isl_ast_codegen.c: update_unrolling_lower_bound: check for overflow
[isl.git] / isl_ast_codegen.c
blobaae71b453e91e65fbaeec9cb6cc87cfd63c3fced
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
21 #include <isl_list_private.h>
23 /* Add the constraint to the list that "user" points to, if it is not
24 * a div constraint.
26 static int collect_constraint(__isl_take isl_constraint *constraint,
27 void *user)
29 isl_constraint_list **list = user;
31 if (isl_constraint_is_div_constraint(constraint))
32 isl_constraint_free(constraint);
33 else
34 *list = isl_constraint_list_add(*list, constraint);
36 return 0;
39 /* Extract the constraints of "bset" (except the div constraints)
40 * and collect them in an isl_constraint_list.
42 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
43 __isl_take isl_basic_set *bset)
45 int n;
46 isl_ctx *ctx;
47 isl_constraint_list *list;
49 if (!bset)
50 return NULL;
52 ctx = isl_basic_set_get_ctx(bset);
54 n = isl_basic_set_n_constraint(bset);
55 list = isl_constraint_list_alloc(ctx, n);
56 if (isl_basic_set_foreach_constraint(bset,
57 &collect_constraint, &list) < 0)
58 list = isl_constraint_list_free(list);
60 isl_basic_set_free(bset);
61 return list;
64 /* Data used in generate_domain.
66 * "build" is the input build.
67 * "list" collects the results.
69 struct isl_generate_domain_data {
70 isl_ast_build *build;
72 isl_ast_graft_list *list;
75 static __isl_give isl_ast_graft_list *generate_next_level(
76 __isl_take isl_union_map *executed,
77 __isl_take isl_ast_build *build);
78 static __isl_give isl_ast_graft_list *generate_code(
79 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
80 int internal);
82 /* Generate an AST for a single domain based on
83 * the (non single valued) inverse schedule "executed".
85 * We extend the schedule with the iteration domain
86 * and continue generating through a call to generate_code.
88 * In particular, if executed has the form
90 * S -> D
92 * then we continue generating code on
94 * [S -> D] -> D
96 * The extended inverse schedule is clearly single valued
97 * ensuring that the nested generate_code will not reach this function,
98 * but will instead create calls to all elements of D that need
99 * to be executed from the current schedule domain.
101 static int generate_non_single_valued(__isl_take isl_map *executed,
102 struct isl_generate_domain_data *data)
104 isl_map *identity;
105 isl_ast_build *build;
106 isl_ast_graft_list *list;
108 build = isl_ast_build_copy(data->build);
110 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
111 executed = isl_map_domain_product(executed, identity);
112 build = isl_ast_build_set_single_valued(build, 1);
114 list = generate_code(isl_union_map_from_map(executed), build, 1);
116 data->list = isl_ast_graft_list_concat(data->list, list);
118 return 0;
121 /* Call the at_each_domain callback, if requested by the user,
122 * after recording the current inverse schedule in the build.
124 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
125 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
127 if (!graft || !build)
128 return isl_ast_graft_free(graft);
129 if (!build->at_each_domain)
130 return graft;
132 build = isl_ast_build_copy(build);
133 build = isl_ast_build_set_executed(build,
134 isl_union_map_from_map(isl_map_copy(executed)));
135 if (!build)
136 return isl_ast_graft_free(graft);
138 graft->node = build->at_each_domain(graft->node,
139 build, build->at_each_domain_user);
140 isl_ast_build_free(build);
142 if (!graft->node)
143 graft = isl_ast_graft_free(graft);
145 return graft;
148 /* Generate an AST for a single domain based on
149 * the inverse schedule "executed".
151 * If there is more than one domain element associated to the current
152 * schedule "time", then we need to continue the generation process
153 * in generate_non_single_valued.
154 * Note that the inverse schedule being single-valued may depend
155 * on constraints that are only available in the original context
156 * domain specified by the user. We therefore first introduce
157 * the constraints from data->build->domain.
158 * On the other hand, we only perform the test after having taken the gist
159 * of the domain as the resulting map is the one from which the call
160 * expression is constructed. Using this map to construct the call
161 * expression usually yields simpler results.
162 * Because we perform the single-valuedness test on the gisted map,
163 * we may in rare cases fail to recognize that the inverse schedule
164 * is single-valued. This becomes problematic if this happens
165 * from the recursive call through generate_non_single_valued
166 * as we would then end up in an infinite recursion.
167 * We therefore check if we are inside a call to generate_non_single_valued
168 * and revert to the ungisted map if the gisted map turns out not to be
169 * single-valued.
171 * Otherwise, we generate a call expression for the single executed
172 * domain element and put a guard around it based on the (simplified)
173 * domain of "executed".
175 * If the user has set an at_each_domain callback, it is called
176 * on the constructed call expression node.
178 static int generate_domain(__isl_take isl_map *executed, void *user)
180 struct isl_generate_domain_data *data = user;
181 isl_ast_graft *graft;
182 isl_ast_graft_list *list;
183 isl_set *guard;
184 isl_map *map;
185 int sv;
187 executed = isl_map_intersect_domain(executed,
188 isl_set_copy(data->build->domain));
190 executed = isl_map_coalesce(executed);
191 map = isl_map_copy(executed);
192 map = isl_ast_build_compute_gist_map_domain(data->build, map);
193 sv = isl_map_is_single_valued(map);
194 if (sv < 0)
195 goto error;
196 if (!sv) {
197 isl_map_free(map);
198 if (data->build->single_valued)
199 map = isl_map_copy(executed);
200 else
201 return generate_non_single_valued(executed, data);
203 guard = isl_map_domain(isl_map_copy(map));
204 guard = isl_set_coalesce(guard);
205 guard = isl_ast_build_compute_gist(data->build, guard);
206 graft = isl_ast_graft_alloc_domain(map, data->build);
207 graft = at_each_domain(graft, executed, data->build);
209 isl_map_free(executed);
210 graft = isl_ast_graft_add_guard(graft, guard, data->build);
212 list = isl_ast_graft_list_from_ast_graft(graft);
213 data->list = isl_ast_graft_list_concat(data->list, list);
215 return 0;
216 error:
217 isl_map_free(map);
218 isl_map_free(executed);
219 return -1;
222 /* Call build->create_leaf to a create "leaf" node in the AST,
223 * encapsulate the result in an isl_ast_graft and return the result
224 * as a 1-element list.
226 * Note that the node returned by the user may be an entire tree.
228 * Before we pass control to the user, we first clear some information
229 * from the build that is (presumbably) only meaningful
230 * for the current code generation.
231 * This includes the create_leaf callback itself, so we make a copy
232 * of the build first.
234 static __isl_give isl_ast_graft_list *call_create_leaf(
235 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
237 isl_ast_node *node;
238 isl_ast_graft *graft;
239 isl_ast_build *user_build;
241 user_build = isl_ast_build_copy(build);
242 user_build = isl_ast_build_set_executed(user_build, executed);
243 user_build = isl_ast_build_clear_local_info(user_build);
244 if (!user_build)
245 node = NULL;
246 else
247 node = build->create_leaf(user_build, build->create_leaf_user);
248 graft = isl_ast_graft_alloc(node, build);
249 isl_ast_build_free(build);
250 return isl_ast_graft_list_from_ast_graft(graft);
253 /* Generate an AST after having handled the complete schedule
254 * of this call to the code generator.
256 * If the user has specified a create_leaf callback, control
257 * is passed to the user in call_create_leaf.
259 * Otherwise, we generate one or more calls for each individual
260 * domain in generate_domain.
262 static __isl_give isl_ast_graft_list *generate_inner_level(
263 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
265 isl_ctx *ctx;
266 struct isl_generate_domain_data data = { build };
268 if (!build || !executed)
269 goto error;
271 if (build->create_leaf)
272 return call_create_leaf(executed, build);
274 ctx = isl_union_map_get_ctx(executed);
275 data.list = isl_ast_graft_list_alloc(ctx, 0);
276 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
277 data.list = isl_ast_graft_list_free(data.list);
279 if (0)
280 error: data.list = NULL;
281 isl_ast_build_free(build);
282 isl_union_map_free(executed);
283 return data.list;
286 /* Call the before_each_for callback, if requested by the user.
288 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
289 __isl_keep isl_ast_build *build)
291 isl_id *id;
293 if (!node || !build)
294 return isl_ast_node_free(node);
295 if (!build->before_each_for)
296 return node;
297 id = build->before_each_for(build, build->before_each_for_user);
298 node = isl_ast_node_set_annotation(node, id);
299 return node;
302 /* Call the after_each_for callback, if requested by the user.
304 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
305 __isl_keep isl_ast_build *build)
307 if (!graft || !build)
308 return isl_ast_graft_free(graft);
309 if (!build->after_each_for)
310 return graft;
311 graft->node = build->after_each_for(graft->node, build,
312 build->after_each_for_user);
313 if (!graft->node)
314 return isl_ast_graft_free(graft);
315 return graft;
318 /* Eliminate the schedule dimension "pos" from "executed" and return
319 * the result.
321 static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
322 int pos, __isl_keep isl_ast_build *build)
324 isl_space *space;
325 isl_map *elim;
327 space = isl_ast_build_get_space(build, 1);
328 space = isl_space_map_from_set(space);
329 elim = isl_map_identity(space);
330 elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
332 executed = isl_union_map_apply_domain(executed,
333 isl_union_map_from_map(elim));
335 return executed;
338 /* Check if the constraint "c" is a lower bound on dimension "pos",
339 * an upper bound, or independent of dimension "pos".
341 static int constraint_type(isl_constraint *c, int pos)
343 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
344 return 1;
345 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
346 return 2;
347 return 0;
350 /* Compare the types of the constraints "a" and "b",
351 * resulting in constraints that are independent of "depth"
352 * to be sorted before the lower bounds on "depth", which in
353 * turn are sorted before the upper bounds on "depth".
355 static int cmp_constraint(const void *a, const void *b, void *user)
357 int *depth = user;
358 isl_constraint * const *c1 = a;
359 isl_constraint * const *c2 = b;
360 int t1 = constraint_type(*c1, *depth);
361 int t2 = constraint_type(*c2, *depth);
363 return t1 - t2;
366 /* Extract a lower bound on dimension "pos" from constraint "c".
368 * If the constraint is of the form
370 * a x + f(...) >= 0
372 * then we essentially return
374 * l = ceil(-f(...)/a)
376 * However, if the current dimension is strided, then we need to make
377 * sure that the lower bound we construct is of the form
379 * f + s a
381 * with f the offset and s the stride.
382 * We therefore compute
384 * f + s * ceil((l - f)/s)
386 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
387 int pos, __isl_keep isl_ast_build *build)
389 isl_aff *aff;
391 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
392 aff = isl_aff_ceil(aff);
394 if (isl_ast_build_has_stride(build, pos)) {
395 isl_aff *offset;
396 isl_int stride;
398 isl_int_init(stride);
400 offset = isl_ast_build_get_offset(build, pos);
401 isl_ast_build_get_stride(build, pos, &stride);
403 aff = isl_aff_sub(aff, isl_aff_copy(offset));
404 aff = isl_aff_scale_down(aff, stride);
405 aff = isl_aff_ceil(aff);
406 aff = isl_aff_scale(aff, stride);
407 aff = isl_aff_add(aff, offset);
409 isl_int_clear(stride);
412 aff = isl_ast_build_compute_gist_aff(build, aff);
414 return aff;
417 /* Return the exact lower bound (or upper bound if "upper" is set)
418 * of "domain" as a piecewise affine expression.
420 * If we are computing a lower bound (of a strided dimension), then
421 * we need to make sure it is of the form
423 * f + s a
425 * where f is the offset and s is the stride.
426 * We therefore need to include the stride constraint before computing
427 * the minimum.
429 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
430 __isl_keep isl_ast_build *build, int upper)
432 isl_set *stride;
433 isl_map *it_map;
434 isl_pw_aff *pa;
435 isl_pw_multi_aff *pma;
437 domain = isl_set_copy(domain);
438 if (!upper) {
439 stride = isl_ast_build_get_stride_constraint(build);
440 domain = isl_set_intersect(domain, stride);
442 it_map = isl_ast_build_map_to_iterator(build, domain);
443 if (upper)
444 pma = isl_map_lexmax_pw_multi_aff(it_map);
445 else
446 pma = isl_map_lexmin_pw_multi_aff(it_map);
447 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
448 isl_pw_multi_aff_free(pma);
449 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
450 pa = isl_pw_aff_coalesce(pa);
452 return pa;
455 /* Return a list of "n" lower bounds on dimension "pos"
456 * extracted from the "n" constraints starting at "constraint".
457 * If "n" is zero, then we extract a lower bound from "domain" instead.
459 static __isl_give isl_pw_aff_list *lower_bounds(
460 __isl_keep isl_constraint **constraint, int n, int pos,
461 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
463 isl_ctx *ctx;
464 isl_pw_aff_list *list;
465 int i;
467 if (!build)
468 return NULL;
470 if (n == 0) {
471 isl_pw_aff *pa;
472 pa = exact_bound(domain, build, 0);
473 return isl_pw_aff_list_from_pw_aff(pa);
476 ctx = isl_ast_build_get_ctx(build);
477 list = isl_pw_aff_list_alloc(ctx,n);
479 for (i = 0; i < n; ++i) {
480 isl_aff *aff;
482 aff = lower_bound(constraint[i], pos, build);
483 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
486 return list;
489 /* Return a list of "n" upper bounds on dimension "pos"
490 * extracted from the "n" constraints starting at "constraint".
491 * If "n" is zero, then we extract an upper bound from "domain" instead.
493 static __isl_give isl_pw_aff_list *upper_bounds(
494 __isl_keep isl_constraint **constraint, int n, int pos,
495 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
497 isl_ctx *ctx;
498 isl_pw_aff_list *list;
499 int i;
501 if (n == 0) {
502 isl_pw_aff *pa;
503 pa = exact_bound(domain, build, 1);
504 return isl_pw_aff_list_from_pw_aff(pa);
507 ctx = isl_ast_build_get_ctx(build);
508 list = isl_pw_aff_list_alloc(ctx,n);
510 for (i = 0; i < n; ++i) {
511 isl_aff *aff;
513 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
514 aff = isl_aff_floor(aff);
515 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
518 return list;
521 /* Return an isl_ast_expr that performs the reduction of type "type"
522 * on AST expressions corresponding to the elements in "list".
524 * The list is assumed to contain at least one element.
525 * If the list contains exactly one element, then the returned isl_ast_expr
526 * simply computes that affine expression.
528 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
529 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
531 int i, n;
532 isl_ctx *ctx;
533 isl_ast_expr *expr;
535 if (!list)
536 return NULL;
538 n = isl_pw_aff_list_n_pw_aff(list);
540 if (n == 1)
541 return isl_ast_build_expr_from_pw_aff_internal(build,
542 isl_pw_aff_list_get_pw_aff(list, 0));
544 ctx = isl_pw_aff_list_get_ctx(list);
545 expr = isl_ast_expr_alloc_op(ctx, type, n);
546 if (!expr)
547 return NULL;
549 for (i = 0; i < n; ++i) {
550 isl_ast_expr *expr_i;
552 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
553 isl_pw_aff_list_get_pw_aff(list, i));
554 if (!expr_i)
555 return isl_ast_expr_free(expr);
556 expr->u.op.args[i] = expr_i;
559 return expr;
562 /* Add a guard to "graft" based on "bound" in the case of a degenerate
563 * level (including the special case of an eliminated level).
565 * We eliminate the current dimension, simplify the result in the current
566 * build and add the result as guards to the graft.
568 * Note that we cannot simply drop the constraints on the current dimension
569 * even in the eliminated case, because the single affine expression may
570 * not be explicitly available in "bounds". Moreover, the single affine
571 * expression may only be defined on a subset of the build domain,
572 * so we do in some cases need to insert a guard even in the eliminated case.
574 static __isl_give isl_ast_graft *add_degenerate_guard(
575 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
576 __isl_keep isl_ast_build *build)
578 int depth;
579 isl_set *dom;
581 depth = isl_ast_build_get_depth(build);
583 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
584 if (isl_ast_build_has_stride(build, depth)) {
585 isl_set *stride;
587 stride = isl_ast_build_get_stride_constraint(build);
588 dom = isl_set_intersect(dom, stride);
590 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
591 dom = isl_ast_build_compute_gist(build, dom);
593 graft = isl_ast_graft_add_guard(graft, dom, build);
595 return graft;
598 /* Update "graft" based on "bounds" for the eliminated case.
600 * In the eliminated case, no for node is created, so we only need
601 * to check if "bounds" imply any guards that need to be inserted.
603 static __isl_give isl_ast_graft *refine_eliminated(
604 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
605 __isl_keep isl_ast_build *build)
607 return add_degenerate_guard(graft, bounds, build);
610 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
612 * "build" is the build in which graft->node was created
613 * "sub_build" contains information about the current level itself,
614 * including the single value attained.
616 * We first set the initialization part of the for loop to the single
617 * value attained by the current dimension.
618 * The increment and condition are not strictly needed as the are known
619 * to be "1" and "iterator <= value" respectively.
620 * Then we set the size of the iterator and
621 * check if "bounds" imply any guards that need to be inserted.
623 static __isl_give isl_ast_graft *refine_degenerate(
624 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
625 __isl_keep isl_ast_build *build,
626 __isl_keep isl_ast_build *sub_build)
628 isl_pw_aff *value;
630 if (!graft || !sub_build)
631 return isl_ast_graft_free(graft);
633 value = isl_pw_aff_copy(sub_build->value);
635 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
636 value);
637 if (!graft->node->u.f.init)
638 return isl_ast_graft_free(graft);
640 graft = add_degenerate_guard(graft, bounds, build);
642 return graft;
645 /* Return the intersection of the "n" constraints starting at "constraint"
646 * as a set.
648 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
649 __isl_keep isl_constraint **constraint, int n)
651 int i;
652 isl_basic_set *bset;
654 if (n < 1)
655 isl_die(ctx, isl_error_internal,
656 "expecting at least one constraint", return NULL);
658 bset = isl_basic_set_from_constraint(
659 isl_constraint_copy(constraint[0]));
660 for (i = 1; i < n; ++i) {
661 isl_basic_set *bset_i;
663 bset_i = isl_basic_set_from_constraint(
664 isl_constraint_copy(constraint[i]));
665 bset = isl_basic_set_intersect(bset, bset_i);
668 return isl_set_from_basic_set(bset);
671 /* Compute the constraints on the outer dimensions enforced by
672 * graft->node and add those constraints to graft->enforced,
673 * in case the upper bound is expressed as a set "upper".
675 * In particular, if l(...) is a lower bound in "lower", and
677 * -a i + f(...) >= 0 or a i <= f(...)
679 * is an upper bound ocnstraint on the current dimension i,
680 * then the for loop enforces the constraint
682 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
684 * We therefore simply take each lower bound in turn, plug it into
685 * the upper bounds and compute the intersection over all lower bounds.
687 * If a lower bound is a rational expression, then
688 * isl_basic_set_preimage_multi_aff will force this rational
689 * expression to have only integer values. However, the loop
690 * itself does not enforce this integrality constraint. We therefore
691 * use the ceil of the lower bounds instead of the lower bounds themselves.
692 * Other constraints will make sure that the for loop is only executed
693 * when each of the lower bounds attains an integral value.
694 * In particular, potentially rational values only occur in
695 * lower_bound if the offset is a (seemingly) rational expression,
696 * but then outer conditions will make sure that this rational expression
697 * only attains integer values.
699 static __isl_give isl_ast_graft *set_enforced_from_set(
700 __isl_take isl_ast_graft *graft,
701 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
703 isl_space *space;
704 isl_basic_set *enforced;
705 isl_pw_multi_aff *pma;
706 int i, n;
708 if (!graft || !lower)
709 return isl_ast_graft_free(graft);
711 space = isl_set_get_space(upper);
712 enforced = isl_basic_set_universe(isl_space_copy(space));
714 space = isl_space_map_from_set(space);
715 pma = isl_pw_multi_aff_identity(space);
717 n = isl_pw_aff_list_n_pw_aff(lower);
718 for (i = 0; i < n; ++i) {
719 isl_pw_aff *pa;
720 isl_set *enforced_i;
721 isl_basic_set *hull;
722 isl_pw_multi_aff *pma_i;
724 pa = isl_pw_aff_list_get_pw_aff(lower, i);
725 pa = isl_pw_aff_ceil(pa);
726 pma_i = isl_pw_multi_aff_copy(pma);
727 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
728 enforced_i = isl_set_copy(upper);
729 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
730 hull = isl_set_simple_hull(enforced_i);
731 enforced = isl_basic_set_intersect(enforced, hull);
734 isl_pw_multi_aff_free(pma);
736 graft = isl_ast_graft_enforce(graft, enforced);
738 return graft;
741 /* Compute the constraints on the outer dimensions enforced by
742 * graft->node and add those constraints to graft->enforced,
743 * in case the upper bound is expressed as
744 * a list of affine expressions "upper".
746 * The enforced condition is that each lower bound expression is less
747 * than or equal to each upper bound expression.
749 static __isl_give isl_ast_graft *set_enforced_from_list(
750 __isl_take isl_ast_graft *graft,
751 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
753 isl_set *cond;
754 isl_basic_set *enforced;
756 lower = isl_pw_aff_list_copy(lower);
757 upper = isl_pw_aff_list_copy(upper);
758 cond = isl_pw_aff_list_le_set(lower, upper);
759 enforced = isl_set_simple_hull(cond);
760 graft = isl_ast_graft_enforce(graft, enforced);
762 return graft;
765 /* Does "aff" have a negative constant term?
767 static int aff_constant_is_negative(__isl_take isl_set *set,
768 __isl_take isl_aff *aff, void *user)
770 int *neg = user;
771 isl_int v;
773 isl_int_init(v);
774 isl_aff_get_constant(aff, &v);
775 *neg = isl_int_is_neg(v);
776 isl_int_clear(v);
777 isl_set_free(set);
778 isl_aff_free(aff);
780 return *neg ? 0 : -1;
783 /* Does "pa" have a negative constant term over its entire domain?
785 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
787 int r;
788 int *neg = user;
790 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
791 isl_pw_aff_free(pa);
793 return *neg ? 0 : -1;
796 /* Does each element in "list" have a negative constant term?
798 * The callback terminates the iteration as soon an element has been
799 * found that does not have a negative constant term.
801 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
803 int neg = 1;
805 if (isl_pw_aff_list_foreach(list,
806 &pw_aff_constant_is_negative, &neg) < 0 && neg)
807 return -1;
809 return neg;
812 /* Add 1 to each of the elements in "list", where each of these elements
813 * is defined over the internal schedule space of "build".
815 static __isl_give isl_pw_aff_list *list_add_one(
816 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
818 int i, n;
819 isl_space *space;
820 isl_aff *aff;
821 isl_pw_aff *one;
823 space = isl_ast_build_get_space(build, 1);
824 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
825 aff = isl_aff_add_constant_si(aff, 1);
826 one = isl_pw_aff_from_aff(aff);
828 n = isl_pw_aff_list_n_pw_aff(list);
829 for (i = 0; i < n; ++i) {
830 isl_pw_aff *pa;
831 pa = isl_pw_aff_list_get_pw_aff(list, i);
832 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
833 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
836 isl_pw_aff_free(one);
838 return list;
841 /* Set the condition part of the for node graft->node in case
842 * the upper bound is represented as a list of piecewise affine expressions.
844 * In particular, set the condition to
846 * iterator <= min(list of upper bounds)
848 * If each of the upper bounds has a negative constant term, then
849 * set the condition to
851 * iterator < min(list of (upper bound + 1)s)
854 static __isl_give isl_ast_graft *set_for_cond_from_list(
855 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
856 __isl_keep isl_ast_build *build)
858 int neg;
859 isl_ast_expr *bound, *iterator, *cond;
860 enum isl_ast_op_type type = isl_ast_op_le;
862 if (!graft || !list)
863 return isl_ast_graft_free(graft);
865 neg = list_constant_is_negative(list);
866 if (neg < 0)
867 return isl_ast_graft_free(graft);
868 list = isl_pw_aff_list_copy(list);
869 if (neg) {
870 list = list_add_one(list, build);
871 type = isl_ast_op_lt;
874 bound = reduce_list(isl_ast_op_min, list, build);
875 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
876 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
877 graft->node->u.f.cond = cond;
879 isl_pw_aff_list_free(list);
880 if (!graft->node->u.f.cond)
881 return isl_ast_graft_free(graft);
882 return graft;
885 /* Set the condition part of the for node graft->node in case
886 * the upper bound is represented as a set.
888 static __isl_give isl_ast_graft *set_for_cond_from_set(
889 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
890 __isl_keep isl_ast_build *build)
892 isl_ast_expr *cond;
894 if (!graft)
895 return NULL;
897 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
898 graft->node->u.f.cond = cond;
899 if (!graft->node->u.f.cond)
900 return isl_ast_graft_free(graft);
901 return graft;
904 /* Construct an isl_ast_expr for the increment (i.e., stride) of
905 * the current dimension.
907 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
909 int depth;
910 isl_int v;
911 isl_ctx *ctx;
912 isl_ast_expr *inc;
914 if (!build)
915 return NULL;
916 ctx = isl_ast_build_get_ctx(build);
917 depth = isl_ast_build_get_depth(build);
919 if (!isl_ast_build_has_stride(build, depth))
920 return isl_ast_expr_alloc_int_si(ctx, 1);
922 isl_int_init(v);
923 isl_ast_build_get_stride(build, depth, &v);
924 inc = isl_ast_expr_alloc_int(ctx, v);
925 isl_int_clear(v);
927 return inc;
930 /* Should we express the loop condition as
932 * iterator <= min(list of upper bounds)
934 * or as a conjunction of constraints?
936 * The first is constructed from a list of upper bounds.
937 * The second is constructed from a set.
939 * If there are no upper bounds in "constraints", then this could mean
940 * that "domain" simply doesn't have an upper bound or that we didn't
941 * pick any upper bound. In the first case, we want to generate the
942 * loop condition as a(n empty) conjunction of constraints
943 * In the second case, we will compute
944 * a single upper bound from "domain" and so we use the list form.
946 * If there are upper bounds in "constraints",
947 * then we use the list form iff the atomic_upper_bound option is set.
949 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
950 __isl_keep isl_set *domain, int depth)
952 if (n_upper > 0)
953 return isl_options_get_ast_build_atomic_upper_bound(ctx);
954 else
955 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
958 /* Fill in the expressions of the for node in graft->node.
960 * In particular,
961 * - set the initialization part of the loop to the maximum of the lower bounds
962 * - set the size of the iterator based on the values attained by the iterator
963 * - extract the increment from the stride of the current dimension
964 * - construct the for condition either based on a list of upper bounds
965 * or on a set of upper bound constraints.
967 static __isl_give isl_ast_graft *set_for_node_expressions(
968 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
969 int use_list, __isl_keep isl_pw_aff_list *upper_list,
970 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
972 isl_ast_node *node;
974 if (!graft)
975 return NULL;
977 build = isl_ast_build_copy(build);
978 build = isl_ast_build_set_enforced(build,
979 isl_ast_graft_get_enforced(graft));
981 node = graft->node;
982 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
983 node->u.f.inc = for_inc(build);
985 if (use_list)
986 graft = set_for_cond_from_list(graft, upper_list, build);
987 else
988 graft = set_for_cond_from_set(graft, upper_set, build);
990 isl_ast_build_free(build);
992 if (!node->u.f.iterator || !node->u.f.init ||
993 !node->u.f.cond || !node->u.f.inc)
994 return isl_ast_graft_free(graft);
996 return graft;
999 /* Update "graft" based on "bounds" and "domain" for the generic,
1000 * non-degenerate, case.
1002 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
1003 * that the loop node should express.
1004 * "domain" is the subset of the intersection of the constraints
1005 * for which some code is executed.
1007 * There may be zero lower bounds or zero upper bounds in "constraints"
1008 * in case the list of constraints was created
1009 * based on the atomic option or based on separation with explicit bounds.
1010 * In that case, we use "domain" to derive lower and/or upper bounds.
1012 * We first compute a list of one or more lower bounds.
1014 * Then we decide if we want to express the condition as
1016 * iterator <= min(list of upper bounds)
1018 * or as a conjunction of constraints.
1020 * The set of enforced constraints is then computed either based on
1021 * a list of upper bounds or on a set of upper bound constraints.
1022 * We do not compute any enforced constraints if we were forced
1023 * to compute a lower or upper bound using exact_bound. The domains
1024 * of the resulting expressions may imply some bounds on outer dimensions
1025 * that we do not want to appear in the enforced constraints since
1026 * they are not actually enforced by the corresponding code.
1028 * Finally, we fill in the expressions of the for node.
1030 static __isl_give isl_ast_graft *refine_generic_bounds(
1031 __isl_take isl_ast_graft *graft,
1032 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
1033 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1035 int depth;
1036 isl_ctx *ctx;
1037 isl_pw_aff_list *lower;
1038 int use_list;
1039 isl_set *upper_set = NULL;
1040 isl_pw_aff_list *upper_list = NULL;
1042 if (!graft || !build)
1043 return isl_ast_graft_free(graft);
1045 depth = isl_ast_build_get_depth(build);
1046 ctx = isl_ast_graft_get_ctx(graft);
1048 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1050 lower = lower_bounds(constraint, n_lower, depth, domain, build);
1052 if (use_list)
1053 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
1054 domain, build);
1055 else if (n_upper > 0)
1056 upper_set = intersect_constraints(ctx, constraint + n_lower,
1057 n_upper);
1058 else
1059 upper_set = isl_set_universe(isl_set_get_space(domain));
1061 if (n_lower == 0 || n_upper == 0)
1063 else if (use_list)
1064 graft = set_enforced_from_list(graft, lower, upper_list);
1065 else
1066 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1068 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1069 upper_set, build);
1071 isl_pw_aff_list_free(lower);
1072 isl_pw_aff_list_free(upper_list);
1073 isl_set_free(upper_set);
1075 return graft;
1078 /* How many constraints in the "constraint" array, starting at position "first"
1079 * are of the give type? "n" represents the total number of elements
1080 * in the array.
1082 static int count_constraints(isl_constraint **constraint, int n, int first,
1083 int pos, int type)
1085 int i;
1087 constraint += first;
1089 for (i = 0; first + i < n; i++)
1090 if (constraint_type(constraint[i], pos) != type)
1091 break;
1093 return i;
1096 /* Update "graft" based on "bounds" and "domain" for the generic,
1097 * non-degenerate, case.
1099 * "list" respresent the list of bounds that need to be encoded by
1100 * the for loop (or a guard around the for loop).
1101 * "domain" is the subset of the intersection of the constraints
1102 * for which some code is executed.
1103 * "build" is the build in which graft->node was created.
1105 * We separate lower bounds, upper bounds and constraints that
1106 * are independent of the loop iterator.
1108 * The actual for loop bounds are generated in refine_generic_bounds.
1109 * If there are any constraints that are independent of the loop iterator,
1110 * we need to put a guard around the for loop (which may get hoisted up
1111 * to higher levels) and we call refine_generic_bounds in a build
1112 * where this guard is enforced.
1114 static __isl_give isl_ast_graft *refine_generic_split(
1115 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
1116 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1118 isl_ctx *ctx;
1119 isl_ast_build *for_build;
1120 isl_set *guard;
1121 int n_indep, n_lower, n_upper;
1122 int pos;
1123 int n;
1125 if (!list)
1126 return isl_ast_graft_free(graft);
1128 pos = isl_ast_build_get_depth(build);
1130 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
1131 &cmp_constraint, &pos) < 0)
1132 return isl_ast_graft_free(graft);
1134 n = list->n;
1135 n_indep = count_constraints(list->p, n, 0, pos, 0);
1136 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
1137 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
1139 if (n_indep == 0)
1140 return refine_generic_bounds(graft,
1141 list->p + n_indep, n_lower, n_upper, domain, build);
1143 ctx = isl_ast_graft_get_ctx(graft);
1144 guard = intersect_constraints(ctx, list->p, n_indep);
1146 for_build = isl_ast_build_copy(build);
1147 for_build = isl_ast_build_restrict_pending(for_build,
1148 isl_set_copy(guard));
1149 graft = refine_generic_bounds(graft,
1150 list->p + n_indep, n_lower, n_upper, domain, for_build);
1151 isl_ast_build_free(for_build);
1153 graft = isl_ast_graft_add_guard(graft, guard, build);
1155 return graft;
1158 /* Update "graft" based on "bounds" and "domain" for the generic,
1159 * non-degenerate, case.
1161 * "bounds" respresent the bounds that need to be encoded by
1162 * the for loop (or a guard around the for loop).
1163 * "domain" is the subset of "bounds" for which some code is executed.
1164 * "build" is the build in which graft->node was created.
1166 * We break up "bounds" into a list of constraints and continue with
1167 * refine_generic_split.
1169 static __isl_give isl_ast_graft *refine_generic(
1170 __isl_take isl_ast_graft *graft,
1171 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1172 __isl_keep isl_ast_build *build)
1174 isl_constraint_list *list;
1176 if (!build || !graft)
1177 return isl_ast_graft_free(graft);
1179 bounds = isl_basic_set_copy(bounds);
1180 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1181 list = isl_constraint_list_from_basic_set(bounds);
1183 graft = refine_generic_split(graft, list, domain, build);
1185 isl_constraint_list_free(list);
1186 return graft;
1189 /* Create a for node for the current level.
1191 * Mark the for node degenerate if "degenerate" is set.
1193 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1194 int degenerate)
1196 int depth;
1197 isl_id *id;
1198 isl_ast_node *node;
1200 if (!build)
1201 return NULL;
1203 depth = isl_ast_build_get_depth(build);
1204 id = isl_ast_build_get_iterator_id(build, depth);
1205 node = isl_ast_node_alloc_for(id);
1206 if (degenerate)
1207 node = isl_ast_node_for_mark_degenerate(node);
1209 return node;
1212 /* Create an AST node for the current dimension based on
1213 * the schedule domain "bounds" and return the node encapsulated
1214 * in an isl_ast_graft.
1216 * "executed" is the current inverse schedule, taking into account
1217 * the bounds in "bounds"
1218 * "domain" is the domain of "executed", with inner dimensions projected out.
1219 * It may be a strict subset of "bounds" in case "bounds" was created
1220 * based on the atomic option or based on separation with explicit bounds.
1222 * "domain" may satisfy additional equalities that result
1223 * from intersecting "executed" with "bounds" in add_node.
1224 * It may also satisfy some global constraints that were dropped out because
1225 * we performed separation with explicit bounds.
1226 * The very first step is then to copy these constraints to "bounds".
1228 * Since we may be calling before_each_for and after_each_for
1229 * callbacks, we record the current inverse schedule in the build.
1231 * We consider three builds,
1232 * "build" is the one in which the current level is created,
1233 * "body_build" is the build in which the next level is created,
1234 * "sub_build" is essentially the same as "body_build", except that
1235 * the depth has not been increased yet.
1237 * "build" already contains information (in strides and offsets)
1238 * about the strides at the current level, but this information is not
1239 * reflected in the build->domain.
1240 * We first add this information and the "bounds" to the sub_build->domain.
1241 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1242 * only a single value and whether this single value can be represented using
1243 * a single affine expression.
1244 * In the first case, the current level is considered "degenerate".
1245 * In the second, sub-case, the current level is considered "eliminated".
1246 * Eliminated level don't need to be reflected in the AST since we can
1247 * simply plug in the affine expression. For degenerate, but non-eliminated,
1248 * levels, we do introduce a for node, but mark is as degenerate so that
1249 * it can be printed as an assignment of the single value to the loop
1250 * "iterator".
1252 * If the current level is eliminated, we eliminate the current dimension
1253 * from the inverse schedule to make sure no inner dimensions depend
1254 * on the current dimension. Otherwise, we create a for node, marking
1255 * it degenerate if appropriate. The initial for node is still incomplete
1256 * and will be completed in either refine_degenerate or refine_generic.
1258 * We then generate a sequence of grafts for the next level,
1259 * create a surrounding graft for the current level and insert
1260 * the for node we created (if the current level is not eliminated).
1262 * Finally, we set the bounds of the for loop and insert guards
1263 * (either in the AST or in the graft) in one of
1264 * refine_eliminated, refine_degenerate or refine_generic.
1266 static __isl_give isl_ast_graft *create_node_scaled(
1267 __isl_take isl_union_map *executed,
1268 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1269 __isl_take isl_ast_build *build)
1271 int depth;
1272 int degenerate, eliminated;
1273 isl_basic_set *hull;
1274 isl_ast_node *node = NULL;
1275 isl_ast_graft *graft;
1276 isl_ast_graft_list *children;
1277 isl_ast_build *sub_build;
1278 isl_ast_build *body_build;
1280 domain = isl_ast_build_eliminate_divs(build, domain);
1281 domain = isl_set_detect_equalities(domain);
1282 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1283 bounds = isl_basic_set_intersect(bounds, hull);
1284 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1286 depth = isl_ast_build_get_depth(build);
1287 sub_build = isl_ast_build_copy(build);
1288 sub_build = isl_ast_build_include_stride(sub_build);
1289 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1290 isl_basic_set_copy(bounds));
1291 degenerate = isl_ast_build_has_value(sub_build);
1292 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1293 if (degenerate < 0 || eliminated < 0)
1294 executed = isl_union_map_free(executed);
1295 if (eliminated)
1296 executed = eliminate(executed, depth, build);
1297 else
1298 node = create_for(build, degenerate);
1300 body_build = isl_ast_build_copy(sub_build);
1301 body_build = isl_ast_build_increase_depth(body_build);
1302 if (!eliminated)
1303 node = before_each_for(node, body_build);
1304 children = generate_next_level(executed,
1305 isl_ast_build_copy(body_build));
1307 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1308 if (!eliminated)
1309 graft = isl_ast_graft_insert_for(graft, node);
1310 if (eliminated)
1311 graft = refine_eliminated(graft, bounds, build);
1312 else if (degenerate)
1313 graft = refine_degenerate(graft, bounds, build, sub_build);
1314 else
1315 graft = refine_generic(graft, bounds, domain, build);
1316 if (!eliminated)
1317 graft = after_each_for(graft, body_build);
1319 isl_ast_build_free(body_build);
1320 isl_ast_build_free(sub_build);
1321 isl_ast_build_free(build);
1322 isl_basic_set_free(bounds);
1323 isl_set_free(domain);
1325 return graft;
1328 /* Internal data structure for checking if all constraints involving
1329 * the input dimension "depth" are such that the other coefficients
1330 * are multiples of "m", reducing "m" if they are not.
1331 * If "m" is reduced all the way down to "1", then the check has failed
1332 * and we break out of the iteration.
1333 * "d" is an initialized isl_int that can be used internally.
1335 struct isl_check_scaled_data {
1336 int depth;
1337 isl_int m, d;
1340 /* If constraint "c" involves the input dimension data->depth,
1341 * then make sure that all the other coefficients are multiples of data->m,
1342 * reducing data->m if needed.
1343 * Break out of the iteration if data->m has become equal to "1".
1345 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1347 struct isl_check_scaled_data *data = user;
1348 int i, j, n;
1349 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1350 isl_dim_div };
1352 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1353 isl_constraint_free(c);
1354 return 0;
1357 for (i = 0; i < 4; ++i) {
1358 n = isl_constraint_dim(c, t[i]);
1359 for (j = 0; j < n; ++j) {
1360 if (t[i] == isl_dim_in && j == data->depth)
1361 continue;
1362 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1363 continue;
1364 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1365 isl_int_gcd(data->m, data->m, data->d);
1366 if (isl_int_is_one(data->m))
1367 break;
1369 if (j < n)
1370 break;
1373 isl_constraint_free(c);
1375 return i < 4 ? -1 : 0;
1378 /* For each constraint of "bmap" that involves the input dimension data->depth,
1379 * make sure that all the other coefficients are multiples of data->m,
1380 * reducing data->m if needed.
1381 * Break out of the iteration if data->m has become equal to "1".
1383 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1385 int r;
1387 r = isl_basic_map_foreach_constraint(bmap,
1388 &constraint_check_scaled, user);
1389 isl_basic_map_free(bmap);
1391 return r;
1394 /* For each constraint of "map" that involves the input dimension data->depth,
1395 * make sure that all the other coefficients are multiples of data->m,
1396 * reducing data->m if needed.
1397 * Break out of the iteration if data->m has become equal to "1".
1399 static int map_check_scaled(__isl_take isl_map *map, void *user)
1401 int r;
1403 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1404 isl_map_free(map);
1406 return r;
1409 /* Create an AST node for the current dimension based on
1410 * the schedule domain "bounds" and return the node encapsulated
1411 * in an isl_ast_graft.
1413 * "executed" is the current inverse schedule, taking into account
1414 * the bounds in "bounds"
1415 * "domain" is the domain of "executed", with inner dimensions projected out.
1418 * Before moving on to the actual AST node construction in create_node_scaled,
1419 * we first check if the current dimension is strided and if we can scale
1420 * down this stride. Note that we only do this if the ast_build_scale_strides
1421 * option is set.
1423 * In particular, let the current dimension take on values
1425 * f + s a
1427 * with a an integer. We check if we can find an integer m that (obviouly)
1428 * divides both f and s.
1430 * If so, we check if the current dimension only appears in constraints
1431 * where the coefficients of the other variables are multiples of m.
1432 * We perform this extra check to avoid the risk of introducing
1433 * divisions by scaling down the current dimension.
1435 * If so, we scale the current dimension down by a factor of m.
1436 * That is, we plug in
1438 * i = m i' (1)
1440 * Note that in principle we could always scale down strided loops
1441 * by plugging in
1443 * i = f + s i'
1445 * but this may result in i' taking on larger values than the original i,
1446 * due to the shift by "f".
1447 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1449 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1450 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1451 __isl_take isl_ast_build *build)
1453 struct isl_check_scaled_data data;
1454 isl_ctx *ctx;
1455 isl_aff *offset;
1457 ctx = isl_ast_build_get_ctx(build);
1458 if (!isl_options_get_ast_build_scale_strides(ctx))
1459 return create_node_scaled(executed, bounds, domain, build);
1461 data.depth = isl_ast_build_get_depth(build);
1462 if (!isl_ast_build_has_stride(build, data.depth))
1463 return create_node_scaled(executed, bounds, domain, build);
1465 isl_int_init(data.m);
1466 isl_int_init(data.d);
1468 offset = isl_ast_build_get_offset(build, data.depth);
1469 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1470 offset = isl_aff_free(offset);
1471 offset = isl_aff_scale_down(offset, data.m);
1472 if (isl_aff_get_denominator(offset, &data.d) < 0)
1473 executed = isl_union_map_free(executed);
1475 if (executed && isl_int_is_divisible_by(data.m, data.d))
1476 isl_int_divexact(data.m, data.m, data.d);
1477 else
1478 isl_int_set_si(data.m, 1);
1480 if (!isl_int_is_one(data.m)) {
1481 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1482 &data) < 0 &&
1483 !isl_int_is_one(data.m))
1484 executed = isl_union_map_free(executed);
1487 if (!isl_int_is_one(data.m)) {
1488 isl_space *space;
1489 isl_multi_aff *ma;
1490 isl_aff *aff;
1491 isl_map *map;
1492 isl_union_map *umap;
1494 space = isl_ast_build_get_space(build, 1);
1495 space = isl_space_map_from_set(space);
1496 ma = isl_multi_aff_identity(space);
1497 aff = isl_multi_aff_get_aff(ma, data.depth);
1498 aff = isl_aff_scale(aff, data.m);
1499 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1501 bounds = isl_basic_set_preimage_multi_aff(bounds,
1502 isl_multi_aff_copy(ma));
1503 domain = isl_set_preimage_multi_aff(domain,
1504 isl_multi_aff_copy(ma));
1505 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1506 umap = isl_union_map_from_map(map);
1507 executed = isl_union_map_apply_domain(executed,
1508 isl_union_map_copy(umap));
1509 build = isl_ast_build_scale_down(build, data.m, umap);
1511 isl_aff_free(offset);
1513 isl_int_clear(data.d);
1514 isl_int_clear(data.m);
1516 return create_node_scaled(executed, bounds, domain, build);
1519 /* Add the basic set to the list that "user" points to.
1521 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1523 isl_basic_set_list **list = user;
1525 *list = isl_basic_set_list_add(*list, bset);
1527 return 0;
1530 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1532 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1533 __isl_take isl_set *set)
1535 int n;
1536 isl_ctx *ctx;
1537 isl_basic_set_list *list;
1539 if (!set)
1540 return NULL;
1542 ctx = isl_set_get_ctx(set);
1544 n = isl_set_n_basic_set(set);
1545 list = isl_basic_set_list_alloc(ctx, n);
1546 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1547 list = isl_basic_set_list_free(list);
1549 isl_set_free(set);
1550 return list;
1553 /* Generate code for the schedule domain "bounds"
1554 * and add the result to "list".
1556 * We mainly detect strides and additional equalities here
1557 * and then pass over control to create_node.
1559 * "bounds" reflects the bounds on the current dimension and possibly
1560 * some extra conditions on outer dimensions.
1561 * It does not, however, include any divs involving the current dimension,
1562 * so it does not capture any stride constraints.
1563 * We therefore need to compute that part of the schedule domain that
1564 * intersects with "bounds" and derive the strides from the result.
1566 static __isl_give isl_ast_graft_list *add_node(
1567 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1568 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1570 isl_ast_graft *graft;
1571 isl_set *domain = NULL;
1572 isl_union_set *uset;
1573 int empty;
1575 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1576 executed = isl_union_map_intersect_domain(executed, uset);
1577 empty = isl_union_map_is_empty(executed);
1578 if (empty < 0)
1579 goto error;
1580 if (empty)
1581 goto done;
1583 uset = isl_union_map_domain(isl_union_map_copy(executed));
1584 domain = isl_set_from_union_set(uset);
1585 domain = isl_ast_build_compute_gist(build, domain);
1586 empty = isl_set_is_empty(domain);
1587 if (empty < 0)
1588 goto error;
1589 if (empty)
1590 goto done;
1592 domain = isl_ast_build_eliminate_inner(build, domain);
1593 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1595 graft = create_node(executed, bounds, domain,
1596 isl_ast_build_copy(build));
1597 list = isl_ast_graft_list_add(list, graft);
1598 isl_ast_build_free(build);
1599 return list;
1600 error:
1601 list = isl_ast_graft_list_free(list);
1602 done:
1603 isl_set_free(domain);
1604 isl_basic_set_free(bounds);
1605 isl_union_map_free(executed);
1606 isl_ast_build_free(build);
1607 return list;
1610 struct isl_domain_follows_at_depth_data {
1611 int depth;
1612 isl_basic_set **piece;
1615 /* Does any element of i follow or coincide with any element of j
1616 * at the current depth (data->depth) for equal values of the outer
1617 * dimensions?
1619 static int domain_follows_at_depth(int i, int j, void *user)
1621 struct isl_domain_follows_at_depth_data *data = user;
1622 isl_basic_map *test;
1623 int empty;
1624 int l;
1626 test = isl_basic_map_from_domain_and_range(
1627 isl_basic_set_copy(data->piece[i]),
1628 isl_basic_set_copy(data->piece[j]));
1629 for (l = 0; l < data->depth; ++l)
1630 test = isl_basic_map_equate(test, isl_dim_in, l,
1631 isl_dim_out, l);
1632 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1633 isl_dim_out, data->depth);
1634 empty = isl_basic_map_is_empty(test);
1635 isl_basic_map_free(test);
1637 return empty < 0 ? -1 : !empty;
1640 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1641 __isl_keep isl_basic_set_list *domain_list,
1642 __isl_keep isl_union_map *executed,
1643 __isl_keep isl_ast_build *build);
1645 /* Generate code for the "n" schedule domains in "domain_list"
1646 * with positions specified by the entries of the "pos" array
1647 * and add the results to "list".
1649 * The "n" domains form a strongly connected component in the ordering.
1650 * If n is larger than 1, then this means that we cannot determine a valid
1651 * ordering for the n domains in the component. This should be fairly
1652 * rare because the individual domains have been made disjoint first.
1653 * The problem is that the domains may be integrally disjoint but not
1654 * rationally disjoint. For example, we may have domains
1656 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1658 * These two domains have an empty intersection, but their rational
1659 * relaxations do intersect. It is impossible to order these domains
1660 * in the second dimension because the first should be ordered before
1661 * the second for outer dimension equal to 0, while it should be ordered
1662 * after for outer dimension equal to 1.
1664 * This may happen in particular in case of unrolling since the domain
1665 * of each slice is replaced by its simple hull.
1667 * We collect the basic sets in the component, call isl_set_make_disjoint
1668 * and try again. Note that we rely here on isl_set_make_disjoint also
1669 * making the basic sets rationally disjoint. If the basic sets
1670 * are rationally disjoint, then the ordering problem does not occur.
1671 * To see this, there can only be a problem if there are points
1672 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1673 * a < c and b > d. This means that either the interval spanned
1674 * by a en b lies inside that spanned by c and or the other way around.
1675 * In either case, there is a point inside both intervals with the
1676 * convex combination in terms of a and b and in terms of c and d.
1677 * Taking the same combination of i and j gives a point in the intersection.
1679 static __isl_give isl_ast_graft_list *add_nodes(
1680 __isl_take isl_ast_graft_list *list, int *pos, int n,
1681 __isl_keep isl_basic_set_list *domain_list,
1682 __isl_keep isl_union_map *executed,
1683 __isl_keep isl_ast_build *build)
1685 int i;
1686 isl_basic_set *bset;
1687 isl_set *set;
1689 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1690 if (n == 1)
1691 return add_node(list, isl_union_map_copy(executed), bset,
1692 isl_ast_build_copy(build));
1694 set = isl_set_from_basic_set(bset);
1695 for (i = 1; i < n; ++i) {
1696 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1697 set = isl_set_union(set, isl_set_from_basic_set(bset));
1700 set = isl_set_make_disjoint(set);
1701 if (isl_set_n_basic_set(set) == n)
1702 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1703 "unable to separate loop parts", goto error);
1704 domain_list = isl_basic_set_list_from_set(set);
1705 list = isl_ast_graft_list_concat(list,
1706 generate_sorted_domains(domain_list, executed, build));
1707 isl_basic_set_list_free(domain_list);
1709 return list;
1710 error:
1711 isl_set_free(set);
1712 return isl_ast_graft_list_free(list);
1715 /* Sort the domains in "domain_list" according to the execution order
1716 * at the current depth (for equal values of the outer dimensions),
1717 * generate code for each of them, collecting the results in a list.
1718 * If no code is generated (because the intersection of the inverse schedule
1719 * with the domains turns out to be empty), then an empty list is returned.
1721 * The caller is responsible for ensuring that the basic sets in "domain_list"
1722 * are pair-wise disjoint. It can, however, in principle happen that
1723 * two basic sets should be ordered one way for one value of the outer
1724 * dimensions and the other way for some other value of the outer dimensions.
1725 * We therefore play safe and look for strongly connected components.
1726 * The function add_nodes takes care of handling non-trivial components.
1728 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1729 __isl_keep isl_basic_set_list *domain_list,
1730 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1732 isl_ctx *ctx;
1733 isl_ast_graft_list *list;
1734 struct isl_domain_follows_at_depth_data data;
1735 struct isl_tarjan_graph *g;
1736 int i, n;
1738 if (!domain_list)
1739 return NULL;
1741 ctx = isl_basic_set_list_get_ctx(domain_list);
1742 n = isl_basic_set_list_n_basic_set(domain_list);
1743 list = isl_ast_graft_list_alloc(ctx, n);
1744 if (n == 0)
1745 return list;
1746 if (n == 1)
1747 return add_node(list, isl_union_map_copy(executed),
1748 isl_basic_set_list_get_basic_set(domain_list, 0),
1749 isl_ast_build_copy(build));
1751 data.depth = isl_ast_build_get_depth(build);
1752 data.piece = domain_list->p;
1753 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1754 if (!g)
1755 goto error;
1757 i = 0;
1758 while (list && n) {
1759 int first;
1761 if (g->order[i] == -1)
1762 isl_die(ctx, isl_error_internal, "cannot happen",
1763 goto error);
1764 first = i;
1765 while (g->order[i] != -1) {
1766 ++i; --n;
1768 list = add_nodes(list, g->order + first, i - first,
1769 domain_list, executed, build);
1770 ++i;
1773 if (0)
1774 error: list = isl_ast_graft_list_free(list);
1775 isl_tarjan_graph_free(g);
1777 return list;
1780 struct isl_shared_outer_data {
1781 int depth;
1782 isl_basic_set **piece;
1785 /* Do elements i and j share any values for the outer dimensions?
1787 static int shared_outer(int i, int j, void *user)
1789 struct isl_shared_outer_data *data = user;
1790 isl_basic_map *test;
1791 int empty;
1792 int l;
1794 test = isl_basic_map_from_domain_and_range(
1795 isl_basic_set_copy(data->piece[i]),
1796 isl_basic_set_copy(data->piece[j]));
1797 for (l = 0; l < data->depth; ++l)
1798 test = isl_basic_map_equate(test, isl_dim_in, l,
1799 isl_dim_out, l);
1800 empty = isl_basic_map_is_empty(test);
1801 isl_basic_map_free(test);
1803 return empty < 0 ? -1 : !empty;
1806 /* Call generate_sorted_domains on a list containing the elements
1807 * of "domain_list indexed by the first "n" elements of "pos".
1809 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1810 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1811 __isl_keep isl_union_map *executed,
1812 __isl_keep isl_ast_build *build)
1814 int i;
1815 isl_ctx *ctx;
1816 isl_basic_set_list *slice;
1817 isl_ast_graft_list *list;
1819 ctx = isl_ast_build_get_ctx(build);
1820 slice = isl_basic_set_list_alloc(ctx, n);
1821 for (i = 0; i < n; ++i) {
1822 isl_basic_set *bset;
1824 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1825 slice = isl_basic_set_list_add(slice, bset);
1828 list = generate_sorted_domains(slice, executed, build);
1829 isl_basic_set_list_free(slice);
1831 return list;
1834 /* Look for any (weakly connected) components in the "domain_list"
1835 * of domains that share some values of the outer dimensions.
1836 * That is, domains in different components do not share any values
1837 * of the outer dimensions. This means that these components
1838 * can be freely reorderd.
1839 * Within each of the components, we sort the domains according
1840 * to the execution order at the current depth.
1842 * We fuse the result of each call to generate_sorted_domains_part
1843 * into a list with either zero or one graft and collect these (at most)
1844 * single element lists into a bigger list. This means that the elements of the
1845 * final list can be freely reordered. In particular, we sort them
1846 * according to an arbitrary but fixed ordering to ease merging of
1847 * graft lists from different components.
1849 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1850 __isl_keep isl_basic_set_list *domain_list,
1851 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1853 int i, n;
1854 isl_ctx *ctx;
1855 isl_ast_graft_list *list;
1856 struct isl_shared_outer_data data;
1857 struct isl_tarjan_graph *g;
1859 if (!domain_list)
1860 return NULL;
1862 n = isl_basic_set_list_n_basic_set(domain_list);
1863 if (n <= 1)
1864 return generate_sorted_domains(domain_list, executed, build);
1866 ctx = isl_basic_set_list_get_ctx(domain_list);
1868 data.depth = isl_ast_build_get_depth(build);
1869 data.piece = domain_list->p;
1870 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1871 if (!g)
1872 return NULL;
1874 i = 0;
1875 do {
1876 int first;
1877 isl_ast_graft_list *list_c;
1879 if (g->order[i] == -1)
1880 isl_die(ctx, isl_error_internal, "cannot happen",
1881 break);
1882 first = i;
1883 while (g->order[i] != -1) {
1884 ++i; --n;
1886 if (first == 0 && n == 0) {
1887 isl_tarjan_graph_free(g);
1888 return generate_sorted_domains(domain_list,
1889 executed, build);
1891 list_c = generate_sorted_domains_part(domain_list,
1892 g->order + first, i - first, executed, build);
1893 list_c = isl_ast_graft_list_fuse(list_c, build);
1894 if (first == 0)
1895 list = list_c;
1896 else
1897 list = isl_ast_graft_list_concat(list, list_c);
1898 ++i;
1899 } while (list && n);
1901 if (n > 0)
1902 list = isl_ast_graft_list_free(list);
1904 list = isl_ast_graft_list_sort(list);
1906 isl_tarjan_graph_free(g);
1908 return list;
1911 /* Internal data for separate_domain.
1913 * "explicit" is set if we only want to use explicit bounds.
1915 * "domain" collects the separated domains.
1917 struct isl_separate_domain_data {
1918 isl_ast_build *build;
1919 int explicit;
1920 isl_set *domain;
1923 /* Extract implicit bounds on the current dimension for the executed "map".
1925 * The domain of "map" may involve inner dimensions, so we
1926 * need to eliminate them.
1928 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1929 __isl_keep isl_ast_build *build)
1931 isl_set *domain;
1933 domain = isl_map_domain(map);
1934 domain = isl_ast_build_eliminate(build, domain);
1936 return domain;
1939 /* Extract explicit bounds on the current dimension for the executed "map".
1941 * Rather than eliminating the inner dimensions as in implicit_bounds,
1942 * we simply drop any constraints involving those inner dimensions.
1943 * The idea is that most bounds that are implied by constraints on the
1944 * inner dimensions will be enforced by for loops and not by explicit guards.
1945 * There is then no need to separate along those bounds.
1947 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1948 __isl_keep isl_ast_build *build)
1950 isl_set *domain;
1951 int depth, dim;
1953 dim = isl_map_dim(map, isl_dim_out);
1954 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1956 domain = isl_map_domain(map);
1957 depth = isl_ast_build_get_depth(build);
1958 dim = isl_set_dim(domain, isl_dim_set);
1959 domain = isl_set_detect_equalities(domain);
1960 domain = isl_set_drop_constraints_involving_dims(domain,
1961 isl_dim_set, depth + 1, dim - (depth + 1));
1962 domain = isl_set_remove_divs_involving_dims(domain,
1963 isl_dim_set, depth, 1);
1964 domain = isl_set_remove_unknown_divs(domain);
1966 return domain;
1969 /* Split data->domain into pieces that intersect with the range of "map"
1970 * and pieces that do not intersect with the range of "map"
1971 * and then add that part of the range of "map" that does not intersect
1972 * with data->domain.
1974 static int separate_domain(__isl_take isl_map *map, void *user)
1976 struct isl_separate_domain_data *data = user;
1977 isl_set *domain;
1978 isl_set *d1, *d2;
1980 if (data->explicit)
1981 domain = explicit_bounds(map, data->build);
1982 else
1983 domain = implicit_bounds(map, data->build);
1985 domain = isl_set_coalesce(domain);
1986 domain = isl_set_make_disjoint(domain);
1987 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
1988 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
1989 data->domain = isl_set_intersect(data->domain, domain);
1990 data->domain = isl_set_union(data->domain, d1);
1991 data->domain = isl_set_union(data->domain, d2);
1993 return 0;
1996 /* Separate the schedule domains of "executed".
1998 * That is, break up the domain of "executed" into basic sets,
1999 * such that for each basic set S, every element in S is associated with
2000 * the same domain spaces.
2002 * "space" is the (single) domain space of "executed".
2004 static __isl_give isl_set *separate_schedule_domains(
2005 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2006 __isl_keep isl_ast_build *build)
2008 struct isl_separate_domain_data data = { build };
2009 isl_ctx *ctx;
2011 ctx = isl_ast_build_get_ctx(build);
2012 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2013 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2014 data.domain = isl_set_empty(space);
2015 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2016 data.domain = isl_set_free(data.domain);
2018 isl_union_map_free(executed);
2019 return data.domain;
2022 /* Temporary data used during the search for a lower bound for unrolling.
2024 * "domain" is the original set for which to find a lower bound
2025 * "depth" is the dimension for which to find a lower boudn
2027 * "lower" is the best lower bound found so far. It is NULL if we have not
2028 * found any yet.
2029 * "n" is the corresponding size. If lower is NULL, then the value of n
2030 * is undefined.
2032 * "tmp" is a temporary initialized isl_int.
2034 struct isl_find_unroll_data {
2035 isl_set *domain;
2036 int depth;
2038 isl_aff *lower;
2039 int *n;
2040 isl_int tmp;
2043 /* Check if we can use "c" as a lower bound and if it is better than
2044 * any previously found lower bound.
2046 * If "c" does not involve the dimension at the current depth,
2047 * then we cannot use it.
2048 * Otherwise, let "c" be of the form
2050 * i >= f(j)/a
2052 * We compute the maximal value of
2054 * -ceil(f(j)/a)) + i + 1
2056 * over the domain. If there is such a value "n", then we know
2058 * -ceil(f(j)/a)) + i + 1 <= n
2060 * or
2062 * i < ceil(f(j)/a)) + n
2064 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2065 * We just need to check if we have found any lower bound before and
2066 * if the new lower bound is better (smaller n) than the previously found
2067 * lower bounds.
2069 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2070 __isl_keep isl_constraint *c)
2072 isl_aff *aff, *lower;
2073 enum isl_lp_result res;
2075 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2076 return 0;
2078 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2079 lower = isl_aff_ceil(lower);
2080 aff = isl_aff_copy(lower);
2081 aff = isl_aff_neg(aff);
2082 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2083 aff = isl_aff_add_constant_si(aff, 1);
2084 res = isl_set_max(data->domain, aff, &data->tmp);
2085 isl_aff_free(aff);
2087 if (res == isl_lp_error)
2088 goto error;
2089 if (res == isl_lp_unbounded) {
2090 isl_aff_free(lower);
2091 return 0;
2094 if (isl_int_cmp_si(data->tmp, INT_MAX) <= 0 &&
2095 (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0)) {
2096 isl_aff_free(data->lower);
2097 data->lower = lower;
2098 *data->n = isl_int_get_si(data->tmp);
2099 } else
2100 isl_aff_free(lower);
2102 return 1;
2103 error:
2104 isl_aff_free(lower);
2105 return -1;
2108 /* Check if we can use "c" as a lower bound and if it is better than
2109 * any previously found lower bound.
2111 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2113 struct isl_find_unroll_data *data;
2114 int r;
2116 data = (struct isl_find_unroll_data *) user;
2117 r = update_unrolling_lower_bound(data, c);
2118 isl_constraint_free(c);
2120 return r;
2123 /* Look for a lower bound l(i) on the dimension at "depth"
2124 * and a size n such that "domain" is a subset of
2126 * { [i] : l(i) <= i_d < l(i) + n }
2128 * where d is "depth" and l(i) depends only on earlier dimensions.
2129 * Furthermore, try and find a lower bound such that n is as small as possible.
2130 * In particular, "n" needs to be finite.
2132 * Inner dimensions have been eliminated from "domain" by the caller.
2134 * We first construct a collection of lower bounds on the input set
2135 * by computing its simple hull. We then iterate through them,
2136 * discarding those that we cannot use (either because they do not
2137 * involve the dimension at "depth" or because they have no corresponding
2138 * upper bound, meaning that "n" would be unbounded) and pick out the
2139 * best from the remaining ones.
2141 * If we cannot find a suitable lower bound, then we consider that
2142 * to be an error.
2144 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2145 int depth, int *n)
2147 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2148 isl_basic_set *hull;
2150 isl_int_init(data.tmp);
2151 hull = isl_set_simple_hull(isl_set_copy(domain));
2153 if (isl_basic_set_foreach_constraint(hull,
2154 &constraint_find_unroll, &data) < 0)
2155 goto error;
2157 isl_basic_set_free(hull);
2158 isl_int_clear(data.tmp);
2160 if (!data.lower)
2161 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2162 "cannot find lower bound for unrolling", return NULL);
2164 return data.lower;
2165 error:
2166 isl_basic_set_free(hull);
2167 isl_int_clear(data.tmp);
2168 return isl_aff_free(data.lower);
2171 /* Return the constraint
2173 * i_"depth" = aff + offset
2175 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2176 int offset)
2178 aff = isl_aff_copy(aff);
2179 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2180 aff = isl_aff_add_constant_si(aff, offset);
2181 return isl_equality_from_aff(aff);
2184 /* Return a list of basic sets, one for each value of the current dimension
2185 * in "domain".
2186 * The divs that involve the current dimension have not been projected out
2187 * from this domain.
2189 * Since we are going to be iterating over the individual values,
2190 * we first check if there are any strides on the current dimension.
2191 * If there is, we rewrite the current dimension i as
2193 * i = stride i' + offset
2195 * and then iterate over individual values of i' instead.
2197 * We then look for a lower bound on i' and a size such that the domain
2198 * is a subset of
2200 * { [j,i'] : l(j) <= i' < l(j) + n }
2202 * and then take slices of the domain at values of i'
2203 * between l(j) and l(j) + n - 1.
2205 * We compute the unshifted simple hull of each slice to ensure that
2206 * we have a single basic set per offset. The slicing constraint
2207 * may get simplified away before the unshifted simple hull is taken
2208 * and may therefore in some rare cases disappear from the result.
2209 * We therefore explicitly add the constraint back after computing
2210 * the unshifted simple hull to ensure that the basic sets
2211 * remain disjoint. The constraints that are dropped by taking the hull
2212 * will be taken into account at the next level, as in the case of the
2213 * atomic option.
2215 * Finally, we map i' back to i and add each basic set to the list.
2217 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2218 __isl_keep isl_ast_build *build)
2220 int i, n;
2221 int depth;
2222 isl_ctx *ctx;
2223 isl_aff *lower;
2224 isl_basic_set_list *list;
2225 isl_multi_aff *expansion;
2226 isl_basic_map *bmap;
2228 if (!domain)
2229 return NULL;
2231 ctx = isl_set_get_ctx(domain);
2232 depth = isl_ast_build_get_depth(build);
2233 build = isl_ast_build_copy(build);
2234 domain = isl_ast_build_eliminate_inner(build, domain);
2235 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2236 expansion = isl_ast_build_get_stride_expansion(build);
2238 domain = isl_set_preimage_multi_aff(domain,
2239 isl_multi_aff_copy(expansion));
2240 domain = isl_ast_build_eliminate_divs(build, domain);
2242 isl_ast_build_free(build);
2244 list = isl_basic_set_list_alloc(ctx, 0);
2246 lower = find_unroll_lower_bound(domain, depth, &n);
2247 if (!lower)
2248 list = isl_basic_set_list_free(list);
2250 bmap = isl_basic_map_from_multi_aff(expansion);
2252 for (i = 0; list && i < n; ++i) {
2253 isl_set *set;
2254 isl_basic_set *bset;
2255 isl_constraint *slice;
2257 slice = at_offset(depth, lower, i);
2258 set = isl_set_copy(domain);
2259 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2260 bset = isl_set_unshifted_simple_hull(set);
2261 bset = isl_basic_set_add_constraint(bset, slice);
2262 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2263 list = isl_basic_set_list_add(list, bset);
2266 isl_aff_free(lower);
2267 isl_set_free(domain);
2268 isl_basic_map_free(bmap);
2270 return list;
2273 /* Data structure for storing the results and the intermediate objects
2274 * of compute_domains.
2276 * "list" is the main result of the function and contains a list
2277 * of disjoint basic sets for which code should be generated.
2279 * "executed" and "build" are inputs to compute_domains.
2280 * "schedule_domain" is the domain of "executed".
2282 * "option" constains the domains at the current depth that should by
2283 * atomic, separated or unrolled. These domains are as specified by
2284 * the user, except that inner dimensions have been eliminated and
2285 * that they have been made pair-wise disjoint.
2287 * "sep_class" contains the user-specified split into separation classes
2288 * specialized to the current depth.
2289 * "done" contains the union of th separation domains that have already
2290 * been handled.
2292 struct isl_codegen_domains {
2293 isl_basic_set_list *list;
2295 isl_union_map *executed;
2296 isl_ast_build *build;
2297 isl_set *schedule_domain;
2299 isl_set *option[3];
2301 isl_map *sep_class;
2302 isl_set *done;
2305 /* Add domains to domains->list for each individual value of the current
2306 * dimension, for that part of the schedule domain that lies in the
2307 * intersection of the option domain and the class domain.
2309 * "domain" is the intersection of the class domain and the schedule domain.
2310 * The divs that involve the current dimension have not been projected out
2311 * from this domain.
2313 * We first break up the unroll option domain into individual pieces
2314 * and then handle each of them separately. The unroll option domain
2315 * has been made disjoint in compute_domains_init_options,
2317 * Note that we actively want to combine different pieces of the
2318 * schedule domain that have the same value at the current dimension.
2319 * We therefore need to break up the unroll option domain before
2320 * intersecting with class and schedule domain, hoping that the
2321 * unroll option domain specified by the user is relatively simple.
2323 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2324 __isl_keep isl_set *domain)
2326 isl_set *unroll_domain;
2327 isl_basic_set_list *unroll_list;
2328 int i, n;
2329 int empty;
2331 empty = isl_set_is_empty(domains->option[unroll]);
2332 if (empty < 0)
2333 return -1;
2334 if (empty)
2335 return 0;
2337 unroll_domain = isl_set_copy(domains->option[unroll]);
2338 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2340 n = isl_basic_set_list_n_basic_set(unroll_list);
2341 for (i = 0; i < n; ++i) {
2342 isl_basic_set *bset;
2343 isl_basic_set_list *list;
2345 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2346 unroll_domain = isl_set_from_basic_set(bset);
2347 unroll_domain = isl_set_intersect(unroll_domain,
2348 isl_set_copy(domain));
2350 empty = isl_set_is_empty(unroll_domain);
2351 if (empty >= 0 && empty) {
2352 isl_set_free(unroll_domain);
2353 continue;
2356 list = do_unroll(unroll_domain, domains->build);
2357 domains->list = isl_basic_set_list_concat(domains->list, list);
2360 isl_basic_set_list_free(unroll_list);
2362 return 0;
2365 /* Construct a single basic set that includes the intersection of
2366 * the schedule domain, the atomic option domain and the class domain.
2367 * Add the resulting basic set to domains->list.
2369 * We construct a single domain rather than trying to combine
2370 * the schedule domains of individual domains because we are working
2371 * within a single component so that non-overlapping schedule domains
2372 * should already have been separated.
2373 * Note, though, that this does not take into account the class domain.
2374 * So, it is possible for a class domain to carve out a piece of the
2375 * schedule domain with independent pieces and then we would only
2376 * generate a single domain for them. If this proves to be problematic
2377 * for some users, then this function will have to be adjusted.
2379 * "domain" is the intersection of the schedule domain and the class domain,
2380 * with inner dimensions projected out.
2382 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2383 __isl_keep isl_set *domain)
2385 isl_basic_set *bset;
2386 isl_set *atomic_domain;
2387 int empty;
2389 atomic_domain = isl_set_copy(domains->option[atomic]);
2390 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2391 empty = isl_set_is_empty(atomic_domain);
2392 if (empty < 0 || empty) {
2393 isl_set_free(atomic_domain);
2394 return empty < 0 ? -1 : 0;
2397 atomic_domain = isl_set_coalesce(atomic_domain);
2398 bset = isl_set_unshifted_simple_hull(atomic_domain);
2399 domains->list = isl_basic_set_list_add(domains->list, bset);
2401 return 0;
2404 /* Split up the schedule domain into uniform basic sets,
2405 * in the sense that each element in a basic set is associated to
2406 * elements of the same domains, and add the result to domains->list.
2407 * Do this for that part of the schedule domain that lies in the
2408 * intersection of "class_domain" and the separate option domain.
2410 * "class_domain" may or may not include the constraints
2411 * of the schedule domain, but this does not make a difference
2412 * since we are going to intersect it with the domain of the inverse schedule.
2413 * If it includes schedule domain constraints, then they may involve
2414 * inner dimensions, but we will eliminate them in separation_domain.
2416 static int compute_separate_domain(struct isl_codegen_domains *domains,
2417 __isl_keep isl_set *class_domain)
2419 isl_space *space;
2420 isl_set *domain;
2421 isl_union_map *executed;
2422 isl_basic_set_list *list;
2423 int empty;
2425 domain = isl_set_copy(domains->option[separate]);
2426 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2427 executed = isl_union_map_copy(domains->executed);
2428 executed = isl_union_map_intersect_domain(executed,
2429 isl_union_set_from_set(domain));
2430 empty = isl_union_map_is_empty(executed);
2431 if (empty < 0 || empty) {
2432 isl_union_map_free(executed);
2433 return empty < 0 ? -1 : 0;
2436 space = isl_set_get_space(class_domain);
2437 domain = separate_schedule_domains(space, executed, domains->build);
2439 list = isl_basic_set_list_from_set(domain);
2440 domains->list = isl_basic_set_list_concat(domains->list, list);
2442 return 0;
2445 /* Split up the domain at the current depth into disjoint
2446 * basic sets for which code should be generated separately
2447 * for the given separation class domain.
2449 * If any separation classes have been defined, then "class_domain"
2450 * is the domain of the current class and does not refer to inner dimensions.
2451 * Otherwise, "class_domain" is the universe domain.
2453 * We first make sure that the class domain is disjoint from
2454 * previously considered class domains.
2456 * The separate domains can be computed directly from the "class_domain".
2458 * The unroll, atomic and remainder domains need the constraints
2459 * from the schedule domain.
2461 * For unrolling, the actual schedule domain is needed (with divs that
2462 * may refer to the current dimension) so that stride detection can be
2463 * performed.
2465 * For atomic and remainder domains, inner dimensions and divs involving
2466 * the current dimensions should be eliminated.
2467 * In case we are working within a separation class, we need to intersect
2468 * the result with the current "class_domain" to ensure that the domains
2469 * are disjoint from those generated from other class domains.
2471 * If anything is left after handling separate, unroll and atomic,
2472 * we split it up into basic sets and append the basic sets to domains->list.
2474 static int compute_partial_domains(struct isl_codegen_domains *domains,
2475 __isl_take isl_set *class_domain)
2477 isl_basic_set_list *list;
2478 isl_set *domain;
2480 class_domain = isl_set_subtract(class_domain,
2481 isl_set_copy(domains->done));
2482 domains->done = isl_set_union(domains->done,
2483 isl_set_copy(class_domain));
2485 domain = isl_set_copy(class_domain);
2487 if (compute_separate_domain(domains, domain) < 0)
2488 goto error;
2489 domain = isl_set_subtract(domain,
2490 isl_set_copy(domains->option[separate]));
2492 domain = isl_set_intersect(domain,
2493 isl_set_copy(domains->schedule_domain));
2495 if (compute_unroll_domains(domains, domain) < 0)
2496 goto error;
2497 domain = isl_set_subtract(domain,
2498 isl_set_copy(domains->option[unroll]));
2500 domain = isl_ast_build_eliminate(domains->build, domain);
2501 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2503 if (compute_atomic_domain(domains, domain) < 0)
2504 goto error;
2505 domain = isl_set_subtract(domain,
2506 isl_set_copy(domains->option[atomic]));
2508 domain = isl_set_coalesce(domain);
2509 domain = isl_set_make_disjoint(domain);
2511 list = isl_basic_set_list_from_set(domain);
2512 domains->list = isl_basic_set_list_concat(domains->list, list);
2514 isl_set_free(class_domain);
2516 return 0;
2517 error:
2518 isl_set_free(domain);
2519 isl_set_free(class_domain);
2520 return -1;
2523 /* Split up the domain at the current depth into disjoint
2524 * basic sets for which code should be generated separately
2525 * for the separation class identified by "pnt".
2527 * We extract the corresponding class domain from domains->sep_class,
2528 * eliminate inner dimensions and pass control to compute_partial_domains.
2530 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2532 struct isl_codegen_domains *domains = user;
2533 isl_set *class_set;
2534 isl_set *domain;
2535 int disjoint;
2537 class_set = isl_set_from_point(pnt);
2538 domain = isl_map_domain(isl_map_intersect_range(
2539 isl_map_copy(domains->sep_class), class_set));
2540 domain = isl_ast_build_compute_gist(domains->build, domain);
2541 domain = isl_ast_build_eliminate(domains->build, domain);
2543 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2544 if (disjoint < 0)
2545 return -1;
2546 if (disjoint) {
2547 isl_set_free(domain);
2548 return 0;
2551 return compute_partial_domains(domains, domain);
2554 /* Extract the domains at the current depth that should be atomic,
2555 * separated or unrolled and store them in option.
2557 * The domains specified by the user might overlap, so we make
2558 * them disjoint by subtracting earlier domains from later domains.
2560 static void compute_domains_init_options(isl_set *option[3],
2561 __isl_keep isl_ast_build *build)
2563 enum isl_ast_build_domain_type type, type2;
2565 for (type = atomic; type <= separate; ++type) {
2566 option[type] = isl_ast_build_get_option_domain(build, type);
2567 for (type2 = atomic; type2 < type; ++type2)
2568 option[type] = isl_set_subtract(option[type],
2569 isl_set_copy(option[type2]));
2572 option[unroll] = isl_set_coalesce(option[unroll]);
2573 option[unroll] = isl_set_make_disjoint(option[unroll]);
2576 /* Split up the domain at the current depth into disjoint
2577 * basic sets for which code should be generated separately,
2578 * based on the user-specified options.
2579 * Return the list of disjoint basic sets.
2581 * There are three kinds of domains that we need to keep track of.
2582 * - the "schedule domain" is the domain of "executed"
2583 * - the "class domain" is the domain corresponding to the currrent
2584 * separation class
2585 * - the "option domain" is the domain corresponding to one of the options
2586 * atomic, unroll or separate
2588 * We first consider the individial values of the separation classes
2589 * and split up the domain for each of them separately.
2590 * Finally, we consider the remainder. If no separation classes were
2591 * specified, then we call compute_partial_domains with the universe
2592 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2593 * with inner dimensions removed. We do this because we want to
2594 * avoid computing the complement of the class domains (i.e., the difference
2595 * between the universe and domains->done).
2597 static __isl_give isl_basic_set_list *compute_domains(
2598 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2600 struct isl_codegen_domains domains;
2601 isl_ctx *ctx;
2602 isl_set *domain;
2603 isl_union_set *schedule_domain;
2604 isl_set *classes;
2605 isl_space *space;
2606 int n_param;
2607 enum isl_ast_build_domain_type type;
2608 int empty;
2610 if (!executed)
2611 return NULL;
2613 ctx = isl_union_map_get_ctx(executed);
2614 domains.list = isl_basic_set_list_alloc(ctx, 0);
2616 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2617 domain = isl_set_from_union_set(schedule_domain);
2619 compute_domains_init_options(domains.option, build);
2621 domains.sep_class = isl_ast_build_get_separation_class(build);
2622 classes = isl_map_range(isl_map_copy(domains.sep_class));
2623 n_param = isl_set_dim(classes, isl_dim_param);
2624 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2626 space = isl_set_get_space(domain);
2627 domains.build = build;
2628 domains.schedule_domain = isl_set_copy(domain);
2629 domains.executed = executed;
2630 domains.done = isl_set_empty(space);
2632 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2633 domains.list = isl_basic_set_list_free(domains.list);
2634 isl_set_free(classes);
2636 empty = isl_set_is_empty(domains.done);
2637 if (empty < 0) {
2638 domains.list = isl_basic_set_list_free(domains.list);
2639 domain = isl_set_free(domain);
2640 } else if (empty) {
2641 isl_set_free(domain);
2642 domain = isl_set_universe(isl_set_get_space(domains.done));
2643 } else {
2644 domain = isl_ast_build_eliminate(build, domain);
2646 if (compute_partial_domains(&domains, domain) < 0)
2647 domains.list = isl_basic_set_list_free(domains.list);
2649 isl_set_free(domains.schedule_domain);
2650 isl_set_free(domains.done);
2651 isl_map_free(domains.sep_class);
2652 for (type = atomic; type <= separate; ++type)
2653 isl_set_free(domains.option[type]);
2655 return domains.list;
2658 /* Generate code for a single component, after shifting (if any)
2659 * has been applied.
2661 * We first split up the domain at the current depth into disjoint
2662 * basic sets based on the user-specified options.
2663 * Then we generated code for each of them and concatenate the results.
2665 static __isl_give isl_ast_graft_list *generate_shifted_component(
2666 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2668 isl_basic_set_list *domain_list;
2669 isl_ast_graft_list *list = NULL;
2671 domain_list = compute_domains(executed, build);
2672 list = generate_parallel_domains(domain_list, executed, build);
2674 isl_basic_set_list_free(domain_list);
2675 isl_union_map_free(executed);
2676 isl_ast_build_free(build);
2678 return list;
2681 struct isl_set_map_pair {
2682 isl_set *set;
2683 isl_map *map;
2686 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2687 * of indices into the "domain" array,
2688 * return the union of the "map" fields of the elements
2689 * indexed by the first "n" elements of "order".
2691 static __isl_give isl_union_map *construct_component_executed(
2692 struct isl_set_map_pair *domain, int *order, int n)
2694 int i;
2695 isl_map *map;
2696 isl_union_map *executed;
2698 map = isl_map_copy(domain[order[0]].map);
2699 executed = isl_union_map_from_map(map);
2700 for (i = 1; i < n; ++i) {
2701 map = isl_map_copy(domain[order[i]].map);
2702 executed = isl_union_map_add_map(executed, map);
2705 return executed;
2708 /* Generate code for a single component, after shifting (if any)
2709 * has been applied.
2711 * The component inverse schedule is specified as the "map" fields
2712 * of the elements of "domain" indexed by the first "n" elements of "order".
2714 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2715 struct isl_set_map_pair *domain, int *order, int n,
2716 __isl_take isl_ast_build *build)
2718 isl_union_map *executed;
2720 executed = construct_component_executed(domain, order, n);
2721 return generate_shifted_component(executed, build);
2724 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2725 * of indices into the "domain" array,
2726 * do all (except for at most one) of the "set" field of the elements
2727 * indexed by the first "n" elements of "order" have a fixed value
2728 * at position "depth"?
2730 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2731 int *order, int n, int depth)
2733 int i;
2734 int non_fixed = -1;
2736 for (i = 0; i < n; ++i) {
2737 int f;
2739 f = isl_set_plain_is_fixed(domain[order[i]].set,
2740 isl_dim_set, depth, NULL);
2741 if (f < 0)
2742 return -1;
2743 if (f)
2744 continue;
2745 if (non_fixed >= 0)
2746 return 0;
2747 non_fixed = i;
2750 return 1;
2753 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2754 * of indices into the "domain" array,
2755 * eliminate the inner dimensions from the "set" field of the elements
2756 * indexed by the first "n" elements of "order", provided the current
2757 * dimension does not have a fixed value.
2759 * Return the index of the first element in "order" with a corresponding
2760 * "set" field that does not have an (obviously) fixed value.
2762 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2763 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2765 int i;
2766 int base = -1;
2768 for (i = n - 1; i >= 0; --i) {
2769 int f;
2770 f = isl_set_plain_is_fixed(domain[order[i]].set,
2771 isl_dim_set, depth, NULL);
2772 if (f < 0)
2773 return -1;
2774 if (f)
2775 continue;
2776 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2777 domain[order[i]].set);
2778 base = i;
2781 return base;
2784 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2785 * of indices into the "domain" array,
2786 * find the element of "domain" (amongst those indexed by the first "n"
2787 * elements of "order") with the "set" field that has the smallest
2788 * value for the current iterator.
2790 * Note that the domain with the smallest value may depend on the parameters
2791 * and/or outer loop dimension. Since the result of this function is only
2792 * used as heuristic, we only make a reasonable attempt at finding the best
2793 * domain, one that should work in case a single domain provides the smallest
2794 * value for the current dimension over all values of the parameters
2795 * and outer dimensions.
2797 * In particular, we compute the smallest value of the first domain
2798 * and replace it by that of any later domain if that later domain
2799 * has a smallest value that is smaller for at least some value
2800 * of the parameters and outer dimensions.
2802 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2803 __isl_keep isl_ast_build *build)
2805 int i;
2806 isl_map *min_first;
2807 int first = 0;
2809 min_first = isl_ast_build_map_to_iterator(build,
2810 isl_set_copy(domain[order[0]].set));
2811 min_first = isl_map_lexmin(min_first);
2813 for (i = 1; i < n; ++i) {
2814 isl_map *min, *test;
2815 int empty;
2817 min = isl_ast_build_map_to_iterator(build,
2818 isl_set_copy(domain[order[i]].set));
2819 min = isl_map_lexmin(min);
2820 test = isl_map_copy(min);
2821 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2822 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2823 empty = isl_map_is_empty(test);
2824 isl_map_free(test);
2825 if (empty >= 0 && !empty) {
2826 isl_map_free(min_first);
2827 first = i;
2828 min_first = min;
2829 } else
2830 isl_map_free(min);
2832 if (empty < 0)
2833 break;
2836 isl_map_free(min_first);
2838 return i < n ? -1 : first;
2841 /* Construct a shifted inverse schedule based on the original inverse schedule,
2842 * the stride and the offset.
2844 * The original inverse schedule is specified as the "map" fields
2845 * of the elements of "domain" indexed by the first "n" elements of "order".
2847 * "stride" and "offset" are such that the difference
2848 * between the values of the current dimension of domain "i"
2849 * and the values of the current dimension for some reference domain are
2850 * equal to
2852 * stride * integer + offset[i]
2854 * Moreover, 0 <= offset[i] < stride.
2856 * For each domain, we create a map
2858 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2860 * where j refers to the current dimension and the other dimensions are
2861 * unchanged, and apply this map to the original schedule domain.
2863 * For example, for the original schedule
2865 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2867 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2868 * we apply the mapping
2870 * { [j] -> [j, 0] }
2872 * to the schedule of the "A" domain and the mapping
2874 * { [j - 1] -> [j, 1] }
2876 * to the schedule of the "B" domain.
2879 * Note that after the transformation, the differences between pairs
2880 * of values of the current dimension over all domains are multiples
2881 * of stride and that we have therefore exposed the stride.
2884 * To see that the mapping preserves the lexicographic order,
2885 * first note that each of the individual maps above preserves the order.
2886 * If the value of the current iterator is j1 in one domain and j2 in another,
2887 * then if j1 = j2, we know that the same map is applied to both domains
2888 * and the order is preserved.
2889 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2890 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2892 * j1 - c1 < j2 - c2
2894 * and the order is preserved.
2895 * If c1 < c2, then we know
2897 * 0 <= c2 - c1 < s
2899 * We also have
2901 * j2 - j1 = n * s + r
2903 * with n >= 0 and 0 <= r < s.
2904 * In other words, r = c2 - c1.
2905 * If n > 0, then
2907 * j1 - c1 < j2 - c2
2909 * If n = 0, then
2911 * j1 - c1 = j2 - c2
2913 * and so
2915 * (j1 - c1, c1) << (j2 - c2, c2)
2917 * with "<<" the lexicographic order, proving that the order is preserved
2918 * in all cases.
2920 static __isl_give isl_union_map *contruct_shifted_executed(
2921 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2922 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2924 int i;
2925 isl_int v;
2926 isl_union_map *executed;
2927 isl_space *space;
2928 isl_map *map;
2929 int depth;
2930 isl_constraint *c;
2932 depth = isl_ast_build_get_depth(build);
2933 space = isl_ast_build_get_space(build, 1);
2934 executed = isl_union_map_empty(isl_space_copy(space));
2935 space = isl_space_map_from_set(space);
2936 map = isl_map_identity(isl_space_copy(space));
2937 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2938 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2939 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2941 c = isl_equality_alloc(isl_local_space_from_space(space));
2942 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2943 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2945 isl_int_init(v);
2947 for (i = 0; i < n; ++i) {
2948 isl_map *map_i;
2950 if (isl_vec_get_element(offset, i, &v) < 0)
2951 break;
2952 map_i = isl_map_copy(map);
2953 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2954 isl_int_neg(v, v);
2955 c = isl_constraint_set_constant(c, v);
2956 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2958 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2959 map_i);
2960 executed = isl_union_map_add_map(executed, map_i);
2963 isl_constraint_free(c);
2964 isl_map_free(map);
2966 isl_int_clear(v);
2968 if (i < n)
2969 executed = isl_union_map_free(executed);
2971 return executed;
2974 /* Generate code for a single component, after exposing the stride,
2975 * given that the schedule domain is "shifted strided".
2977 * The component inverse schedule is specified as the "map" fields
2978 * of the elements of "domain" indexed by the first "n" elements of "order".
2980 * The schedule domain being "shifted strided" means that the differences
2981 * between the values of the current dimension of domain "i"
2982 * and the values of the current dimension for some reference domain are
2983 * equal to
2985 * stride * integer + offset[i]
2987 * We first look for the domain with the "smallest" value for the current
2988 * dimension and adjust the offsets such that the offset of the "smallest"
2989 * domain is equal to zero. The other offsets are reduced modulo stride.
2991 * Based on this information, we construct a new inverse schedule in
2992 * contruct_shifted_executed that exposes the stride.
2993 * Since this involves the introduction of a new schedule dimension,
2994 * the build needs to be changed accodingly.
2995 * After computing the AST, the newly introduced dimension needs
2996 * to be removed again from the list of grafts. We do this by plugging
2997 * in a mapping that represents the new schedule domain in terms of the
2998 * old schedule domain.
3000 static __isl_give isl_ast_graft_list *generate_shift_component(
3001 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3002 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
3004 isl_ast_graft_list *list;
3005 int first;
3006 int depth;
3007 isl_ctx *ctx;
3008 isl_int val;
3009 isl_vec *v;
3010 isl_space *space;
3011 isl_multi_aff *ma, *zero;
3012 isl_union_map *executed;
3014 ctx = isl_ast_build_get_ctx(build);
3015 depth = isl_ast_build_get_depth(build);
3017 first = first_offset(domain, order, n, build);
3018 if (first < 0)
3019 return isl_ast_build_free(build);
3021 isl_int_init(val);
3022 v = isl_vec_alloc(ctx, n);
3023 if (isl_vec_get_element(offset, first, &val) < 0)
3024 v = isl_vec_free(v);
3025 isl_int_neg(val, val);
3026 v = isl_vec_set(v, val);
3027 v = isl_vec_add(v, isl_vec_copy(offset));
3028 v = isl_vec_fdiv_r(v, stride);
3030 executed = contruct_shifted_executed(domain, order, n, stride, v,
3031 build);
3032 space = isl_ast_build_get_space(build, 1);
3033 space = isl_space_map_from_set(space);
3034 ma = isl_multi_aff_identity(isl_space_copy(space));
3035 space = isl_space_from_domain(isl_space_domain(space));
3036 space = isl_space_add_dims(space, isl_dim_out, 1);
3037 zero = isl_multi_aff_zero(space);
3038 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3039 build = isl_ast_build_insert_dim(build, depth + 1);
3040 list = generate_shifted_component(executed, build);
3042 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3044 isl_vec_free(v);
3045 isl_int_clear(val);
3047 return list;
3050 /* Generate code for a single component.
3052 * The component inverse schedule is specified as the "map" fields
3053 * of the elements of "domain" indexed by the first "n" elements of "order".
3055 * This function may modify the "set" fields of "domain".
3057 * Before proceeding with the actual code generation for the component,
3058 * we first check if there are any "shifted" strides, meaning that
3059 * the schedule domains of the individual domains are all strided,
3060 * but that they have different offsets, resulting in the union
3061 * of schedule domains not being strided anymore.
3063 * The simplest example is the schedule
3065 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3067 * Both schedule domains are strided, but their union is not.
3068 * This function detects such cases and then rewrites the schedule to
3070 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3072 * In the new schedule, the schedule domains have the same offset (modulo
3073 * the stride), ensuring that the union of schedule domains is also strided.
3076 * If there is only a single domain in the component, then there is
3077 * nothing to do. Similarly, if the current schedule dimension has
3078 * a fixed value for almost all domains then there is nothing to be done.
3079 * In particular, we need at least two domains where the current schedule
3080 * dimension does not have a fixed value.
3081 * Finally, if any of the options refer to the current schedule dimension,
3082 * then we bail out as well. It would be possible to reformulate the options
3083 * in terms of the new schedule domain, but that would introduce constraints
3084 * that separate the domains in the options and that is something we would
3085 * like to avoid.
3088 * To see if there is any shifted stride, we look at the differences
3089 * between the values of the current dimension in pairs of domains
3090 * for equal values of outer dimensions. These differences should be
3091 * of the form
3093 * m x + r
3095 * with "m" the stride and "r" a constant. Note that we cannot perform
3096 * this analysis on individual domains as the lower bound in each domain
3097 * may depend on parameters or outer dimensions and so the current dimension
3098 * itself may not have a fixed remainder on division by the stride.
3100 * In particular, we compare the first domain that does not have an
3101 * obviously fixed value for the current dimension to itself and all
3102 * other domains and collect the offsets and the gcd of the strides.
3103 * If the gcd becomes one, then we failed to find shifted strides.
3104 * If all the offsets are the same (for those domains that do not have
3105 * an obviously fixed value for the current dimension), then we do not
3106 * apply the transformation.
3107 * If none of the domains were skipped, then there is nothing to do.
3108 * If some of them were skipped, then if we apply separation, the schedule
3109 * domain should get split in pieces with a (non-shifted) stride.
3111 * Otherwise, we apply a shift to expose the stride in
3112 * generate_shift_component.
3114 static __isl_give isl_ast_graft_list *generate_component(
3115 struct isl_set_map_pair *domain, int *order, int n,
3116 __isl_take isl_ast_build *build)
3118 int i, d;
3119 int depth;
3120 isl_ctx *ctx;
3121 isl_map *map;
3122 isl_set *deltas;
3123 isl_int m, r, gcd;
3124 isl_vec *v;
3125 int fixed, skip;
3126 int base;
3127 isl_ast_graft_list *list;
3128 int res = 0;
3130 depth = isl_ast_build_get_depth(build);
3132 skip = n == 1;
3133 if (skip >= 0 && !skip)
3134 skip = at_most_one_non_fixed(domain, order, n, depth);
3135 if (skip >= 0 && !skip)
3136 skip = isl_ast_build_options_involve_depth(build);
3137 if (skip < 0)
3138 return isl_ast_build_free(build);
3139 if (skip)
3140 return generate_shifted_component_from_list(domain,
3141 order, n, build);
3143 base = eliminate_non_fixed(domain, order, n, depth, build);
3144 if (base < 0)
3145 return isl_ast_build_free(build);
3147 ctx = isl_ast_build_get_ctx(build);
3149 isl_int_init(m);
3150 isl_int_init(r);
3151 isl_int_init(gcd);
3152 v = isl_vec_alloc(ctx, n);
3154 fixed = 1;
3155 for (i = 0; i < n; ++i) {
3156 map = isl_map_from_domain_and_range(
3157 isl_set_copy(domain[order[base]].set),
3158 isl_set_copy(domain[order[i]].set));
3159 for (d = 0; d < depth; ++d)
3160 map = isl_map_equate(map, isl_dim_in, d,
3161 isl_dim_out, d);
3162 deltas = isl_map_deltas(map);
3163 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3164 isl_set_free(deltas);
3165 if (res < 0)
3166 break;
3168 if (i == 0)
3169 isl_int_set(gcd, m);
3170 else
3171 isl_int_gcd(gcd, gcd, m);
3172 if (isl_int_is_one(gcd))
3173 break;
3174 v = isl_vec_set_element(v, i, r);
3176 res = isl_set_plain_is_fixed(domain[order[i]].set,
3177 isl_dim_set, depth, NULL);
3178 if (res < 0)
3179 break;
3180 if (res)
3181 continue;
3183 if (fixed && i > base) {
3184 isl_vec_get_element(v, base, &m);
3185 if (isl_int_ne(m, r))
3186 fixed = 0;
3190 if (res < 0) {
3191 isl_ast_build_free(build);
3192 list = NULL;
3193 } else if (i < n || fixed) {
3194 list = generate_shifted_component_from_list(domain,
3195 order, n, build);
3196 } else {
3197 list = generate_shift_component(domain, order, n, gcd, v,
3198 build);
3201 isl_vec_free(v);
3202 isl_int_clear(gcd);
3203 isl_int_clear(r);
3204 isl_int_clear(m);
3206 return list;
3209 /* Store both "map" itself and its domain in the
3210 * structure pointed to by *next and advance to the next array element.
3212 static int extract_domain(__isl_take isl_map *map, void *user)
3214 struct isl_set_map_pair **next = user;
3216 (*next)->map = isl_map_copy(map);
3217 (*next)->set = isl_map_domain(map);
3218 (*next)++;
3220 return 0;
3223 /* Internal data for any_scheduled_after.
3225 * "depth" is the number of loops that have already been generated
3226 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3227 * "domain" is an array of set-map pairs corresponding to the different
3228 * iteration domains. The set is the schedule domain, i.e., the domain
3229 * of the inverse schedule, while the map is the inverse schedule itself.
3231 struct isl_any_scheduled_after_data {
3232 int depth;
3233 int group_coscheduled;
3234 struct isl_set_map_pair *domain;
3237 /* Is any element of domain "i" scheduled after any element of domain "j"
3238 * (for a common iteration of the first data->depth loops)?
3240 * data->domain[i].set contains the domain of the inverse schedule
3241 * for domain "i", i.e., elements in the schedule domain.
3243 * If data->group_coscheduled is set, then we also return 1 if there
3244 * is any pair of elements in the two domains that are scheduled together.
3246 static int any_scheduled_after(int i, int j, void *user)
3248 struct isl_any_scheduled_after_data *data = user;
3249 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3250 int pos;
3252 for (pos = data->depth; pos < dim; ++pos) {
3253 int follows;
3255 follows = isl_set_follows_at(data->domain[i].set,
3256 data->domain[j].set, pos);
3258 if (follows < -1)
3259 return -1;
3260 if (follows > 0)
3261 return 1;
3262 if (follows < 0)
3263 return 0;
3266 return data->group_coscheduled;
3269 /* Look for independent components at the current depth and generate code
3270 * for each component separately. The resulting lists of grafts are
3271 * merged in an attempt to combine grafts with identical guards.
3273 * Code for two domains can be generated separately if all the elements
3274 * of one domain are scheduled before (or together with) all the elements
3275 * of the other domain. We therefore consider the graph with as nodes
3276 * the domains and an edge between two nodes if any element of the first
3277 * node is scheduled after any element of the second node.
3278 * If the ast_build_group_coscheduled is set, then we also add an edge if
3279 * there is any pair of elements in the two domains that are scheduled
3280 * together.
3281 * Code is then generated (by generate_component)
3282 * for each of the strongly connected components in this graph
3283 * in their topological order.
3285 * Since the test is performed on the domain of the inverse schedules of
3286 * the different domains, we precompute these domains and store
3287 * them in data.domain.
3289 static __isl_give isl_ast_graft_list *generate_components(
3290 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3292 int i;
3293 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3294 int n = isl_union_map_n_map(executed);
3295 struct isl_any_scheduled_after_data data;
3296 struct isl_set_map_pair *next;
3297 struct isl_tarjan_graph *g = NULL;
3298 isl_ast_graft_list *list = NULL;
3299 int n_domain = 0;
3301 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3302 if (!data.domain)
3303 goto error;
3304 n_domain = n;
3306 next = data.domain;
3307 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3308 goto error;
3310 if (!build)
3311 goto error;
3312 data.depth = isl_ast_build_get_depth(build);
3313 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3314 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3316 list = isl_ast_graft_list_alloc(ctx, 0);
3318 i = 0;
3319 while (list && n) {
3320 isl_ast_graft_list *list_c;
3321 int first = i;
3323 if (g->order[i] == -1)
3324 isl_die(ctx, isl_error_internal, "cannot happen",
3325 goto error);
3326 ++i; --n;
3327 while (g->order[i] != -1) {
3328 ++i; --n;
3331 list_c = generate_component(data.domain,
3332 g->order + first, i - first,
3333 isl_ast_build_copy(build));
3334 list = isl_ast_graft_list_merge(list, list_c, build);
3336 ++i;
3339 if (0)
3340 error: list = isl_ast_graft_list_free(list);
3341 isl_tarjan_graph_free(g);
3342 for (i = 0; i < n_domain; ++i) {
3343 isl_map_free(data.domain[i].map);
3344 isl_set_free(data.domain[i].set);
3346 free(data.domain);
3347 isl_union_map_free(executed);
3348 isl_ast_build_free(build);
3350 return list;
3353 /* Generate code for the next level (and all inner levels).
3355 * If "executed" is empty, i.e., no code needs to be generated,
3356 * then we return an empty list.
3358 * If we have already generated code for all loop levels, then we pass
3359 * control to generate_inner_level.
3361 * If "executed" lives in a single space, i.e., if code needs to be
3362 * generated for a single domain, then there can only be a single
3363 * component and we go directly to generate_shifted_component.
3364 * Otherwise, we call generate_components to detect the components
3365 * and to call generate_component on each of them separately.
3367 static __isl_give isl_ast_graft_list *generate_next_level(
3368 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3370 int depth;
3372 if (!build || !executed)
3373 goto error;
3375 if (isl_union_map_is_empty(executed)) {
3376 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3377 isl_union_map_free(executed);
3378 isl_ast_build_free(build);
3379 return isl_ast_graft_list_alloc(ctx, 0);
3382 depth = isl_ast_build_get_depth(build);
3383 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3384 return generate_inner_level(executed, build);
3386 if (isl_union_map_n_map(executed) == 1)
3387 return generate_shifted_component(executed, build);
3389 return generate_components(executed, build);
3390 error:
3391 isl_union_map_free(executed);
3392 isl_ast_build_free(build);
3393 return NULL;
3396 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3397 * internal, executed and build are the inputs to generate_code.
3398 * list collects the output.
3400 struct isl_generate_code_data {
3401 int internal;
3402 isl_union_map *executed;
3403 isl_ast_build *build;
3405 isl_ast_graft_list *list;
3408 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3410 * [E -> S] -> D
3412 * with E the external build schedule and S the additional schedule "space",
3413 * reformulate the inverse schedule in terms of the internal schedule domain,
3414 * i.e., return
3416 * [I -> S] -> D
3418 * We first obtain a mapping
3420 * I -> E
3422 * take the inverse and the product with S -> S, resulting in
3424 * [I -> S] -> [E -> S]
3426 * Applying the map to the input produces the desired result.
3428 static __isl_give isl_union_map *internal_executed(
3429 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3430 __isl_keep isl_ast_build *build)
3432 isl_map *id, *proj;
3434 proj = isl_ast_build_get_schedule_map(build);
3435 proj = isl_map_reverse(proj);
3436 space = isl_space_map_from_set(isl_space_copy(space));
3437 id = isl_map_identity(space);
3438 proj = isl_map_product(proj, id);
3439 executed = isl_union_map_apply_domain(executed,
3440 isl_union_map_from_map(proj));
3441 return executed;
3444 /* Generate an AST that visits the elements in the range of data->executed
3445 * in the relative order specified by the corresponding image element(s)
3446 * for those image elements that belong to "set".
3447 * Add the result to data->list.
3449 * The caller ensures that "set" is a universe domain.
3450 * "space" is the space of the additional part of the schedule.
3451 * It is equal to the space of "set" if build->domain is parametric.
3452 * Otherwise, it is equal to the range of the wrapped space of "set".
3454 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3455 * was called from an outside user (data->internal not set), then
3456 * the (inverse) schedule refers to the external build domain and needs to
3457 * be transformed to refer to the internal build domain.
3459 * The build is extended to include the additional part of the schedule.
3460 * If the original build space was not parametric, then the options
3461 * in data->build refer only to the additional part of the schedule
3462 * and they need to be adjusted to refer to the complete AST build
3463 * domain.
3465 * After having adjusted inverse schedule and build, we start generating
3466 * code with the outer loop of the current code generation
3467 * in generate_next_level.
3469 * If the original build space was not parametric, we undo the embedding
3470 * on the resulting isl_ast_node_list so that it can be used within
3471 * the outer AST build.
3473 static int generate_code_in_space(struct isl_generate_code_data *data,
3474 __isl_take isl_set *set, __isl_take isl_space *space)
3476 isl_union_map *executed;
3477 isl_ast_build *build;
3478 isl_ast_graft_list *list;
3479 int embed;
3481 executed = isl_union_map_copy(data->executed);
3482 executed = isl_union_map_intersect_domain(executed,
3483 isl_union_set_from_set(set));
3485 embed = !isl_set_is_params(data->build->domain);
3486 if (embed && !data->internal)
3487 executed = internal_executed(executed, space, data->build);
3489 build = isl_ast_build_copy(data->build);
3490 build = isl_ast_build_product(build, space);
3492 list = generate_next_level(executed, build);
3494 list = isl_ast_graft_list_unembed(list, embed);
3496 data->list = isl_ast_graft_list_concat(data->list, list);
3498 return 0;
3501 /* Generate an AST that visits the elements in the range of data->executed
3502 * in the relative order specified by the corresponding domain element(s)
3503 * for those domain elements that belong to "set".
3504 * Add the result to data->list.
3506 * The caller ensures that "set" is a universe domain.
3508 * If the build space S is not parametric, then the space of "set"
3509 * need to be a wrapped relation with S as domain. That is, it needs
3510 * to be of the form
3512 * [S -> T]
3514 * Check this property and pass control to generate_code_in_space
3515 * passing along T.
3516 * If the build space is not parametric, then T is the space of "set".
3518 static int generate_code_set(__isl_take isl_set *set, void *user)
3520 struct isl_generate_code_data *data = user;
3521 isl_space *space, *build_space;
3522 int is_domain;
3524 space = isl_set_get_space(set);
3526 if (isl_set_is_params(data->build->domain))
3527 return generate_code_in_space(data, set, space);
3529 build_space = isl_ast_build_get_space(data->build, data->internal);
3530 space = isl_space_unwrap(space);
3531 is_domain = isl_space_is_domain(build_space, space);
3532 isl_space_free(build_space);
3533 space = isl_space_range(space);
3535 if (is_domain < 0)
3536 goto error;
3537 if (!is_domain)
3538 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3539 "invalid nested schedule space", goto error);
3541 return generate_code_in_space(data, set, space);
3542 error:
3543 isl_set_free(set);
3544 isl_space_free(space);
3545 return -1;
3548 /* Generate an AST that visits the elements in the range of "executed"
3549 * in the relative order specified by the corresponding domain element(s).
3551 * "build" is an isl_ast_build that has either been constructed by
3552 * isl_ast_build_from_context or passed to a callback set by
3553 * isl_ast_build_set_create_leaf.
3554 * In the first case, the space of the isl_ast_build is typically
3555 * a parametric space, although this is currently not enforced.
3556 * In the second case, the space is never a parametric space.
3557 * If the space S is not parametric, then the domain space(s) of "executed"
3558 * need to be wrapped relations with S as domain.
3560 * If the domain of "executed" consists of several spaces, then an AST
3561 * is generated for each of them (in arbitrary order) and the results
3562 * are concatenated.
3564 * If "internal" is set, then the domain "S" above refers to the internal
3565 * schedule domain representation. Otherwise, it refers to the external
3566 * representation, as returned by isl_ast_build_get_schedule_space.
3568 * We essentially run over all the spaces in the domain of "executed"
3569 * and call generate_code_set on each of them.
3571 static __isl_give isl_ast_graft_list *generate_code(
3572 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3573 int internal)
3575 isl_ctx *ctx;
3576 struct isl_generate_code_data data = { 0 };
3577 isl_space *space;
3578 isl_union_set *schedule_domain;
3579 isl_union_map *universe;
3581 if (!build)
3582 goto error;
3583 space = isl_ast_build_get_space(build, 1);
3584 space = isl_space_align_params(space,
3585 isl_union_map_get_space(executed));
3586 space = isl_space_align_params(space,
3587 isl_union_map_get_space(build->options));
3588 build = isl_ast_build_align_params(build, isl_space_copy(space));
3589 executed = isl_union_map_align_params(executed, space);
3590 if (!executed || !build)
3591 goto error;
3593 ctx = isl_ast_build_get_ctx(build);
3595 data.internal = internal;
3596 data.executed = executed;
3597 data.build = build;
3598 data.list = isl_ast_graft_list_alloc(ctx, 0);
3600 universe = isl_union_map_universe(isl_union_map_copy(executed));
3601 schedule_domain = isl_union_map_domain(universe);
3602 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3603 &data) < 0)
3604 data.list = isl_ast_graft_list_free(data.list);
3606 isl_union_set_free(schedule_domain);
3607 isl_union_map_free(executed);
3609 isl_ast_build_free(build);
3610 return data.list;
3611 error:
3612 isl_union_map_free(executed);
3613 isl_ast_build_free(build);
3614 return NULL;
3617 /* Generate an AST that visits the elements in the domain of "schedule"
3618 * in the relative order specified by the corresponding image element(s).
3620 * "build" is an isl_ast_build that has either been constructed by
3621 * isl_ast_build_from_context or passed to a callback set by
3622 * isl_ast_build_set_create_leaf.
3623 * In the first case, the space of the isl_ast_build is typically
3624 * a parametric space, although this is currently not enforced.
3625 * In the second case, the space is never a parametric space.
3626 * If the space S is not parametric, then the range space(s) of "schedule"
3627 * need to be wrapped relations with S as domain.
3629 * If the range of "schedule" consists of several spaces, then an AST
3630 * is generated for each of them (in arbitrary order) and the results
3631 * are concatenated.
3633 * We first initialize the local copies of the relevant options.
3634 * We do this here rather than when the isl_ast_build is created
3635 * because the options may have changed between the construction
3636 * of the isl_ast_build and the call to isl_generate_code.
3638 * The main computation is performed on an inverse schedule (with
3639 * the schedule domain in the domain and the elements to be executed
3640 * in the range) called "executed".
3642 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3643 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3645 isl_ast_graft_list *list;
3646 isl_ast_node *node;
3647 isl_union_map *executed;
3649 build = isl_ast_build_copy(build);
3650 build = isl_ast_build_set_single_valued(build, 0);
3651 executed = isl_union_map_reverse(schedule);
3652 list = generate_code(executed, isl_ast_build_copy(build), 0);
3653 node = isl_ast_node_from_graft_list(list, build);
3654 isl_ast_build_free(build);
3656 return node;