
573 isl_int_set(wraps->max, max_k);
576 for (k = 0; k < bmap->n_ineq; ++k) {
577 if (ineq[k] == STATUS_VALID || ineq[k] == STATUS_REDUNDANT)
578 continue;
579 isl_seq_abs_max(bmap->ineq[k] + 1, total, &max_k);
580 if (isl_int_abs_gt(max_k, wraps->max))
581 isl_int_set(wraps->max, max_k);
584 isl_int_clear(max_k);
587 /* Initialize the isl_wraps data structure.
588 * If we want to bound the coefficients of the wrapping constraints,
589 * we set wraps->max to the largest coefficient
590 * in the equalities and inequalities that can be removed if we end up
591 * applying wrapping.
593 static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat,
594 __isl_keep isl_map *map, int i, int j,
595 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
597 isl_ctx *ctx;
599 wraps->bound = 0;
600 wraps->mat = mat;
601 if (!mat)
602 return;
603 ctx = isl_mat_get_ctx(mat);
604 wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx);
605 if (!wraps->bound)
606 return;
607 isl_int_init(wraps->max);
608 isl_int_set_si(wraps->max, 0);
609 wraps_update_max(wraps, map->p[i], eq_i, ineq_i);
610 wraps_update_max(wraps, map->p[j], eq_j, ineq_j);
613 /* Free the contents of the isl_wraps data structure.
615 static void wraps_free(struct isl_wraps *wraps)
617 isl_mat_free(wraps->mat);
618 if (wraps->bound)
619 isl_int_clear(wraps->max);
622 /* Is the wrapping constraint in row "row" allowed?
624 * If wraps->bound is set, we check that none of the coefficients
625 * is greater than wraps->max.
627 static int allow_wrap(struct isl_wraps *wraps, int row)
629 int i;
631 if (!wraps->bound)
632 return 1;
634 for (i = 1; i < wraps->mat->n_col; ++i)
635 if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max))
636 return 0;
638 return 1;
641 /* For each non-redundant constraint in "bmap" (as determined by "tab"),
642 * wrap the constraint around "bound" such that it includes the whole
643 * set "set" and append the resulting constraint to "wraps".
644 * "wraps" is assumed to have been pre-allocated to the appropriate size.
645 * wraps->n_row is the number of actual wrapped constraints that have
646 * been added.
647 * If any of the wrapping problems results in a constraint that is
648 * identical to "bound", then this means that "set" is unbounded in such
649 * way that no wrapping is possible. If this happens then wraps->n_row
650 * is reset to zero.
651 * Similarly, if we want to bound the coefficients of the wrapping
652 * constraints and a newly added wrapping constraint does not
653 * satisfy the bound, then wraps->n_row is also reset to zero.
655 static int add_wraps(struct isl_wraps *wraps, __isl_keep isl_basic_map *bmap,
656 struct isl_tab *tab, isl_int *bound, __isl_keep isl_set *set)
658 int l;
659 int w;
660 unsigned total = isl_basic_map_total_dim(bmap);
662 w = wraps->mat->n_row;
664 for (l = 0; l < bmap->n_ineq; ++l) {
665 if (isl_seq_is_neg(bound, bmap->ineq[l], 1 + total))
666 continue;
667 if (isl_seq_eq(bound, bmap->ineq[l], 1 + total))
668 continue;
669 if (isl_tab_is_redundant(tab, bmap->n_eq + l))
670 continue;
672 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
673 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->ineq[l]))
674 return -1;
675 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
676 goto unbounded;
677 if (!allow_wrap(wraps, w))
678 goto unbounded;
679 ++w;
681 for (l = 0; l < bmap->n_eq; ++l) {
682 if (isl_seq_is_neg(bound, bmap->eq[l], 1 + total))
683 continue;
684 if (isl_seq_eq(bound, bmap->eq[l], 1 + total))
685 continue;
687 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
688 isl_seq_neg(wraps->mat->row[w + 1], bmap->eq[l], 1 + total);
689 if (!isl_set_wrap_facet(set, wraps->mat->row[w],
690 wraps->mat->row[w + 1]))
691 return -1;
692 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
693 goto unbounded;
694 if (!allow_wrap(wraps, w))
695 goto unbounded;
696 ++w;
698 isl_seq_cpy(wraps->mat->row[w], bound, 1 + total);
699 if (!isl_set_wrap_facet(set, wraps->mat->row[w], bmap->eq[l]))
700 return -1;
701 if (isl_seq_eq(wraps->mat->row[w], bound, 1 + total))
702 goto unbounded;
703 if (!allow_wrap(wraps, w))
704 goto unbounded;
705 ++w;
708 wraps->mat->n_row = w;
709 return 0;
710 unbounded:
711 wraps->mat->n_row = 0;
712 return 0;
715 /* Check if the constraints in "wraps" from "first" until the last
716 * are all valid for the basic set represented by "tab".
717 * If not, wraps->n_row is set to zero.
719 static int check_wraps(__isl_keep isl_mat *wraps, int first,
720 struct isl_tab *tab)
722 int i;
724 for (i = first; i < wraps->n_row; ++i) {
725 enum isl_ineq_type type;
726 type = isl_tab_ineq_type(tab, wraps->row[i]);
727 if (type == isl_ineq_error)
728 return -1;
729 if (type == isl_ineq_redundant)
730 continue;
731 wraps->n_row = 0;
732 return 0;
735 return 0;
738 /* Return a set that corresponds to the non-redundant constraints
739 * (as recorded in tab) of bmap.
741 * It's important to remove the redundant constraints as some
742 * of the other constraints may have been modified after the
743 * constraints were marked redundant.
744 * In particular, a constraint may have been relaxed.
745 * Redundant constraints are ignored when a constraint is relaxed
746 * and should therefore continue to be ignored ever after.
747 * Otherwise, the relaxation might be thwarted by some of
748 * these constraints.
750 static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap,
751 struct isl_tab *tab)
753 bmap = isl_basic_map_copy(bmap);
754 bmap = isl_basic_map_cow(bmap);
755 bmap = isl_basic_map_update_from_tab(bmap, tab);
756 return isl_set_from_basic_set(isl_basic_map_underlying_set(bmap));
759 /* Given a basic set i with a constraint k that is adjacent to
760 * basic set j, check if we can wrap
761 * both the facet corresponding to k and basic map j
762 * around their ridges to include the other set.
763 * If so, replace the pair of basic sets by their union.
765 * All constraints of i (except k) are assumed to be valid for j.
766 * This means that there is no real need to wrap the ridges of
767 * the faces of basic map i around basic map j but since we do,
768 * we have to check that the resulting wrapping constraints are valid for i.
769 * ____ _____
770 * / | / \
771 * / || / |
772 * \ || => \ |
773 * \ || \ |
774 * \___|| \____|
777 static int can_wrap_in_facet(struct isl_map *map, int i, int j, int k,
778 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
780 int changed = 0;
781 struct isl_wraps wraps;
782 isl_mat *mat;
783 struct isl_set *set_i = NULL;
784 struct isl_set *set_j = NULL;
785 struct isl_vec *bound = NULL;
786 unsigned total = isl_basic_map_total_dim(map->p[i]);
787 struct isl_tab_undo *snap;
788 int n;
790 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
791 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
792 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
793 map->p[i]->n_ineq + map->p[j]->n_ineq,
794 1 + total);
795 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
796 bound = isl_vec_alloc(map->ctx, 1 + total);
797 if (!set_i || !set_j || !wraps.mat || !bound)
798 goto error;
800 isl_seq_cpy(bound->el, map->p[i]->ineq[k], 1 + total);
801 isl_int_add_ui(bound->el[0], bound->el[0], 1);
803 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
804 wraps.mat->n_row = 1;
806 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
807 goto error;
808 if (!wraps.mat->n_row)
809 goto unbounded;
811 snap = isl_tab_snap(tabs[i]);
813 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + k) < 0)
814 goto error;
815 if (isl_tab_detect_redundant(tabs[i]) < 0)
816 goto error;
818 isl_seq_neg(bound->el, map->p[i]->ineq[k], 1 + total);
820 n = wraps.mat->n_row;
821 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
822 goto error;
824 if (isl_tab_rollback(tabs[i], snap) < 0)
825 goto error;
826 if (check_wraps(wraps.mat, n, tabs[i]) < 0)
827 goto error;
828 if (!wraps.mat->n_row)
829 goto unbounded;
831 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
833 unbounded:
834 wraps_free(&wraps);
836 isl_set_free(set_i);
837 isl_set_free(set_j);
839 isl_vec_free(bound);
841 return changed;
842 error:
843 wraps_free(&wraps);
844 isl_vec_free(bound);
845 isl_set_free(set_i);
846 isl_set_free(set_j);
847 return -1;
850 /* Set the is_redundant property of the "n" constraints in "cuts",
851 * except "k" to "v".
852 * This is a fairly tricky operation as it bypasses isl_tab.c.
853 * The reason we want to temporarily mark some constraints redundant
854 * is that we want to ignore them in add_wraps.
856 * Initially all cut constraints are non-redundant, but the
857 * selection of a facet right before the call to this function
858 * may have made some of them redundant.
859 * Likewise, the same constraints are marked non-redundant
860 * in the second call to this function, before they are officially
861 * made non-redundant again in the subsequent rollback.
863 static void set_is_redundant(struct isl_tab *tab, unsigned n_eq,
864 int *cuts, int n, int k, int v)
866 int l;
868 for (l = 0; l < n; ++l) {
869 if (l == k)
870 continue;
871 tab->con[n_eq + cuts[l]].is_redundant = v;
875 /* Given a pair of basic maps i and j such that j sticks out
876 * of i at n cut constraints, each time by at most one,
877 * try to compute wrapping constraints and replace the two
878 * basic maps by a single basic map.
879 * The other constraints of i are assumed to be valid for j.
881 * The facets of i corresponding to the cut constraints are
882 * wrapped around their ridges, except those ridges determined
883 * by any of the other cut constraints.
884 * The intersections of cut constraints need to be ignored
885 * as the result of wrapping one cut constraint around another
886 * would result in a constraint cutting the union.
887 * In each case, the facets are wrapped to include the union
888 * of the two basic maps.
890 * The pieces of j that lie at an offset of exactly one from
891 * one of the cut constraints of i are wrapped around their edges.
892 * Here, there is no need to ignore intersections because we
893 * are wrapping around the union of the two basic maps.
895 * If any wrapping fails, i.e., if we cannot wrap to touch
896 * the union, then we give up.
897 * Otherwise, the pair of basic maps is replaced by their union.
899 static int wrap_in_facets(struct isl_map *map, int i, int j,
900 int *cuts, int n, struct isl_tab **tabs,
901 int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
903 int changed = 0;
904 struct isl_wraps wraps;
905 isl_mat *mat;
906 isl_set *set = NULL;
907 isl_vec *bound = NULL;
908 unsigned total = isl_basic_map_total_dim(map->p[i]);
909 int max_wrap;
910 int k;
911 struct isl_tab_undo *snap_i, *snap_j;
913 if (isl_tab_extend_cons(tabs[j], 1) < 0)
914 goto error;
916 max_wrap = 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
917 map->p[i]->n_ineq + map->p[j]->n_ineq;
918 max_wrap *= n;
920 set = isl_set_union(set_from_updated_bmap(map->p[i], tabs[i]),
921 set_from_updated_bmap(map->p[j], tabs[j]));
922 mat = isl_mat_alloc(map->ctx, max_wrap, 1 + total);
923 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
924 bound = isl_vec_alloc(map->ctx, 1 + total);
925 if (!set || !wraps.mat || !bound)
926 goto error;
928 snap_i = isl_tab_snap(tabs[i]);
929 snap_j = isl_tab_snap(tabs[j]);
931 wraps.mat->n_row = 0;
933 for (k = 0; k < n; ++k) {
934 if (isl_tab_select_facet(tabs[i], map->p[i]->n_eq + cuts[k]) < 0)
935 goto error;
936 if (isl_tab_detect_redundant(tabs[i]) < 0)
937 goto error;
938 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 1);
940 isl_seq_neg(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
941 if (!tabs[i]->empty &&
942 add_wraps(&wraps, map->p[i], tabs[i], bound->el, set) < 0)
943 goto error;
945 set_is_redundant(tabs[i], map->p[i]->n_eq, cuts, n, k, 0);
946 if (isl_tab_rollback(tabs[i], snap_i) < 0)
947 goto error;
949 if (tabs[i]->empty)
950 break;
951 if (!wraps.mat->n_row)
952 break;
954 isl_seq_cpy(bound->el, map->p[i]->ineq[cuts[k]], 1 + total);
955 isl_int_add_ui(bound->el[0], bound->el[0], 1);
956 if (isl_tab_add_eq(tabs[j], bound->el) < 0)
957 goto error;
958 if (isl_tab_detect_redundant(tabs[j]) < 0)
959 goto error;
961 if (!tabs[j]->empty &&
962 add_wraps(&wraps, map->p[j], tabs[j], bound->el, set) < 0)
963 goto error;
965 if (isl_tab_rollback(tabs[j], snap_j) < 0)
966 goto error;
968 if (!wraps.mat->n_row)
969 break;
972 if (k == n)
973 changed = fuse(map, i, j, tabs,
974 eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
976 isl_vec_free(bound);
977 wraps_free(&wraps);
978 isl_set_free(set);
980 return changed;
981 error:
982 isl_vec_free(bound);
983 wraps_free(&wraps);
984 isl_set_free(set);
985 return -1;
988 /* Given two basic sets i and j such that i has no cut equalities,
989 * check if relaxing all the cut inequalities of i by one turns
990 * them into valid constraint for j and check if we can wrap in
991 * the bits that are sticking out.
992 * If so, replace the pair by their union.
994 * We first check if all relaxed cut inequalities of i are valid for j
995 * and then try to wrap in the intersections of the relaxed cut inequalities
996 * with j.
998 * During this wrapping, we consider the points of j that lie at a distance
999 * of exactly 1 from i. In particular, we ignore the points that lie in
1000 * between this lower-dimensional space and the basic map i.
1001 * We can therefore only apply this to integer maps.
1002 * ____ _____
1003 * / ___|_ / \
1004 * / | | / |
1005 * \ | | => \ |
1006 * \|____| \ |
1007 * \___| \____/
1009 * _____ ______
1010 * | ____|_ | \
1011 * | | | | |
1012 * | | | => | |
1013 * |_| | | |
1014 * |_____| \______|
1016 * _______
1017 * | |
1018 * | |\ |
1019 * | | \ |
1020 * | | \ |
1021 * | | \|
1022 * | | \
1023 * | |_____\
1024 * | |
1025 * |_______|
1027 * Wrapping can fail if the result of wrapping one of the facets
1028 * around its edges does not produce any new facet constraint.
1029 * In particular, this happens when we try to wrap in unbounded sets.
1031 * _______________________________________________________________________
1033 * | ___
1034 * | | |
1035 * |_| |_________________________________________________________________
1036 * |___|
1038 * The following is not an acceptable result of coalescing the above two
1039 * sets as it includes extra integer points.
1040 * _______________________________________________________________________
1042 * |
1043 * |
1045 * \______________________________________________________________________
1047 static int can_wrap_in_set(struct isl_map *map, int i, int j,
1048 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1050 int changed = 0;
1051 int k, m;
1052 int n;
1053 int *cuts = NULL;
1055 if (ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_RATIONAL) ||
1056 ISL_F_ISSET(map->p[j], ISL_BASIC_MAP_RATIONAL))
1057 return 0;
1059 n = count(ineq_i, map->p[i]->n_ineq, STATUS_CUT);
1060 if (n == 0)
1061 return 0;
1063 cuts = isl_alloc_array(map->ctx, int, n);
1064 if (!cuts)
1065 return -1;
1067 for (k = 0, m = 0; m < n; ++k) {
1068 enum isl_ineq_type type;
1070 if (ineq_i[k] != STATUS_CUT)
1071 continue;
1073 isl_int_add_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
1074 type = isl_tab_ineq_type(tabs[j], map->p[i]->ineq[k]);
1075 isl_int_sub_ui(map->p[i]->ineq[k][0], map->p[i]->ineq[k][0], 1);
1076 if (type == isl_ineq_error)
1077 goto error;
1078 if (type != isl_ineq_redundant)
1079 break;
1080 cuts[m] = k;
1081 ++m;
1084 if (m == n)
1085 changed = wrap_in_facets(map, i, j, cuts, n, tabs,
1086 eq_i, ineq_i, eq_j, ineq_j);
1088 free(cuts);
1090 return changed;
1091 error:
1092 free(cuts);
1093 return -1;
1096 /* Check if either i or j has only cut inequalities that can
1097 * be used to wrap in (a facet of) the other basic set.
1098 * if so, replace the pair by their union.
1100 static int check_wrap(struct isl_map *map, int i, int j,
1101 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1103 int changed = 0;
1105 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1106 changed = can_wrap_in_set(map, i, j, tabs,
1107 eq_i, ineq_i, eq_j, ineq_j);
1108 if (changed)
1109 return changed;
1111 if (!any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1112 changed = can_wrap_in_set(map, j, i, tabs,
1113 eq_j, ineq_j, eq_i, ineq_i);
1114 return changed;
1117 /* At least one of the basic maps has an equality that is adjacent
1118 * to inequality. Make sure that only one of the basic maps has
1119 * such an equality and that the other basic map has exactly one
1120 * inequality adjacent to an equality.
1121 * We call the basic map that has the inequality "i" and the basic
1122 * map that has the equality "j".
1123 * If "i" has any "cut" (in)equality, then relaxing the inequality
1124 * by one would not result in a basic map that contains the other
1125 * basic map.
1127 static int check_adj_eq(struct isl_map *map, int i, int j,
1128 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1130 int changed = 0;
1131 int k;
1133 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) &&
1134 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ))
1135 /* ADJ EQ TOO MANY */
1136 return 0;
1138 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ))
1139 return check_adj_eq(map, j, i, tabs,
1140 eq_j, ineq_j, eq_i, ineq_i);
1142 /* j has an equality adjacent to an inequality in i */
1144 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT))
1145 return 0;
1146 if (any(ineq_i, map->p[i]->n_ineq, STATUS_CUT))
1147 /* ADJ EQ CUT */
1148 return 0;
1149 if (count(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) != 1 ||
1150 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ) ||
1151 any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1152 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ))
1153 /* ADJ EQ TOO MANY */
1154 return 0;
1156 for (k = 0; k < map->p[i]->n_ineq; ++k)
1157 if (ineq_i[k] == STATUS_ADJ_EQ)
1158 break;
1160 changed = is_adj_eq_extension(map, i, j, k, tabs,
1161 eq_i, ineq_i, eq_j, ineq_j);
1162 if (changed)
1163 return changed;
1165 if (count(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ) != 1)
1166 return 0;
1168 changed = can_wrap_in_facet(map, i, j, k, tabs, eq_i, ineq_i, eq_j, ineq_j);
1170 return changed;
1173 /* The two basic maps lie on adjacent hyperplanes. In particular,
1174 * basic map "i" has an equality that lies parallel to basic map "j".
1175 * Check if we can wrap the facets around the parallel hyperplanes
1176 * to include the other set.
1178 * We perform basically the same operations as can_wrap_in_facet,
1179 * except that we don't need to select a facet of one of the sets.
1181 * \\ \\
1182 * \\ => \\
1183 * \ \|
1185 * We only allow one equality of "i" to be adjacent to an equality of "j"
1186 * to avoid coalescing
1188 * [m, n] -> { [x, y] -> [x, 1 + y] : x >= 1 and y >= 1 and
1189 * x <= 10 and y <= 10;
1190 * [x, y] -> [1 + x, y] : x >= 1 and x <= 20 and
1191 * y >= 5 and y <= 15 }
1193 * to
1195 * [m, n] -> { [x, y] -> [x2, y2] : x >= 1 and 10y2 <= 20 - x + 10y and
1196 * 4y2 >= 5 + 3y and 5y2 <= 15 + 4y and
1197 * y2 <= 1 + x + y - x2 and y2 >= y and
1198 * y2 >= 1 + x + y - x2 }
1200 static int check_eq_adj_eq(struct isl_map *map, int i, int j,
1201 struct isl_tab **tabs, int *eq_i, int *ineq_i, int *eq_j, int *ineq_j)
1203 int k;
1204 int changed = 0;
1205 struct isl_wraps wraps;
1206 isl_mat *mat;
1207 struct isl_set *set_i = NULL;
1208 struct isl_set *set_j = NULL;
1209 struct isl_vec *bound = NULL;
1210 unsigned total = isl_basic_map_total_dim(map->p[i]);
1212 if (count(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ) != 1)
1213 return 0;
1215 for (k = 0; k < 2 * map->p[i]->n_eq ; ++k)
1216 if (eq_i[k] == STATUS_ADJ_EQ)
1217 break;
1219 set_i = set_from_updated_bmap(map->p[i], tabs[i]);
1220 set_j = set_from_updated_bmap(map->p[j], tabs[j]);
1221 mat = isl_mat_alloc(map->ctx, 2 * (map->p[i]->n_eq + map->p[j]->n_eq) +
1222 map->p[i]->n_ineq + map->p[j]->n_ineq,
1223 1 + total);
1224 wraps_init(&wraps, mat, map, i, j, eq_i, ineq_i, eq_j, ineq_j);
1225 bound = isl_vec_alloc(map->ctx, 1 + total);
1226 if (!set_i || !set_j || !wraps.mat || !bound)
1227 goto error;
1229 if (k % 2 == 0)
1230 isl_seq_neg(bound->el, map->p[i]->eq[k / 2], 1 + total);
1231 else
1232 isl_seq_cpy(bound->el, map->p[i]->eq[k / 2], 1 + total);
1233 isl_int_add_ui(bound->el[0], bound->el[0], 1);
1235 isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total);
1236 wraps.mat->n_row = 1;
1238 if (add_wraps(&wraps, map->p[j], tabs[j], bound->el, set_i) < 0)
1239 goto error;
1240 if (!wraps.mat->n_row)
1241 goto unbounded;
1243 isl_int_sub_ui(bound->el[0], bound->el[0], 1);
1244 isl_seq_neg(bound->el, bound->el, 1 + total);
1246 isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total);
1247 wraps.mat->n_row++;
1249 if (add_wraps(&wraps, map->p[i], tabs[i], bound->el, set_j) < 0)
1250 goto error;
1251 if (!wraps.mat->n_row)
1252 goto unbounded;
1254 changed = fuse(map, i, j, tabs, eq_i, ineq_i, eq_j, ineq_j, wraps.mat);
1256 if (0) {
1257 error: changed = -1;
1259 unbounded:
1261 wraps_free(&wraps);
1262 isl_set_free(set_i);
1263 isl_set_free(set_j);
1264 isl_vec_free(bound);
1266 return changed;
1269 /* Check if the union of the given pair of basic maps
1270 * can be represented by a single basic map.
1271 * If so, replace the pair by the single basic map and return 1.
1272 * Otherwise, return 0;
1273 * The two basic maps are assumed to live in the same local space.
1275 * We first check the effect of each constraint of one basic map
1276 * on the other basic map.
1277 * The constraint may be
1278 * redundant the constraint is redundant in its own
1279 * basic map and should be ignore and removed
1280 * in the end
1281 * valid all (integer) points of the other basic map
1282 * satisfy the constraint
1283 * separate no (integer) point of the other basic map
1284 * satisfies the constraint
1285 * cut some but not all points of the other basic map
1286 * satisfy the constraint
1287 * adj_eq the given constraint is adjacent (on the outside)
1288 * to an equality of the other basic map
1289 * adj_ineq the given constraint is adjacent (on the outside)
1290 * to an inequality of the other basic map
1292 * We consider seven cases in which we can replace the pair by a single
1293 * basic map. We ignore all "redundant" constraints.
1295 * 1. all constraints of one basic map are valid
1296 * => the other basic map is a subset and can be removed
1298 * 2. all constraints of both basic maps are either "valid" or "cut"
1299 * and the facets corresponding to the "cut" constraints
1300 * of one of the basic maps lies entirely inside the other basic map
1301 * => the pair can be replaced by a basic map consisting
1302 * of the valid constraints in both basic maps
1304 * 3. there is a single pair of adjacent inequalities
1305 * (all other constraints are "valid")
1306 * => the pair can be replaced by a basic map consisting
1307 * of the valid constraints in both basic maps
1309 * 4. one basic map has a single adjacent inequality, while the other
1310 * constraints are "valid". The other basic map has some
1311 * "cut" constraints, but replacing the adjacent inequality by
1312 * its opposite and adding the valid constraints of the other
1313 * basic map results in a subset of the other basic map
1314 * => the pair can be replaced by a basic map consisting
1315 * of the valid constraints in both basic maps
1317 * 5. there is a single adjacent pair of an inequality and an equality,
1318 * the other constraints of the basic map containing the inequality are
1319 * "valid". Moreover, if the inequality the basic map is relaxed
1320 * and then turned into an equality, then resulting facet lies
1321 * entirely inside the other basic map
1322 * => the pair can be replaced by the basic map containing
1323 * the inequality, with the inequality relaxed.
1325 * 6. there is a single adjacent pair of an inequality and an equality,
1326 * the other constraints of the basic map containing the inequality are
1327 * "valid". Moreover, the facets corresponding to both
1328 * the inequality and the equality can be wrapped around their
1329 * ridges to include the other basic map
1330 * => the pair can be replaced by a basic map consisting
1331 * of the valid constraints in both basic maps together
1332 * with all wrapping constraints
1334 * 7. one of the basic maps extends beyond the other by at most one.
1335 * Moreover, the facets corresponding to the cut constraints and
1336 * the pieces of the other basic map at offset one from these cut
1337 * constraints can be wrapped around their ridges to include
1338 * the union of the two basic maps
1339 * => the pair can be replaced by a basic map consisting
1340 * of the valid constraints in both basic maps together
1341 * with all wrapping constraints
1343 * 8. the two basic maps live in adjacent hyperplanes. In principle
1344 * such sets can always be combined through wrapping, but we impose
1345 * that there is only one such pair, to avoid overeager coalescing.
1347 * Throughout the computation, we maintain a collection of tableaus
1348 * corresponding to the basic maps. When the basic maps are dropped
1349 * or combined, the tableaus are modified accordingly.
1351 static int coalesce_local_pair(__isl_keep isl_map *map, int i, int j,
1352 struct isl_tab **tabs)
1354 int changed = 0;
1355 int *eq_i = NULL;
1356 int *eq_j = NULL;
1357 int *ineq_i = NULL;
1358 int *ineq_j = NULL;
1360 eq_i = eq_status_in(map->p[i], tabs[j]);
1361 if (map->p[i]->n_eq && !eq_i)
1362 goto error;
1363 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ERROR))
1364 goto error;
1365 if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_SEPARATE))
1366 goto done;
1368 eq_j = eq_status_in(map->p[j], tabs[i]);
1369 if (map->p[j]->n_eq && !eq_j)
1370 goto error;
1371 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ERROR))
1372 goto error;
1373 if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_SEPARATE))
1374 goto done;
1376 ineq_i = ineq_status_in(map->p[i], tabs[i], tabs[j]);
1377 if (map->p[i]->n_ineq && !ineq_i)
1378 goto error;
1379 if (any(ineq_i, map->p[i]->n_ineq, STATUS_ERROR))
1380 goto error;
1381 if (any(ineq_i, map->p[i]->n_ineq, STATUS_SEPARATE))
1382 goto done;
1384 ineq_j = ineq_status_in(map->p[j], tabs[j], tabs[i]);
1385 if (map->p[j]->n_ineq && !ineq_j)
1386 goto error;
1387 if (any(ineq_j, map->p[j]->n_ineq, STATUS_ERROR))
1388 goto error;
1389 if (any(ineq_j, map->p[j]->n_ineq, STATUS_SEPARATE))
1390 goto done;
1392 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1393 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1394 drop(map, j, tabs);
1395 changed = 1;
1396 } else if (all(eq_j, 2 * map->p[j]->n_eq, STATUS_VALID) &&
1397 all(ineq_j, map->p[j]->n_ineq, STATUS_VALID)) {
1398 drop(map, i, tabs);
1399 changed = 1;
1400 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_EQ)) {
1401 changed = check_eq_adj_eq(map, i, j, tabs,
1402 eq_i, ineq_i, eq_j, ineq_j);
1403 } else if (any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_EQ)) {
1404 changed = check_eq_adj_eq(map, j, i, tabs,
1405 eq_j, ineq_j, eq_i, ineq_i);
1406 } else if (any(eq_i, 2 * map->p[i]->n_eq, STATUS_ADJ_INEQ) ||
1407 any(eq_j, 2 * map->p[j]->n_eq, STATUS_ADJ_INEQ)) {
1408 changed = check_adj_eq(map, i, j, tabs,
1409 eq_i, ineq_i, eq_j, ineq_j);
1410 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_EQ) ||
1411 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_EQ)) {
1412 /* Can't happen */
1413 /* BAD ADJ INEQ */
1414 } else if (any(ineq_i, map->p[i]->n_ineq, STATUS_ADJ_INEQ) ||
1415 any(ineq_j, map->p[j]->n_ineq, STATUS_ADJ_INEQ)) {
1416 changed = check_adj_ineq(map, i, j, tabs,
1417 eq_i, ineq_i, eq_j, ineq_j);
1418 } else {
1419 if (!any(eq_i, 2 * map->p[i]->n_eq, STATUS_CUT) &&
1420 !any(eq_j, 2 * map->p[j]->n_eq, STATUS_CUT))
1421 changed = check_facets(map, i, j, tabs, ineq_i, ineq_j);
1422 if (!changed)
1423 changed = check_wrap(map, i, j, tabs,
1424 eq_i, ineq_i, eq_j, ineq_j);
1427 done:
1428 free(eq_i);
1429 free(eq_j);
1430 free(ineq_i);
1431 free(ineq_j);
1432 return changed;
1433 error:
1434 free(eq_i);
1435 free(eq_j);
1436 free(ineq_i);
1437 free(ineq_j);
1438 return -1;
1441 /* Do the two basic maps live in the same local space, i.e.,
1442 * do they have the same (known) divs?
1443 * If either basic map has any unknown divs, then we can only assume
1444 * that they do not live in the same local space.
1446 static int same_divs(__isl_keep isl_basic_map *bmap1,
1447 __isl_keep isl_basic_map *bmap2)
1449 int i;
1450 int known;
1451 int total;
1453 if (!bmap1 || !bmap2)
1454 return -1;
1455 if (bmap1->n_div != bmap2->n_div)
1456 return 0;
1458 if (bmap1->n_div == 0)
1459 return 1;
1461 known = isl_basic_map_divs_known(bmap1);
1462 if (known < 0 || !known)
1463 return known;
1464 known = isl_basic_map_divs_known(bmap2);
1465 if (known < 0 || !known)
1466 return known;
1468 total = isl_basic_map_total_dim(bmap1);
1469 for (i = 0; i < bmap1->n_div; ++i)
1470 if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total))
1471 return 0;
1473 return 1;
1476 /* Given two basic maps "i" and "j", where the divs of "i" form a subset
1477 * of those of "j", check if basic map "j" is a subset of basic map "i"
1478 * and, if so, drop basic map "j".
1480 * We first expand the divs of basic map "i" to match those of basic map "j",
1481 * using the divs and expansion computed by the caller.
1482 * Then we check if all constraints of the expanded "i" are valid for "j".
1484 static int coalesce_subset(__isl_keep isl_map *map, int i, int j,
1485 struct isl_tab **tabs, __isl_keep isl_mat *div, int *exp)
1487 isl_basic_map *bmap;
1488 int changed = 0;
1489 int *eq_i = NULL;
1490 int *ineq_i = NULL;
1492 bmap = isl_basic_map_copy(map->p[i]);
1493 bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp);
1495 if (!bmap)
1496 goto error;
1498 eq_i = eq_status_in(bmap, tabs[j]);
1499 if (bmap->n_eq && !eq_i)
1500 goto error;
1501 if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR))
1502 goto error;
1503 if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE))
1504 goto done;
1506 ineq_i = ineq_status_in(bmap, NULL, tabs[j]);
1507 if (bmap->n_ineq && !ineq_i)
1508 goto error;
1509 if (any(ineq_i, bmap->n_ineq, STATUS_ERROR))
1510 goto error;
1511 if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE))
1512 goto done;
1514 if (all(eq_i, 2 * map->p[i]->n_eq, STATUS_VALID) &&
1515 all(ineq_i, map->p[i]->n_ineq, STATUS_VALID)) {
1516 drop(map, j, tabs);
1517 changed = 1;
1520 done:
1521 isl_basic_map_free(bmap);
1522 free(eq_i);
1523 free(ineq_i);
1524 return 0;
1525 error:
1526 isl_basic_map_free(bmap);
1527 free(eq_i);
1528 free(ineq_i);
1529 return -1;
1532 /* Check if the basic map "j" is a subset of basic map "i",
1533 * assuming that "i" has fewer divs that "j".
1534 * If not, then we change the order.
1536 * If the two basic maps have the same number of divs, then
1537 * they must necessarily be different. Otherwise, we would have
1538 * called coalesce_local_pair. We therefore don't try anything
1539 * in this case.
1541 * We first check if the divs of "i" are all known and form a subset
1542 * of those of "j". If so, we pass control over to coalesce_subset.
1544 static int check_coalesce_subset(__isl_keep isl_map *map, int i, int j,
1545 struct isl_tab **tabs)
1547 int known;
1548 isl_mat *div_i, *div_j, *div;
1549 int *exp1 = NULL;
1550 int *exp2 = NULL;
1551 isl_ctx *ctx;
1552 int subset;
1554 if (map->p[i]->n_div == map->p[j]->n_div)
1555 return 0;
1556 if (map->p[j]->n_div < map->p[i]->n_div)
1557 return check_coalesce_subset(map, j, i, tabs);
1559 known = isl_basic_map_divs_known(map->p[i]);
1560 if (known < 0 || !known)
1561 return known;
1563 ctx = isl_map_get_ctx(map);
1565 div_i = isl_basic_map_get_divs(map->p[i]);
1566 div_j = isl_basic_map_get_divs(map->p[j]);
1568 if (!div_i || !div_j)
1569 goto error;
1571 exp1 = isl_alloc_array(ctx, int, div_i->n_row);
1572 exp2 = isl_alloc_array(ctx, int, div_j->n_row);
1573 if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2))
1574 goto error;
1576 div = isl_merge_divs(div_i, div_j, exp1, exp2);
1577 if (!div)
1578 goto error;
1580 if (div->n_row == div_j->n_row)
1581 subset = coalesce_subset(map, i, j, tabs, div, exp1);
1582 else
1583 subset = 0;
1585 isl_mat_free(div);
1587 isl_mat_free(div_i);
1588 isl_mat_free(div_j);
1590 free(exp2);
1591 free(exp1);
1593 return subset;
1594 error:
1595 isl_mat_free(div_i);
1596 isl_mat_free(div_j);
1597 free(exp1);
1598 free(exp2);
1599 return -1;
1602 /* Check if the union of the given pair of basic maps
1603 * can be represented by a single basic map.
1604 * If so, replace the pair by the single basic map and return 1.
1605 * Otherwise, return 0;
1607 * We first check if the two basic maps live in the same local space.
1608 * If so, we do the complete check. Otherwise, we check if one is
1609 * an obvious subset of the other.
1611 static int coalesce_pair(__isl_keep isl_map *map, int i, int j,
1612 struct isl_tab **tabs)
1614 int same;
1616 same = same_divs(map->p[i], map->p[j]);
1617 if (same < 0)
1618 return -1;
1619 if (same)
1620 return coalesce_local_pair(map, i, j, tabs);
1622 return check_coalesce_subset(map, i, j, tabs);
1625 static struct isl_map *coalesce(struct isl_map *map, struct isl_tab **tabs)
1627 int i, j;
1629 for (i = map->n - 2; i >= 0; --i)
1630 restart:
1631 for (j = i + 1; j < map->n; ++j) {
1632 int changed;
1633 changed = coalesce_pair(map, i, j, tabs);
1634 if (changed < 0)
1635 goto error;
1636 if (changed)
1637 goto restart;
1639 return map;
1640 error:
1641 isl_map_free(map);
1642 return NULL;
1645 /* For each pair of basic maps in the map, check if the union of the two
1646 * can be represented by a single basic map.
1647 * If so, replace the pair by the single basic map and start over.
1649 * Since we are constructing the tableaus of the basic maps anyway,
1650 * we exploit them to detect implicit equalities and redundant constraints.
1651 * This also helps the coalescing as it can ignore the redundant constraints.
1652 * In order to avoid confusion, we make all implicit equalities explicit
1653 * in the basic maps. We don't call isl_basic_map_gauss, though,
1654 * as that may affect the number of constraints.
1655 * This means that we have to call isl_basic_map_gauss at the end
1656 * of the computation to ensure that the basic maps are not left
1657 * in an unexpected state.
1659 struct isl_map *isl_map_coalesce(struct isl_map *map)
1661 int i;
1662 unsigned n;
1663 struct isl_tab **tabs = NULL;
1665 map = isl_map_remove_empty_parts(map);
1666 if (!map)
1667 return NULL;
1669 if (map->n <= 1)
1670 return map;
1672 map = isl_map_sort_divs(map);
1673 map = isl_map_cow(map);
1675 if (!map)
1676 return NULL;
1678 tabs = isl_calloc_array(map->ctx, struct isl_tab *, map->n);
1679 if (!tabs)
1680 goto error;
1682 n = map->n;
1683 for (i = 0; i < map->n; ++i) {
1684 tabs[i] = isl_tab_from_basic_map(map->p[i], 0);
1685 if (!tabs[i])
1686 goto error;
1687 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT))
1688 if (isl_tab_detect_implicit_equalities(tabs[i]) < 0)
1689 goto error;
1690 map->p[i] = isl_tab_make_equalities_explicit(tabs[i],
1691 map->p[i]);
1692 if (!map->p[i])
1693 goto error;
1694 if (!ISL_F_ISSET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT))
1695 if (isl_tab_detect_redundant(tabs[i]) < 0)
1696 goto error;
1698 for (i = map->n - 1; i >= 0; --i)
1699 if (tabs[i]->empty)
1700 drop(map, i, tabs);
1702 map = coalesce(map, tabs);
1704 if (map)
1705 for (i = 0; i < map->n; ++i) {
1706 map->p[i] = isl_basic_map_update_from_tab(map->p[i],
1707 tabs[i]);
1708 map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1709 map->p[i] = isl_basic_map_finalize(map->p[i]);
1710 if (!map->p[i])
1711 goto error;
1712 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_IMPLICIT);
1713 ISL_F_SET(map->p[i], ISL_BASIC_MAP_NO_REDUNDANT);
1716 for (i = 0; i < n; ++i)
1717 isl_tab_free(tabs[i]);
1719 free(tabs);
1721 return map;
1722 error:
1723 if (tabs)
1724 for (i = 0; i < n; ++i)
1725 isl_tab_free(tabs[i]);
1726 free(tabs);
1727 isl_map_free(map);
1728 return NULL;
1731 /* For each pair of basic sets in the set, check if the union of the two
1732 * can be represented by a single basic set.
1733 * If so, replace the pair by the single basic set and start over.
1735 struct isl_set *isl_set_coalesce(struct isl_set *set)
1737 return (struct isl_set *)isl_map_coalesce((struct isl_map *)set);